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1.Introduction. Let M be a C∞ -manifold and TM the total space of the tangent
bundle. A control system is a subset V ⊂ TM. Fix an initial point q0 ∈ M and a
segment [0, t] ⊂ R. Admissible trajectories are Lipschitzian curves q(τ), 0 ≤ τ ≤
t, q(0) = q0, satisfying a differential equation of the form

(1) q̇ = vτ (q),

where vτ (q) ∈ V ∩ TqM, ∀q ∈ M, vτ (q) is smooth in q, bounded and measurable
in τ. The mapping q(·) 7→ q(t) which maps admissible trajectories in their end
points is called an end-point mapping.

Control Theory is in a sense a theory of end-point mappings. This point
of view is rather restrictive but sufficient for our purposes. For instance, attain-
able sets are just images of end-point mappings. Geometric Control Theory tends
to characterize properties of these mappings in terms of iterated Lie brackets of
smooth vector fields on M with values in V. A number of researchers have shown
a remarkable ingenuity in this regard leading to encouraging results. See, for in-
stance, books [1],[2],[3] to get an idea of various periods in the development of this
domain and for other references. A complete list of references would probably run
to thousands of items.

A great part of the theory is devoted to the case of nonsmooth V such that
V ∩ TqM are polytopes or worse. There is a wide-spread view that such a non-
smoothness is the essence of Control Theory. This is not my opinion, and I am
making the following radical assumption.

Let us assume that V forms a smooth locally trivial bundle over M with
fibers Vq — smooth closed convex submanifolds in TqM of positive dimension,
symmetric with respect to the origin. So we consider a very special class of control
systems.

Examples. 1) Vq is an ellipsoid centered at the origin. This is the case of
Riemannian Geometry.

2) Vq is a proper linear subspace of TqM. This case includes Nonholonomic
Geometry.

3) Vq is the intersection of an ellipsoid and a subspace. This is sub-Riemannian
Geometry.

This paper essentially deals with cases 2) and 3).
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2 ANDREI A. AGRACHEV

2.Extremals. Denote by Ωq0(t) the space of all admissible trajectories on [0, t]
equipped with W1,∞ -topology, i.e. the topology of uniform convergence for curves
and their velocities. Under our assumptions for V, the space Ωq0(t) possesses the
natural structure of a smooth Banach manifold, and the end-point mapping

ft : Ωq0(t) → M, ft(q(·)) = q(t)

is a smooth mapping. We will denote by Dqft : TqΩq0(t) → Tft(q)M the differential
of ft at q(·).

A trajectory q(·) is a critical point for ft iff ∃λ ∈ T ∗ft(q)
M, λ 6= 0, such that

λDqft = 0, i.e. λ is orthogonal to the image of the linear mapping Dqft. It is a
natural thing that critical points of ft are the main object of our investigation. We
study critical levels of ft and restrictions of ft on the sets of their critical points.

The cotangent bundle T ∗M possesses the canonical symplectic structure.
We will denote by

−→
φ the Hamiltonian vector field on T ∗M associated to the

Hamiltonian φ ∈ C∞(T ∗M). Let v be a smooth vector field on M, then v∗ : λ 7→
〈λ, v(q)〉, λ ∈ T ∗q M, q ∈ M is a Hamiltonian on T ∗M, which is linear on fibers, and
−→
v∗ is a lift of the vector field v on T ∗M.

Set Ωq0 = Ωq0(1), f = f1. Let q(·) ∈ Ωq0 be a critical point of f. Then q|[0,t]

is obviously a critical point of ft, ∀t ∈ (0, 1]. Moreover, let q(·) satisfy the equation
(1). If λt, 0 ≤ t ≤ 1, is a solution of the nonstationary Hamiltonian system

(2) λ̇ =
−→
v∗t (λ) and λ1Dqf = 0, λ1 6= 0,

then λtDq|[0,t]
ft = 0, λt 6= 0, ∀t ∈ [0, 1].

The curves in T ∗M which satisfy (2) for some vt are called extremals associ-
ated with q(·). Let q ∈ M, λ ∈ T ∗q M, λ 6= 0. Set h(λ) = max

v∈Vq

〈λ, v〉 if the maximum

exists. The function h is defined on a subset of T ∗M. It is convex and positively
homogeneous on fibers. We call h the Hamiltonian of the control system.

Let σ be the canonical symplectic structure on T ∗M. The following proposi-
tion is a corollary of the Pontryagin Maximum Principle.

Proposition 1. a) h(λt) = const, 0 ≤ t ≤ 1, for arbitrary extremal λt.
b) Let a level set h−1(c) be a smooth submanifold of T ∗M. Then any extremal

λt ∈ h−1(c), 0 ≤ t ≤ 1 is a characteristic of the differential form σ|h−1(c) (i.e.
λ̇cσ|h−1(c) = 0), and any properly parametrized characteristic of this form started
at T ∗q0

M is the extremal.

Note, that level sets of h are smooth in the above examples 1-3.

3.Distributions. Distributions are just smooth vector subbundles of the tangent
bundle. Let ∆ be the space of smooth sections of a distribution, and ∆q ⊂ TqM
is the fiber at q ∈ M of the corresponding subbundle.

Set ∆1 = ∆, ∆n = [∆,∆n−1], n = 2, 3, ... where the Lie bracket of spaces
of vector fields is, by definition, the linear hull of the pairwise brackets of their
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elements. The distribution is called bracket generating if a number nq exists for
∀q ∈ M such that ∆nq

q = TqM. We will consider only bracket generating dis-
tributions in this paper. The distribution defines a control system V =

⋃
q∈M

∆q.

The well known Rashevskij—Chow theorem asserts that the end-point mapping
f : Ωq0 → M is a surjective one. It is not a submersion, however, if ∆q 6= TqM.
Critical points of f are called singular or abnormal geodesics for ∆.

Let ∆⊥
q ⊂ T ∗q M be the set of all nonzero covectors which are orthogonal to

∆q, ∆⊥ =
⋃

q∈M

∆⊥
q . The manifold ∆⊥ is the domain of the Hamiltonian of the

control system V. This Hamiltonian is identical to zero in its domain. Singular
geodesics are exactly projections on M of the characteristics of the form σ|∆⊥ ,
started at ∆⊥

q0
.

4. Rigidity. Let Ωq0,q1 = f−1(q1) be the set of admissible trajectories which
connect q0 with q1. An admissible trajectory q(·) is called rigid if there exists a
neighborhood of q(·) in Ωq0,q(1) which contains only reparametrizations of q(·). It
is called locally rigid if its small enough pieces are rigid, cf.[8].

Theorem 2. (see[6]) Let q(·) ∈ Ωq0 , q̇ = v(q), v ∈ ∆.
a) If q(·) is a locally rigid trajectory, then there exists an extremal λt associ-

ated with q(·) such that

(3) λt ⊥ ∆2
q(t), 〈λt, [[v, w], w](q(t))〉 > 0, ∀w ∈ ∆, 0 ≤ t ≤ 1

b) Let there exist an extremal λt which satisfies (3) and

(4) 〈λt, [[v, w], w](q(t))〉 > 0, ∀w ∈ ∆, w(q(t)) ∦ q̇(t), 0 ≤ t ≤ 1.

Then q(·) is indeed a locally rigid trajectory.

We call q(·) the singular geodesic of the first order if there exists a unique up
to a positive multiplier extremal λt associated with q(·) which satisfies (3), (4).

5. Jacobi curves. Let λt be an extremal which satisfies (3), and Qτ : M → M —
the flow generated by v. Set Γt = {−→w∗|λt : w ∈ ∆} —an isotropic subspace of the
symplectic space Tλt(T

∗M). Let 0 = t0 < t1 < ... < tk+1 = 1 be a subdivision of
the segment [0, 1], I = {t1, ..., tk}. Let us identify Tλ(T ∗q M) = T ∗q M for λ ∈ T ∗q M
and set

Λ0(I) = T ∗q0
M, Λt(I) = Q∗ti−t(Λti(I)Γti ) for ti < t ≤ ti+1, i = 0, ..., k,

where ΛΓ denotes the intersection of Λ+Γ with the skew-orthogonal complement to
Γ. Then Λt(I) ⊂ Tλt(T

∗M) is a piecewise smooth family of Lagrangian subspaces.

Proposition 3. Let q(·) be a locally rigid trajectory, q̇ = v(q), v ∈ ∆. Then there
exists an extremal λt which satisfies (3) and such that

∃ I- limΛt(I) = Λt, ∀t ∈ [0, 1], where I = {I ⊂ (0, 1) : #I < ∞}.
We call Λt the Jacobi curve associated with λt. The Jacobi curve is smooth in

t ∈ (0, 1] and satisfies a simple Hamiltonian equation if q(·) is a singular geodesic
of the first order. See details in [4],[5],[6].



4 ANDREI A. AGRACHEV

Theorem 4. Let q(·) be a singular geodesic of the first order, and Λt be the Jacobi
curve associated with the corresponding extremal λt. Suppose that Λ1 ∩ T ∗q(1)

M =
Rλ1. Then there exists an integer d ≥ 0 and a neighborhood Oq of q in Ωq0,q(1)

such that Oq\{q} is homotopy equivalent to the sphere Sd−1. If Λt ∩ T ∗q(t)M =
Rλt, ∀t ∈ (0, 1], then d = 0.

We write d = indq(·). This index has an explicit expression in terms of the
Maslov cocycle on T ∗M, cf.[5].

6. Low dimensions. Let ∆ be a rank 2 distribution and dimM = 3. Then
N = {q ∈ M : ∆q = ∆2

q 6= ∆3
q} is a smooth 2-dimensional submanifold in M

(maybe empty), and ∆q t N ∀q ∈ N. Integral curves of the rank 1 distribution
∆q ∩ TqN on N are singular geodesics of the first order and all of them are rigid.

One may say more about generic distributions using local normal forms, see
[13],[14]. The closure N̄ is a smooth submanifold in M for generic ∆, and N̄\N
consists of isolated points. These points are singularities of the foliation on N
generated by rank 1 distribution ∆q ∩ TqN. They may be saddles or focuses. We
obtain a nonsmooth rigid trajectory pasting together two neighboring separatrixes
of the saddle, and a smooth but not a rigid singular geodesic if we paste together
separatrixes lying opposite each other. One more interesting phenomenon: any
neighborhood of the focus contains rigid trajectories of arbitrary length! It happens
since the foliation is never generated by a linearizable vector field in a neighborhood
of our focus.

Let rank∆ = 2, dim M = 4 and ∆q 6= ∆2
q 6= ∆3

q, ∀q ∈ M. Such a distribution
is called the Engel one. A characteristic rank1 subdistribution K ⊂ ∆ is defined by
the relation [K, ∆2] ⊂ ∆2. Singular geodesics for ∆ are exactly parametrizations of
integral curves of K. These integral curves are singular geodesics of the first order.
Let q(·) ∈ Ωq0 be a piece of one of them without self-intersections, and K be the
foliation generated by K. Replace M by a neighborhood M0 of {q(t) : 0 ≤ t ≤ 1}
such that a factor-manifold M0/K is well defined. Let κ : M0 → M0/K be the
canonical projection. Then κ∗∆2

q(t) is a two-dimensional subspace in Tq(M0/K)
which does not depend on t. Let κ̄∗ denote the composition of the κ∗ and the
projectivization of Tq(M0/K). Hence κ̄∗∆2

q(t) is a projective line.

Proposition 5. The singular geodesic q(·) satisfies conditions of the theorem 4
iff κ̄∗∆q(1) 6= κ̄∗∆q0 , and

indq(·) = #{t ∈ (0, 1) : κ̄∗∆q(t) = κ̄∗∆q0}.
See also [6],[8].
Let rank∆ = 2, dim M is arbitrary. If ∆3

q0
6= ∆2

q0
, then Ωq0 contains a smooth

rigid trajectory. If dim(∆3
q0

/∆2
q0

) = 2, then there exists a smooth rigid trajectory
q(·) ∈ Ωq0 such that q̇(0) = ξ, for ∀ξ ∈ ∆q0\{0}, see [6], [8]. Note that 2 is the
maximum possible dimension for ∆3

q0
/∆2

q0
.

Remark. Remind that the spaces Ωq0,q1 have the W1,∞ -topology. Homotopy
types may change dramatically and become independent on the distribution if
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we replace this topology by a weaker W1,s -topology (i.e. the Ls -topology for
velocities), 1 ≤ s < ∞. The embedding of Ωq0,q1 in the space of all Lipschitzian
curves in M connecting q0 with q1 is a homotopy equivalence in the W1,s -topology
, 1 ≤ s < ∞, see [10].

7. Sub-Riemannian geodesics. Let V 1
q be the intersection of ∆q with an el-

lipsoid in TqM centered at the origin and smoothly depending on q ∈ M. Set
V l

q = lV 1
q , V l =

⋃
q∈M

V l
q , l > 0. The family of control systems V l is called the

sub-Riemannian structure on M coordinated with ∆. We will denote by Ωl
q0

the
space of admissible trajectories for V l on [0, 1] equipped with the W1,1 -topology.
Note that all W1,s -topologies, 1 ≤ s < ∞ are equivalent in the sub-Riemannian
case since V l

q are compact. The number l is, by definition, the length of any curve
in Ωl

q0
. Set Ωl

q0,q1
= {q(·) ∈ Ωl

q0
: q(1) = q1} —a subspace in Ωl

q0
.

We call q(·) ∈ Ωl
q0

the strong length minimizer if it is a W1,1 -isolated point
in

⋃
l′6l

Ωl′
q0,q(1). We call q(·) the global length minimizer if Ωl′

q0,q(1) = ∅, ∀l′ < l.

Proposition 6. Let q(·) be an isolated point in Ωl
q0,q(1). Then q(·) is a strong

length minimizer and its small enough pieces (reparametrized in the obvious way)
are global length minimizers.

Critical points of the end-point mappings for Control Systems V l are called
sub-Riemannian geodesics. Let hl be the Hamiltonian of V l. The function hl = lh1

is smooth outside its zero level set, which is equal to ∆⊥.
Let λt be an extremal associated with a sub-Riemannian geodesic. The ex-

tremal is called normal if hl(λt) 6= 0, otherwise it is called abnormal. Normal

extremals are exactly trajectories of the Hamiltonian system λ̇ =
−→
hl (λ), h(λ) 6= 0,

started at T ∗q0
M. Abnormal extremals are just extremals associated with properly

parametrized singular geodesics for ∆.
A sub-Riemannian geodesic q(·) is called regular if there exists a unique up

to a positive multiplier normal extremal associated with q(·), otherwise it is called
singular or abnormal. It is easy to show that an abnormal extremal is associated
with any singular geodesic q(·). If all extremals associated with q(·) are abnormal,
then q(·) is called strictly abnormal.

Let λt be a normal sub-Riemannian extremal and H l
t : T ∗M → T ∗M —the

Hamiltonian flow generated by the vector field
−→
hl . Set

Λl
0 = Tλ0(T

∗
q0

M), Λl
t = H l

t∗(Λ
l
0), 0 ≤ t ≤ 1.

Then Λl
t ⊂ Tλt(T

∗M) is a smooth family of Lagrangian subspaces. We call Λl
t the

Jacobi curve associated with λt.

Theorem 4l. Let q(·) be a regular sub-Riemannian geodesic. The statement of
Theorem 4 remains true if symbols Λ and Ω are replaced by Λl and Ωl everywhere
in its formulation.
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Theorem 7. Let rank∆ = 2 and q(·) ∈ Ωl
q0

be a singular geodesic meeting condi-
tions of Theorem 4.

a) If q(·) is rigid, then it is a strong length minimizer.
b) If q(·) is strictly abnormal, then Ol

q\{q} is homotopy equivalent to Oq\{q}
for some neighborhoods Oq ⊂ Ωq0,q(1), Ol

q ⊂ Ωl
q0,q(1).

In particular, smooth rigid trajectories described in the previous section are
strong length minimizers for an arbitrary sub-Riemannian structure coordinated
with ∆. It turns out however that nonsmooth rigid curves constructed there for
typical rank 2 distributions on the three-dimensional manifold are never strong
length minimizers. Recall, that a strong minimum is a local minimum in the W1,1

-topology (see the remark in the end of the previous section.) See also [7], [9], [11].

8. The Lie group case. In this section we consider examples of sub-Riemannian
geodesics which are neither regular nor strictly abnormal. While most likely non-
generic, these geodesics are common in symmetric situations.

Let M = G be a compact semisimple Lie group with the Lie algebra g of
left-invariant vector fields and a bi-invariant Riemannian structure (v1|v2), v1, v2 ∈
TqG, q ∈ G. Any left-invariant corank 1 distribution on G has a form ∆(a), where
a ∈ g, (a|a) = 1, ∆q(a) = {v ∈ TqG : (v|a(q)) = 0}. Consider a sub-Riemannian
structure

V l = {v ∈ ∆q(a) : (v|v) = l2, q ∈ G}.
Sub-Riemannian geodesics for V l which are not strictly abnormal, are exactly the
curves

(5) q(t) = q0e
tbe−t(b|a)a, b ∈ g, (b|b)− (b|a)2 = l2.

Let a be a regular element of g. The geodesic (5) is regular iff [b, a] 6= 0, otherwise
it is neither regular nor strictly abnormal. Let A = {v ∈ g : [v, a] = 0} be a Cartan
subalgebra in g. Fix c ∈ A, (c|a) = 0, (c|c) = 1. Let ±ρi ∈ A∗, i = 1, ...,m, be all
roots of g (relative to A), 〈ρi, c〉 ≥ 0.

Let ql(t) = q0e
tlc. Homology groups of the pair (Ωl

q0,q1
, Ωl

q0,q1
\{ql}) are de-

termined by the disposition of the affine line lc + Ra with respect to the Stifel
diagram, i.e. the maximal triangulation of the complex {v ∈ A : ∃i s.t.〈ρi, v〉 ∈ Z}.
Proposition 8. Suppose that lc + Ra is transversal to the Stifel diagram and c
belongs to the interior of a Weyl chamber. Let E be the intersection of this Weyl
chamber with lc + Ra,

Ek = {e ∈ E : 2
m∑

i=1

[〈ρi, e〉] ≤ k}, k = 0, 1, 2, ...,

where [·] is the integral part of the number in brackets. Then

Hn(Ωl
q0

, Ωl
q0
\{ql}) = H0(En, En−1)⊕H1(En+1, En), n ≥ 0.
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Example. Let G = SU(3), then dim A = 2, m = 3. Let 0 < 〈ρ1, c〉 <
〈ρ2, c〉 < 〈ρ3, c〉. A possible disposition of lc + Ra is shown in fig.1.

fig.1

There is a rather involved explicit expression for the Betti numbers of the
pair (Ωl

q0
, Ωl

q0
\{ql}) via 〈ρi, lc〉, but some asymptotic relations for l → ∞ are

transparent. Let d(lc) = min{n : Hn(Ωl
q0

,Ωl
q0
\{ql}) 6= 0}, D(lc) = max{n :

Hn(Ωl
q0

, Ωl
q0
\{ql}) 6= 0}. Then

lim
l→∞

d(lc)
D(lc)

=
〈ρ1 + ρ3, c〉
〈ρ2 + ρ3, c〉 .

This limit is a rough homological invariant of the sub-Riemannian structure and
it is a rational function of a !

9. Contact structures. Our next topic is exponential mappings, i.e. the restric-
tions of the end-point mappings on the sets of sub-Riemannian geodesics. Following
the philosophy of this paper, we deal with the most ”smooth” case.

Let ∆ be a contact structure, i.e. a corank 1 distribution such that [v,∆]q =
TqM, ∀v ∈ ∆, v(q) 6= 0, q ∈ M. Hence the dimension of M is odd, dim M =
2m + 1. We will consider a sub-Riemannian structure V l, l > 0, coordinated with
∆. All geodesics for such a structure are regular except the constant trajectory
q(t) ≡ q0. While all nontrivial geodesics are regular, they form a smooth manifold
Q =

⋃
l>0

Ql naturally diffeomorphic to an open subset of T ∗q0
M\∆⊥

q0
. We obtain a

desired diffeomorphism just by identifying a geodesic for V l with the initial point
of the extremal λt associated with this geodesic and normalized by the relation
hl(λt) = 1. Then Ql is identified with (hl

q0
)−1(1) for all l small enough and with

an open subset in (hl
q0

)−1(1) for the arbitrary l > 0, where hl
q0

= hl|T∗q0M .

A dilation δτ : Q → Q, 0 < τ ≤ 1, is defined by the relation (δτq)(t) =
q(τt), q(·) ∈ Q, t ∈ [0, 1]. Then δτ (Ql) = Qτl for l > 0 small enough. In other
words, Ql′ consists of reparametrized pieces of curves from Ql if l′ < l.

Consider ”the exponential mapping” ex : q(·) 7→ q(1), q(·) ∈ Q. Let us
denote by C the set of critical points of ex.

Proposition 9. a) #{τ ∈ (0, 1) : δτq ∈ C} < ∞, ∀q ∈ Q.
b) Let q ∈ Q\C, then
q is a strong length minimizer ⇐⇒ δτq /∈ C, ∀τ ∈ (0, 1).
c) For any K b Q there exists τK > 0 such that δτ (K) ∩ C = ∅ ∀τ ≤ τK .
d) Ql ∩ C 6= ∅ for any small enough l > 0.

Properties a) - c) of the exponential mapping are similar to the case of
Riemannian Geometry but d) is the exact opposite of the Riemannian case. It
follows from a), b), d) that there exist arbitrarily short geodesics started at q0

which are not strong length minimizers. A formal reason is the noncompactness of
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Ql ≈ (hl
q0

)−1(1), as opposed to the Riemannian Geometry. Actually, this phenom-
enon is easily predictable since arbitrarily short geodesics cover a neighborhood of
q0, although all of them are tangent to the hyperplane ∆q0 .

The set

C = {q(1) : q(·) ∈ C, δαq /∈ C, ∀α ∈ (0, 1)} ⊂ M

is called the sub-Riemannian caustic. It is an ”envelope” of the family of geodesics.
Initial point q0 belongs to the closure of C. We need more notations to say more.

The sub-Riemannian structure V l, l > 0, induces a Euclidean structure on
∆q, q ∈ M, such that the Euclidean length of ∀v ∈ V l

q is equal to l. Let ω be
a differential one-form which is orthogonal to ∆ and normalized by the following
condition: 2m -form (dqω)m|∆q

is the volume form for the Euclidean structure
induced by V l. The form ω is defined up to a sign in a neighborhood of q0, it
is defined globally iff contact structure ∆ is coorientable. Our considerations are
local and we fix a sign of ω.

Set h = 1
2 (h1)2 = 1

2l2 (hl)2 a Hamiltonian which is quadratic on the fibers
of T ∗M. Relations ecω = 1, ecdω = 0 define a vector field e and a Hamilton-
ian e∗ : λ 7→ 〈λ, e(q)〉, λ ∈ TqM, which is linear on fibers. Let us consider the
Poisson bracket {e∗, h}. It is a one more Hamiltonian which is quadratic on fibers.
It is possible to show that ∆⊥

q is contained in the kernel of the quadratic form
{e∗, h}q = {e∗, h}|T∗q M . Hence we may consider {e∗, h}q as a quadratic form on
∆∗

q = T ∗q M/∆⊥
q . Moreover, the Euclidean structure on ∆q permits us to identify

∆∗
q with ∆q and to consider {e∗, h}q as a quadratic form on ∆q or, in other words,

as a symmetric operator on the Euclidean space ∆q. In particular, the trace and
the determinant of {e∗, h}q are well defined. It turns out that tr{e∗, h}q = 0 but
the determinant doesn’t vanish, generally speaking.

If M is the total space of a principle bundle with one-dimensional fibers
transversal to ∆, and V is invariant under the action of structure group (so that
∆ is just a connection on the principle bundle), then e is a ”vertical’ vector field
and {e∗, h} = 0. Conversly, if {e∗, h} = 0 for a contact sub-Riemannian structure,
then the structure is invariant under the one-parametric group generated by e.

We have T ∗q0
M = Rωq0 +∆∗

q0
. Let ν ∈ R and η ∈ ∆∗

q0
, η 6= 0. We will denote

by q(·; ν, η) the geodesic which is the projection on M of the extremal, starting
at (νωq0 + η) ∈ T ∗q0

M. It turns out that the mapping ν 7→ q( 1
ν ; ν, η) possesses an

asymptotic expansion for ν →∞ in the power series in 1
ν with coefficients which are

elementary functions of η. It was the study of this expansion that made it possible
to obtain fundamental invariants of the contact sub-Riemannian structurs and to
understand the form of the caustic near q0 in the generic situation for m = 1.

Dimension 3. Let dimM = 3. Interesting calculations were made by various
authors in this minimal possible dimension for a symmetric (Lie group) case where
geodesics have a simple explicit expression (see especially [12]). We’ll see, however,
that principal invariants vanish in that symmetric case.

The fig.2 shows the form of the caustic C near q0 if {e∗, h}q0 6= 0. ”Horizontal”
sections have 4 cusps.
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fig.2

We don’t use below a special notation for the standard identification of
∆q0 and ∆∗

q0
, and just put elements of ∆q0 instead of ∆∗

q0
in formulas. Thus

q(·; ν, v), v ∈ ∆q0 is a geodesic whose velocity equals v at the starting point. The
form dq0ω induces an orientation of ∆q0 and of V 1

q0
which is the unit circle in the

Euclidean plane ∆q0 . We will denote by dθξ, ξ ∈ V 1
q0

, the angle differential form
on the oriented circle.

Let ν ∈ R, v ∈ V 1
q0

; set

lc(ν, v) = min{l > 0 : q(·; ν, lv) ∈ C}, qc(ν, v) = q(lc(ν, v); ν, v).

Then lc(ν, v) is the supremum of the length of strong length minimizing pieces of
the geodesic q(·; ν, v), and qc(ν, v) is the point of the caustic C where this geodesic
ceases to be a strong length minimizer.

Theorem 10. The following asymptotic expansions holds for ν → ±∞, v ∈ V 1
q0

:

qc(ν, v) = ±ν−2πe(q0)− ν−3 3π

2

∫ −v

v

{e∗, h}q0(ξ)ξ dθξ + O(ν−4)

lc(ν, v) = |ν|−12π − |ν|−3πρ(q0) + O(ν−4),

where ρ(q0) is a constant.

The curve v 7→ 3
2

∫ −v

v
{e∗, h}q0ξ dθξ, v ∈ V 1

q0
, is a symmetric astroid in ∆q0 ;

its radius equals (−det{e∗, h}q0)
1
2 , and cuspidal points belong to the isotropic lines

of the form {e∗, h}q0 .
The invariant ρ(q), q ∈ M, is, in fact, a nonholonomic analog of the Gaussian

curvature of a surface. Let v1(q), v2(q) be an orthonormal frame in ∆q with a right
orientation. Then [v1, v2] = α1v1 + α2v2 − e, [e, vj ] ∈ ∆, j = 1, 2, where αj are
smooth functions, and

ρ = v1α2 − v2α1 − α2
1 − α2

2 +
1
2
(〈[e, v2], v1〉 − 〈[e, v1], v2〉).

A simple count of parameters shows that sub-Riemannian structures on a three-
dimensional manifold should have two ”functional invariants”. We already have
two: det{e∗, h} and ρ.

Theorem 11. Let dρ = 0, det{e∗, h}q = 0 ∀q ∈ M, where M is a parallelizable
manifold, and H1(M ;R) = 0.

Then there exists an orthonormal frame v1, v2 in ∆ such that

[v2, v1] = e, [v1, e] = ρv2, [v2, e] = −ρv1.
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So a contact sub-Riemannian structure on a three-dimensional manifold, with
the identically vanishing {e∗, h} and ρ, is locally equivalent to the Heisenberg group
with a left-invariant sub-Riemmanian structure— the most popular example in
Nonholonomic Geometry. We obtain a model of the sub-Riemannian manifold
with the identically vanishing {e∗, h} and constant positive (negative) ρ if we
consider the group SU(2) (S̃L(2;R)) with the sub-Riemannian structure wich
is defined by the restriction on a left-invariant distribution of the bi-invariant
(pseudo-)Riemannian structure on SU(2) (S̃L(2;R)).
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