Systems & Control Letters 20 (1993) 67-76 67
North-Holland

Local controllability for families
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Abstract: We study groups and semigroups which are generated by analytic families of diffeomorphisms. The central notion is that
of local controllability of a family of diffeomorphisms at a given point of the state manifold, which generalizes the familiar notion of
local controllability of control systems with continuous, as well as discrete time. Lie theory methods are used. We systematically
exploit the so called fast switching variations and properties of the jet spaces of curves on the state manifold.
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1. Introductory remarks. Suppose a real analytic manifold M is fixed and
Q(u) €Diff(M), ueOCR"(O open), Q(0) =id, (1)

is a family of diffeomorphisms of M, analytically depending on u € O. Analyticity means that the
mapping

R'XM—->M:(u, x) = Q(u)(x)

is analytic. Furthermore, let U C O be a starshaped (not necessarily open) set with respect to the origin
of R’, containing interior points. Denote by Gr(Q(U)) the subgroup in DIiff(M) generated by the
diffeomorphisms Q(u), u € U, and by SGr(Q(U)) the semigroup in Diff(M) generated by the same
family of the diffeomorphisms. Thus

SGr(Q(U)) ={Q(u;) = -+ o Q(uy) lu, €U, k =1},

where ‘o’ denotes the composition of diffeomorphisms.

When dealing with families of diffeomorphisms and vector fields it is convenient to use operator
notations. In these notations an arbitrary diffeomorphism Q of M is identified with the corresponding
automorphism of the algebra of smooth functions C*(M) on M, acting according to the formula
(=) — H(O(-)), Y € C*(M), and an arbitrary point x €M is identified with the homomorphism
C*(M) — R: ¢ — ¢(x). Thus, in operator notations the value of the diffeomorphism O at x is denoted
as the composition x o Q of the automorphism QO followed by the homomorphism x: (x o Q)¢ = H(Q(x)).
There is no need to introduce different letters for a diffeomorphism as such and the corresponding
automorphism, or the point and the corresponding homomorphism, since the meaning will always be
clear from the context.

Smooth vector fields on M are identified with the derivations of the algebra C*(M), i.e. with the
linear operators f:C*(M)— C*(M), which satisfy the Leibniz rule for the product differentiation:
f(d,0,)=(fd)d,+ b (fd,). The Lie bracket of a pair of vector fields is the commutator of the
corresponding operators: [f, gl=f° g — g f. Tangent vectors at the point x € M are identified with
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linear functionals ¢:C*™(M)— R, which satisfy the condition &(¢ ¢p,) = ()b, (x) + d(xHéP). In
particular, the value of a vector field f at the point x is a tangent vector to M at x and is represented as
a composition x ° f of the operator f and the functional x:¢é — ¢(x).

In the sequel we shall be constantly concerned with families of diffeomorphisms and families of vector
fields depending on parameters with values in R”. Continuity, differentiability, summability, etc. of such
families is always considered in a weak operator sense: the family obtained by applying the operator
family to an arbitrary function from C*(M) should enjoy the corresponding property. For a detailed
exposition of this viewpoint, see [1,3,5].

2. Locally controllable families of diffeomorphisms. For an arbitrary x, € M, the expression
xg 2 Gr(Q(U)) ={x, » PIPEGr(QU))} M
is the orbit of the group Gr(Q(U)) through the point x,, and
xg 0 SCGr(QU)) ={xy e O(uy) -+ o Q(uy) lu, €U, k= 1) (2)

is the orbit of the semigroup.
For every ¢ >0 we put U ={ues U |lul| <&}, and let Gr Q(U,), SGr Q(U,) be the group and the
semigroup, generated by the diffeomorphisms Q(u), u € U..

Definition. The family of diffeomorphisms Q(u), u € U, is called locally controllable at x, if for every
£ >0 we have x, € int(x, o SGr(Q(U,))); in other words, if x, is an interior point of the corresponding
orbit of the semigroup SGr(Q(U.).

Consider a control system with the discrete time
Yoo =0(u)(x,), uceU, x, fixed.

It is obvious that the local controllability of the family Q(u), u € U, at x, is equivalent to the usual local
controllability of this system. Furthermore, consider a control system with continuous time

dx

E:f(x, [;)’ UEVCRr_l, x(0)=x0. (3)
Let U={(a, av) ER"|0<a <1, v €V} be a cone with base V' and the vertex at the origin, and let
Oa, av)) =e/=0),

It is easily verified that the local controllability of the family Q((«, av)) at x, is equivalent to the fact
that x, is an interior point of the attainable set of the system (3) for an arbitrary time, if piecewise
constant controls are used. For analytic systems this is equivalent to the fact that x, is an interior point
of the attainable set for arbitrary measurable controls with values from a compact set.

3. Volterra series expansions of families of diffeomorphisms. Now we return to an arbitrary family Q(u).
For every multiindex i = (i%,...,i"), |i| =i'+ - - +i", we have the corresponding differential operator

alil
WQ(MNJ Vo e CH(M).

1
D;:C(M C*(M), Di¢p=—
HCE(M) = €M), D=

It is clear that the order of the operator D, does not exceed |i].
The Taylor series expansion of Q(u) at zero has the form Q) =id + X, . ou'D;. The operator
O Nu) o (d/dt)Q(tu)],~; is a vector field, analytically depending on u# € R” and zero for u = 0. Let

d .
Q '(u) - EQ(f”)!zzlza_’)(”) = ) ua,

[il>0

be its Taylor series expansion; the coefficients «; are vector fields.
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For every series 9,(u) = Ly . o9/ u’, having as coefficients nonstationary vector fields, summable over
t [0, 1], we shall denote by exp fg9,(x) df the Volterra series

x

1
o [ 0,(u) dt =id + o [0 () e e e B (u) dey e di,, 4
& [ 0,(u) dr =i n:]/A,lft,,(u) () diy ey, (4)
where
A, ={(t,....t) I =t;= - 2¢,20}.

The Taylor series expansion of an arbitrary family of diffeomorphisms can be easily represented as a
Volterra series. Indeed

. . 1
id+ Y () D;=id + ft(id + Y (ru)'D;| o @(ru)—dr, tE€R,
i 0 i T
from which it easily follows that
A -1
id+ ) u'D,= eipj 75(”{) ds. (5)
0

il >0

Finally, we denote

Aluy= ), ui/li=ln(id+ ZuiDl-)= i i(ZLtiDi)n.
: n—1 :

[i]>0 i n

4. Proposition. For every multiindex i the differential operator A, is a vector field: A, < Vect(M).
Furthermore, the following relations hold:

Lie({A,li] > 0}) =Lie({@, lli] > 0}),
Ass({D;11i] > 0}) = Ass({4, il > 0}) = Ass({@,[li] > 0}).

Here Lie(+) denotes the Lie subalgebra in Vect(M) generated by the family of vector fields in the
parenthesis; Ass(-) denotes the associative algebra generated by the family of differential operators in
parenthesis, with composition of operators ‘°’ as algebra-multiplication.

Proof. From (5) we deduce A(w) = In(eXp [/t 'o(tu) d¢). At the same time we have

o t = - LY r— oo
In(expfol‘},(u) dt) = nglf N ] T (1), ., 0 (w)) dey -0 di,,
where , is a commutator polynomial of n variables, n =1, 2,..., which can be explicitly computed, cf.
[1]; hence, A, € Lie({w; ||i] > 0}). On the other hand, id + X,u’D, = e*®), and therefore,

d 1 d
= =AW 5 A(tu)l = (r—l)ad:l(u)__A d
w(Uu < c € tu .
(u) gr == | A dr
Thus, we obtained the inclusion @, e Lie({A,;lli| >0}), and therefore we have proved that the Lie
algebras and the associative algebras generated by the families {&, 17| > 0} and {A,]li] > 0} coincide

respectively. The inclusion Ass({w,|li] > 0}) c Ass({ D, |li] > 0}) is evident; the opposite inclusion follows
from (5).

5. The group of curves. The standard finite-dimensional (or Banach) Lie theory could not be applied to
groups like Gr(Q(U)). Nevertheless, some modification of this theory could be applied to our case. To
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avoid insignificant technical difficulties, we suppose that all vector fields encountered below are
complete. It is convenient to have a simple sufficient condition for completeness. For such, we shall
suppose that M is imbedded in R as a closed submanifold, and the diffeomorphisms Q(u) satisfy the
relation |Q(u)(x) —x|=0(|x1%), | x| = , Vk > 0, uniformly in u € U, where U is compact.

By U(-) we denote the set of all smooth functions & - u(e), € >0, with values in U and initial
condition u(0) = 0. Every curve u{-) defines the curve ¢ — Q(u(e)) in the group of diffeomorphisms. We
define a multiplication of two curves in Diff( M) pointwise by the formula:

(P o Py))(e): =P(g) o Py(e), e—=Pls),i=1,2,curvesin Diff(M).

The subgroup generated by the set of curves Q(U(-)) = {Q(u(-) 1 u(-) € U(-)} with the ‘<’ multiplica-
tion we denote by Gr(QU(-))).
The order of a smooth curve ¢ = P(¢) € Diff(M), P(0) =0, is defined to be the number

dk
ord P(-) =min{k >0|a—kP(e)|E:D¢O .
€

If ord P(-)=mn, then (d"/de™P(e)|.—o is a vector field, and the expression T,P(-) =
{a(d" /de™P(e)] .-yl a > 0} defines a ray, tangent to P(-).

6. Theorem. (i) U P(—)EGr(Q(U(—)))TOP(_) = Lie({A; li | > 0}).
(ii) The orbits of the groups Gr(Q(U)) and Gr({e'di |t €R,|i] > 0} in M coincide.

The theorem is a generalization of Proposition 1 from [2] and is proved similarly.

Corollary. The orbits of the group Gr(Q(U.)) in M do not depend on ¢ and are immersed submanifolds in
M their tangent spaces are given by the expression:

T.(x ° Gr(Q(U,))) =x » Lie({A;lli] >0}) VxeM.

The orbit description for the groups Gr(Q(U.)) is fully satisfactory. The same problem for the
semigroups SGr(Q(U,)) is much more complicated. Generally, their orbits depend on ¢ and do not
constitute submanifolds in M. Furthermore, Theorem 6 implies that the tangent space to the orbit
x o Gr{Q(U(-))) coincides with the union of rays x o T,P(-), P(-) € Gr(Q(U(-))). We can consider a
semigroup SGr(Q(U(-))), which consists of the curves

e=>P(e) =Q(u(e)) e -+ o Que(e)), wi(-) €U(-). (6)

The tangent ray at the origin to the curve ¢ = x o P(g), where P(-) has the form (6), is tangent to the
orbits x o SGr(Q(Q(U,)) Ve > 0. However, the tangents of this kind can not give a satisfactory approxi-
mation of the orbits. We can obtain a much richer stock of tangent directions if we increase the amount
of factors in (6) indefinitely for e — 0. An interesting example of this phenomenon for control systems
with continuous time was discovered by Kawski [6]. We shall show below that for general families of
diffeomorphisms (including the systems with discrete time) this effect is a usual one.

To proceed further we must adopt a precise definition of a tangent direction to the family of orbits
x o SGr(Q(U.)), £ > 0. Not claiming the ultimate, we adopt the following:

Definition. A ray [ C T, M is said to be a tangent direction to the family of orbits x o SGr(Q(U.)), e > 0, if [
is tangent to the curve e » x o P(g), £ = 0, where P(-) is a smooth curve in Diff(M), P(0) =id and an
integer N > 0 exists such that

1

P(m) €SGr(Q(U,,)), Yk>0,6,-0 (k- ).

The following proposition is easy to prove.
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Proposition. The closure of the union of all tangent directions to the family of orbits SGr(Q(U.)), & > 0, at x
is a convex cone in T, M.

7. Fast switching variations. The Corollary of Theorem 6 and the inclusion SGH(Q(U,)) c Gr(x(U,))
imply that every vector tangent to the family of orbits x, o SGr(Q(U,)), & > 0, is the value at x, of some
commutator polynomial of A;, || > 0. Here we describe a procedure for obtaining a rich variety of such
polynomials.

Let v(¢), t €[0, 1], be a piecewise constant function, with values in U and discontinuitics only in
rational points of the interval [0, 1]. Suppose that v(z) is constant on the intervals (i/N, (i + 1)/N), i =
0,1,...,N—1:

i+1
N

[
t)y=v, for—<t<
v(t) =u, or

Consider the composition Q(vg)e -+ o O(vy_,) € SGr(Q(U)). The Taylor series expansion in the
powers of vg,...,0y_; has the form

O(vg) o -+ o Qvy_y) =0 o -+ o eAw-D = egp leA(u(z)) dr,
0

where, cf. (4),

e;‘ip[lNA(u(t)) de=id+ ¥ [ - [NU(o(8)) o o A(o(r,)) dey -+ do.

0 =17 4
Let 0 <m <n be natural numbers. Put N =&~ and substitute £"uv(¢) for v{z). We obtain
2 L n :
Q(e"vg) o+ 0 Q(e"vy_y) :expfos A(e"o(1)) dt, (7)

where the right-hand side is a well defined power series of e with coefficients expressed as polynomlals
of A, lif>0:

e)_i’pfls_'"/l(e”y(t)) dr
=id+ Z Y glalt o rlia= lmf fu”(t) vt dey e dy Ay e e A (8)
=1Gy,..., i)
(We remind that i; are the multiindices i; = (i},...,i7).)

The relation (7) implies the following:

8. Proposition. Let 0 <m <n be natural numbers, and v(t), t €0, 1], is a piecewise constant vector
function with values in U, with discontinuities only in rational points. Furthermore, let k> 0 be the least
integer, such that the coefficient at €* of the series x, °exXp[je ~"A(e"v(t)) dt is not zero:

Xg © ei’pfls_m/l(s"v(t)) dt=x,+e"x, o D+ O(&**1). (9)
0

Then xgo DeT M and the ray {a(x, ° D)la>0} is a tangent direction to the family of orbits
> SGH(Q(Ue)), & > 0.

Formula (8) gives an explicit expression for the coefficients of the series (9), but as values at xq of an
associative rather than a commutator polynomial of the variables A;. Generally speaking, an associative
polynomial of the vector fields A, is a differential operator of higher order and does not define a tangent
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vector at x,. However, x, o D is a tangent vector and the following proposition gives its representation
as the value of a commutator polynomial at x,.

9. Proposition. Let 3,(s), t €0, 1], be a power series in ¢, with nonstationary vector fields as coefficients,
summable over [0, 11. Then for every x € M the first nonzero terms (coefficients as well as exponents) of the
following three series in € coincide:

X o eip/olt‘}t(s) dt —x= 1§1f " /x ot (e)e e (e)dey - diy, (a)
= 1

P S ER L LS CRE S B FORRETS (0)
= (-

121 ff n Jxo [0 [0y oo [Pron O0on] o ]] dey oo de (c)
= 7

The proof is based on the following formulas of chronological calculus, cf. [1,3,5]:

a =3 1 1 =2, ! a — 1
gexpjo 9,(¢) dz=f0 (exp/oad 9.(¢) dT)gf)‘,(a) dr o expfo 9,(e) de

d
efpfolﬁt(e) dr o j:(eip/;:— ad 9,_.(¢) dT)Eﬁl_t(E) dr.

10. Generalization. The procedure described above can be generalized essentially. Let v(z,, t), (¢, £;)
€ [0, 1] x [0, 1], be a vector function with values in U, piecewise constant in the following sense: IN,, N,
such that v(tg, 1) =v,; for io/Ny<t,<(iy+1)/Ny, i;/N,<t; < +D/Ny,i3=0,1,....,Ny—1; 14,
=0,1,...,N,— 1. Then

O(vgg) e -vv e Q(L'No—l,o) ° Q(uvg) oo Q(UNQ—LI) °errre Q(L’O,Nlﬂ)

et e Q(Z"NO—I,N]—I)

— 1 N 1 Nl_l
zexp'/;) NoA(v(tg, 0)) dege -+ o 6pr0 NoA|v|tg, N dz,
1

— — 1 — 1 Nl_]-
= eXp{In expf NoA(v(ty, 0)) dry} o -+ o expilin exp/ NyAlvl|ty, —— | | dg,
0 0 N,

= eipfol(N1 In e)?pfolNoA(u(to, t)) dto) dz;.

Let n, my, m; be integers, 0 <m,+m,; <n. Put Ny=¢e7~ ", Ny =&~ ™ and substitute v(¢,, t,) by
e"v(t,, t;). We obtain

Q(vgg) o "-v @ Q(UNO—LO) errre Q(Uo,Nfl) et Q(UNO—I,Nl—l)
~ e?fpfl(sml In %o [ e TMA(e v (1, 1y)) dto) dr,, (10)
0 0

where the right-hand side in (10) is a well defined power series in ¢.
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Proceeding in the same manner and considering instead of v(#,, t,) a vector function of arbitrarily
many variables we come to the following generalization of Proposition 8.

11. Proposition. Let v(ty, t,..., 1), t,€[0, 1], i =0,...,d, be a vector function with values in U, locally
constant on some rectangle net in [0, 119", with rational vertices. Let My,..., M, 1 be integers such that
0<my+ - +my <n. Furthermore, suppose that

Xy © eipfl(s"’”d In--- efpfl(s’”l In efp[le_m(’/&(s”v(z‘o, cty)) dto) dtl.‘.) de,
0 0 0
=xo+efx, o D+ O, x,0 D=#0. (11)

Then x, » D €T, M and the ray generated by the vector x, = D is a tangent direction to the family of orbits
o ° SGr(QU,)), e > 0.

12. Jet bundles. Asymptotic expansions given in Propositions 8 and 11 and the commutator representa-
tion of the main term, Proposition 9, determine the tangent vectors to the orbits of families of
semigroups SGr(Q(U,)), £ >0, as values of some commutator polynomials of A; at the initial point.
However, the problem is complicated by the fact that the set of the commutator polynomials in
consideration essentially depends on the initial point; more strictly speaking, which of the polynomials
vanish at the initial point. To take into account this information we must consider the action of the
curves in the group of diffeomorphisms on the jet space of curves in M, with x, as initial point.

Denote by C) the manifold of n-jets at zero of smooth curves y: R — M with initial condition
¥(0) =x,. By J{'y we shall denote the n-jet at zero of a given curve y, and by pr” Gy = O ! the
canonical projection of the manifold of the n-jets onto the manifold of the (n — 1)-jets.

The inverse image (pr)~ '/~ 'y under this mapping of a given (n — 1)-jet has a natural affine space
structure over the linear space T, M. Indeed, suppose that the curves & ~ y,(¢), i = 1, 2, have identical
(n — D-jets, JP~ 'y, =J7 'y,. Then, in the group of diffeomorphisms, there exists a curve & — Q(e),
such that Q(0)=id, y,(¢) > Q(e) = y,(e) for all sufficiently small ¢ >0 and x, > Q(e) =x,+ "¢+
O(8n+1).

It is not difficult to show that the tangent vector §{ € T, M depends only on the n-jets Jiy,, /iy, and
defines the ‘difference’ of these n-jets. We can even formulate a stronger result:

13. Proposition. For every n > 0 the mapping pr” Oy =L U is a projection onto the base space of the
affine bundle with the affine space over the linear space T, M as a fibre.

14. The group action on jets. Let S be a set and ¢ = P(s), e >0, s €S, Py(s)=1d Vs €S, be a family of
smooth curves in Diff( M), indexed with the elements of S. The group of curves in Diff( M), starting at id
is acting in a standard way on the space of curves on M. For example, P_(s) transforms the curve ¥ into
the curve y o P_(s):e—y(e) o P(s). It is evident that J'(y o P_(s)) depends only on J iy, rather than
on the whole curve vy, and we obtam an action of curves in Diff(M) on the space of jets C v,y the curve
P_ transforms the jet J7'y into the jet (J2y) o P_:=J"(y ¢ P_).

Denote by Gr(P_ (S)) the subgroup in the group of curves in Diff(M), generated by the curves
&= Py (s), s S8, where ¢: R > R is a smooth mapping (the variable substitution), subject to the
conditions ¢(0) =0, ¢(e) > 0 for £ = 0. The space C;, contains an exceptional element: J"x,, the jet of
the constant curve y(g) = x,. It is our immediate aim to describe the orbit of the group Gr(P_(S)) in c
through J"x

Let P (s) = 1d + X% _1e"D,(s) be the Taylor series expansion in the powers of &, and

=]

Injid+ + ) e"D,(s)| = ¥ &™4,(s).

=1 n=1
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Proposition 4 implies that A («) € Vect(M), n > 0, a €.o7. Finally, put

!
L, =span [Akl(sl), [Ak2(sz),..., [AkH(sl_l), Ak,(sl)] ]H Y ki<n,s,€8,1>0},

=1
L, ,cL,cVect(M).

15. Theorem. For every n >0 the orbit (J"x) o Gr(P_(S)) of the group Gr(P_(S)) in Cy is an affine
subbundle of the bundle pr": Cl: — C7 =1, restricted to the orbit (J"~'x,) > Gr(P(S)) < Ci =% The fibre of
this subbundle is an affine space over x, o L.

16. Normally accessible jets. Denote by SGr(P_(S)) the semigroup generated by the curves ¢ — Pyoy(s),
SE€S, ¢:R—>R (smooth), $(0) =0, ¢(e) =0 for &> 0. Thus, SGr(P_(S)) € Gr(P (S)). Consider the
orbit J"x, o SGr(P_(S)) of this semigroup in Cy.

Definition. The point g € (J"x, © SGr(P _($))) is normally accessible for a family of curves P_(s), s €S,

if m, ky,...,k,, >0 exist such that g is a regular value of the mapping
(¢1> . a¢m) - (Jnxo) ° Psklcbl(s) oo Pg"m¢m(s)a
with the domain consisting of the sequences of polynomials ..., 0, of degree < rn and satisfying the

conditions ¢(0) >0, i =1,...,m, and with range the manifold Jxy o Gr(P _(S)).

The set of normally accessible points is everywhere dense in the orbit J "xo o SGr(P_(S)), and every
normally accessible point has a neighborhood in J "xo © Gr(P_(S)), completely contained in
T"xy o SGr(P_(S)). This remark, together with Theorem 15, implies:

17. Proposition. If J"x, is a normally accessible point then

xg° L, C U T, (%0 ° R(-)),
R(-)ESGr(P_(8)

where T, y(-) C T, M denotes the tangent ray to the curve & = y(e), € > 0, y(0) = X,.

Recall that the level sets of the mapping pr” are affine spaces over T, M. Let q" € (J"xy) e Gr(P_(8)),
q"~'=pr"q". Theorem 15 implies that the intersection of the level set (pr™)~ g™~ 1) with the orbit
(J"xo) ° Gr(P_($)) is an affine space over x, o L,. We can write down this assertion in the following
way: (pr™) " g~ N (J"x,) o Gr(P_(S)) = ¢" +xy° L,

The following proposition indicates how to get many normally accessible points and, in particular, it
gives a handy sufficient condition for J "x, to be a normally accessible point.

18. Proposition. If at least one point of the affine space J "Xo+xq ° L,_, is normally accessible then every
point of this space, including J "Xq, is normally accessible.

19. Sufficient conditions of local controllability. We shall give here a short description of a scheme for
obtaining sufficient conditions of local controllability based on the techniques developed above. An
evident necessary condition is given by the relation xo o Lie({A; ]li]| >0} = T, ;M. Suppose this condition
to be satisfied. The fast switching variations from part 7 supply us with a vast set of curves P, in Diff( M),
such that the tangent directions to the curves & —x, o P, are at the same time tangent to the orbits
xg ° SGr(Q(U,)), & > 0. Moreover, if for every n > 0 the jet J "x, is normally accessible for this family of
curves in Diff(M), then the family Q(U), u € U, is locally controllable at the point x,.

Hence, it remains to find appropriate relations which should be satisfied by the values of the
commutator polynomials of A, at x, in order to guarantee the normal accessibility of J"x, provided at
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least one normally accessible point exists. To this end we have to make use of Proposition 18 and a
method of ‘noncommutative averaging’ over the symmetric group of the problem used by Sussmann [7,8].
It is even possible to extend this method and exploit not only the symmetries of the set U of the control
parameters, but also the ‘internal symmetries’ of the variable substitutions in the functions v(z,, ¢,...,t,)
in (1D).

For the time being we can only survey a small part of the opening possibilities, but already this suffices
to obtain a whole range of pretty strong sufficient conditions. The theorem formulated below exploits
only the simplest fast-switching variations, which are defined by a vector function v(¢), t €[0, 1], of one
real argument, (cf. Proposition 8), and a single ‘internal’ symmetry o(z) — v(1 - ¢), (cf. Proposition 9).

Let I' be a finite group of linear transformations of R’, preserving the set U C R”. For every g €T we
have (g7 'u)' = chj(g)uf, ueR’, i=("...,i"). Consider a free Lie algebra over R, generated by the
elements s,, where i = (i',...,i") is an arbitrary multiindex of the length r,{i| > 0.

Define an action of the group I’ by the automorphisms of the Lie algebra Lie({s, || /| > 0}), defining it
on the generators by g(s;) = Zc}(g)sj, Vgelr.

Furthermore, for any integers n >m > 0 put

Z(n, m) =span{[s, . [s; _ooos [0 5,1 |liol + oo+, | =n).
It is easy to see that the subspaces #(n, m) are invariant under the action of I'. Let
Inv(Z(n, m)) ={ce¥(n, m)ig(a) =cVgerl}

be the subspace of invariant elements in Z(n, m). Finally, let A(n, m) be the image of #(n, m) under
the canonical homomorphism of the algebra Lie({s;[|i| > 0}) onto the algebra Lie({A, |l i| > 0}), trans-
forming the variable s; into A;, and let Inv.(A(n, m)) be the image of the subspace Inv (¥ (n, m))
under this homomorphism. Thus, Inv(A(n, m)) C Lie({A,lli] > 0}).

20. Theorem. Suppose that x o Lie({A;[i]| >0} = T, M, and 36 € [0, 1) such that for arbitrary integers
n>2m=>0,

xo © Invp(A(n, 2m)) Cspan{x, o A(k, I) |k —60]<n—20m}

for a certain finite group I' € GL(R") which preserves U. Then the family of diffeomorphisms Q(u), u € U,
is locally controllable at x .

The proof of the theorem is fairly long and technical, and could not be given here. Therefore, we shall
restrict ourselves to the following comments. The essential meaning of the theorem consists in the
statement that the family of diffeomorphisms is locally controllable if the value of every, in the given
sense, invariant Lie polynomial at the initial point could be neutralized by the values of the Lie
polynomials of ‘lesser orders’. It should be emphasized that the formulation of our theorem only partly
follows a standard scheme, used in controllability conditions for families of vector fields, cf. [8]. The
essential difference from this scheme consists in the way the orders of the Lie polynomials are counted.
We assign to usual variations the value 8 =0 and the order of the polynomials from A(k, /) turns out to
be equal to k. But to the fast-switching variations of the type (7)—(8) we assign 8 = m /n, and the order of
the polynomials from A(k, ) is equal to k& — 8(/ + 1).
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