QUADRATIC MAPS AND SMOOTH VECTOR-VALUED FUNCTIONS:
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Quadratic maps of RN into RK are studied. Explicit expressions are obtained
for the Euler characteristics of level sets of such maps. The Euler charac-
teristics of level sets of smooth vector-valued functions are also evaluated
in terms of their values at critical points.,

Any non51ngular quadratlc form on RY can be reduced by a linear change of variables

to the form xrrziﬁ —:Zix.. The number n is the index of the form: it is independent of
Pyl -

the specific transformation used to diagonalize the form and in, therefore, the only linear
invariant of a nonsingular quadratic form. The index also possesses a simple topological
interpretation. Let Z(RY) be the space of all quadratic forms on R¥, then the set of all
singular forms 0, is a hypersurface, which is also an orientable pseudomanifold. Fixing
an orientation of II;, we can define the intersection number of any curve in #(R¥),whose
ends lie outside I, with I,. This intersection number depends only on the ends of the curve,
but not on the path connecting them. The index of a nonsingular form ¢€#(R¥) is equal
to the intersection number of the surface @I, suitably oriented, and any curve one of whose
ends is g and the other a positive definite form.

Next, a form ge€#(R¥W) is nonsingular if and only if zero is- not a critical value of
the restrlctlon of q to the sphere SN"! ¢ R¥ 1In that case q-*(0) n SN-! is a smooth sub-
manifold of SN-! and, moreover, submanifolds corresponding to forms in the same connected

component of the set #(RM) \II, are necessarily diffeomorphic. In fact, q~3(0) n sN-1 =
sN-1 x gN-n-1 yhere n = indgq.

Consider now a vector-valued quadratic map p = (P, --+» pk)T, pi € #(RY), i =1,

.» k. Already in the case k = 2, the classification of these maps with respect to linear
changes of variables in R¥ and in R* involves continuous parameters; and for k z 3 the pro-
blem becomes quite intractable. Nevertheless, it turns out that considerations of a taqpo-
logical nature, similar to those outlined above, work in this situation as well.

A quadratic map p is sald to be nonsingular if the zero of R* is not a critical value
of the restriction of p to sN-1,  Under a continuous deformation of p in the class of non-
singular maps, the smooth submanifold p~1(0) n sN-1 transforms according to some isotopy
of the sphere SN-1, Note that p~1(0) is the set of real solutions of a homogeneous system
of quadratic equations. If one is interested in systems of quadratic inequalities, one
must consider p~*(C), where C is a convex closed cone in R* In that event one has the
concept of a quadratic map which is nonsingular (or nondegenerate) with respect to C (see
Sec. 3).

]

Any quadratic map p determines a pencil of quadratic forms wp = :S wipis 0 = (w,,
i=1
..., wg) € R¥, |uw| = 1. This pencil is a sphere of dimension < (k — 1) embedded in P (R¥)
It turns out that p is a nonsingular map if and only if this sphere is not tangent to the
hypersurface 1, at any point.?t

11, has singularities. There are various ways of understanding tangency at a singular
point. Here we are thinking of tangency in the strongest possible sense: a sphere is tan-
gent to I, at a singular point if application of a small smooth deformation of the sphere
will make it tangent to II; at a nonsingular point (see Secs. 1, 2).
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If a sphere embedded in Z(R") is subjected to a smooth deformation, taking it from
one nonsingular position to another, also nonsingular, there will generally be intermediate
positions in which the sphere is tangent to II;,. One can define the algebraic number of
points of tangency, which indeed depends only on the initial and final position of the
sphere but not on the specific deformation. But one can say even more: beginning with
the sphere wp, |w| = 1, if the deformation results in a sphere consisting entirely of posi-
tive definite forms, then the algebraic number of points of tangency is

S OSP4 (— Y1),

where x(p~(0) n SN-1) is the Euler characteristic of the manifold in the parentheses.

The most important invariant of a real quadratic form is its index. For a pencil of
forms, however, one must consider not one index but an integer-valued function w~ ind (wp),
we R, |w| =1. This function defines a filtration of the sphere Sk~! by the subsets
Oy = {we Sk‘1|ind(wp) < n}. If k =2, the homotopy type of this filtration is preserved
under a smooth deformation of p in the class of nonsingular quadratic maps. This is not

so, however, when k 2 3: even the quantity Inhn ind (wp) may change under such a deform-
jor] =

ation. The reason lies in the structure of the singularities of the hypersurface 0,: a
spHere wp, w € sk-1  embedded in #(R¥), may leave a domain of given index without having
touched II;. One consequence of this situation is the existence of quadratic maps with non-
convex images in R*, k 2 3.

Nevertheless, something is preserved. For example,
(7]
1P ONSY =2 ) (1 (Qoner) — % Qe+ 1 (= V.
n=0

There is an analogous formula for x(p~t(C) n SN-1), where C is a convex closed cone
in R* to derive it one has to replace the set @, ny @, N C° (see Theorem 4.1).

Fixed sections of this paper are devoted to establishing the various relationships just
desé¢ribed, as well as the necessary preparatory material, examples and generalizations.
The topic of the sixth and last section is not quadratic but general smooth vector-valued
functions on compact oriented manifolds. Expressions are developed for the Euler character-
istics of level sets in terms of the values of vector-valued functions at critical points.
The fundamental notion in this context is that of a Morse vector-valued function — a direct
generalization of scalar Morse functions.

To each critical point corresponds a quadratic form — the Hessian of the function at
that point. The index of the Hessian may vary from point to point and one obtains a part-
ition of the critical set into domains of different indices. Under a favorable confluence
of circumstances, one can calculate the Euler characteristics of the preimages of convex
cones in terms of those of these domains.

Propositions, theorems, lemmas, and formulas within each section will be numbered
separately. In references to other sections we will use double numbers.

1, Spaces of Quadratic Forms

1. Let #(R") be the space of all real bilinear symmetric forms on R¥, dim#P(R¥) = N x
(N + 1)/2. If peP(RY), p:R¥XR¥—R¥ | then the quadratic form x » p(x, x), where x €
R¥ , will be denoted by the same symbol p. The subspace {x € R¥|p(x, y)=0 VyeéR¥}cRNwill
be called the kernel of the quadratic form p and denoted by kerp. A form p is said to be
nonsingular if kerp = 0; otherwise it will be called singular or degenerate. A form p is
to be nonnegative (nonpositive) if kerp = 0. It is easy to see that if p is a nonnegative
(nonpositive) form then p(x, x) = 0 if and only if x € kerp. Thus, a nonnegative form is
positive (a nonpositive form is negative) if and only if it is nonsingular.

For any subspace V c R¥ we let (p|V) € #(V) denote the quadratic form obtained by
restricting the map p to V.

The index of a quadratic form p (denoted by indp) is the maximum number k > 0 such
that for some subspace V c R¥, dimV = k, the form p‘V is negative.
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The linear changes of coordinates in RY define an action of the group GL(RY) of
linear transformations of R" in the space of quadratic forms #(RV). Clearly, the numbers
dim kerp, indp are invariant under this action (i.e., independent of the choice of coordi-
nates). It follows from the usual procedure of reducing a quadratic form to a sum of
squares that there are no other invariants: quadratic forms with the same indices and
kernels of the same dimension can be transformed into one another by a linear change o
coordinates. . :

Let (*, <) be the standard scalar product in R¥. To any form pé#(RY) there corres-
ponds a symmetric linear operator P:RM—R¥ , defined by the identity p(x, y) = (Px, y),
vx, yéRY . The correspondence p~ P is obviously an isomorphism of the linear space #(R¥)
onto the space of all symmetric linear transformations in RN, Under this correspondence
kerp = kerP, and indp is the number of negative eigenvalues (counting multiplicities) of P.

Define Px(R¥)={peP(R¥)|indp < k}. In particular, Po(R¥) — the set of all nonneg-
ative forms — is clearly a convex closed full-dimensional acute-angled cone in P(RV) .
The cone P (R™) defines a partial ordering of the space #(R¥): we write p, < p, if (p, —
p1) € Po(RY), and p, < p, if in addition the form (p, — p,) is nonsingular. The following
useful relationship implies that the map ind:#(R¥)—Z, is monotone nonincreasing.

LEMMA 1. For any p;, p; € #(R¥)
ind (p14-p2) <ind pi+ind pe.

Proof. Let Vi be the linear span of the eigenvectors of P; belonging to nonnegative
eigenvalues, codimVy = indpj, i = 1, 2. Then both p, and p, are nonnegative forms on the
space V; N V,, codimV, N V, 5§ indp; + indp,.

Let P:R¥—RY be a linear symmetric operator and A,;(P) s A,(P) s ... < AN(P) its eigen-
values, arranged in increasing order; note that A,(P) is a continuous (but not smooth!)
function of P. Let I be the identity map of the space R¥, i.e., the operator corresponding
to the quadratic form = , i.e., the operator corresponding to the quadratic form x = (x,
x), x € R¥ The map P P + (Agx4; = A,;)I defines a monotone homeomorphism of the space
Z{R") onto itself, carrying the subset #.(R¥) onto Po(R¥). Hence it follows, in partieular,
that #(R") is homeomorphic to a closed half-space in RN(N*2)/2 for k =0, 1, ..., N = 1.

The boundary of the subset Pr(R") consists of the singular forms and is defined by
the equation Ayx4,(P) = 0. Let I,(RY) denote the set of all singular forms. Clearly, I, x
(RY) ={peP(RY)|P = 0} is an algebraic hypersurface in Z(R")}. The set of nonsingular ferms
P(RY)NIL(RY) has N + 1 connected components: nonsingular forms p;, p, are in the same
component if and only if indp, = indp,. The hypersurface I,(R¥ ), naturally, has singular-
ities; a form p € I;( R¥) is a regular point of the hypersurface if and only if dimkerp =
1. The local structure of I,( R¥) near an arbitrary point — including a singular point =
is described by the following assertion.

LEMMA 2. Let p, € #(R"), V = kerp,. Then there exist a neighborhood O, of p, in
#(R") and an analytic map ¢:0,,—~ % (V) such that 1) &(p,) = 0; 2) indp = indp, + ind¢(p);
3) dimkerp = dimker &(p); 4) (Dp ®)p = p|V, Vp. '

Proof. Let y be some closed contour in the complex plane separating the origin from

the nonzero eigenvalues of P,. Define

¢ « Py=1.4%
p=g | (P—2IYd3
Y

14

for any operator P with no eigenvalues on y. Clearly, Tp is a symmetric operator, which
commutes with P and is analytic with respect to p; moreover, 'rrp2 = Tp. Indeed, Tp is the
orthogonal projection of R" onto the invariant subspace of P corresponding to the eigen-
values in the interior of y, in particular, npOIV = I. Define ¢(p)(v,, v,) = p('rrpvl, 'np'vz),
Vv,, v, € V. For p close to p,, the map WPIV is nonsingular and, so, the form &(p) is
equivalent to p[im Tp. But the form p[im Tp o is nonsingular and has index equal to indp,
for p near p,. Equalities 2 and 3 now follow from the fact that imwp, im ﬂpJ‘ are invariant
subspaces of P; equalities 1, 4 are verified directly.

1894



Define Iy ( RY)={p€P (R" )|dimkerp 2 k}, k =0, ..., N; then
0=Ily RM)Cllys RM)C... Il RM I, R =2 RY)

is a filtration of #(R") by closed subsets. It follows from Lemma 2, in particular, that
for any k = 0, 1, ..., N the set Hy(R¥)\ILy(RY) is an analytic submanifold of codimension
k(k + 1)/2 in 2 (R¥), and, moreover, II,(RV)\ i RM)=I,(R¥). In fact, if dimkerp, = k, then
the equation &(p) = O defines the intersection of IL,(R¥)\Il,, (R¥) with a neighborhood of p,
in @ (RY).

It is worth noting that the sets Ny(R") are closed under multiplication by scalars,
i.e., they are cones and the manifolds Nx(RY)\Ile,n(RY) have N + 1-— k connected compo-
nents: forms p,, p, € ME( RY)\IL, (RY ) are in the same component if and only if indp, =
indp,.

2. We now consider the algebraic hypersurface 0; (RY) in greater detail. Below (both
in this subsection and later) we will omit the argument RMin the notation Iz( RV ), wherever
no confusion may arise. As already remarked, the set of singular points of @I; is just I,.
Sinte codimll, = 3 and codimll; = 1, it follows that I, is a pseudomanifold. Similarly, the

set of singular points of the algebraic manifold H, is just II;, and so on: for any k the
set of singular points of Ny is just INg4; — this follows from Lemma 2.

The space of quadratic forms #(R")is, by definition, the dual space of the symmetric
profiucts of R¥ by itself, i.e., & (RY)=(RYORM)* where the symbol "e'" denotes the symmetric
product. Consequently, #(RV)* =RVOR» . In particular, for any x, y €R¥ we have <p,

x o y> = p(x, vy).

Let £ €eRYORY , in view of the canonical isomorphisms
P (RN*)=(RN*®R}V*)* =RN®RN'—" ? (RN)#

we c¢an consider £ as a quadratic form on RN*. Let RM* > kerf be the kernel of this form
and denote L(£) = (ker£)” ¢ RV, rankf = dimL(g).

]

An arbitrary element { € RYOR" can be represented (but not uniquely) as £ = ‘2’ aiXy ©

Xi, 0§ # 0; a direct check verifies the identity

k
L(Eaix@x,)=span{xi,i=l, o B), A 2,40, i=1, ..., A

el
We note, moreover, that rank{ is the minimum possible number of terms in the represent-
L]

. )
ation £ = & ajX{ @ Xj.
f=} ’

Let p € Mg/Mg4;. It is easy to see that an element x o x = RYORY = (RM)*is normal
to g at the point p if and only if x € kerp. Clearly,

span {xOux | xgker p}={:6P (RV)*| L () Cker p).
At the same time, the canonical isomorphism £ (RV*)=% (RV)* induces an isomorphism
{562 RY)* | L (t)ker p}= P (ker p*).

Since dim #(kerp*) = [k(k + 1)/2] = codim Iy, we see that the normal subspace to the
submanifold Hy\ly4; coincides with & (kerp*) = span{x e x[ € kerp}.

If k=1, p € II;\Il,, then there exists a normal x e X, x € kerp to the hypersurface
I, at p, which is unique up to a scalar factor. We see that the normals to the points of
I\, ©« #(RY) are the elements of rank 1 in Z(RM)*=% (RV¥*). We now assume that p is a
singular point of II,, dimkerp > 1,
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A normal to II;, at the point p is an arbitrary element of the form ax o x € Z(RV)*,
where x € kerp, o € R , or equivalently an arbitrary element of rank 1 in & (kerp*)C P (RV).
Let A°, denote the set of all normals to II; at p. Our definition of normals at singular
points is justified by the following easily verified equality:

~/V'p= N U7 (the intersection is takegs over all
0pCIL, 960, neighborhoods Oy of p in 0,).

Normals of the form x e x(=(—x) o (—x)), where x # 0, will be called positive. If p e I,\
I,, there is exactly one positive normal at p, up to a positive factor and, therefore, the
positive normals define an orientation of the manifold NI;\I,. The set of ‘all positive norm-
als to I; at an arbitrary point p € II, will be denoted by A°,*. It turns out that the set
of all positive normals to II; of unit length, relative to the corresponding points of 1,,
form a manifold and, so, resolve the singularities of the algebraic manifold II.

More precisely, let us consider the following subset of the space #(R¥)®%(RM)*

I, ={(p, xOx) | x€ker p, | x|=1).

It is easy to see that II; is a smooth submanifold of # (RN) &P (RV)*. 1Indeed, this
follows from the fact that for any x # 0 the map p + Px from #(R) to R¥ is of rank N,

Since normals are defined at every point of [I;, we can also speak of tangent vectors.
Specifically: a form p' € £(R") is a tangent vector to II, at a point p € II, if and only
if p'(x, x) = 0 for some x € ker p\{0}. More generally: for any k=1, ..., [N(N + 1)/2]~
1, let Z£*(k, N) denote the manifold of all oriented k-dimensional planes in #(R¥) [clearly,
2+ (k, N) = 6¥(k, (N(N + 1)/2) — k), where, as usual, G'(k, m) is the Grassmann manifold of
k-dimensional oriented planes in RA™m),

A plane H eg’*(k N) is said to be tangent to II; at a point p if there exists x € kerx
p\{0} such that p'(x, x) =0 Vp' € H. We let GT(p; I,) cZ*(k, N) denote the set of all

k-dimensional oriented planes tangent to I[I, at p. Finally, we define
Gi (L) ={(p, H)| pElLy, HEGH (o LIS RY) X Z* (£, N).

It is easy to see that Gyt(l;) is an algebraic subset of £ RV Z* (k, N), with codim@? x
(I,) = k + 1. It turns out that the set of singular points of the algebraic manifold G *(I,)
has codimension 2(k + 1) in ZRM)XZ*(k, N) and, so, Gk+(H1) is a smooth pseudomanifold.
In corder to verify this, we consider the set
e .
Gi (M) ={(p, xOx, H)| pell;, x€ker p, | x|=1, HEL* (k, N),
— H{x, 9)={0}c P R X P RV)* X ZL*(k, N).
The set GLQI‘) is a smooth manifold, for the same reason as Ii,; the map (p, x @ x, H)~
(p, H) from G}, to GyT(I,;) "resolves the singularities” of the algebraic manifold Gy*(I,).

The desired result follows from
S

LEMMA 3. The smooth map (p, x e x, H) = (p, H) from Gi @) to # RY)XZ" (k, N) has
maximum rank at all points except for a certain s_x_lgsjet of codimension k + 1,

Proof. We must single out those points in G (0,), at which the differential of the map
(p, x e x, H) —» (p, H) has nonzero kernel. The kernel is obv1ously the set of all vectors

(0, x o y, 0) which lie in the tangent space T(p,xox H) Gk (fI,). At the same time, a vector

(0, x e y, 0) is tangent to the manifold Gk (Il) at a point (p, x e x, H) if and only if

(x, y) =0, y€ kerp, p'(x, y) =0 p' € H. An elementary argument now shows that the

condition that there exist such a nonzero vector y defines an algebraic subset of codimen-
s

sion k + 1 in G; (I)

Let us dwell in more detail on the choice of orientations of the pseudomanifolds I,
and Gk+(H ). An orientation of a pseudomanifold is by definition any orientation of its
manifold of nonsingular points. The manifold of nonsingular points for H; is I;\I,. As
mentioned above, the hypersurface II;\Il, is orientable: at every point p € I,\l, there is
a unique (up to a positive factor) positive normal Vp- Moreover, II,\lI, consists of N com-
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ponents, and there are therefore 2N different orientations on it: let t:{0, 1, ..., N=-1}
{0, 1} be an arbitrary sequence of zeros and ones; then an arbitrary orientation of I,\I,
is defined by the normals (—l)mdpvp.

Ty
Proceeding to consideration of the pseudomanifold Gi¥ (), we note that in this case

the manifold of nonsingular points is connected — this follows from Lemma 3, since GZ(U‘)
is connected and k + 1 2 2. Thus, there are at most two orientations on GE¥(l,). And the
two in fact exist. First, any orientation of II,\ll, determines an orientation of G,*(I,\I,)

in the standard manner. The orientation on Gp¥(l,\l,) corresponding to an orientation Vp
on II;\II, will be denoted by Gk+(vp); and an arbitrary orientation on Gy*t(l;\I,) will have
the form (—I)V(indP)Gk"’(vp), We put ind (p, H) & indp; and then the manifold G H(I,\N,) is

precisely the set of points of continuity of the integer-valued lower semicontinuous func-
tion ind on Gy*(m,).

Remark. Suppose that M is a triangulable manifold and o is a lower semicontinuous
integer-valued function on this manifold, such that the subset a”!((-=, n]) is a submani-
fold of M with connected boundary, for any n € Z. It can be shown that if the set of con-
tinuity points of a (which is open and dense in M) is an orientable manifold, then M is
also an orientable manifold.

It follows from the remark that Gy*(I;) is an orientable manifold. It remains to
choose, of the 2N orientations on GyT(N;\l,), one which extends to Gy*(I,). A direct,
though cumbersome, calculation shows that the required orientation is (—l)indPGk"’(vp).

Remark. It is not hard to show that the zero-dimensional cocycle p — indp on #(R¥)\
I, is the Alexander—Pontryagin dual of the pseudomanifold II,, oriented by the normals Vps

p € I,\ll,; while the cocycle p~ 1 + (-1)indp on P(R¥) \I, is the dual of I, oriented by
the normals (_1)1nd_pvp, p € PCF(RV\L,.

2 Quadratic Maps and Pencils of Quadratic Forms -

: 1. Let k > 0 and consider the space #(R¥)* of symmetric bilinear maps p: RN¥XRN—R%
If p € Z(R¥)* , then the quadratic map x - p{x, x) will be denoted by the same symbol p.
Throughout the sequel we will employ the abbreviated notation P(RN)} =P (N,k) in order to
avoid cumbersome formulas.

A quadratic map p € # (N, k) is said to be singular or degenerate if zero is a critical
value of the map p|( R¥ \{0}). This means that for some x € R¥\ {0}, 0€R** \{0} it is true
that p(x, x) = 0, wpx = 0. But if these equalities are not both true for any nonzero X, w,
we say that p is a nonsingular map. For quadratic forms (k = 1) the definition of singular
ahd nonsingular maps obviously reduces to the standar done (see the previous section). If
a quadratic map p € # (N, k) is nonsingular, then p~(0) n SN~ is a (possibly empty) smooth
cdosed submanifold of SN-1.

LEMMA 1. The set of all singular maps is a proper algebraic subset of £ (N, k).

Proof. That the set of singular maps is algebraic follows from the fact that by defin-
ition it is the image under the projection (p, x, w) - p of some algebraic subset of # (N,
k) x R¥XR* In order to prove that the set of singular maps is proper, it will suffice
to exhibit at least one nonsingular map; one example is the map

x> (x, x){,where [ER*\ {0}, x€R™,

It follows from Lemma 4, in particular, that the nonsingular maps fill out an open
dense subset of & (N, k). —

An arbitrary linear map from R¥'™ to #(R¥) is called a k-dimensional (linear) pencil
of N-dimensional quadratic forms. To every quadratic map p € # (N, k) one can associate,
in an obviousway, a (k—!)-dimensional pencil of quadratic forms, p*:w.~— wp, w € R&*

The correspondence p ~- p* determines a canonical isomorphism of # (N, k) onto the space of
(k = 1)-dimensional pencils of quadratic forms: #(N, k) =Hom(R**, #(RN)).
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In many cases it is more convenient to investigate quadratic maps in the language of
pencils of quadratic forms. A pencil of forms is simply a subspace of #(R¥) and we can
directly use all the information about #(R¥),established in the previous section.

Let M be a smooth manifold and f:M + #(R¥) be a smooth map. We wil] say that f ‘is
tangent to the hypersurface I, < #(R¥) at a point p & M if £(u) € I, and Df(TM) L v for
some normal v € fyy \({0}.

Definition. Let p € £ (N, k). Then the pencil p*: R*—~P(R¥) is said to be singular
if p* is tangent to II, at some point w € R** \{0}. Otherwise p* is said to be nonsipgular.

It is easy to see that a pencil p* is singular if and only if the map p is singular -
we have simply rephrased the degeneracy condition for p in geometric language. Later this
rephrasing device will furnish us with some important generalizations.

Recall that the nonsingular quadratic maps form an open dense subset of # (N, k): ve
denote this subset by (N, k).

Definition. Nonsingular p,, p, € # (N, k) are said to be rigidly isotopic if they
are in the same (connected) component of & (N k).t

It follows from Thom's standard Isotopy Lemma [3, 6] that, if pl’lfz e (N k) are
rigidly isotopic, then there exists a smooth isotopy F; of the sphereS$ , t € {0, 1],

mapping p, *(0) n SN-1 into p,”1(0) n SN-1, i.e.,
Fo=id, Fy(pr' QNS =p7'@nS"\.

If k = 1, two nonsingular quadratic forms are, of course, rigidly isotopic if and only
if they have the same index. In the case k = 2, classical results about one-dimensional
pencils of quadratic forms can be used to derive a complete classification of two-dimension-
al quadratic maps with respect to rigid isotepy. It is simpler, however, to carry out this
classification directly. Let us assume that the gquadratic maps take values in the complex
plane C=R? and begin with the simplest nontrivial case, N = 2.

Proposition 1. Any quadratic map in £(2, 2) is rigidly isotopic to one of the follow-
ing three:

Iy(x, x)=xt+x% T (x, x)=x}—x2+2ix x5

T(x, x)=x}— x2—2i.xx,,

where i =} —16C, x=(x;, x)6R? these three maps are not rigidly “isotopic to one another.
Remark. Putting z = x, + ix,, we obtain I,(z, z) = zz, [(x, z) = 22, T(z, z) = z%.

Proof. Let p € # (2, 2). Consider the quadratic equation
det(wP) =0, w€R®*\{0}. (1)

There are three possible cases.

1) The discriminant of Eq. (1) is positive. Then there is a pair of noncollinear co-
vectors w, @ € R?* such that wPx = wPx = 0 for some x, x € R? \{0}. Since wp(x, %) = wp(x,
x) = 0, it is obvious that p(x, %) = 0. Clearly, x # X, because p is nonsingular. Conse-
quently, p must have the form p(y, y) = (g, y)?e!® 4+ (g, y)?ei® , where (a, x)=(a,x) =0, 8, #
+6,

The image of R? under the quadratic map p is the convex cone spanned by eifi and eif:,
An obvious homotopy brings this map to the form (a, y¥’--(a,y)® (the cone is flattened out
into a half-line) and, then, a change of variables with positive determinant brings it to
the form (y, y).

2) The discriminant of Eq. (1) is negative. Then the map p| R?\{0} is regular. Conse-
quently, for every w € R** \ (0}, induwp = 1, ker wp = 0. A linear change of variables with
positive determinant now brings p to the form

P (%1, %), (%1, X2)) = XF— x24 i (@ B2 Ty x, X9).

+This notion corresponds to the accepted terminology in real algebraic geometry.
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The condition on the discriminant 1s equivalent to the inequality |a+g] < |v]|. An
obvious homotopy brings p to the form x,? — x,? + 2ix,x,, if y > 0, or to the form %2 -
x,2 = 2ix,x,, if y < 0,

3) The discriminant of Eq. (1) vanishes. The maps p satisfying this condition form
a proper algebraic subset of #(2, 2) and, so, by slightly perturbing p, we can reduce
everything to the situation of one of cases 1 or 2.

If p € ? (2, 2), then obviously p(x, x) # 0, Vx # 0. Let degp denote the degree of
the map p, ® p, relative to zero._Clearly, degp is invariant under a nonsingular homotopy.
We have degI, = 0, degl = 2, degT = ~2. Consequently, the maps I,, T, T are not homotopic
to one another.

Let pj €# (Ny, k), i =1, 2. We define the direct sum p, ® p, of quadratic maps p,
and p, as the map p € # (N, + N,, k) defined by

P(x, X (X1, £)=p, (%, X))+ Pa(xa, X)), VX, €RYY, i=1,2.

Proposition 2. Any p € # (N, 2) is rigidly isotopic to a quadratic map of the form
ép,@(é]q/) , where p,e.é 1, 2), qje.é’(Q, 2) ,n+ 2m = N.

Proof. We may assume without loss of generality that the discriminant of the map
det{wP) =0, @=£0, (1)

dbes not vanish.

: The symmetric bilinear map p has a unique extension as a symmetric C.-bilinear map ;
pc: CVXCY—C? where C'=C®R", C(2=C®R2 Denote the quadratic map X » pg(X, x), X €
¢V, by the same symbol pg. The extension of Eq. (1) to the complex domain is

- deg (QPc)=0, QEC*\ {0}. (1¢)

Ei;uation (1) has N pairwise noncollinear roots and, moreover, if @ is a root, then so is
51 (where the bar """ denotes complex conjugation). Let Q,, %, be two distinct roots of
Eq. (1c) such that Q, # ,; for some X,, X, € C¥ \{0}, we have Q,PcX; = 0, Q,PcX, = 0.

Since
Qpe (X1, Xo)=0pc (X, X)) =Qipc (X1, X2)=Qpc (X, X3) =0,

it follows that pc(X;, X;) = pc(X,, X,) = 0. Let x; and y; be, respectively, the real and
imaginary parts of the vector X; € CY i =1, 2. It follows from the last equalities that
p(xy, %) = p(xy, y,) = p(yy, %) = p(y,, y,) = 0. Consequently, p|span{xj, y;, 1 =1, 2}=

plspan {x,, y;} ® p|span{x,, y,}. Let Q;, ..., Qy be the pairwise noncollinear roots of Eq.
(1¢) and let Q4PcX; = 0, where X; # 0, i =1, ..., N. To finish the proof, it remains to
bé shown that the vectors X;, ..., Xy form a basis of CV. TFix a covector Q, € C**, which is

nét a root of Eq. (1g). Then Q3 =Q; + @30,, i =1, ..., N, where aj € C, ay # ay, for
i# j. It follows from the equations Q,PrX; + ©iQ,PcX; = 0 that —a, are eigenvalues and
Xy eigenvectors of the operator

(2P QPe, i=1,...,N. p

For any n > 0, let I, denote the quadratic form x » (x, x), where x¢R” . Clearly,
In =01®...8]; . We also define Iy = e ... o T,.6% (2n, 2). We also put T, = 0.

THEOREM 1. If N 2 3, any p P (N, 2) is rigidly isotopic to one of the following
maps:
2—1

G My ..., Maeys m)—' @ /n -1 4T, &, m >0, (2)

ab_.|

2.n,+2m N.

j=i
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The map q(n;, ..., myk-,; m) is rigidly isotopic to a map q(n,', ..., nykt-;'; m') if and
only if k' = k, m' = m, and the sequence of numbers n,', ..., n,x-,' is a cyclic permuta-
tion of n;, ..., Nyk-;.

n
Proof. By Propositions 1, 2, p is rigidly isotopic to some map of theg. form 1?,11‘11 ®

Iy e Ty, where a;6C \0, n + 22 + 22 = N. Changing variables xj P [a, " xy, if necessary,

we may assume that | @, | =1, i.e., @; = e83jl. Let RY=Rm@®Cm, where m = & + ¥; without
loss of generality, we may assume that
PXy oy Xy 21y oy E.x?eel‘—[-z:z?—}- 2 22 (3)
J=l Jul gl ;

We first get rid of terms of the type ij. If n # 0, a change of variables in R" with posi-
tive determinant, replacing x, by (-1)%x,, the coordinates 23 with j =2 + 1, ..., m by Ej
and leaving the other coordinates unaffected, will bring (3) to the form of

ZXQEGJI—{ zzz (%)

T=1

Since any linear transformation with positive determinant is homotopic to the identity,
it follows that the map £4) is rigidly isotopic to (3). A similar argument goes through in
the case that n = 0 and £ is even. To eliminate the terms ij in the case that n = 0 and
% is odd, it will suffice to show that the quadratic map z,2 + z,2 from C° to Cis rigidly
isotopic to the map z;? + z,7.

Let # denote the set of all singular quadratic maps r € & (4, 2) such that the equa-
tion det (wR) = 0 has exactly one (necessarily multiple) root in RP!'=(R?* \0)/{(w ~ aw, o #
0), where wr(x, x) = (wRx, %), x € R4

It is easy to see that &£ is a semi-algebraic subset of £ (4, 2). The "general point"
r, of the hypersurface & has the following properties:

a) The multiplicity of the single root of the equation det (wR,) = 0 in RP! is twa;

b) For some neighborhood Op, of r, in & (4, 2) the set Ofo\(oro n #=0,ne (4, 2)
has at most two arcwise-connected components.

Let det (w,R,) = 0, ©:€ER*™ \0, By assumption, the symmetric linear operator wyR,
has a two-dimensional kernel H, ¢ R4 The equation det (wR,) = 0 has another pair of mon-
zero complex-conjugate roots in CP!. Reasoning 2s in the proof of Proposition 2, we see
that r, = ro[Ho e ro|H,, where H, is a two-dimensional subspace of R* transverse to H,.
Denote ry|H, = r,%, r,|H; = r,}; then the equation det (wr,*) = 0 has no nonzero real roots
and the equation det (wr,°) = 0 has a double root w,. Since r,° €% (2, 2), it follows that

wory® = 0. Thus the values of the map r,° lie on a straight line orthogonal to w,. We may
assume without loss of generality that this is the real line C=R2% Then r,%(x, x) = (Qx,
x), where Q:R?>-+R? is a symmatrlc operator. This operator Q is nonsingular [otherwise it
would be true that det (wr,°) = 0}. Recall, finally, that the map r, is singular. This
is possible only if that is true of the map r,° (considered as a quadratic map from R? to
R? ). This in turn is true if and only if (Qx,, x,) = 0 for some x, # 0. Consequently,
(Qx, x) is a nondefinite quadratic form and we may assume without loss of generality that

ro’(x, x) = x;% - x,2.

Finally, consider the quadratic maps defined by
e o S0 2 » 2 2
r=x2—x2+iex,xy, ro=x?—xl-4ie(X{+X3)

(here i =V —16C=R? ), as well as rp = ro% ® r,%, £, = % & r,!. If ¢ is sufficiently
near zero, then r. and ry lie in O ; in addition, as long as € # 0, both maps r. and T,
are nonsingular. We note that the equation det (wR¢) = O has no nonzero roots in R®* if

€ ¥ 0, while the equation det (wRg) = O has two noncollinear roots. It is readily seen that

the sum of multiplicities of roots in RP' is invariant under rigid isotopy. Consequently,
the map re is not rigidly isotopic to rE for any €,, €, # 0. Since Op N @ (4, 2) has

1900



at most two arcwise-connected components, this implies that for all € # 0 suff1ciently
close to zero the maps r. and T-¢ are rigidly 1sotop1c. At the same time, r.% is rigidly
isotopic to I' if ¢ > 0 and to T if € < 0. Since r,' is also rigidly isotopic to either T
or r, and T e T is rigidly isotopic to I e I', it follows that I' ® T is rigldly isotopic to
reT.

We have thus shown that any map in & (N, 2) is rigidly isotopic to some map of the
form (4). All our further manipulations will take place within the class of all such maps.
It is dlrectly verifiable that a map (4) is nonsingular if and only if c®j,1 + 85,1 ¢ 0
Vi J2-

Let us divide the set {e 1, ..., e%ni} into several subsets, according to the follow-
ing rule: put elements e931 » eejz1 into the same subset if one of the arcs connecting the
points ef3,1 and e8j.1 on the circle S* = {z € C||z| = 1} contains no points of the form
(—®31), 5 =1, ..., n. It is not difficult to show that if n # O the number of subsets
is odd, say 2k = 1. Via a rigid isotopy, it is easy to merge all the points in one subset
into a single point and, then, to arrange these 2k — | points at the vertices of a regular
(2k — 1)-gon. Thus, any nonsingular quadratic map from R¥ to R’=C is indeed rigidly iso-
topic to one of the maps (2).

It remains to be shown that the r1g1d isotopy class determines the sequence of numbers
. 2%k—1
Ny ...y Nyk-y Up to cyeclic permutatlons= First, the number }E ny = N ~ 2m is the sum of

. -
multiplicities of the roots of the equation det(wP) = 0 in Rpt and is, therefore, invar-
iant to a rigid isotopy.

Let p € # (N, 2) and let wy, ..., wy € R®* \0 be representative of the roots of the
equation det (w0) = 0 in RF"—-(R2*\0)/(w ~ aw, 0 ¥ O)L For each j = 1, ..., n, the quadrat-
ic map p]kermjp takes values on the straight line wj~, Moreover, since p is nonsingular,

thé quadratic form p1kerwJp is sign-definite. In particular, V=x € kerwp\0 the vector p(x,

x) does not vanish and the vector (1/|p(x, x)|)‘p(x, x) is independent of x € ker wp\0.
Define (1/[p(x, x)|):p(x, x) = e8ji, x e kerw; 5P\0. Now the roots of the equation det (wP)=
0 dre continuous functions of p € #(N, 2), provided'that roots are counted with their
muitipllcitles The same is true of the vectors efji, provided that their multiplicities
are assumed equal to those of the corresponding roots. The fact that p is a nonsingular
map implies that eejll + e85, #0 Vj,, j,. Divide the set {ef1i, ..., e®ni} into subsets
acdording to the familiar rule: put points in the same subset if they can be connected in
S! by an arc not containing any points (—e®j1), j =1, ..., n. This gives an odd number of
sets, say T;, ..., Tyk-;. To each Tj associate the unique arc b3 < S! of length less than

7 satisfying the conditions aAJ = T < by (where 35 is the boundary, i.e., the endpoints
of 855 in the case #A = 1 the arc AJ degenera;es to a point). It is easy to see that a3.n
4j, =0 if j; # j,. To each arc Aj there corresponds a multiplicity nj, equal to the sum

of mult1p11c1t1es of the points occurring in the set TJ. A rigid isotopy may change the

length of the arc, but it preserves multiplicity and the relative positions of arcs on St.
To allow for these positions we will assume that the arcs b; are numbered in such a way that

wheh S! is described in the positive sense, beginning from A,, one encounters the arcs Ay,
Byy vevy BAyk-1 in succession. This rule determines the numbering up to cyclic permuta-
tions. »

Unfortunately, the elementary techniques used to classify quadratic maps with values
in R% are no longer applicable to maps with values in R® The problem is that a quadratic
map in general position in £ (N, 3) cannot be expressed as p, ® p, with nonzero Pis Pa-

Indeed, to each p € # (N, 3) we can associate an algebralc curve of degree N in RP?==
(R3* \0)/(w ~ quw, o # 0), defined by an equation det (wP) = 0, w € R¥* ., If p = p,-e p,,
then det (wP) = det (wP,)det (wP,), and the curve is reducible. At the same time, the general
curve of degree N in RP2 is irreducible Let us compare the dimensions of the space of
quadratic maps and the projective space of curves. In so doing we must allow for the fact
that the group of linear changes of variables acting on the space # (N, 3) is GL(N), and a
change of variables in p does not affect the curve det (wP) = 0. The dimension of the quoti-
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ent space of # (N, 3) modulo the action of GL(N) is [(3N(N + 1)/2] — N2 = [(N? + 3N)/2].
The dimension of the space of curves of degree N in RP?1is Cyny,2 — 1 = {[(N + 2)(N + 1)/2 -

= [(N? + 3N)/2].

Thus, the dimensions are the same. It can be shown that the map carrying each p €
# (N, 3) into the curve det (wP) = 0 has regular points and so its image contains irreduci-
ble curves. A study of this map is beyond the scope of this paper. For a detailed invest-
igation in the complex situation we refer the reader to [4].

2. We now resume our study of pencils of quadratic forms p¥* corresponding to quadrat-
ic homotopic if and only if p, and p, are rigidly isotopic.

Definition. Let py, p; € # (N, k). The pencils p,* and p,* are said to be nonsingu-
larly homotopic if and only if p, and p, are rigidly isotopic.

Thus, pencils p,* and p,* are nonsingularly homotopic if and only if they can be embed-
ded in some continuous family of pencils p¢*, t & [0, 1] such that the maps w > wpt, w # 0,
are not tangent to the hypersurface I, Vt € [0, 1]. At the same time, however, the maps
w > wpt may be tangent (i.e., not transverse) to one or other of the submanifolds M\Mip4; ©
I, n>1,

In fact, let pCP(N, k), wetR* , and wep € Ip\lIp4;. The map w » wp is tangent to 0,
at w, if and only if p(x, %) = 0 for some x € kerw,p\{0}. Let x,, ..., X, be a basis of

the space kerw,p. The map w ~ wp will be tangent (i.e., not transverse) to the submanifold
In\lp4; a8t wep if and only if

n
2 oup (51, %) =0,
i=
for some oy €R, i=1,...,n, :Saiz # 0. This follows from an equality established in Sec.l:

(Twoolln) " =span &, =span {xOx | xEker wyp}.

Henceforth we will refer to a pencil of quadratic forms w » wp which is transverse to
all the submanifolds N \lp+;, n 2 1, where w # 0, simply as a transverse pencil. It fpl-
lows from the standard Transversality Theorem that the quadratic maps corresponding to
transverse pencils fill out an open dense subset of # (N, k). We denote this subset by
P4 (N, k). It is clear that P (N, k) =@ (N, k).

Recall that %= denotes the set {p e #(RM) llndp < n}.

Let p e? (N, k); if a nonsingular homotopy of pencils preserves the submanifold p™ " x
(0) n sN-1 c gN-1 (up to isotopy), then a transverse homotopy also preserves the subsets

p*"1(#») nsk-', n=0,1, 2, ... (up to isotopy). This will follow from the following
assertion.

LEMMA 1. Let M be a smooth closed manifold, fy:M > {£[0,1] be a smooth homotopy of
smooth maps. If the maps f; are transverse to the submanifolds I \l4;, n =1, ..., N,

for any t € [0, 1], then there exists a smooth isotopy F¢:M - M, t € [0, 1], F, = id, of
M satisfying the condition

FAf (@)= (@), n=0,1, .. N.

Proof. If the boundary of the set #. were a smooth manifold, everything would be re~
duced to Thom's Isotopy Lemma. However, the method usually used to prove the Isotopy Lemma
[3] works here too — with the help of Lemma 1.2 (local structure of the algebraic manifold
M,). We must find a family of diffeomorphisms Fy:M » M, F, = id, such that for an x € M

fo(x) EPr=[oF (x) €P,, Vi[O, 1]. (2)
Let us try to find Fy as the general solution of the ordinary differentisl equation
d
sr Fe(x)=X.(F:(x)), t€[0,1]

where X¢ is a nonstationary vector field on M.
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Differentiation of (2) shows that it will suffice to prove the existence of a smooth
vector field X with the following properties if y € M and fi(y) € I,\Ip4,, then [(3£/3t) x

(y) + fty’xt(y)] € Tf, (y)In, where fry':TyM > #(R" is the differential of the map fy at

y. Furthermore, it will suffice to construct the field X¢ locally, in the neighborhood of
a fixed point y, € M, subsequently using a partition of unity in the standard way. If i x
(¥o) € My\Ip4,, it follows at once from the transversality condition that there exists such
a field for y € £+ *(I \NMh4,). The fine point here is that f¢(y,) € Iy for i =1, ..., n—

1. But Letma 1.2 implies the existence of local coordinates ¥ in the neighborhood of f(y,)
on #(R"), such that ¥,Tylly > ¥,Ty My for all y close to y,, y € I3, i =1, ..., n. Hence

it quickly follows that the field X; may be extended regularly to the entire neighborhood of
Yo in M.
Let p € # (N, k) be a quadratic map such that wp ¢ II, for any w # 0. In this case,

if the pencil p* is nonsingular, it is also transverse. The algebraiec set II, has codimen-
sion 3 in #(RY) and, therefore, for typical families py*, t € [0, 1] of zero- and one-dimen-

sional pencils, the condition wpy ¢ I, Vw # 0, t € [0, 1] is fulfilled. We have thus
proved

Proposition 3. Let p,, p, € £ (N, k), where k < 2, and let the pencils be transverse.
If p;* and p,* are nonsingularly homotopic, then they are transversally homotopic.

In the case k 2 3, transversal homotopy is a much stronger condition than nonsingular
homotopy. The difference between these two types of homotopy in the language of quadratic
maps is brought out by the following

LEMMA 2. Let p,, p, € ? (N, k), where k 2 2. 1) If p, (RY)#R* and p,(R¥)=R* , then
Pi* and P,* are nonsingularly homotopic.

2) If p,* and p,* are transversally homotopic and p, (RV) lies in some half-space in

R* , then p,(R") 1is also in a half-space in R*. /

Proof. 1) Let &; e RE\p;(RY), i =1, 2; clearly, al; € RE*\p,(R") Va > 0. Let Iy%i
denote the quadratic map x » (x, x)2;. The family t » (1 — t)p; — tINL; defines a rigid
isetopy between the quadratic maps pj and —IN%f;. That the maps =IN%, and ~Ipn%, are rigidly
isbtopic is obvious.

2) The set p(RY ) is a subset of a half-space if and only if indwp = 0 for some w # 0;
in other words, if p*~*(#,) n Sk-! # ¢. But we know that the set p*~'( Po) n Sk-? is pre-
setved (up to isotopy) ‘under transversal homotopy.

Remark. It follows form Lemma 2 and Proposition 3, in particular, that the image of
an arbitrary p € @ (N, 2) is either in a half-space or is all of R But it is readily
proved directly that p( R¥) is a convex cone in R2

Let k 2 3. In order to construct an example of a pair of nonsingularly homotopic pen-
cils which are not transversally homotopic, it will suffice to find some p € # (N, k) which
satisfies the conditions: p(RY)=£R*, conv p(R")=Re (the map p does not even have to be non-
singular, since a suitable small perturbation will make p nonsingular without affecting its
having these same properties). The simplest example of this kind is the map q3:(x;, X,,
x3)T» (x1x2’ XaX3y xlxz)T in !“?(3, 3).

Indeed, ¢;(R%)={(¥;, ¥2 ¥5)" €R? |y1y2ys 2 0}.

- A map p € @ (3, 3) is nonsingular if and only if p(x, x) # 0 VxER®\0. Let RP? =
82/{x ~ (=x)), where S? is the unit sphere in R% Since p(x, x) = p(—x, —x) for any p €
# (3, 3), the map p:RP?> S? carrying any point {x, —x} € RP? into (1/|p(x, x)|)-p(x, x)
is well defined. Let degp be the degree of this map (since RP? is not orientable, the
degree is defined only modulo 2). It turns out that for typical p € @ (3, 3) the condi-
tion degp = 0 implies p( RP? ) # SZ2.

We outline the proof.

For any point y in general position on S?, the sets p~*(y) and p~!(~y) must consist of
an even number of points. At the same time, the set p~!(y) U p~'(-y) is a transverse inter-
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section of twoquadraticsin RP? and, so, by Bezout's Theorem, it is either empty or consists
of two or four points. If at least one of the sets p~!(y), p *(~y) is empty, there is
nothing more to prove. There remains the possibility #fp~*(y) = #p " (~y) = 2, i.e., for

any point y € S? in general position the set p~!(y) consists of exactly two points. But
since the map p: RP® » S? cannot be a cover, it must have folds and the preimage of a point
on one side of the fold contains two points more than that of a point on the other side.
This contradiction completes the proof.

As a corollary, using Lemma 2, we deduce that all the maps p € # (3, 3) such that degx
P = 0 are rigidly isotopic to one another. Using this fact one can construct numerous exam-
ples of pencils which are nonsingularly but not transversally homotopic. The following
beautiful example was pointed out to us by Arnol'd. '

Let p = (py, Ps» P3)T € # (3, 3), where the equations pj(x, x) =0, i =1, 2, 3, define
ellipses in RP? , arranged as shown in the drawing:

(each pair of ellipses intersects at four points, two of which lie inside the third ellipse
and two outside).

Each of the coordinate forms pj takes values of opposite signs at points lying inside
and outside "its" ellipse. Hence we conclude that p(R*) intersects all thq octants intg
which R?® is divided by the coordinate planes. Consequently, p(R®) is not cpntained in gny
half-space in R® and, so, by part 2 of Lemma 2 p* is not transversally homotepic to any pen-
cil containing a sign-definite form. On the other hand, indp = 0; the poles of the sphere
S? are regular values of the map p: RP?+ S? and the image of each pole consjsts of just
two points. Thus p* is nonsingularly homotopic to pencils containing sign-definite forms.

3. Complexes of Quadratic Forms

1. Let K° ¢ Rk be a convex acute-angled polyhedral cone in R* with its apex at zere,
K= {weRawKOV 2 € K°} be the dual cone.

In Sec. 2 we examined the nonsingular quadratic maps, i.e., those p €2 (N, k) for
which p|(R™\{0}) is transverse to the point 0 in Rt In this subsection we are going to
generalize the situation to some extent, considering maps transverse to the cone K°.

Definition. Let M be a smooth manifold, £:M > R*be a smooth map and f' be its differ-
ential at a point m. We will say that the map f is tangent to the cone K° at a point m €
M if f(m) € K° and £f,"(TyM) + K° +Rf (m)#R* [or, equivalently, f'(TpM) 1 w and f(m) L w
for some w € K\0]. The map f is said to be transverse to K° if it is not tangent to K° at
any point.

Now let p € & (N, k). A quadratic map p: R¥—>R¥is tangent to K° at a point x # 0 if
and only if w,Px = 0 for some w, € K\O and wp(x, x) < 0 for any w € K. We see that the
tangency condition completely determines the values of the pencil p* on K. An arbitrary
linear map from K to #(R¥) will be called a pencil of quadratic forms on K and the linear
space of all these pencils will be denoted by £ (N; X).

If p € # (N, k), we will denote the pencil p*|yx € (N; K) by pK.

Definition. A pencil pX € # (N; K) is said to be singular if there exists w, € K\0
such that w,p € I, and, for some normal v € A’Lm \0, it is true that <v, wp> £ 0 yw €K

[in other words, v is in the cone pK(K)°® dual to pK(K)]. Otherwise we will call pX nonsing-
ular, -
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It is easy to see that a pencil pK is singular if and only if the map p is tangent to
K° at some point x # 0. The set of all nonsingular pencils in #(N; K) will be denoted by
# (N; K).

LEMMA 1. & (N; K) is an open and dense subset of % (N; K).

Proof. If x # 0, the map p » p(x, x) from #£(N; K) to R* is of rank k. Therefore, an
open dense subset of % (N; K) consists of quadratic maps p such that p|(R¥\0) is trans-

verse to all subsets spanTl, where T is an arbitrary face of the cone K° (this is a corol-
lary of the standard Transversality Theorem). The corresponding pencils pX lie in 2 (N; K).

Let Xy © R*" be convex polyhedral cones and A:K; » K, be a linear map. To each pencil
pK2 € # (N; K,) we associate the pencil A¥pK: e#(N; K,), where A*pK2(Aw). Clearly, A*pK:=
(a%p)K1, where A*p € # (N, k,) is the composition of the quadratic map p € @ (N; k,) and
the linear map A*: R**—R*, If A is surjective, then obviously

(A*p)HK) = 1) (xeR[0p (x, £) < Oj=p~ (K.
The following assertions are also obvious.

LEMMA 2. If a linear map A:K; =+ K, is surjective and never vanishes on K,\0, then
for. any pencil pKz € 2 (N; K,):

p’“€9% (N; K A*pNeP (N} Ky).

LEMMA 3. Define RZ={(,...,y)€R*|y; 2 0, i =1, ..., n}. For any convex polyhedral
cone K there exist n;, n, 2 0 and a surjective map A: R™®R% — X such that A does not
vanish on (R™®R% )\0. (Here n; = dim(KN (X)) and n,2 the number of generators of the
acute-angled cone K/(K n (—K)). :

LEMMA 4. Let piK c? {N; X) be smoothly dependent on t & [0, 1]. Then there exists
a Lipschitzian isotopy Fy:SN-! » sN=1  t e [0, 1], F, = id, such that F,(p, " *(k°) n sN-1 =
p,~t(x°) n sN-1,

Proof. The quadratic maps pt[SN“l are transverse to the cone K°, t € [0, 1]. Define
fr = py|sN7t.

Choose an arbitrary point y, in the relative interior of K°; the Minkowski function
on K° is defined by the formula

p(y) =ini{u=0|pK>9p} V péspan K.

It is clear that u~*(1) = 3K® is the relative boundary of K. Approximate the convex posi-
tively homogeneous function u by a smooth convex positively homogeneous function pg such

that pe — € < p < pe; then K® = {y eR¥ |y < 1} is a convek\ set with smooth boundary 8Kg°
contained in K°.

The transversality condition implies the existence of a smooth vector field X(x) on
SN-1 such that for any x € f:71(K°) the vector f'xX(x) applied at the point f(x) looks

into the relative interior of K° (the local existence of a field satisfying this condition
follows directly from the transversality condition; the global field is constructed using
a partition of unity). Consider the differential equation

5—S-x=‘X(x(s)) on S¥,

It is readily shown that the function s~ u © f4(x(s)) decreases monotonically at a
nonzero rate for all x(s) in a fixed neighborhood O of the set f;~'(8K°). Choosing € small
enough, we can ensure that £y '(8K.°) < 0 and, in addition, (d/ds)-ug © f4(x(s)) s 0 for

x(s) € 0 (this fdllows from standard results of convex analysis concerning the behavior of
the subdifferentials of a convergent sequence of convex functions, see [2]). Moving along
trajectories of the system (dx/ds) = X(x(s)) from £+ *(8K°) = (u © £4)"3(1) to fx *(3K¢) =

(pg © £+71)(1), we obtain a Lipschitzian isotopy of SN-! taking the set f"1(X°) into the
set ££71(Ke°).
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Lemma 4 now follows from the following assertion:

Let V ©¢ R* be a smooth manifold with boundary and ft:SN‘1-+ R% t e [0, 1], be a smooth
homotopy of smooth maps transverse to V. Then there exists a smooth isotopy Ft:SN‘1 + gN-1,
t € [0, 1], F, = id, such that Fe(£,71(V)) = £.7%(V), ¥ t € [Q, 1). This slightly strength-
ened version of Thom's Isotopy Lemma (instead of a manifold without boundgry — a manifeld

with boundary) can be proved in the same way as Lemma 2.1, with the appropriate simplifica-
tions.

Arguments similar to those used in the proof of Lemma 4 furnish a proof of the follow-
ing
LEMMA 5. Let C be a closed convex subset of R* and f£:M > R* a smooth map of a smooth

closed manifold M into Rk Assume that f is transverse to C [i.e., for nq x € M is im x
f'(x) a supporting plane of C at the point f(x)]. Then for any convex clqsed set Cp suffi-

ciently close to C, there is an isotopy Fy:M > M, t € [0, 1], F, = id, such that F,(f7?* x
(©)) = £71(cy).

Lemmas 2 and 3 yield a natural way to generalize the concept of nonsingular homotopy
to pencils defined on different cones.

Definition. Nonsingular pencils piKi e # (N; Ky), i =1, 2, are said to be nonsingu-
larly homotepic if there exist a cone K and linear surjective maps A;:K + K3, i = 1, 2, not
vanishing on K\0, such that the pencils Ai*piKi € P (N; X), i =1, 2, lie in the same con-
nected component of the set £ (N; K).

Remark. The new concept of nonsingular homotopy is wider than that defined in Sec. 2
even if K, = K, is a linear space; nevertheless, for nonsingularly homotopic piKi the sets
pi~*(K;°) n sN-1 are isotopic in SN,

The fact that a pencil plxl is nonsingularly homotopic to a péncil p2K2 will be writ-
ten thus: p,K1 ~ p,Ks,

In Sec. 2, in connectionwith pencils defined on linear spaces, we considered, apart
from nonsingular pencils, also transverse pencils. There is an analogous concept (which,
as we will see later, is very useful) for pencils defined on convex cones. Recall that
a pencil pK € # (N; X) is said to be nonsingular if for any w, € K\ 0 we have pK(K)° n

N ,=0.
We call a pencil pK € @ (N; X) transverse if, for any w, € K\O,
P (K)Nconv A5 ,=0,
Since #'&p = {x o xlx e kerw,p}, we obtain, after separating the cones pK(K)° and conv x

JVf;p by a hyperplane:

A pencil pK is transverse if and only if, for any w, € K\O, there exists w € K such
that wplkerwyp > 0. The set of all transverse pencils in # (N; K) is denoted by #*(N; K);
clearly, @¢(N;K)c®? (N; K).

LEMMA 6. 2 (N; K) is an open dense subset of &£ (N; K).
v Proof. That #'(N; K) is an open set is obvious. Now assume that #(N; K) is not a
transverse pencil; let w, € K\O be a point at which the transversality fails and let Y“o
be the open fact of K which contains w,. Then the pencil p"‘{spanl"wo defined on a subspace
is also not transverse. Since K has only finitely many faces, the statement of the lemma
follows fromthe standard: Transversality Theorem. _

Definition. Pencils p;Ki € P/ (N; K;) are said to be tranversally homotopic if there
exist a cone K and linear surjective maps Aj:K > Ky, 1 =1, 2, not vanishing on K\0, such
that Ai*piKi e P (N; K), i =1, 2, lie in the same connected component of the set #!(N; K).

The fact that pencils p,X: and p,K: are transversally homotopic will be written leIE
szz. The next assertion is obvious:
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Proposition 1. Let K;, i = 1, 2, be acute-angled cones and piKi e P (N; K;) be pencils
such that the forms wp, are nonsingular Vw € K4\0, i = 1, 2. Then p,X:1 is tranversally
homotopic to p,Kz if and only if indw;p, = indw,p, for some w; « K;\0, i =1, 2,

Let p, € Z(R¥) , with kerp, = 0, indp, = n. Let n denote the class of all pencils
wvhich are nonsingularly homotopic to a pencil o = apy, @ €Ryin P(N;R:), and n, the class
of all pencils which are transversally homotopic to it. &Each of the pencils described in
Proposition 1 is in some class n;, wheren =0, i, ..., N.

The next proposition shows that "small" transverse pencils belong to one of the classes
n: even if they do not meet the conditions of Proposition 1.

Proposition 2. Let pK € @ (N; K), let the pencil pK be transverse at wo and indwyp =
n. Then for any sufficiently small conical neighborhood Uy, of w, in K the pencil pYu, =
pKIUwo belongs to the class N

Proof. Let V = kerw,p, dimV = r; the transversality condition implies the existence
of w, € K such that w,ply > O.

- Let w € K and assume that corresponding to wp we have a symmetric operator wP: R¥—~R¥
with eigenvalues A;(wP) € A,(wP) < ... Ay(wP). Let V(w) denote the linear span of the eigen-
values of wP belonging to the eigenvalues Ap4;(wP), ..., Ag4p(wP). We have V(w,) = V and
for w close to w, the subspace V(w) is close to V. Choose a neighborhood U such that for
Vwe U and some € > 0

M (op) <—e(0, 00) <Art+i{0p), Aprr(wp) >0;
(01p—o0op) | vin>0.
In addition, we will assume that U is contained in the union of the faces of K adjacent
to wy.

For any 1 € [0, €] and w € U we define wpy = wp + 1(w, wy)I, where I(x, xfi:Lx,x)VxeRN'
and the scalar product in the space spanK is so chosen that (w; — wy, wy) > 0. Clearly,
indwp, = n, kerwp, = 0 ¥V w € U. Consequently, the pencil p.U € # (N; U) belongs to class
n, , It remains to be shown that the pencils pTU are transverse for all v € [0, €]. It
is easy to see that kerwpy © V(w), Vw e U, v € [0, €]. At the same time, for all suffici-
ently small o > 0 we have (a{w; — w,) + w) € U and

(a0 —aw,+ o) p: | ker 0 pr=0 (v, — @) pr| ker opr >
. >a(o;—ogp kerop,; >0. »

2. In this subsection we again consider a significant expansion of the class of pen-
cils of quadratic forms under examination. Up to now we have confined attention to linear
maps in the space of gquadratic forms; we will now admit arbitrary piecewise smooth maps.

We begin with a rigorous definition of "piecewise smooth."

Definition. Let M be a C® manifold. A closed subset Q@ ¢ M will be called a manifold
with angles if any point w € Q has a neighborhood Oy in M and local coordinates @:0.—~R?
(w) = 0, such that @ (0O, N 9) is a convex polyhedral cone in R

A vector § € T M is said to be tangent to & at a point w € Q if there exists a smooth
curve y:[0, €] » @ such that vy(0) = w, y'(0) = £. The set of all vectors tangent at a point
w to a manifold with angles O is a convex polyhedral cone in T M, which we denote by T, Q.

It follows from the definition of a manifold with angles that there exists a diffeomorphism
$:0p > T, M of a neighborhood of w in M onto TyM such that

0 (QN0.) =T.Q.

. Definitioni A connected smooth submanifold T < M is called an open face of a manifold
with angles @ ¢ M if T © Q and T is not a proper subset of any connected smooth submanifold

of M which is also a subset of Q; the closure T of an open face I' is called a closed face.

LEMMA 7. t&gt Q be a manifold with ingles and w € Q. Then: i) w lies in a unique
opeh face T, of 9; ii) Any closed face [ © Q is itself a manifold with angles and the cor-
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respondence T =+ T,I, where w € T, is a one-to-one correspondence between the closed faces
containing w and the closed faces of the cone T.; moreover, T,[, = T,8 N (=T, .

Proof. It is readily seen that the sets {w € Q|dim(T,Q & (-T,R)) = 1} are i-dimemsion-
al smooth submanifolds of M. Consequently, the connected components of thgse sets, and
they alone, are the i-dimensional faces of Q. This implies part (i) of the lemma and the
second part is now obvious.

The inclusion relation "c" defines a partial ordering of the set of all closed faces
of a manifold with angles Q. It also generates a partial order relation on the set of all
open faces: a face I'; is "less than" a face ', if I'; ¢ T,. It is not hard to see that any
closed face T is a topological manifold with boundary 3T = T\I' (the boundayy need not be
smooth) and the maximal closed faces are precisely the connected componentsg of Q.

Let M be another C™ manifold. A map f:Q > M is said to be smooth if it is the re-
striction to @ of a smooth map F:M > M. The differential f,':T, Q@ » Tg(,)M is defined as
the restriction to T, Q of the differential F,':T M - Tf(w)ﬁ. This restriction obviously
depends only on f, but not on the choice of the smooth extension F. A map ® :2 - Q is .
called a diffeomorphism if 9 is the restriction to 2 of a diffeomorphism &:M > M. Note
that a diffeomorphism @ need not be an "onto' map. ’

say that f is transverse to Q at a point w € @ if, whenever f(w) € @, we haye (-imf,') +
Tr(w)? = Tf(y)M. The map f is said to be transverse to Q if it is transverse to Q at every
point.

Definition. Let f:0 ~» @ be a smooth map and M > Q be a manifold with angles. We will

Definition. LetX# = {Q,, ..., Qn} be a finite set of compact manifolds with angles,
Q; ¢ M, i=1, ..., n. We will call # a piecewise smooth complex if V i, j the intersec-
tion Q4 N Q3 is a closed face of Qj and a closed face of Qj aqg, in addition, Q4 N Q4 € K.
The support of a piecewise smooth complex & is the set F .y Q3 ¢ M.

Qo] .
Definition. Let M > Q be a manifold with angles and f:Q > £(R") be a smooth map.
Then f is said to be nonsingular if, for any w € @, -whenever f{(w) € I,, we have " (T, Q)° N
A L S , . .
to = 0; it is said to be transverse if, under the same assumptions,

fm (TwQ)° N conv \Aﬁf'(*;)) =0,

The last definition may be interpreted along the same lines as done in subsection 1
for pencils of quadratic forms: a smooth map f:Q—>2(R”™) is nonsingular if and only if,
for any w € Q, x € ker £(w)\0, there exists ge T, @ such that (f,'g)(x, x) > 0; it is trans-
verse if and only if, for any w € Q, there exists £ &€ T @ such that (£,'8) |kerf(w) > 0-

Let K be a polyhedral cone in R*¥* and SE°! a sphere in R Clearly, K n sk-1 ig
a manifold with angles. It is not hard to see that a pencil pX € # (N; k) is nonsingular
(transverse) if and only if the map pX|gngN™?! is nonsingular (transverse).

Definition. Let & be a piecewise smooth complex and # < M be its support. We de-
fine a complex of quadratic forms to be an arbitrary continuous map f:j?->93ﬂyﬁ,which is
smooth on every manifold with angles § €X', QC¥ . A complex of quadratic forms f is
said to be nonsingular (transverse) if, for any Q € %, the map f|q:Q - #(R") is nonsingu-
lar (transverse).

An arbitrary homotopy fi: j?—+£?(RA3, t € [0, 1], of complexes of quadratic forms is
said to be nonsingular (transverse) if fy is nonsingular (transverse) Vt e [0, 1].

The space of all smooth maps of a manifold with angles Q ¢ M into 9D(RN) will be de-
noted by C*(Q, #((R™) ), and the space of all complexes of quadratic forms f: 7 - P RY) by
C®(#, PRY) . The Whitney topology of C®(M, #(R") ) induces a Fréchet space structure in
c=(Q, #(R") - We will say that a sequence of complexes f, € C*(X, 2R ), n=1, 2, ...,
converges to a complex f e C®(X, #(R™) if VQEX the maps f,|Q converge to £|Q in the
Fréchet space C®(Q, #(R¥) ). This convergence concept clearly defines a Fréchet space
structure in C™(X, #(RY)).
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The following assertion (similar to Lemma 6) follows easily from the standard Trans-
versality Theorem.

LEMMA 8. Let # be a piecewise smooth complex; the transverse quadratic complexes
form an open dense subset of C=(¥,Z(RY)).

LEMMA 9. Let f:#-2(R"™ , t e [0, 1], be a smooth transversal homotopy of complex-
es of quadratic forms. Then there exists a smooth family of continuous one-to-one maps
Fe: ¥->H , Fo = id, such that
Fo(fg @Ncsfi (Fa), n=0,1,..., N, g0, 1],

where, if & consists of a single manifold with angles Q, then FiQ + Qisa diffeomorphism.

Proof. Lemma 9 is a parallel to Lemma 2.1, although it by no means includes the lat-
ter as a special case, since the equality of Lemma 2.1 is replaced here by an inclusion.
The method of proof of Lemma 8 is the same as that of Lemma 2.1 (or of any other variant
of Thom's Isotopy Lemma).

Let X be a continuous vector field on M. We will call the restriction of X to¥ a
vector field on X, if. for any y, @, y € & € ¥, it is true that X(y) Tyn. A vector field

on X is said to be smooth (Lipschitzian) if X|g is smooth (Lipschitzian) for any Q € X¥.

To prove Lemma 9 it will suffice to construct a nonstationary Lipschitzian (or, if

X = {Q}, smooth) field X{ on X with the following properties: if y € @ € X, then

(Fo+r,x6,,,>0 0

This field need only be constructed locally, near a fixed point y, € 9, € *, the rest
follows by using a partition of unity.

Let Pi(ker fr(y)) be the convex closed cone of all quadratic forms on R¥, which are non-
negative on the subspace ker f;(y). We know from the results of Sec. 1.2 that

P (ker f, (1) = —conv 47 . (2)

Going over to dual cones in the transversality condition
+ .
conv ‘/Vft(yo) N f’yo (r.f!oQO)‘:: O?

we get

F10a (T Q) + P, (ker 7, (y)) =P R™).

This equality will obviously be maintained if we replace the cone #.(ker £;(y,)) by its own
interior, i.e., the set of forms which are positive on ker f;(y,). Consequently, there
exists a vector Xi(y,) € Ty,% such that

of .

(5}‘ (9o)+f,y°Xt (%)),

kerf (io)

Clearly, any continuous vector field X¢ on M taking the value Xi(y,) at the point y,
will bkatisfy ineqdality (1) for any y close to y,.

It remains td be proved the existence of at least one Lipschitzian (or, if ¥ = {Q},
smooth) field on X, whose value at y, is X¢(y,). The construction of a smooth field in Q,

is trivial: it id a field mapped onto a constant by the diffeomorphism ¢:0y N Qo > Ty Q.

Extension of this vector field on @, to a Lipschitzian field on any Q@ € # is also not
a difficult task. The extension can be accomplished by induction on the dimensions of —
faces; in which cdke the problem easily reduces to the following one: given a Lipschitzian
vector field on tHe boundary of a convex acute-angled polyhedral cone, extend it to a Lip-
schitZzian field od the entire tone. This is done by picking any point in the interior of
the cone, and consillering the ray through this peint and the apex of the cone; define the
field at the point as equal to its value at the apex. Then, joining the points of the ray
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to the boundary of the cone by segments in a hyperplane perpendicular to the ray, define
the fields along each segment by taking convex combinations of the values of the field at
the ends of the segment.

COROLLARY. Under the assumptions of Lemma 8, the homotopy, type of a pair (%, 176@))
is independent of t € [0, 1] for n =0, 1, ..., N. In particular, the cohpmology groups
Hi( 7, f'(P.) ) are transversal homotopy invariants. '

Let f:#—+2(R") be a nonsingular complex of quadratic foyms such that £(#) n 0, =
¢. Then f is a transverse complex. Since I, has codimension ¥ in #(RV) , we obtain the
following obvious generalization of Proposition 2.3:

Proposition 3. LetX be a zero- or one-dimensional complex and fi: _f»?(RN ) be -
transverse complexes of quadratic forms, i = 1, 2. If f, and §, are nonsipgularly homa-
topic, they are also transversally homotopic. '

In the situation considered in Proposition 3, the homotopy type of the pairs (%, fi™! x
(Pa D, i=1, ..., N, is a nonsingular homotopy invariant. In particular! this is the
case for the complexes

o= og(n, ..., Ng—-1; m), 0€S'cR* (2)

[for the definition of the quadratic maps q(n,, ..., n,k-;; m), see the text of Theorem
2.1,

Recall that £~ }( 2,)={yé¥ |ind£f(y) s n}, so description of the sets f 1(#n) reduces
to calculation of the function y - ind £(y). This may be done as follows for the complex (2).

Let A4, ..., Ayx-3 be the open arcs marked off on the circle S! by the (4k — 2)-th
roots of unity, numbered so that the indices increase monotonically as the gircle is des-
cribed in the positive sense from 4;.

Put nj = nj_,p4; for 2k < j < 3k = 2. Then
«+2

m-+- 2 nj, 0y y (3)
ind(@q (2, ..., ngpy: m)=] ook . a=0,1, ..., 2 —2.
m - 2 s m652a+1
j=a+2

Hence one readily infers that a complex (2) can be nonsingularly homotopic to a complex
we wglng'yeoe, Npgt-1's '), we S, only if m=m', k = k', and the sequence n;',...,
N,k-1' is a cyclic permutation of n;, ..., n,x-,. We emphasize that this fact does not
follow from Theorem 2.1, where we were concerned with homotopy in the class of nonsingular
pencils of quadratic forms, i.e., '"linear" nonsingular maps of S, into @(RY), whereas
here we are dealing with homotopy in the class of arbitrary smooth nonsingular maps.

For complexes of quadratic forms of dimension greater than one, nonsingular homotopy,
as might be expected, by no means implies transversal homotopy. Indeed, even for smooth
maps f:B%»>%P(R?) of the two-dimensional disk into the space of quadratic forms of two
variables, the cohomology groups HY(B?, £71( &, )) are not nonsingular homotopy invariants.

We present a '"model" example.

Let & = {pe PR? )]trP =0, trP2 £ 1 } be a disk in the three-dimensional space
Z((R%) . Define a map £;:2 » P (R} by the formula f.(p) =p +1I, peQ, 1t € (-1, 1). The
map f, is nonsingular, but not transvsers; the maps f., where 1 € (-1, 1)\{0}, are trans-
verse. We have Hi(Q, £f.°3(#,)) =0 Vi, n for t > 0; but H'(Q, £f. Y (PHN=HYQ f7' (&) =
Z for -1 < t < 0. (See picture at the top of the next page.)

Let q, be a nonsingular quadratic form in £L(R¥). Replacing f, by f; e q,:0 » P(RV*),
we obtain an analogous picture for any N > 0,

The examples considered at the end of Sec. 2, of quadratic maps of R%into R®, enable
one to demonstrate the same effect for pencils of quadratic forms. Let p € @ (3, 3). The

equation det (wP) = 0 defines a cubic curve in the projective plane RPZ  For a map p in
general position, this curve is nonsingular. In general, a nonsingular cubic curve may
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have either one or twc connected components. It turns out that it has two components if
and only if the pencil p* is nonsingularly homotopic to a pencil containing a sign-definite
form. Upon passage from RP? to a twofold cover — the sphere s? ¢ R¥* — one of the compo-
nents (which is contractible in RP? ) is doubled, but the other (incontractible) one is
not.

The following picture is obtained: the curve divides S? into four regions.

-
=

Now, for nonsingular forms wp it is true that ind (~wp) = 3 — indwp, while the points
of adjacent regions must correspond to adjacent indices. Hence there are only two possible
waves of dividing the sphere into domains with different indices:

‘/

In case (a) the pencil p* contains sign-definite forms, but in case (b) it does not.
As shown in Sec. 2, both situations may actually occur.

Let f:X—~P(R" be a complex of quadratic forms and p, € #,(R") be a fixed positive
form. Then the map w » f(w) e p, defines a complex of quadratic forms f e p,: X2 (RVTY).
If f is a nonsingﬁlar complex, then obviously f e p, is also nonsingular; if f is trans-
versd, then so is f ¢ py,. In additionm,

P =(FOp) (P, Vnandfep, L fop,

for any positive torms Po» Py € Po(RY) . The operation associating to any complex f the
complex f ® p, enkbles us to extend the concepts of nonsingular and transversal homotopy
to cemplexes of forms of different numbers of variables.

Definition. We will say that complexes fj: P ERY), i =1, 2, are stable nonsing-
ularly (transvers4lly) homotopic if there are positive forms p; € 9°(RN’L N, + N,' =N, +
N,', such that the complexes fi ® pj, 1 =1, 2, are nonsingularly (transversally) homotopic.

4. EULER CHARACTERISTIC

Let 7 be a tbpological space with the homotopy type of a finite cell complex. The
symbol x(J7) will denote the Ruler characteristic of 7, x(9)=Zrank H(F)-1)1. The Euler
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characteristic is, of course, additive: if C;, C, are subcomplexes of a finite cell com~
plex, then

%(CIC)=%(CY=%(Cy), %(CIUCH+%(CiNCP=2%(C)+%(Ca)

Definition. Let f K> P (RN) be a nonsingular complex of quadratic. forms. We put
N 53
w(f)= 20(— W (1 f @)= 2 % (F ™ (Poyer) S P)
N i==0
and call x(f) the Euler characteristic of the complex f.

Let #, £ be piecewise smooth complexes, #, & c M, such that XNL=XNZ. Then
KNL, XUL are also piecewise smooth complexes and for any complex of quadratic forms
f: LUK —~P(RY) there is an obvious definition of the complexes of quadrgtic forms f| X, [|2,.
flI#N% . The Euler characteristic is ubviously additive in the sense that

x () +x (F|HNL) =3 (F1 ) +x(f1Z).

It can be shown that the Euler characteristic x-(f ) [unlike its teyms x( #/F*($n ))]
is not changed under nonsingular homotopy. In the case of pencils this follows from the
next theorem and Lemma 3.4.

THEOREM 1. Let p € # (N, k) be a quadratic map from RYto R% K be a convex closed
cone in R#*, such that pencil pK:K » #(R") is transverse. Define K, = (pK)-1(#,)\0,
n 2 0. Then

%]
2

FLEIEINST = B 4 (Ko Ka)+ 5 (14 (= 18-1) =2 P [ S+ 5 4 (SV, 1)
1 w0
(= Dlm& K= — K
0, K+#—K.

where e== {

Proof. The proof will be divided into several steps.

1) Assume that X is a half-line, K = {aw,|a = 0}. Then p~*(K°) = {x € R"|uw,p(x, x) <
0}, the set p~1(X°) n SN-! has the homoi_:ogy type of a sphere of dimension (indw,p — 1); con-
sequently, x(p *(K°) n sN-1) = 1 4 (-1)indwep-1, At the same time,
1, n=ind o,p,
0, n<+ind wyp.

X (KnlKpo)= {

So (1) is true when K is a half-line.

2) Let K be an arbitrary polyhedral cone and w, € K\O. Then (1) is true for the pen-
cil puwo, where U, is an arbitrary but sufficiently small conical neighborhood of w, in K.
Indeed, by Lemma 3.4 and the corollary to Lemma 3.9, the left- and right-hand sides of (1)
remain unchanged under a transversal homotopy, while Proposition 3.2 states that the pencil
pro is transversally homotopic to a pencil defined on a half-line; we are thus in the situ-
ation of the first step of the proof.

Remark. We are assuming that dimkerwp < r, Vw € K\0O. Close attention to the proof
of Proposition 3.2 will show that in this case the dimensions of the neighborhood Uy in

Step 2 may be chosen equal for all w,, so that w, € I.

In order to move on, we need a simple property of convex cones.

Proposition 1. Let K,, K, be convex closed cones in R Then

KUKy =K+ K=K UK =K+ K>

Since we have not been able to locate a proof of this proposition in the textbook litera-
ture, we will present one here. For any convex cones it is true that K;° + K,° = (K; n K,;)°.
Suppose that w € (K; N K,)°\(K;° U K,°). Then <w, x> < 0 Vx € K; n K,, but there exist

x; € K; and x, € K, such that <w, x;> > 0, <w, x,> > 0. For any o € [0, 1] we have <w,
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ax, + (1 — a)x,> > 0 and, so, the whole of the segment conv {x,, X,} lies outside the set
K, N K;. But the sets Kj N conv{x;, x,} are closed and nonempty. Consequently, conv {x,,

X,} contains points lying outside K, U K, and, so, the set K; U K, is not convex. »

3) Let K, L be convex polyhedral cones such that K U L is convex and X N L # 0. If
(1) is true for pencils pK, pl, pXAL, then it is also true for the pencil pKUL

Indeed, (K U L)° = (K° n L°) and, by Proposition 1, (K n L)° = K° U L°. Thus
XK ULINSY =4 (0 (KN p (L) NSV =
=X KIS )4y (LN SV —x @KU LINST )=
=1 (P KINSY )+ 1 (1 (LYNSY Y —x (K N LY NS )

It remains to use the assumption and the additivity of the Euler characteristic of quadratic
forms.

4) Equality (1) is true for arbitrary convex polyhedral cones K.

We will use double induction, with respect to dimK and max (dimkerwp). Cutting K
repeatedly by hyperplanes transverse to it and using the result of Step 3, we can reduce
everything to the situation of Step 2. We note that if K is a linear space, one step of
this. reduction will involve representing a straight line in R** as a union of two rays.

The intersection of these rays is the zero cone 0. Since 0° = R% it follows that x(p~?! x
(0°) n 8N-1) = y(sN-1), so there appears in formula (1) a term with coefficient €.

The truth of (1) for an arbitrary convex closed cone now follows from the Approxima-
tion Lemma 3.5. »

Formula (1) already gives meaningful results in the case k = 2, K = 0. In that case
all possible situations are exhausted by the quadratic maps q{n;, ..., nyp-1; m) (see
Theorem 2.1). Define

V(ni, ..., noy; m)={x€S¥g(n,, ..., fogu_y; m) (x, x) =0}

— the complete intersection of two real quadratics of RY, cut by the sphere SN-1, N = EnJ +

2m. Theorem 1, in combination with equality (3.3), implies the following device for evalu-
ating the Euler characteristic of this manifold.
Let 1 denote the subset of {1, ..., 2k — 1} consisting of all j such that nj is odd

and I' the set I U {j + 2k — 1|j € I}; define 8(3) = #(I' n {j, j + 1, ..., j + 2k = 1}.
The manifold V(n,, ..., ny-,3 m) is of dimension N — 3; if N is even this is an odd-dimen-

siondl manifold and its Euler characteristic is zero; but if N is odd then
I
FAV (0, ooy o M) =(—1)7 3 (—=1)°D 1.
T
For fixed odd N, the Euler characteristic of maximum absolute Value is obtained in
the case k = [(N + 1)/2], m = 0 and, then, (1/2)x(V(1, ..., 13 0)) = (=1)[(N+1)/2].y 4 1,

Now let us cbnsider the quadratic maps p €#(N, 3). The equation det (wP) = 0 defines
an algebraic curve of degree N in RP?=(R%*\0)/(w ~ aw, a # 0). Let us assume that this
is a nonsingular turve (this assumption holds for maps p in general position and guarantees
transversality of p*). If N is odd, then p~*(0) n SN~ is an odd-dimensional manifold and
its Euler charactéristic is zero; if N is even equality (1) is easily rewritten as

4 % (071 0)N SV =% ({(0ERP2| det (0p) < O},
It now follows from the classical Petrowski inequalities [7] that
12 ONS T <5 N (N—2)+4.
Remark. Petfowski's inequalities for fourth-degree curves are best possible. It can
be shown that the curves for which they become equalities are represented by equations of

the form det (wp) *= 0 for some p € £ (3, 3). Consequently, the above inequality is also
best possible.
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axy + (1 - a)x2> > 0 and, so, the whole of the segment conv {x,, x,} lies outside the set
K, 0 X,. But the sets Ky N conv {x,, x,} are closed and nonempty. Consequently, conv {x,,
X,} contains points lying outside K, U K, and, so, the set K; U K, is not convex. »

3) Let K, L be convex polyhedral cones such that K UL is convex and K N L # 0. If
(1) is true for pencils pK, pL, pXAL, then it is also true for the pencil pKUL

Indeed, (K U L)° = (K° N L°) and, by Proposition 1, (K n L)° = K° U L°., Thus
P ULDINSY =4 (0 KN (LY NSV ) =
=X KINS" )+ (LN SYT) =R @KU PLINSY )=
=% @ KNS+ (LINS ) —x @K N L NS )

It remains to use the assumption and the additivity of the Euler characteristic of quadratic
forms.

4) Equality (1) is true for arbitrary convex polyhedral cones X.

We will use double induction, with respect to dimK and max (dimkerwp). Cutting K
repeatedly by hyperplanes transverse to it and using the result of Step 3, we can reduce
everything to the situation of Step 2. We note that if K is a linear space, one step of
this. reduction will involve representing a straight line in R** as a union of two rays.

The intersection of these rays is the zero cone 0. Since 0° = R% it follows that x(p~* x
(0°) n sN-1) = y(sN-1), so there appears in formula (1) a term with coefficient ¢.

The truth of (1) for an arbitrary convex closed cone now follows from the Approxima-
tion Lemma 3.5. »

Formula (1) already gives meaningful results in the case k = 2, K = 0. In that case

all possible situations are exhausted by the quadratic maps q(n;, ..., n,g-,; m) (see
Theorem 2.1). Define

Viny, ..., nopy; m)={x€S¥-qg(n, ..., ng-1; m) (x, x) =0}
— the complete intersection of two real quadratics of RY, cut by the sphere SN-1, N = Inj +

2m. Theorem 1, in combination with equality (3.3), implies the following device for evalu-
ating the Euler characteristic of this manifold.
Let }\denote the subset of {1, ..., 2k — 1} consisting of all j such that nj is odd

and I' the set T U {j + 2k — 1|j € I}; define 8(3) = #(I' n {j, 3+ 1, ..., j + 2k = 1}.
The manifold V(n,;, ..., n,k-;; m) is of dimension N — 3; if N is even this is an odd-dimen-

siondl manifold and its Euler characteristic is zero; but if N is odd then
1
FAV (s oy pe s mY) = (—1)m D (=1)"D 41,
ey
For fixed odd N, the Euler characteristic of maximum absolute value is obtained in
the case k = [(N + 1)/2], m = 0 and, then, (1/2)-x(V(i, ..., 1; 0)) = (—1)[(N+1)/2]-N + 1.

Now let us cbnsider the quadratic maps p €#(N, 3). The equation det (wP) = 0 defines
an algebraic curve of degree N in RP?=(R**\0)/(w ~ aw, o # 0). Let us assume that this
is a nonsingular turve (this assumption holds for maps p in general position and guarantees
transversality of p*). If N is odd, then p~!(0) n SN"! is an odd-dimensional manifold and
its Euwler charactéristic is zero; if N is even equality (1) is easily rewritten as

£ 1 ON S =2 (0eRP?| det (op) <O},
It now follows from the classical Petrowski inequalities [7] that
127 ONS <3 N (V=2 ++4.
Remark. Pettowski's inequalities for fourth-degree curves are best possible. It can
be shown that the curves for which they become equalities are represented by equations of

the form det (wp) &= 0 for some p € # (3, 3). Consequently, the above inequality is also
best possible.
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2. In this subsection we will introduce some exXpressions for x(f) on the assumption
that f:MK > #(RV) is defined on a smooth manifold Mk,

Let F{m,): R¥>RY be a linear symmetric operator corresponding to a quadratic form
f(my) and A (m,) the n-th eigenvalue of the operator F(m), me€ M, n =1, ..., N (counted
in increasing order). If A (m,) is a multiple eigenvalue, the function m » A,(m) is smooth
near my,. In that case, we let A,'(m,) denote the differential of the function mw Ay(m)
at my and Ap"(m,) its Hessian (recall that the Hessian of a scalar function is defined only
when the differential vanishes). We also define Fj(m) = (F(m) — AI)|ker (F(m) — AI)™ and
let f3(m) be the quadratic form on ker (F(m) — At corresponding to the operator F,(m).

Let x be an eigenvector belonging to a simple eigenvalue A,(m) of F(m), |x| = 1 and
u e Tan. Then it is not hard to show that <A'(m), w> = (3/3u) f(m)(x, x),

X 0 : [ oF (m) —1 oF (m) _\
A7 (m) (1, 1) '_@_Hzf(m) (X, X) =2 f3 (m) {\Fx,z(m) % Fgimy —5— X

LEMMA 1. A typical nonsingular map f:M*—>F(R¥) of class C® has the following pro-
perties: if m, € MX, A€R, x€R¥ \0 are such that F(my)x = Ax and m,; is a critical point of
the function m = f(m)(x, x), then i) dimker f(my) = 1; ii) the quadratic form A"(m,) is
nonsingular on TmOM .

This assertion can be derived from the standard Transversality Theorem. We will not
give a detailed proof, only pointing how to evaluate the parameters in such situations.
For example, in order to prove part (i), we have to consider a system of equations F(m)x =
Ax, F(m)y = Ay, (3/8m)-f(m)(x, y) = 0, (x, y) = O in the variables m € MK, x € R, %, y €
sN-1.  This system contains 2N + k independent equations [but not 2N + k + 1, because the
equality (F{m)y, x) = A(y, x) follows from F{m)x = Ax] and 2N + k — 1 unknowns and, so, for
a typical f the equations need not be solvable.

Proposition 2. If the map f: M*>P(R¥) satisfies the assumptions of Lemma 1, then
N

x(f)=2(___1)n+k~1 2 (_Umdk;(m)‘ (2)

n=1 {m!k,l(m)<0,}.;l(m)=0}

Proof. If t > 0 is sufficiently large, then (f + tI)(M) < ¢ in particular, x(f +
tI) = 0. If the map f + tI is nonsingular for t; < t < t,, then x(f + t,I) = x(f + t,I).
Consequently, in order to evaluate x(f) we must locate the points t; > 0 for which f + £3I
is singular and determine the change in x(f + t;I) when the parameter t goes through the
value tj.

The map £ + t,I is singular if and only if, for some m, € M, x, € sN-1, it is true
that Fmy)x, = —ty%,, (3/3m) - fmy)(x,, %,) = 0. It follows from the assumptions of Proposi-
tion 2 that such triples (t,, m,, X,) are isolated points of (0, +w) x Mk x gN-1 apnd, so,
there)are only a finite number of them (t, close to zero and t, too large are both inadmis-
sible).

Thus, if £ + t,I is nonsingular then —t; = An(m) for some n, where m; is a critical
point of the function Ap(m).

Let my;, ..., Moy be all the critical points of A,(m) corresponding to the critical

value ~t,. It follows from the assumptions of this proposition that all the critical
points are nonsingular. Note that (f + tI)™* (%, ) = A\, '([-t, +=)). It follows from
Morse theory that

indk;(mog)

X (S 4 (g +) I (Pa) =% (F + (f—e) 1) = (— 1 D (—1)
i=1

for all sufficiently small € > 0.

Summing over all t, > 0, we get .
MY — 5 (fHPra) = (= > (=

L ik, (m) =0, (m)=0
LM f7HP ) =ty
Finally, summing over n with the appropriate signs, we obtain (2).
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Remark. An equality analogous to (2) is true in the case that f is defined on an
arbitrary manifold with angles. The proof involves a modification of Morse theory for mani
folds with angles.

We now want to establish an expression for x(f) as the linking coefficient of two
cycles. Since the choice of sign in the coefficients of the linking coefficient is a mat-
ter of convention, while the sign of the Euler characteristic is rigidly defined, we must
first agree on some sign convention in order to avoid ambiguities. Let UM be a smooth
oriented manifold, ¢i,...,¢: € C*(UR) and vk = (v e Ut |ei(v) =g2(0) =...=qx (v) = 0}, such
that dy@i,...,dvgs are linearly independent at every point v € VA"K, The functions @1,.--,®r
determine the orientation of the smooth manifold VR™K as follows: an exterior (n - k)-form
w on T\,V“'k defines the positive orientation on TyVR"X if and only if the n-form dopiA... A
doox A w defines the positive orientation on T, U (the order of the factors is significant!)

Now let M be a smooth oriented manifold of arbitrary dimension, @ECT(M), W=0¢(0),
such that d, ® # 0 for w € W. Let Gy*(M) denote the manifold of all k-dimensional oriented

planes tangent to M (this is the locally trivial bundle with base space M and fiber G*(k,
dimM — k)) and Gy*(W) the manifold of all k-dimensional oriented planes tangent to W. It

is readily seen that G *(W) is a submanifold of codimension k + 1 in G *(M). The manifolds

Gxt(M) and Gy*(W) are clearly orientable. the choice of orientation on Gy*(M) is immater-
‘ial for us, but on the other hand we must be able to define the orientation on Gk+(w)

uniquely, given an orientation on Gyt(M); to do this, we define GT(W) in G *(M) by a set

- of equations. Let u;, ..., Uk be a positively oriented basis of an oriented plane H c
ToM, H € Gxt(M). The plane H will be in Gyt(W) if and only if w(m)=7£= =:T";=0.
The independent functions@(ﬂﬂ.q%%,-.-q%%(the order is significant!) define an orientation

in Gk+(W) in accordance with the above prescription.¥

Consider the smooth hypersurface I;\I, in the manifoldi?(RN)\Hz,

I\ ={pe? (R")\IL | Ainap1+1(p) =0Q}.

Using the notation of Sec. 1.2, we see that vy = dpyAjpdp+: and the orientation Gk+(vp)
of Gyt(m,\N,) is now automatically defined by the orientation of the manifold

G (P RMNIg) = (2 RN\ X G+ [, TEED g},

It was observed in Sec. 1.2 that the orientation (—l)indPCk+(vp) extends to a well-defined
orientation of the pséudomanifold G *(I,), GyT(I;) « #(R)x 2+ (k, N) (in the notation
of Sec. 1.2).

The one-point compactification Gy*(l,) U {=} of the pseudomanifold Gy*(I,) with orient-
ation (—1)indP\)p defines an integral singular cycle of codimension k + 1 in 9’0{”)><$?+ (k,

N) U {»}. With some abuse of notation, we will denote this cycle by the same symbol Gk+ x
(I,). It is readily seen that the cycle Gy¥(I,) is homologous to zero in £ (R")X Z*(k, N)U
{=}. Indeed, as the image of the pseudomanifold Gy*(I,) under the projection PR X & x
(£, N)»>P(R") is not P (R"™), our cycle can be mapped by a homotopy onto the point at infin-
ity =.

We now recall the definition of the linking coefficient, let v,, Yy, be two cycles,
homologous to zero, with disjoint supports, in the one-point compactification UR U {«} of
some smooth orjented manifold UP, where dimy, + dimy, = n — 1. Then the linking coeffici-
ent 2(y;, Y,) is defined to be the intersection number of the chains I'; and y,, where 8r; =
Y,; that v, is homologous to zero ensures that the intersection number is independent of

the choice of I'y; and moreover 2(y,, y,) = (—1)dimY1dimY2+n£(Yl, Ya.).

*Strictly speaking, the functions 8 9 /3y, are defined not on planes but on bases; but by
transforming, etg., to orthogonal bases in some Riemannian metric one readily verifies that
the definitions are all legitimate.
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THEOREM 2. Let f:MK - 9WR-)be a nonsingular map of a smooth oriented manlfold Mk
into #(RY). In addition, let f be an immersion (i.e., rankfy' =k vme MK) and let Tf
be the singular k-dimensional cycle in gﬂarﬁ\fﬁ?*(k N) deflned by the map m = (£(m), im x
fn'), where the orientation of the plane inf;' is defined by that of the space TME. Then
the cycle Tf is homologous to the cycle T(f + tI) and, if t is suff1c1ent1y large,

LN =(=D{T (f+E)—T f, Gx @) (3)

Proof. That the cycles Tf and T(f + tI) are homologous (where t is the homotopy para-
meter) is obviocus. In addition, we may assume that f satisfies the assumpfions of Lemma 1.

We must calculate the intersection number of the oriented singular chgin defined hy
the map

(v, myes (f (m)-<Z,im )

with the cycle Gy*(l,). The point f(m,) + 1,I, imf'm, is an intersection point of thase
two chains if, for some n, we have Ap(my) + 7, = 0, Ay'(my,) = 0. It folloys from our
assumptions that the chains intersect transversely; the definition of the aqrientation of
the cycle Gy*(I,) implies that the intersection number at the point (f(my) + tI, imfy ') is
(=1)7"! times the sign of the Jacobian of the map (t, m) = (Ay(m) + 1, A,'(m)) at the point
(1os mp). In view of the condition Ap'(m,) = 0, we see that this intersection number is

(1)~ 1ggndet Ap"(m,) = (_1)n-1+indkn"(mo)° The assertion of the theorem now follows from

(2).

- Formula (3) is meaningful only if f is an immersion, but this condition is not overly
restrictive. It follows from the classical theorem of Whitney that if 2k < [(N(N + 1)/2]
a typical map f:M*— P (RY) of class C® is an immersion. .

Apart from its geometrical transparency, formula (3) is convenient in that its riﬁht-
hand side is, '"by definition," an invariant of nonsingular homotopy: an immersion f:M
#(RY) is nonsingular if and only if the chains Tf and Gy*(ll;) have disjoint supports. A

formula similar to (3) is also valid when MK is an oriented manifold with boundary; we offer
a brief description of the construction, without proofs.

Let MK be a manifold with boundary oMk, Gluing together two copies of Mk along the
boundary, we obtain a smooth orientable manifold without boundary MK. The smooth structure
in MK is defined by means of a tubular neighborhood of the boundary in MK (see [5]). This
tubular neighborhood makes it possible to define a smooth '"gluing" map @: :MK > MK, which
is singular on ¢! (3MK),

Let £:MX > ?(R"Y) be a nonsingular map. Then the map f o @: M*> 2P (R") is also nonsing-
ular and it is true that x(f) = (1/2)+(x(f o @) + x(£]|aMk)). 1If 2k s [(N(N + 1)/2], a
small deformation will transform the map £ 0 @ an immersion and we are back in the situation
in which the identity (3) is applicable.

5. Complexes of Hermitian Forms

1. Let C¥ be N-dimensional complex space, C¥=~R>¥. An Hermitian form on C¥ is de-
fined as an arbitrary symmetric bilinear form p € #(R®*V),which is preserved under multipli-
cation of its arguments by the imaginary unit: a form p € Z(R*™) is said to be Hermitian
if p(iz, iw) = p(z, w), Vz, weéC¥ The space of all Hermitian forms on C¥ is denoted by
#(CY¥) and the corresponding quadratic forms z + p(z, z) will also be called hermitian forms
(in the more widespread terminology Hermitian forms are symmetric sesquilinear complex-
valued forms; the forms we are calling Hermitian here are the real parts of sesquilinear-
forms).
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A form p € #(R?) is Hermitian if and only if the corresponding symmetric operator
P: R®™ —~R®¥ commutes with multiplication by i; in other words, if and only if P is an Herm-
itian operator in C¥, PT = P, Consequently, dim#(C¥) = N?; if p € #(C"), then indp,
dimker p are even numbers, and Hermitian forms with the same index and dimension of kernel
can be transformed into one another by coordinate transformations in GL('C¥ ),

Define P4 (CY)=F,R*MNP (CY), II(CM)=ILR™) NP (C"); clearly,
% 2k+1 (CN) = ?212 (CN)» H2k—l (CN) = H2k (CN)'

Let p, € P(CY), V = kerp,. Then V is a complex subspace of CV and, as is readily
seen, the map ¢ constructed in Lemma 1.2 transforms Hermitian forms into Hermitian forms.
Consequently, ¢ describes the local structure of the hypersurface I,(CV) in & (C¥) near
the point p, 6P (CN) . As a corollary, we deduce that I, (CYM)\Il2x+1(CV)is an analytic sub-
manifold of codimension k? in #(C") for any k = 1, 2, ..., N.

Proceeding now to a description of the space £(CY)* dual to #(C"), we emphasize that
the functors "*" and "e" are being consider only over the real field: the complex struc-
ture in the space C¥* is defined by the operator adjoint to multiplication by 1 in CN. It
follows almost immediately from the definition of Hermitian forms that

P (CVy* ={ (E zaGua)eCNGCN S izCiug =) z,,@ua}cg’ R)*,
. & a a

If the vectors e;, ..., ey form a basis in C¥, then the vectors
eaCeg+ie,Cieg, 1 <A<PL N, ¥ ,0ieg—ie.Oep, 1 <a LB N,

form a basis in £ (CN)*. If the spaces £ (R¥)* and #(R**) are identified (see Sec. 1.2),
the subspace #(CY¥)* is identified with & (C"*) — the space of Hermitian forms on CV¥*,
Therefore, if n € @ (CY)* =2 (CV*), then L(n) = kern™ is a complex subspace of CV; in parti-
cular, rankn is an even number.

Let p € Ik (CN\Ihesn(CY ). It is easy to see that an element n €% (C¥) is normal
to Ix(CV) at p if and only if L(n) < kerp. When this is the case, the identification
P (CM)*=P (CV*) induces an isomorphism of the space T sz (CMLNP(CY ) of Hermitian normals
to M,x(CY) at p and the space & (kerp*) of Hermitian forms on ker p¥.

If k=1, p e T,(CY\IL(C"), then there is a unique (up to a real factor) Hermitian
normal z e z + iz © iz, z € kerp to the hypersurface I,(C") at p. We see that the only
possible Hermitian normals to points of the hypersurface I,( CM)\IL(CY¥ ) are the elements
of rank 2 in #(CY)* =P (C¥*). Let us assume now that p is a singular point of I,(CV),
dimkerp > 2. Define a Hermitian normal to I,(CY¥) at p to be any element of rank 2 in
P (kerp*) €L (CY*) . Call a Hermitian normal positive if the corresponding Hermitian form
on ker p* is positive definite. Let #/»(C) denote the set of all hermitian normals to I,( C)
at p and #"p*(C) the set of all positive Hermitian normals. As in the real situation (cf.
Se¢. 1.2), we have equalities

N (C)= N A4, (C #F(C) = At
? 0,1, (C”"’)”EO () ©-= Dc:g,(c’\’)qéj% 7O

(the intersectionextends over all neighborhoods of p in I,(C¥)).

2. Let Pc(N, k)= (CN)* denote the space of Hermitian maps from CVto R* clearly,
Pc(N, k) PN, k).

Let X be a convex closed cone in RF**, Define a pencil of Hermitian forms on X to be
an arbitrary lirear map from K to #(CV), and denote the space of all such pencils by P¢ (N;K).

Definitiony A pencil pX eZc(N; K) is said to be singular at a point w, € K\0O if pK x
(x)* n &7 as (C) ; The pencil pX is said to be nonsingular if it is not singular at any
poirt.

It is not Herd to show that a pencil pX e Pc(N; K) is nonsingular if and only if the
corresponding map p € Pc(N, k) is transverse to the cone K°. In general, all the results
and definitions bf Sec. 3, from Lemma 3.1 through the corollary to Lemma 3.9, can be re-
phrased in an ob¥ious way for the Hermitian case. The Hermitian analog of Proposition 3.3
is valid not onl¥y for zero- and one-dimensional but even for two-dimensional piecewise
smooth complexes} since I,( CV) has codimension 4 in #(CN).
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To each quadratic form p € #(RV) we can associate a canonical Hermitian form pg €
P(CV) , where CN=C®RY, putting pc(i ® x, y) = 0, pc(x;, y) = p(x, y), Vx, y6RV (in this
case Pci @ x = i e Pcx, Vx€RM). Thus, to any complex of quadratic forms f: -2 (RV)
there corresponds a complex fc:7—>?(CN) of Hermitian forms.

It is readily shown that the complex f¢ is transverse if and only if 4f is transverspe.
If f; is nonsingular, then f is also nonsingular, but the converse is falsq! This is gqpite
evident from the '"model" example considered in Sec. 3.2. Let

Q={pe® (R?)|trp=0, frp?=1}isadiskin® (R?)

and let £:2 + Z(R? be the identity map, £(p) = p, p &€ 2. A trivial check verifies that
f is nonsingular, but fg is singular at the puint 0 & {.

Thus, the nonsingular homotopy invariants of a complex of Hermitian foyms fg need not
necessarily be nonsingular homotopy invariants of f.

Definition. Let &:# -~ (CY) be a non51ngular complex of Hermitian foms. Put

xe(8)= zx(mg (P2 (CM)).

n=0

It can be shown that xc(g) remains unchanged under a nonsingular homotopy of compleges
of Hermitian forms. In the case of pencils this follows from the Hermitian analog of
Theorem 4.1, which we now state.

Let S?N-1 be the unit sphere in C¥ and CPV-1— §2¥~1/(z~¢i%z, BER) complex projective
space. If p € Pc(N, k), then p(elez eibz) = p(z, z). Let pCP”-l-»'R denote the map
induced by the quadratic map z » p(z, z), z € §20n°1, '

THEOREM 1. Let p €®Pc (N, k) be a Hermltzan quadratic map from C¥ to R% K be a con-
vex closed cone in BR#*, such that the pencil p*:K—P(CV¥) is transverse. Define K, =
(pK)"2( #°(C )) n sk=1, Then

N
X (KN =3 % (Kon/ Kon) 4 ex(CRY ) =x(p¥ | Kow) +-€N (1)
A =0
where -
(_l)dlka’ K=—K,
=1 0 K#-k.

Proof. Suppose that K is a half-line, X = {aws|a 2 0}. Then p *(K°) = {z € C¥|u,p x
(z, z) s 0}, the set p~'(K°) has the homotopy type of the space CPindww/2-1 and, consequently,
x(p"t(K°)) = (1/2)-indw,p, so that in this case (I) is true. The rest of the proof is
exactly the same as in the proof of Theorem 4.1.

In Sec., 4.2 we considered complexes of quadratic forms defined on a smooth manifold
and derived a representation of the Euler characteristic of any such complex as the linking
coefficient of two cycles (Theorem 4.2). Naturally, there is an analogous representation
for complexes of Hermitian forms. We leave it to the reader to introduce the necessary
modifications in the arguments of Sec. 4.2.

Remark. Consider N-dimensional space over the quaternion division ring HNax C2Nx R4V
Put
F H)={pe? R*™)| p (i, i) =p (jx, j)=p (%, y)} c# ™),
Vx, yeH' = R*

All the concepts and results for pencils and complexes of Hermitian forms, including Theorem
1, have obvious analogs for pencils and complexes with values in FP(HY).

6. Critical Sets of Smooth Vector-Valued Functions

In this section we will define Morse functions in the vector-valued case — an immediate
generalization of scalar Morse functions (i.e., functions with nondegenerate critical :
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points). Some rather simple arguments will demonstrate the remarkable duality between lev
sets of a vector-valued function and its critical points. To each critical point there
corresponds a quadratic form — the Hessian — and we will obtain an important example of

a nonlinear complex of quadratic forms.

1. Let M be a smooth orientable compact n-dimensional manifold and f: M +R? be a smoo
map, i.e., f € CoX(M). Consider the set

Cr={(y, XER* X M |d: ($/)=0, |p|=1}cSFIX M
and call C¢ the critical set of the vector-valued function f.

Definition. Let F € CoX(M). We call f a Morse (vector-valued) function if the map
(¢, x) > dx(vf) from k=1 x M to T*M is transverse to the zero section in T*M.

Proposition 1. The Morse functions constitute an open dense subset of ka(M). This
is a direct corollary of Thom's Transversality Theorem.

If f is a Morse function, the critical set Cf; is obviously a smooth orientable (k — 1)
dimensional manifold.

A scalar function 2 € C,(M) is usually called a Morse function if the Hessian of ¢ at
each critical point is a nonsingular quadratic form. It is not difficult to show that this
is equivalent to our definition. But this is not all:

LEMMA 1. Amap f e CoK(M) is a Morse function if and only if V (¥, %) € Cs
kerges, (¢ fyNker D, f=0.

The proof amounts to deciphering the transversality condition in the definition of
a Morse function.

For an arbitrary Morse function f € Col (M) we let f.:C¢ » R*denote the map (v, x) »
f(x) and $o:Cg + SK-1 the map (v, x) » yT, (v, x) € Cg.

From this point on, we will always assume that n 2 k. Let x € M and denote £f'(x) =
Dxf:TxM -+ Rk Then (v, x) is in C¢ if and only if the rank of the linear map f'(x) is less
than k and v € (imf'(x))".

Thus, at points of the critical set the rank of the map f'(x) is at most k — 1. It
turns out that in the typical situation the subset of Cg consisting of the points (¥, x)
such that rank f'(x) < k — 2 is of codimension (n — k) + 2 2 2,

Proposition 2. , For any f in some open dense subset of CeF(M), the set of all points
(w, x) € Cg such that rank f' (x) € k — 2 is the union of finitely many submanifolds of co-

dimension at least n — k + 2 in Cg.

Proof. The map x + f£'(x) is a section of the vector bundle T*M e R:over M. The fiber
of this bundle consists of n x k matrices.

As we know, the matrices of rankr s k form a smooth submanifold of codimension (n -~
r){k — r) in the space of matrices. If the matrix f'(x) for some given x € M is of rankr,
then the set {y € § 'll(w, x) € Cg¢} is a (k — r — 1)-dimensional sphere. It remains to
apply the Transversality Theorem to the family of maps x » £'(x), f € Cof(M), and to calcu-
late the numbédr of parameters.

Remark. Throughout the sequel we will repeatedly encounter properties of smooth maps
valid for arbitrary f in some open dense subset of CoX¥(M). In such cases we will say that
a typical map £ € CoK(M) has the property.

Let x € M and rankf'(x) < k. Then gesyf:ker f' (x) x ker £'(x) » coker f'(x) is defined
and is a symmetric bilinear map; in that case V¢ € {imf'(x))" we have ygesyf = gesy¥ x
flkers! (x)Xkerf'(x) The quadratic map § + gesyf(f, £), £ € ker £'(x) will be denoted by
£'"(x).

LEMMA 2. Let f € CoK(M) be a Morse function and (v, x) € C¢. The map fC:Cf-*Rkis
an immersion at the point (¥, x) if and only if rankf'(x) = k — 1 and gesyf is a nonsing-

1919



ular bilinear form. The map Pc: (¥, x) » T from Cg to sk-! is an immersion (and a sub-
mersion) at (¢, x) if and only if ges,¥f is a nonsingular bilinear form.

The proof is by direct calculation.

The critical set C; of a (vector-valued) Morse functiop is an orieptable manifold.
Generally speaking it is a disconnected manifold and can be oriented in more than one way.

There is one special orientation, however, to which we will refer $s “canonical." It
is constructed as follows.

Let ¢:(y, x) » y£f'(x) be a smooth map from Sk~ x M to T*M. The Cg is the complete

preimage of the zero sectionof the cotangent bundle T*M — M under the mgp ¢. Fix a point
(¢, x) € C¢ and let u;, ..., ug-, be a basis of the space T(y,x)Cf; complete it by vectors

Vis -+.+s Vq to a basis of the space T(w’x)sk'1 x M2 T(y,x)Cf, and let wy, ..., Wg-; be a
positively oriented basis of the space TH‘,Sk"’l c T(¢,x)sk'1 x M = 'I',J,Sk'1 e TyM.

We will say that the basis (u,, ..., ug-,) defines the positive orjentation on T(y,x)*
Cg, if the bases (uy, ..., Ug-3, Vi, «vvy V) and (wy, ooy Wg-y, (id = med,)vy, ..., (id=
T,9,)vy) define the same orientation on T(y,y)SK™% x M = Tysk~' e TyM.

It is easy to see that this construction yields a well-defined canonical orientation
on Cg. The canonically oriented critical set Cy will henceforth be called the critical
manifold of the Morse function £f.

If (v, x) is an injectivity point of the map f., i.e., rank(D(w,x)fc) =k = 1, there
is a more explicit description of the canonical orientation on T(y x)fc. Let vy be a
(k = 1)-form on R% such that the k~form % A vy defines the positive orientation on Re,

Then the form vy|imf'(x) defines a certain orientation on the subspace imf'(x) = it c
R* , and the form fe*vy defines an orientation on T(y, x)Cf.

LEMMA 3. Let (y,x) € Cs¢ be an injectivity point of f.. Then the form
(‘1)ind¢f”(x)+k‘lfc*vw defines the canonical orientation on T(y, x)Cf.

The proof is again by a direct calculation, but it is more involved than our previous
calculation, and we will presemt it here. Fixing bases in the spaces TyM and Twsk'l =
{xp}'L C Rk, we represent the map £'(x):TeM » {(;»}’L by a (k = 1) x n matrix and the bilinear
form gesgpf by a symmetric n x n matrix. Choose bases {u,, ..., up-;} © {¢}~ and {u;, ...,
Uko1s Vi) sees Yp-%i3) © TgM so that

1) £94{x)uy = wy, i=1, ..., k =13

2) gesyg¥f{uz, kerf'(x)) =0, i =1, ..., k — 1;
3) vy e kerf'(x), =1, ..., n=k+ 1

4) Vyr Wy AceA o> > 0.

In this basis our matrices have the following form: f'(x) = (E, 0), where E is the
(k = 1) x (k = 1) identity matrix:

®

s =(3.3)

where Qg = gesyV¥f|yorft(x) = ¥gesxf is a symmetric (n —k + 1) x (n — k + 1) matrix. In
this situation the vectors (—Q.wj) ® u; € {y7} e TyM = T(w,x)(sk-l x M) form a basis of
the space T(y x)Cf, 1 =1, ..., k = 1. Since £'(x)uy = wi, the basis (—Q,w;) ® u;, ...,
(—Qug-;) © ug_, defines the same orientation on T(y,x)Cs as f*v¢. In order to ascertain
the sign of this orientation relative to the canonical orientation, we augment the (n +

k=1) x (k — 1) matrix
(—‘Q\
£ |,
£)

1820



n matrix
E, 0
f1(x)
(gesx ‘Pf) (Ql’ Qo)

o
i
l
vhich is composed of the elements of our basis of T(y,x)Cf, by adding on the (n + k — 1) x
and then find the sign of the determinant. This gives

det Qq (— 1)1 det (gl “‘Q‘) (— 1y* det Q, det (Q;?+ E).

Since det (Q;2 + E) > 0, the orientation on T(y,x)Cf defined by the basis (—Quw,) ©
u;j, i =1, ..., k=1, has the sign (-l)k'lsgndeth = (=1)k-1+indQ, relatjve to the canon-
ical orientation.

Remark. If (v, %) is an injectivity point of the map %: (v, x) » w from Cs to gk-1,
then the form (-1)ind8esx¥f % vy jofines the canonical orientation on T(¢ x)Cf; we will
not present the calculation here.

Our next theorem is a direct many-dimensional generalization of the following trivial
fact, which is true for smooth functions of one real argument that have only simple zeros:
if the function takes values with different signs at two consecutive zeros of its deriva-
tive, the function itself must have a single zero between these points; if the function

has the same sign at consecutive zeros of its derivative, it has no zero between these two
points.

Let g:N »R*be a continuous map of some oriented (k — 1)-dimensional manifold N into
R* and let o« €R: \img. Recall that the degree of g relative to & (denoted degs g) is

£9)— from N to Sk-1,

defined as the degree of the map Y= —a,

The symbol x(N), as usual, will denote the Euler characteristic of N.

THEOREM 1. Let f € Co¥(M) be a (vector-valued) Morse function. Then x(M) = deg @ .
If a vector ggER* is not a critical value of f, then

x(f1(2)) = (—1)*degqf.

Proof. We may assume without loss of generality that ¢ = 0.

LEMMA 4. TFor a typical Morse function f & CoF(M), the scalar function |fcl2 on Cg is
a Morse function, and all its critical points are injectivity points of £f..

Proof. A point (v, x) € Cs is critical for |[f.]|? if and only if (kerf')gesxwfl S
ker £7£', If (v, x) is an injectivity point of f. (see Lemma 2), this condition is equiva-
lent to ff' = 0. The Hessian of the function (1/2)+|f.|? reduces to the quadratic form
ur (£'u)T 'y + £T£"(x) x (u, u), Vu € (kerf' )ges yf - Thus, the conditions stating that
a critical point of lf iz is degenerate or nonanectlve” can be written as equations on

a 2-jet of the function f. Thus the proof of Lemma 4 reduces to calculating the parameters
and applying Thom's Transversality Theorem.

Without loss of generality, we may assume that f satisfies the assumptions of Lemma
4. In particular, [£f.|? and |f|? have the same critical points.

LEMMA 5. Assume that an injectivity point (¢, x) of the map f. is a critical point of
the function |£|?, |F(x)|¢* = £(x). Then

indges,{ f [P=ind (f ges, f)+indges(y, x) [ fe 12
|
|

Proof. If f(x) = O the right- and left-hand sides of the equality io be prbved both
vanish. Supposd, therefore, that f(x) # 0. Then (1/2)-gesy|f]? = £4(x)7£'(x) + gesyVf.
Conkequently,

1
T 88| [P leerr () =808V S Jeess 0y =D ges, .
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~ The injectivity condition implies that the bilinear form flgesyf is nonsingular (see
Lemma 2). Thus, kerf' x n (kerf' ")gesx|f|2‘L = 0 and, therefore,

indges, | f P=ind 7T ges,f +ind (ges, F]P|(ker f" (Desiyp).

* -

It remains to be observed_Lthat (ker f'(x)gesxlﬂzl = (kerf'(X))gesxwa and gesx(tp,x)‘f‘c
gesy|f]?| (ker £'(x))ges,pf (cf. proof of Lemma 4).

Under the assumptions of Lemma 4, all critical points of |[f|? lying in M\f™?(0) gre
nondegenerate. Let X;, ..., Xp be all of them. Since [f]|? 2 0, Morse ®heory applied to
the function [£|? yields

M= (= 1)Ly (). (1)

G}

Let N be some smooth oriented d-dimensional manifold and g;:N » sd bg smooth maps,
i=1, 2. Let I'(gy) = {y, gi(y)) € N x 8¢|y e N} denote the graphs of g5, i = 1, 2, and
r(g,) r(g,) the intersection number of the m-dimensional oriented submanifolds I'(g,) and
r{g,) in N x 8™, We have

I'(g1) -T(gs) =deg go+ (—1)4deg g.

In particular,

f
T[] T @) =deg o, +(— 1) deg 7., (2)
e, 1[5 ~ e (2050 ) )
At the same time, T{r7 7| and r(%) mtersfe_rc}:x a)tt the points \\77G)1 *e) Trmy1 ) @ = b
., m, and at no others. Define y, = W’ﬁ; then the intersection number at the point
&
: : . 1

((Ygs> %g)s Vgq') is +1 if the linear map DXQ_‘Pc"D-*L;: - =Dxa(pc——‘-—f—c—!- Dgqfc takes the canon-

ical orientation of the space T(wu’xa)Cf into the positive orientation of the space TwaT x
sk=1, 2nd —1 otherwise.

Let (§,, uy), ..., (Ek-ys Ug-;) be a canonical oriented basis in T(Wa,xc.)cf’ where u,,
crey Ug.; are linearly independent. The required intersection number is precisely

g0 det (W], 7~y /7 (ead i - 5 — e /e =
=sgndet (YT, | f (xe) |87 — f/ (xe) g, ..., | [ (%) | E5 — F/ (Xa) #py) = sgn det (A B).
It follows from Lemma 3 that sgndetA = (—l)indwaf"’"(x-’a). Consequently,
A=l — f (xa)tty, o — F' (%a) Uer)s
B=0]F (x & o0 [ [ (&)

[we have taken into account that ¢u&{! = vf'(xglu; =0, i =1, ..., k = 1.]
Differentiating the identity yf'(x) = 0 V(y, x) € C¢ at the point (Y4, %), we get
81" (%) &4 9a 7 (%) (s, u)=0.

Thus, sgndet (A+B)= w
— (— 1)"™¥¥a’"Fa) son det ((f7(xa)i) T £ (¥a) &3 F7(xa) 0 £N 7).

Since 1
(' {xau)T [ (xa)u;+ f (xa)T F" (xa) (, )= 5 Be8(¢5.40) LSl

it follows in view of Lemma 5 that

sgn det (A B) = (— 1) el ST st
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Finally,

I (4 ) T og =3 (— 1™,

¢
tfel oy’

Equalities (1), (2) imply
X (M) —deg ge=3(f~"(0)) —deg fe(—1)*.

Let a€R* where a is not a critical value of f£f. Replacing f by f — 4, we obtain
(M) —deg ge=x(f" (a)) —degafc (—1)*. (3)

If | @] is sufficiently large, then £7!( @) = ¢. But the left-hand side of (3) is independ-
ent of @ and, so, both sides must vanish. This completes the proof of the theorem.

COROLLARY 1. Let f € CoK(M) be a (vector-valued) Morse function, such that 0 €R* is
not a critical value of f£. Let 4, R*\0 be such that the map f. is transverse to the ray
{frag)t>0) f7' ({ra, fT > 0}) = {(2¢y, %), «.., (¥¥p, %)} © Cg, where pif(x4) >0, i =1,

.., m. Then

X O = (= 1yr— 1) 3 (— e,

{=]

Proof. The transversality condition guarantees regularity of the map (fc/lfcl) at
. N mn

. .
the points (#¥;, %4), i =1, ..., m. By Theorem 1, x(£71(0)) = :L (=1)k+2q 4 (—1)k+Ay,

where the integers £;();) are even or odd according to the map '~

fe_ . -
Do o xpirmiTonspCp>T ey S (the map D
IHENT
takes the canonical orientation of the space T(y;,x4)Cf into the positive or negative orient-

fe
~bp ) TF,T

ation of T ;gl} sk-1, The signs of these orientations are easily determined by means of
. 1H{x )

Lemma 3.

COROLLARY 2. Again let f = (f,, ..., fk)T € CF(M) be a (vector-valued) Morse function
such that 0 e R*ig not a critical value. Then

k
- 1 -—+ >
3 ‘(0)>=§/kam,¢2(—l)‘ MEAFIN AT NS

{=

vl
X(M)=Sm
Ct

b4~

(=D)AL d e AdYs

[]
-

where oy is the volume of the unit k-sphere and the symbol A means that the relevant factor
is omitted.

The map (¥, x) » x of the oriented manifold Cf into M defines a singular integral cycle
in K. We will denote this cycle by Ef and call it the critical cycle of £f. On the other
hand, the choice of an orientation on M automatically determines an orientation of the sub-
manifold £71(0) € M and converts it into an integral cycle in M. At the same time,

dim C,=k—1,dim [ (O)=n—£&,
dim M=n=dim C,+dim f~1(0)+1.

Let v;,5 Y» be two cycles in M with disjoint supports, dimy, + dimy, + 1 = dimM. If
y, and y, are hohologous to zero, the linking coefficient &(y,, v,) is well defined: if
Yy, # 8l';, then L(Yl, Yo) = T;°y, is the intersection number of the chains I'; and y, (that

Y, is homologous to zero implies that the index is independent of the choice of I';)~ It
turss out that all this "works" in our situation.
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Proposition 3. The critical cycle Cf of a (vector-valued) Morse function f € CoX (M)

and the cycle £~1(0) are homologous to zero in M; the linking coefficient of these cycles
is given by the formula

LIQ), Cpy=—deg fo=(— D% (£ O)- %)
Proof. Choose f, € Cuo(M) so that the vector-valued function g = (;ﬂ-e CultH (M) is

a Morse function. The critical manifold is
Ce={(¥n % %) [0+ /() =0, 3+ [pf=1, XEMC S X M.

In Cg, consider the submanifold with boundary Cg' {(¥y5 ¥, x) € C Iw s 0}. Clearly, the
boundary is 8Cg~ = {(wa, v, X) € Cglwa = 0} = C¢. The smooth map (¢o, ¥, X) B x produces
the cycle C¢ and, so, Cf is homologous to zero in M.

Now assume that f is transverse to a ray {tg,|t > 0}, where @€R* \0 (by Sard's
Theorem, such a ray always exists). Then £ }({taojt 2 0}) is a smooth submanifold with
boundary in M, with 8f 1({tgy !t 2 0}) = £7*(0). Consequently, the cyc}e £71(0) is homolog-
ous to zero in M. Identity (4) follows at once from Corollary 1 to Thaorem 2 and the defin-
ition of the linking coefficient, with due attention to orientations,

2. Let x € M and let J4?M be the space of 2-jets at x of smooth scalar functions on
M. For arbitrary integers r 2 0, define

2 (x)={/2a|a6Cx (M), da=0, dim kerges,a=r}cJ2M.
) (x)={/2a|a6C~ (M), J2aEZ, (x), a(x)==0}.
Let J?M = JéM Jx*M be the total space of the 2-jet bundle over M; define I, (M) =

xEM My = EM I.%(x). It is easy to see that I,.(M) and I,.°(M) are smooth submanifolds

of JM forr =1, 2,

Definition. A vector-valued function f € ka(M) is said to be strongly Morse if the
map (¥, x) » Jy2(Pf) from SK-! x M to J2M is transverse to the submanifolds £,.(M) and £ ° x

(M), ar 2 0.

It is clear that a strongly Morse vector-valued function “is Morse and, moreover, it
follows from Thom's Transversallty Theorem that the strongly Morse functions constitute an
open dense subset of Co®(M).

Define

Cr={ty, x)EC, v f (x) <0},
Cr={(p, N)EC,|vf (2)=0).

If f is strongly Morse then, as is readily seen, C¥ is a smooth manifold with boundary C¢°.

Let V be a smooth vector bundle over M such that TM e V is the trivial bundle, TM e
V=M x RV, and let p be s Euclidean metric on V, i.e., a smooth map x » u(x) € 2 (Vi)
such that u(x) > 0 Vx € M. Define maps

Q,:C;—>9’(R‘V)anngzC?—M?’(RN),
by putting
Qs (¥, x)=ges:(v/)Bu (1), V(y, x)eCr,
QI=Q,|Cy.

LEMMA 6. If f & Cok(M) is a strongly Morse function, then Qg:Cg™ - P R™ and Qf%:
Cs® » #(RY) are transverse maps, such that the stable transversal homotopy class of Qs

and Qs° is independent of the choice of the additional bundle V and metric p (for the defin-
ition of stable transversal homotopy see end of Sec. 3.2).

(5)
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The transversality of Qf and Qf° follows directly from the definitions; the rest of
the lemma follows from the elementary theory of vector bundles. »
Let x € M; defme linear maps 7,(x):Jx?M » J,'M and 7,(x):Jx%M » Jx°M =R by the form-

ulas ﬂl(x)(fxa)—fxd. T (x)(Jia)=a(x). Since the jets of the constant functions induce the
standard embedding of J;°M into Jp KM for any k, we may assume that Jy°M c J4'M. We have

the obvious 1dent1f1cat10ns ker m,(x) = & (TgM),
S () =T (T M\Iuy (T M),
2, (x)=IL (T M\l (T MBR ket (1 (%) — 11y (X))
For any o € ker (7,(x) = m,(x)), we define a set “1}, c T*J M © Ty*J?M
a) if o # kern,(x) U T;(x), then Ta= (ker (m,(x) = m,(x)))%; |
b) if a € kermo(x)\Z,°(x), then Yy = (kerwu(x))l;
c) if o € T,%(x) = 0,(TgM), then Ia = (ker 1,(x))L o 3 (T, M);
d) if a € LEONT®), then Ta= (ker (m(x) — mo(x)))Y e#d (T,M).
We are now in a position to formulate a substantial generalization of the definition

ofstrongly Morse functions. Let us say that a convex closed cone K in P#* is piecewise
smooth if K n Sk-! is a submanifold with angles in sk-1,

Definition. Let X be a piecewise smooth convex closed cone in R¥, f e c k(M). Let
F:(K 0 SK°T) x M > J2M be the map defined by the formula F(y, x) = Jz2(vf) and F(y,x)":Tp X
(K n sk=1) o T,M » Tr(yp,x)J°M the differential of F at the point (¢, x). A vector-valued
function f is said to be strongly Morse with respect to K if, for any ¢y € K n sk-1) x e M,
whenever dy(¢f), then

(im F('w':))o n I',.-(q_,’x) _-—_—.0.

If X = R** the definition of "strongly Morse with respect to K" is equivalent to
our previous definition of "strongly Morse."

Using Thom's Transversality Theorem, we readily show that the vector-valued functions
which are strongly Morse with respect to a fixed cone K constitute an open dense subset of
CoK(M). Moreover, if f is strongly Morse with respect to K, then the sets Cf(K) [(v,x)e

Czlv € K n Sk} and C¢°(K) = {(v, x) € C¢%|v € K n Sk-2} are submanifolds with angles in
Cs. As before (in the case K = R*) equality (5) defines a map

Q,(K):CT ()~ 2 RY), QI (K)=Q,|C}(K).

LEMMA 7. Let f & C K(M) be a strongly Morse function with respect to a piecewise
smooth convex closed cone K ¢ R#*, Then (i) the map £f:M > R%¥ 1is transverse to the cone
K°, X° © R% 1i) Qe(K):CE(K) > 2(RY)and Qs°(K):Cs%(K) »P(R"Y) are transverse maps and,
moreover, the stable transversal homotopy class of Qf and QF is independent of the choice
of the additibnal bundle V and metric u.

The transversality relations are proved by direct calculation based on the definitions.
As an example) we will verify part (i).

Suppose that f is not transverse to K° at a point x € M. Then for some ¢, € K n sk-1
we have

d: (9 f)=0, P/ (x)=0, f(x)<0, YY€K.

Consequently, Jy*(¥,f) = O and the differential of the function Jy?a~a(y) on J?M at the
"point" Jg2(y9f) = F(P,, X) is in the cone dual to imF'(y,, x).

Proposit,{on 4. Let f e CoE(M) be a strongly Morse function with respect to a piece-
wise smooth ednvex closed cone K ¢ R** If for any (¥, x) € CF(K) the quadratic form

gesy(¥f) is m@nsingular, #hen
R KDY =2x(C; (K)—x (C? EKN—2(x(Q,(K)—
— % (QF (KN)+ex (M),

(6)
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where

{(_ l)dlmK’ K____ —K
*=1 o, K+ —K.

The proof follows the same lines as the proof of Theorep 4.1.

1) Suppose that K is a half-line, K = {G¢o’ @ 2 0}. Then CT(K) is.gsfinite set, Cg®x
(K) = 0, and Morse theory yields

L0 S) (—o0, 0= X (—1)mEesns =3(Cy (K)—2x (Q, (K-

(. D)ECT(X)
2) Let K be an arbitrary piecewise smooth cone and Y, € K n Sk"!'. Rguality (6) will
be valid with K replaced by any sufficiently small conical neighborhood q¢o of ¥, in K.

Indeed, it follows from the assumptions of this proposition and from L 2 that the map
@, |CT(K):CF(K) - sk-1 defined by 9.(¥, x) = ¢ is a cover. Hence, again ysing the fact that

gesy(¥f) is nonsingular, we 1nfer.that
%(CF U =% G (Usd) = {40, %) | $of’ (x)=0, %o (x) <0},
2CF U =1 (CHUe)—2 (2 (Q; Up))— % (QF (Us))) =
- p) (= 1" o (o) (— 0, O)).

{Z1bef (£)=0, $,£(x) <0}

To prove the truth of our assertion it remains to be shown that the set £-'(Uy °) is
homotopically equivalent to the set (9,£) " *(—~, 0) if Uy, is sufficiently small. Since 0
is a regular value of f, it follows, of course, that f"(Uw2°) is homotopically equivalent
to £73(Uy °\0). We claim that £7%(Uy °\0) is a homotopic retract of the set (vof) "1 (—=, 0).

There is a subtle point here: zero may be a critical value of the function y,f. Let
Xys o+ ¥y De all the critical points of this function corresponding to the critical value
zero and 0xi be a neighborhood of x4 in which y,f can be made into a quadratic form by a

smooth change of variables, i =1, ..., m. For some € > 0 we have 1gradxwof| 2 2¢ if x ¢

U Oy

dam}

Consequently, for any ¢ in a sufficiently small neighborhoc;&“UwUJ

lgrad . f | > e, ‘inGIO‘z'

Motion along trajectories of a vector field positively proportional to (—grady(y,f)) (as
in the usual Morse theory) corresponds to retractionof the set (y,f) *(—~=, 0) into the set

(Yof) ™ (=, 0)\<\J Oxl)and .thereafter, into the set f~ l(Uq, /0).

il

3) Let K,, K, be piecewise smooth convex cones such that K, U K, is convex. If (6) is
true for the cones K;, K,, K; N X,, it is also true for K; U K,. The proof is exactly the
same as for the analogous assertion of Theorem 4.1 — use the additivity of the right- and
left-hand sides of (6).

4) To end the proof, one uses induction on the dimension of the cone K. If the dimen-
sion is 1, then K is either a half-line (see part 1 of the proof) or a straight line. A
straight line can be expressed as the union of two half-lines, and one then uses part 3.
The inductive step is also carried out as in the proof of Theorem 4.1: cutting the cone K
by several hyperplanes transverse to it and using part 3 of the proof, one reduces every-
thing to the situation considered in the second part.

Remark. The condition that the quadratic forms gesyyf are nonsingular for v € K\0 is

fairly stringent; we do not known whether (6) (or some modification thereof) is valid under
weaker assumptions.

One often has to consider the case in which M = SR, f = FIS“, where F € C.K( R™ \0)
is a positively homogeneous function. We will therefore describe the singular set, Hessian,
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etc. of the vector-valued function f in terms of F in the case that F is positively homo-
geneous of degree v # 0, 1, i.e.,

F(txy=¢t"f (x), V¢ >0, x€R"\0.
The basic identities are
(D,F)x=VF(-’C),
D2F (x, y)=(v—1)DFy, vx, yeR*™\0.
Let y € R*, The symmetric (n + 1) x (n + 1) matrix corresponding to the bilinear

form Dy*yf will be denoted by $F"(x). The critical set has the form C¢ = {(y, x) € gk-1 &
SU|x is an eigenvector of the matrix yF'"(x)}.

Let (¢, x) € Cg¢, VF"(x)x = Ax. Then

gese v =(D2F — ;20| L (7)

in particular, the map ®Pc:(vy, x) » ¥ is regular at (v, x) if and only if [A/(v = 1)] is
not an eigenvalue of YF"(x)|xt. In addition, dgdF = [A/(v = 1)]'x, YF(x) = [A/(v(v — 1))]
and, so, A is a smooth function on Cf and

Cr={(¥ X)ESFIXS"|YF" (x) x=4rx, Av(v—1)<C}.

We illustrate the results of this section for the special case of quadratic maps.

LEMMA 8. Let P e £(n + 1, k); then the following conditions are equivalent:

i) the map p|S™:S™ > Rkis not a Morse function;

ii) the zero in R* is a critical value of the map (x, y) =» p(x, y), considered on the
manifold {(x, y) € ST x S0|x L y};

iii) for some y  SK"!, x, y € S7, A € R we have yPx = Ax, %Py = Ay, x L y, p(x, y)=0.

The proof is by a direct check.

LEMMA 9. For a typical p € £ (n + 1, k), the map p|ST is Morse.

Proof. By the Transversality Theorem and Lemma 8, it will suffice to be proved that
the zero of Rk is a regular value of the map

(p, %, y) = p (%, y) ,vherep€P (n+-1, k),
(x, y) €{(x, y) €S*XS*[x Ly}
However, it is readily seen that this map need not have critical points.

Let p €? (n + 1, k) be such that p|S* is Morse. Let Cp denote the critical set of
the vector-valued function p|S™ (this will not cause confusion) and Te:Cp > sk-i the map
(¥, x) » ¥v. Then

C,={, X)ESH T 87 | (pP)x = hx for some.,. AMER)
C; ={h XS X S*|(YP) x=Ax, A <O}

Let (v, x) € CP’ YPx = Ax. A map w. is a local diffeomorphism in a neighborhood of
(¥, x) if and bnly if gesy(yp|SR) is a nonsingular form (Lemma 2), i.e., A is a simple eigen-
value of the mhtrix VP [see (7)].

The symmeiric matrix $P has n + 1 real eigenvalues (counting multiplicities); arrange
them in increabing order, A,(¥) <...< Ap+i(¥).

Let 1 s i s n+ 1 and let A, (V) be a simple eigenvalue, SM 3 x;, a corresponding eigen-
vector. Then the linear mép (_1)i-lD(w,xi)“i’T(w,xi)Cp > Twsk'l carries the canonical
orientation of the space T(ngi)cp into the positive orientation of Twsk'1 (see remark after
Lelma 3).

LEMMA 10. For a typital p € £ (n + 1, k), the set of critical values of the map m.:

Cp » k=1 jg ah algebraic ket of dimension at most k — 3.
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Proof. Identifying the space of symmetric (n + 1) x (n + 1) matrices with Z(R"),
we see that the set of all symmetric matrices with multiple eigenvalues is precisely I, x
(R**! ) + gspan {I} and it is an algebraic subset of codimension 2 in #(R"*!). If the map
p*:p = yp, ¥ € SK°1 is transverse to the submanifold Iy (R™*'M\IImu(R**'¥ + span{I}, m =

1, «.., n + 1 in #(R*™') (which is not the case for typical p), the set of all y & skt
such that the matrix P has multiple eigenvalues is an algehraic subset of codimensipn at
least two in SK-1, '

Any quadratic map p € @ (n + 1, k) is even: p(=x) = p(x). Identification of the
points x and —x, x € S®, converts the sphere S into the prqjective spaqe RP" and, so, p
uniquely defines a map p:RP"— R* by the rule p({x, —x}) = ptx). This map and its critical
set Cp are conveniently used along with p and Cp. Clearly, Cp is a douhle cover of gﬁ'

It follows from Lemma 10 that for a typical p « # (n + 1, 2) the magrix yP has po
multiple eigenvalues for any ¢ € S! and the manifold CE is the union of p + 1 pairwise dis-

joint circles. When k 2 3 the multiple eigenvalues are no longer "removgble." When k = 3,
for example, the most that can be achieved by a transformation to generpl position {s a
matrix yP with one double eigenvalue for each of a finite set of points p € S? and only
simple eigenvalues for all other points Y. Corresponding to the double pigenvalue wa have
a whole circle of eigenvectors of unit length. '

Thus, in order to obtain the manifold CE for typical pe® (n + 1, 3), one must con-

sider a set of n + 1 two-dimensional spheres (corresponding to the diffeyently numbered
eigenvalues) and, then, "cut out'" from this set several pairs of points, in such a way that
points in one pair lie in coasecutively numbered spheres. One then "glues'" circles in
place of the removed points and '"glues together" pairwise corresponding spheres along these
circles.

We see that if attention is confined to quadratic vector-valued functions p|gn, p €

# (n+ 1, k), then when k = 2 the assumptions of Proposition 4 are fulfilled in the typical
situation; when k 2 3 this is no longer the case: the cone K must be chosen in such a way
that the matrix yP has no multiple nonpositive eigenvalues for y € K\O0.
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