
QUASI-EXTREMALITY FOR CONTROL SYSTEMS 

A. A. Agrachev and R. V. Gamkrelidze UDC 517.971:514.7 

A full exposition of the authors' previously announced results about the 
extremality index of controls in smooth control systems and a generalization 
of these results to systems with constraints on the controls. 

INTRODUCTION 

This paper will present proofs of some results announced in [I], as well as generaliza- 
tions of these results to systems in which constraints are imposed on the control parameters, 
as promised in [i]. 

Throughout the paper (and the following paper by S. A. Vakhrameev) the functional nota- 
tion introduced in the first paper of this volume will be employed without special mention. 

The main object of study will be the Hessian of the "input-output" map of a control 
system at a certain critical point (extremal of the system). Let us recall, therefore, 
the definition of the Hessian of a smooth map. Let r ~ § M be a smooth map of some smooth 
Banach manifold into a finite-dimensional manifold and let ~0 ~ ~. The differential of r 
at D0 is the linear map D$0~:TB0 ~ + T~(~0)M of the tangent spaces. If we fix local coordi- 

nates in the neighborhoods of ~0 and r we can also define the second differential (a 
symmetric bilinear map of a Banach space into a finite-dimensional space). However, this 
procedure does not yield a well-defined bilinear map of T~o~XT~o~ into Tr since the 

quadratic part of a smooth map depends essentially on the choice of local coordinates (for 
example, if Ds0# is a surjective linear map, then by the Implicit Function Theorem r will 

be represented by a linear map in certain local coordinates). But if we restrict the second 
differential to the kernel of the first differential and factorize its values modulo the 
image of the first differential, the result is a well-defined symmetric bilinear map 

geSfoO:ker D~o0X ker D~oO~coker D~oO, 

where by definition D$0~ = Tr The map ges$0 r is known as the Hessian of r 

at the point $0. Whenever the point at which point the Hessian and the differential are 
being considered is clear from the context, we will use the abbreviated notation 

geS~o~---- ~", D~o(I)-- @'. 

Remark. The definition of the Hessian is invariant to smooth changes in variables 
both in~,and in M. If M is a linear space, M = R n, and nonlinear changes in variables 
are allowed only in ~, the second differential turns out to be a well-defined bilinear 
map from T~o~>(T~o~ into cokerD~0~ (restriction to ker D~0~ is not necessary). 

The pairing of an arbitrary vector x e TBM with a covector ~ e TB*M will be denoted 

by ~x - the product of a row and a column. If a covector ~ is orthogonal to imD~0~, ~ e 

(imD~0r • c Tr , then 

~geS~o@:ker D~oOXker D~~ 

is a real symmetric bilinear form. We will need the concept of the index of such forms. 
Recall that the Morse index (or simply index) of a real symmetric bilinear form q:B • B § 
R , where B is a linear space, is the maximum dimension of a subspace of B on which the 
quadratic form b + q(b, b) is negative. Standard notation: indq. We have 0 ~ ind q ~ dimB. 
If B is infinite-dimensional, then possibly indq = +~. 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Novei- 
shie Dostizheniya, Vol. 35, pp. 109-134, 1989. 
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i. Smooth Control Systems 

Let M n be a smooth n-dimensional manifold and U a smooth r-dimensional manifold. 
sider the control system 

x = x o f t ( u ) ,  xEM", u~U, tfi[O,T]. 

Here ft(u) is an infinitely differentiable family, dependent on u e U, 
ary vector fields on M. 

An arbitrary map u('):[O, T] + U is said to be bounded on a subset E c [0, T] if the 
closure of its image u(E) is compact and measurable if the preimage of every open subset 
of U is measurable. We will say that a map u(') is in L([O, T]; U) if it is measurable 
and bounded on some subset of full measure in [0, T] (essentially bounded). The elements 
of L=([O, T]; U)will be called admissible controls. The set of admissible controls is 
endowed with a topology as follows. If U is embedded as a closed submanifold in R d, then 
obviously 

L .  ([0, T]; U ) c L .  ([0, T]; R a) = L%. 

Con- 

( i )  

of complete nonstat ion-  

The topology will be that induced by this embedding. In addition, L~([0, T]; U) is a smooth 
Banach submanifold of L~ d. 

Together with this standard topology, we will sometimes find it useful to consider the 
space of admissible controls L~([0, T]; U) with a stronger, finite-dimensional-open topology. 
A given subset ~ c L~([0, T]; U) is open in the finite-dimensional-open topology if its 
intersection with any finite-dimensional submanifold of L~([0, T]; U) is open in that top- 
ology, we will always mention this explicitly. 

Note that the collection of all control systems of type (i) with fixed manifolds M, U 
and fixed time interval [0, T] forms a linear space; denote this space by CS(M, U, [0, T]). 
This space CS(M, U, [0, T]) has a natural family of seminorms that make it into a Frechet 
space. Indeed, the family of nonstationary vector fields ft(u) may be considered as a non- 
stationary field on M n • U if we define, for any function a e C~(M n • U) 

(fta) (x, u ) =  (f t(u)a I u=cons t ) (x) ,  (x, u )~MnXV.  

Thus, there is a natural embedding of CS(M n, U, [0, T]) into the Frechet space of all non- 
stationary fields on M n • U as a closed subspace. In particular, to each compact subspace 
K c M n • U and nonnegative integer ~ there corresponds a seminorm IIfIIK, ~. 

Fix once and for all a point x 0 e M n and consider the map F:L~([0, T]; U) + M associat- 
ing to each admissible control u(') a point XT, where 

d 
x~ = x to f  , (tt (t)), 0..< t < T. dt 

Thus, 

T 

F(u(')) = x 0 oe-xp] ft(u(t))dt. 
0 

Before moving on, let us describe the local invariants of smooth maps that will inter- 
est us. 

Let~be a Banach manifold of class C ~ and aE~. LetC~(~, M n) denote the set of germs 
at the point a of smooth maps from~into M n. EndowC~(~, ~=) with the topology of strong 
convergence of all derivatives at a. Suppose that~ is modeled on a Banach space A. Recall 
that the k-th derivative of a germ at a is defined only after choosing local coordinates in 
M n and~ , and is a multilinear map from A h to R ~. However, the property of convergence of 
all derivatives at a, for a given directed family of germs, is independent of the prior 
choice of local coordinates. The topology is not Hausdorff, but that need not trouble us 
here. 

In the subsequent definitions the expression "for almost every germ" means: "for any 
germ in some open, dense subset of the space of germs." 
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Definition i. Let ~be a Banach manifold of class C ~ and C | a (.9~,M n) 9~ a smooth germ 
at a point aE~ . The germ is said to be extremal if there exist a neighborhoodi6 ~ of a in 

and a representative H: O~ M n off, such that Hia)60H(G), i.e., the point H(!a) is on 
the boundary of the set H(O). 

C ~ Definition 2. Again, let ~G a (~,/]4"). 

i) Let ~ be an extremal germ. We will say that~ has extremality index k > 0 if k is 
the least number such that, for almost every germ ~6C~(a)(Mn,R=-k) the germ ~o~6C2(~, R '~-k) 
is not extremal. 

ii) Let~ be a germ that is not extremal. We will say that ~ has extremality index 
s ~ 0 if s is the least number such that, for almost every germ ~EC2(~, R -t) , the germ 
(~X~F)~C~(~, /~IXR -t) is not extremal. If no such least s exists, the extremality index 
is defined to be-~. 

Thus, the extremality index of an arbitrary germ ~EC2(~, ~4 n) lies in the interval 
[-~, hi. A germ is extremal if its extremality index is positive. 

We now return to the control system (I). 

Definition 3. Let u(') e L~([0, T]; U) be an admissible control. The local extremal- 
ity index of the control u(') with respect to system (i) with initial condition x 0 is the 
extremality index of the germ of the map F at the "point" u('). A control with positive 
local extremality index is said to be locally extremal with respect to system (i) with 
initial condition x 0 . 

In the next definition we will have to consider, along with the control system (i), 
systems close to it in the space CS(M n, U, [0, T]). The initial conditions, however, will 
remain fixed. 

Definition 4. The quasi-extremality index of an admissible control u(') with respect 
to system (i) is the maximum number k e [-~, n] such that, arbitrarily close to ft(u) in 
CS(M n, U, [0, T]), there exists a control system gt(u) with respect to which u(.) is of 
local extremality index k. Controls which have positive quasi-extremality index will be 
called quasi-extremal with respect to system (i). 

Thus, the quasi-extremality index of a control with respect to a given system ft(u) 

is the upper limit of the local extremality indices of u(" ) with respect to systems g e 
CS(M n, U, [0, T] for g tending to f.* In particular, the quasi-extremality index of a 
given control is an upper semicontinuous function of the system. 

We now fix an admissible control u(') once and for all and let Pt,T be the correspond- 

ing family of flows in M. 

This may be written differently as 
t 

p,. ,  = exp J fo  (u (0)) do. 
T 

_ def ~ _ 

Denote Pt= Pt,0, xt = x0 o Pt" It is easy to see that Pt,~ = P~ I o Pt" 

Let u(.) be another admissible control and denote 6ft(u(t)) = ft(u(t)) - ft(u(t)). 

We have  t h e  f o l l o w i n g  r e p r e s e n t a t i o n :  

t t 

0 0 

(2) 

t 
where ex~ ] Adpt,-c- 

o 
l~f(u(~))dY is the right perturbing flow corresponding to the perturba- 

tion 6ft(u(t)) of the field ft(u(t)). 

*It is easy to see that the lower limit is always equal to -~ 
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Let {t' and {t (2), respectively, denote the first and second differentials of the 

map u~Ift(u) at the point u(t) e U. Then {t':T~(t)U + DerM n is a linear map of the tangent 

space to U at u(t) into the space of Vector fields on M; {t(2):T~(t)U x T~(t)U + coker {t' 

is a symmetric bilinear map of T~(t)U into the quotient space of Der (M n) by the image of 

{t'' 

We recall that the tangent space to the Bananch manifold of admissible controls L~ • 
([0, T], U) at the "point" u(') is the set of all measurable and essentially bounded maps 
t ~ v(t), 0 ~ t ~ T such that v(t) e Tu(t)U , Vt e [0, T]. We denote this space by ~. 

Let F': ~ + TxTMn be the differential of the map F at the "point" u(') and F":kerF' • 

kerF' § cokerF' the Hessian of F. It readily follows from (2) and the identity 

exp SAd >7.$ 8 f ,  (= (~)) dx: ---- id + !" exp Ad >F.l 8fo (,  (0)) dO oAd p~$ 8f~ (~ (~)) d~ 
0 

that 6ft (~ (t))--O 

T 

P'~(.) =.~ro S Ad>-fSf',v(t)dt. 
0 

def 
In order to avoid needlessly cumbersome formulas, we introduce the notation Dtlv(t)= Ad • 

PT,t-l{t'v(t) and Dt2(vl(t), v2(t)) = AdPr,t-1{(2)(v1(t) v2(t)) vl(. ) e ~ Thus, F'v ' ' U" X 

T 

(') = x T o S Dt Iv(t)dt" Clearly, imF'= span{x T o DtXvlv e Tu(t)U, t is a Lebesgue point 
0 

map �9 + x T o D~l}. of the 

LEMMA i. The Hessian F" of the map F at the "point" u(.) has the form 

So O~vl (~), D~v2 (t) dt +im F' ,  D'"(v1('), v2( . ) )=xr  D~(vl(t), v2(t))dt +"x~~ o 

~ o,o o �9 

0 

Proof.  Let the  fami ly  of admiss ib le  con t ro l s  u~ ( ' )  be such t h a t  u o ( ' )  = u ( ' ) ,  ~/8E x 
u ~ ( ' ) l e =  o = v ( ' ) .  Using the  i d e n t i t y  (3) ,  we e a s i l y  see t h a t  

o_=--~ O= ],==o exp-+ o~ Ad i~ 'S  f " (tt= (~l) d*---- ~ Dl (v o v (t)) dt + 2 o \o" D~" v (x) d*~ (t)) dt---- ~ Dl (v v (t)) dt + 

0 
7' 

Thus, i f  x T o ! Dt~v( t )d t  = 0, then 

-o%~. ~=oF(U~('))----2crof D~(~(t), v(t))dt +xro D~v(*)cl*, D1v(t) dr. 
0 O L O  

For any covector ~ e (coker F')* = (imP')• c TXT*Mn , the product ~F" is a scalar quadratic 

form; in particular, the Morse index ind (~F") is defined. 

THEOREM i. If coker F' = 0, then the ~uasi-extremality index of the admissible control 
u(') with respect to system (I) is -~. If P' ~ 0, then the quasi-extremality index of the 
control with respect to system (i) is 

dim coker F '  " r a i n  {ind (~F") I ~E(im F")• 

Proof. The condition cokerF' = {0} means that u(') is a regular point of the smooth 
map F:L~([0, T]; U) + M. Let ~ be a submanifold of finite L~([0, T]; U) such that u(') e 

and the subspace T~(.)~ of ~F~u(.) is transversal to ker F' (i.e. , T ~ . ) ~ + k e r f f ' = . ~ . ) .  Then 
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obviously u(') is a regular point of the map F I ~. At the same time, it follows from the 
Implicit Function Theorem that the germ of an arbitrary smooth map at a regular point is 
not extremal. Using the definition of local order, we see that the local extremality index 
of u(') is -~. Moreover, for any control system gt(u) sufficiently near ft(u) the control 

T 

u ( ' )  i s ,  as  b e f o r e ,  a r e g u l a r  p o i n t  o f  t h e  map u ( ' ) ~  x 0 o .exp" g t ( u ( t ) ) d t .  C o n s e q u e n t l y ,  

t h e  q u a s i - e x t r e m a l i t y  i n d e x  o f  u ( ' )  w i t h  r e s p e c t  t o  s y s t e m  (1 )  i s  a l s o  e q u a l  t o  ---~. 

The p r o o f  o f  t h e o r e m  1 in  t h e  c a s e  dim c o k e r  F' = k > 0 i s  based  on t h e  f o l l o w i n g  a s s e r -  
t i o n .  

P r o p o s i t i o n  1 An a d m i s s i b l e  c o n t r o l  u ( ' )  i s  q u a s i - e x t r e m a l  i f  and o n l y  i f  t h e r e  
e x i s t s  a c o v e c t o r  ~ e ( i m F ' ) •  c TxT*M , ~ ~ 0 such  t h a t  t h e  s c a l a r  q u a d r a t i c  fo rm ~F" has  

i ndex  a t  most  k - 1. 

P r o o f .  I )  S u f f i c i e n y .  Suppose  t h a t  f o r  some n o n v a n i s h i n g  c o v e c t o r  ~ ~ ( i m F ' ) l  t h e  

form ~F" has  i n d e x  ~ ~ k - 1. 

LEMMA 2. The quadratic form ~Dt2(v, v), v e Tu(t)U is nonnegative for almost all t �9 

[0, T]. Indeed, this follows from the fact that the index of the form ~F" is finite and 
from the following easily verified fact: 

LEMMA 3. Let ~ e [0, T] be a Lebesgue point of the map t ~ Dt 2. Then any function 

v(') e kerF' which also satisfies the conditions v(t) = 0 for It -~I > e, Iv(t)l ~ i for 
I t -~I ~ ~ admits a representation 

~'" (73 (.), v (.)) = xro j' O~- (73 (t), v (t)) dE q- o (s). 

Using Lemma 2, it is easy to construct a control system arbitrarily close to ft(u), 

say ~t(u), such that the value and first differential of the map u ~ ~t(u) at u(t) coincide, 

respectively, with ft and ft', t e [0, T], but the second differential 7~ is such that 

the quadratic form 

~0~ (73, 73)----- xp AN 1)-fl~ (73, v), vET~(oU, 

is positive definite uniformly in t e [0, T]. 

Consequently, we may assume that the form ~Dt2(v, v), v e T~(t)U is positive definite 

uniformly in t e [0, T]. We will indeed adopt this assumption from now on. 

T 

The symmetric bilinear form i~D~(731(~), ~2(1))dtde~--[(v1(.)Iv2(')) determines a scalar pro- 
0 

duct in the space ~ ~ u ; hence, also in the subspace kerF' c u. Using this scalar pro- 
duct, we can express the bilinear form ~F"(Vl('), v2(')) as 

where 

~p~t! (73")1 ( ' ) '  732('))~---(731 ( ' ) j  732('))+(73 1 ( ' )  I K'732 (')), 

] ( v l ( . ) I K v 2 ( - ) ) = J  , D$v2(~)dT, D,~vl(t) dt, 

K:ker F' ~ ker F' is a compact symmetric operator. 

Let [kerF'] denote the completion of the space kerF' in the norm ~(73(')173(')). The 
operator K can be extended in a unique manner to a compact selfadjoint operator [K] defined 
in the Hilbert space [kerF']; it is readily seen that im[K] c kerF' By the Hilbert- 
Schmidt Theorem, every nonzero point of the spectrum of this operator is an isolated eigen- 
value of finite multiplicity. Clearly, any eigenvector belonging to a nonzero eigenvalue 
is an element of Ker F' 

Now we may assume that -i is not an eigenvalue of K. Indeed, otherwise, we need only 
apply an arbitrarily small perturbation of the original system, leaving f and f' unchanged, 
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in order to "correct" {" so that the form ~Dt 2 becomes (i + ~)~Dt 2, where e > 0 is small. 

As the form ~Dt 2 determines our scalar product, it follows that the perturbation will trans- 

form K into the operator (1/1 + e)'K, i.e., all eigenvalues of K are multiplied by i/i + e. 

We may thus assume that the form ~F"(v('), v(')) = (v(')Iv(-)) + (v(-)IKv(')) is non- 
singular and has index s ~ k - i, where k = codim(imF'). Let wl('), ..., w1(') �9 kerF' 
be a complete system of eigenfunctions belonging to the eigenvalues of K less than -1. 
Denote W = span {w I ..... ws and let W+ c~ and positive definite on W- and positive defin- 
ite on W+. 

Now let X l .... , Xs be bounded vector fields on M n such that 

i) ~r o (~X i) = 0, i = i, .... s 

ii) the tangent vectors XT o X I ..... XT o Xs are linearly independent modulo imF', 

i.e., the subspace spanned by imF' and the vectors XT o X i, i = i ..... ~, is of codimen- 

sion k - s in T~TMn. 

It is not difficult to construct a control system arbitrarily close to ft(u), say gt(u), 

such that gt(u(t)) = {t and the first differential it' of the map u~ gt(u) at u(t) has the 

fform t 

d pr,tXi, V~6Th~oU, 
i = I  

where g �9 R 

T --,j,  
Let G : u ( ' )  -~ x 0 o exp g t ( u ( t ) ) d t  be the  map c a r r y i n g  every  admis s ib l e  c o n t r o l  u ( ' )  �9 

0 

L~([0, T]; U) to the end of the corresponding trajectory. Then G(u(')) = XT and the differ- 

ential G' of G at the "point" u(') has the form 
T I 

0 i = l  

v~ (.)~ ~. 
Consequently, 

In particular, 
on W+, 

im G ' =  im F@span { X r O X  1 . . . .  , ~ C roX t }  ' 

ker 0'----- W§ F' .  

the Hessian G" of G at the "point" u(') is a symmetric bilinear map defined 

G" :W+ X W+.§ coker (~'. 

In addition, the covector ~0 is orthogonal to imG". Since gt(u) is close to ft(u), it fol- 

lows that the scalar quadratic form ~0G" is close to the form ~0~"IW +. Since ~F" is positive 
definite on W+, the same is true of ~0G". Thus, to prove that u(') is a quasi-extremal con- 
trol we need only prove the following assertion. 

Proposition 2. Let g �9 CS(M n, U, [0, T]) be a control system and G': ,(.) + TG(u(.)) x 

M n and G"'kerG' x kerG' + cokerG' be the differential and Hessian, respectively, of the 
T -~ 

map G:u(')~ x 0 oexp gt(u(t))dt at the "point" 0(-) e L~([0, T]; U). If there exists a 
0 

covector ~ �9 (imG') • such that the scalar quadratic form ~G" is positive definite [i.e., 
~G"(v('), v(')) _> ~ llv(-)l122 for some constant ~ > 0], then u(') is a locally extremal con- 
trol for the system gt(u) with initial condition x 0. 

Proof. Our assertion is purely local. Hence, by introducing suitable local coordi- 
nates we can identify the set of admissible controls with the space ~(.) = Tu(.)L=([0, T]; 
U) and assume, moreover, that M n = R", G(u(')) = 0. We will prove slightly more than neces- 
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sary, namely, we will show that there exists a (possibly nonpositive) constant c such that 
f o r  a l l  v ( ' )  ~ ~ c ~ . ) , s u f f i c i e n t l y  c l o s e  t o  z e r o  we h a v e  t h e  i n e q u a l i t Y  ~G(u  + v ) : ~  c l lv l l~ lG  • 
(u+ v)]. To avoid notational complications we will write u, v .... throughout instead of 
u ( ' ) ,  v(') . . . . .  

The Taylor expansion of G at the point u is 
I 

10~G ~ , ,  
O ( ~ + V ) = O ' V + ~  0 7 t U f t Y '  ~ ) + ~ 0 - - 0 ) '  Om(u+O~)dO ' ( 4 )  

2 O0 ~ 
0 

v~_w~ (u). 

We also have G" = (32G/Sva)'(u)Iker G' + im G~. It is readily deduced from the identity 

T t 

O (u)---- xoq- Xoo.f e~p 5 g* (~ (~)) d*og (u (t)) at, v , ( . ) ,  
0 0 

that 
T 

0 

f o r  some c o n s t a n t  c 1 a n d  a l l  u s u f f i c i e n t l y  c l o s e  t o  u .  

The  s p a c e  u c a n  be  e x p r e s s e d  a s  a d i r e c t  sum ~ i  = k e r  G'  �9 V1, w h e r e  t h e  f i n i t e -  
d i m e n s i o n a l  s p a c e  V 1 i s  an  a r b i t r a r y  d i r e c t  c o m p l e m e n t  o f  k e r  G'  i n  ~ g,  d i m V  1 = d im ( i m  x 
G ' ) .  L e t  v = v 1 + v 2 ,  w h e r e  v 1 ~ V, v 2 ~ k e r  G ' .  As t h e  l i n e a r  map G' i s  n o n d e g e n e r a t e  
on V 1 and  t h e  q u a d r a t i c  fo rm ~ ( 8 2 G / 3 v 2 ) ' ( u )  i s  p o s i t i v e  d e f i n i t e  on k e r  G ' ,  i t  f o l l o w s  f r o m  
( 4 )  t h a t  

i 0 ~ + v ) I  > 2 ~  (l ] v~ j]~ +ll  v21l ~)> ~ (11 va Ill+l[ v II~) 

f o r  a l l  v s u f f i c i e n t l y  c l o s e  t o  z e r o ,  w h e r e  a > 0 i s  some c o n s t a n t .  M u l t i p l y i n g  ( 4 )  by  ~ ,  
we get 

~O~+v)=~ ~pa~(u ) (v ,  v ) +  D ~ ~-s  v,  v ) d O >  
0 

O~G - 1 , O2G e I 
> ~ a-~ (u) (v~, v2) + ~ v a 7  (~ (v~, v 0 - -  ~ i] V It~ > 

> - c= (11 vx II, tlv II~ + II v [19 > - cz (l! v, II, + It v II~)II v 1[~ > 
Cl > - a  l}vtl~to(~+v)l 

a n d  s o  o n .  

II) Necessity. Let codim (im F') = k > 0 and suppose that for some nonvanishing co- 

vector ~ e (imP')• the form ~F" has index at least k. 

LEMMA 4. There exists a finite-dimensional subspace W c ker F' such that for any non- 
vanishing covector ~ ~ (imF')• the scalar form ~F"[W is of index at least k. 

Proof. Indeed, for any ~ e (imF')• I~[ = i, there is a k-dimensional subspace W~ c 

ker F' such that the form ~F"IW~ is negative definite. Clearly, for all ~ sufficiently near 

the form ~F"]W~ is negative definite. Choosing a finitecover of the sphere {I~[ = i} 
= + . + by neighborhoods O~i ..... O~m, we can write W W~z .. W~m. 

ff~ 5r Let V c u (U) be a direct complement to ker F' in the space ~, i.e., ~ = V | 
kerF', dimV = k; in addition, let W c kerF' be the subspace whose existence is guaranteed 
by Lemma 4. 

Choose a (finite-dimensional) submanifold ~c L~([0, T]; U) such that u(') ~ ~It and 
T~)~=V@Wc~ . In the remaining part of the proof the Banach manifold of all admissible 
controls L~([0, T]; U) will be replaced by the submanifold ~. Therefore, from this point 
on until the end of the proof, only controls u(') in ?( will be considered admissible. 
Accordingly, we get 

F = F [ ~ : ~ - - + M  ~, F ' : V @ W - + T ~ r M ~ ,  

ke r  F ' - -  W, F ~ :  W X W - +  coker  Y ' .  
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LEMMA 5. Let N be a smooth manifold, ~:N +Rn bea smooth map, q e N. Let ~q', #q" 

denote the differential and Hessian, respectively, of ~ at q. Then, for all $:N +R",such 
that [[$ - ~l[{q},= is sufficiently small, 

i) codim im#q' ~ codim im~q'; 

ii) if ind~$q" ~ codimim~q', V~ �9 (im~q')• then also ind~q" ~ codim im ~q', V • 

e ( i m ~ q ' ) •  

P a r t  ( i )  o f  t h e  lemma i s  o b v i o u s .  The t r u t h  o f  p a r t  ( i i )  f o l l o w s  from t h e  f a c t  t h a t  
t h e  q u a d r a t i c  form ~$q" i s  c l o s e  t o  some form ~Oq", r e s t r i c t e d  t o  a s u b s p a c e  o f  c o d i m e n s i o n  

(codimim~q' - codimimSq') in ker ~q'. 

Definition 5. Let N be a smooth manifold and ~:N + R n be a smooth map. We will say 
that ~ is essential at a point q e N if, for any neighborhood ~q of the point, there exist 
e > 0, m > 0 such that the image of any smooth map $: ~_+Rn, satisfying the condition II$ - 
~))~.m < e contains the point ~(q), i.e., ~(q) e ~(~q).~ 

LEMMA 6. If the differential of a smooth map ~:N + R n at q �9 N is of rank n, then 
is essential at q. This lemma is a simple corollary of the Implicit Function Theorem. 

Since all our arguments are local, we will henceforth identify the manifold of admissi- 
ble controls ~ with the vector space T~(.) ~ = W | V, assuming moreover that M n = ~n. 

LEMMA 7 ("Fundamental Lemma"). The map F: ~ + M n is essential at the "point" u(.). 

The as yet unproven part of Proposition 1 follows almost immediately from this lemma. 
In fact, as F is essential at u('), the control u(.) cannot possibly be locally extremal. 
On the other hand, if gt(u) is a control system sufficiently close to (i) and G:u(') ~ x 0 o 

exp g t ( u ( . ) ) d t ;  t h e n ,  as f o l l o w s  f rom Lemma 5, t h e  s c a l a r  p r o j e c t i o n s  ~G" of  t h e  H e s s i a n  
0 

G" o f  G a t  t h e  " p o i n t "  ~ ( ' )  have  index  a t  l e a s t  codim i m G ' )  - t h e  c o d i m e n s i o n  of  t h e  image 
of  t he  d i f f e r e n t i a l  G' o f  G a t  u ( ' ) .  Thus,  t h e  map G : ~  ~ M n a l s o  f a i l s  under  t h e  sway o f  
t he  Fundamenta l  Lemma and i t  i s  t h e r e f o r e  e s s e n t i a l  a t  ~ ( ' ) .  

P r o o f  o f  t h e  Fundamenta l  Lemma. We r e a s o n  by i n d u c t i o n  on k = codim ( i m F ' ) .  

I n d u c t i o n  Base ,  k = 1. I n  t h i s  c a s e  ~ i s  u n i q u e l y  d e t e r m i n e d  to  w i t h i n  a s c a l a r  f a c -  

t o r ,  t h e  form ~F" does  n o t  have  a f i x e d  s i g n .  Choose wt ,  w 2 �9 W so t h a t  t he  numbers ~F" • 
(w l ,  w 1) and ~F"(w 2, w 2) have  o p p o s i t e  s i g n s ,  ~F"(w 1, w 2) = 0. C o n s i d e r  t h e  map 

�9 :(v, ~)~ P'v -t =~F" (wl, w,) + (1 - =)2p. (w2, w2), 
where v �9 V, ~ �9 R. 

The image of this map contains a neighborhood of the origin. Moreover, if ~(v0, ~0) = 
0, then the differential of ~ at (v0, ~0) is of rank n and, so, ~ is essential at (v0, ~0). 

Let ~ �9 R, and consider the map 

(v, ~)~F (~(.)+ Y82 v+8~w, +s ( l  --=) w2). 

Expans ion  in  T a y l o r  s e r i e s  g i v e s  

F (~(.)+ 8, 

I t  f o l l o w s  f rom t h i s  e q u a l i t y  t h a t  F i s  e s s e n t i a l  a t  u ( ' ) .  

I n d u c t i o n  S t e p ,  k > 1 A r b i t r a r y .  Denote  ke r  F" = {w 0 �9 W[F"(w 0, w) = O, 

i )  The q u a d r a t i c  map 

is essential at any point w e W\ker F". 

w ~ W}. 

(5) 
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Indeed, the differential of this map at w has the form w ~ 2F"(w, w). Consequently, 
its image is F"(w, W). Since w # ker F", it follows that dimF"(w, W) > 0 and, so, codim • 
~"(~, w) = s < k. 

Let ~ e F"(~, W) I and suppose that the projection of the Hessian of (5) at w in the 
direction ~ coincides with the quadratic form 2~F", restricted to the subspace Q0 = {w e 
WIF"(w, w) = 0}. Since the index of ~F" on W is at least k and the codimension of ~0 in 
W equals k - ~, it follows that the index of the form 2#F"iW 0 is at least ~. Thus, by the 
inductive hypothesis, the map (5) is essential at w. 

ii) The quadratic map (5) from W to coker F' is surjective. To prove this, we consider 
two cases: a) F"(w, w) ~ 0, V w # ker F". In this case the image of (5) is closed in coker x 
9'. If (5) is not surjective, this image contains boundary points other than the origin in 
coker F' This contradicts the fact that (5) is an essential map at any point w e ker F' 
b) Z w i ker F" such that F"(w, w) = 0. Since (5) is an essential map at w, its image must 
contain a neighborhood of the origin. Since (5) is homogeneous of positive degree, it is 
surjective. 

iii) The map (5) is essential at w = 0. Let ~ be some neighborhood of the origin in 
W. It follows from (ii) that the image of this neighborhood under the map (5) contains a 
neighborhood of the point G(0). In addition, it can be shown that for all G close to (5) 
the sets G(O) contain the balls centered at G(0) of the same radius p > 0. 

iv) The map 

O:(v, ~)~'~+P"(w, ~) 

from V �9 W to R ~' is essential at (0, 0). This follows directly from (iii). 

That the map F: ~-+R ~ is essential at u(') follows from (iv) and the Taylor expansion: 
82 82 F(~(.)+~ v+~)=F(~(.))+~ r w)+0(89, 

vEV, wEW, (8-+ 0). 
T h i s  c o m p l e t e s  t h e  p r o o f  o f  t h e  Fundamenta l  Lemma and ,  h e n c e ,  a l s o  o f  P r o p o s i t i o n  1. 

We r e t u r n  t o  t h e  p r o o f  o f •  t h e o r e m .  R e c a l l  t h a t  d i m c o k e r  F'  = k > O. Denote  ind  • 
F" = min{ind(~F")[~ e (imF") \0}. 

i) Let ~ be a submanifoid of finite codimension in L~([0, T]; U), u(') e ~ and suppose 
that the subspace T~(.) ~ is transversal to ker F' in ~ (U) Let F~ and F~ respect- u(.) " 

ively, denote the differential and Hessian of the map F[ ~ at the "point" u('). Then, as is 

readily seen, F~==F']T~.)% i m F ~ = i m F ' ;  

F ~ = P " t T ~ . ) ~ N k e r F  ~, i n d P ~ > i n d F ~ - - c o d i m %  

Suppose now that s = k - indF" <_ O. If codim@~< -s then dimcoker F~--indP~ <_ O. It 
follows from the arguments in Part II of the proof of Proposition i that the germ of the map 
F[@7 at u(-) is not extremal. Thus the local extremality index of the control u(') with 

respect to system (i) is at most s Moreover, since dimcokerF' - indF" is an upper semi- 
continuous function of the system, it follows that the quasi-extremality index of u(') with 
respect to system (i) is at most s 

The above inequality relating indF" ~zZ and ind F" may be written more accurately as 
follows : 

max i n d F ~ = i n d F " - - ~ z ,  Vcz>O. 
eodlmaZg= ~, 

(This follows from the standard Courant-Fischer Theorem on the minimax representation of 
eigenvalues.) In particular, there exists a manifold q4 of codimension 1 - s such that 

in_d Y~t  = ind F'~n u l - -  1, 

dim coker P ~  - -  ind F ~ t  = 1. 
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It follows from the arguments in Part I of the proof of Proposition 1 that there is a sys- 
tem gt(u), arbitrarily close to ft(u), such that the germ at u(.) of the map GI~I:u(.)~ 

T 

x0oexp S gt(u(t))dt is extremal. Moreover, if @7 c L~([0, T]; U) is a submanifold sufficiently 
0 

close to ~Ll, then the germ at u(.) of the map G[~ is also extremal. Thus the quasi-extrem- 
ality index of the control u(') is s 

ii) Let 0 _< d <_ k and let r n § a smooth map which is regular at the point F • 
(u(.)) and such that the differential CF(u)':FF(u)Mn +R n-~ of r at F(u(')) satisfies the 

condition: kerCF(u)' n imF' = 0. Let @~-~, and ~oF', denote the differential and Hessian, 
respectively, of the map ~ o F at the "point" u('), 

def - ~  
ind OoF" = r a i n  {ind xOoF" [ x6(imOo~')2- \ 0 } .  

Then: 

Oo~"F' ---- @ ~ ) o F '  - ' ,  cod im im @o"~' ---- k - -  d; 

Opt)oF , in__d ~fF"  > ind F" .  

Suppose  t h a t  s = k - i n d F "  > 0. I f  d ~ s t hen  d i m c o k e r  @ o F ' - - i n d ~ F "  ~ 0. I t  f o l l o w s  
from t h e  a rguments  in  P a r t  I I  o f  t h e  p r o o f  of  P r o p o s i t i o n  1 t h a t  t h e  g-erm of  r o F a t  u ( ' )  
i s  no t  e x t r e m a l .  Thus t h e  l o c a l  e x t r e m a l i t y  index  o f  t h e  c o n t r o l  u ( ' )  w i t h  r e s p e c t  t o  s y s -  
tem (i) is at most s Since dim coker F' - ind F" is upper semicontinuous, the quasi-extrem- 
ality index of u(') is also at most s 

If d ~ k - i, the inequality ind ~o~" ~ ind F" can be strengthened: 

rain (ind 0o-~" [ O:.&/n-+ Rn-a}= indF  ", O~d- .<k- -1 .  

In particular, there exists a map r n ~ R ~-I+I, such that 

dim coker O~oF'--ind O~oF'= 1. 

By arguments in Part I of the proof of Proposition i, arbitrarily close to ft(u) there is 
a system gt(u) such that the germ at u(') of the map 

@ , O : u ( . ) ~ O l  Xooexp ~ & ( u ( t ) ) d t  , u(.)6L~([O, T]; U) 

is extremal. Moreover, if the map r e C~(M n, R n-t+1 ) is sufficiently close to ~, the germ 
at u(') of ~ o G is also extremal. Thus the quasi-extremality index of the control u(') is 
equal to s 

The proof of Theorem i is complete. 

Remark. It is evident from the proof that the statement of the theorem remains in 
force if the standard topology of the space of admissible controls is replaced by the fin- 
ite-dimensional-open topology. 

2. Control Systems with Constraints on the Controls 

We have been studying control problems in which the set of admissible control para- 
meters is a smooth manifold. We now proceed to consider problems with sets of control para- 
meters of a more general nature, including manifolds with boundary and all possible "angles." 

1 ~ We will be dealing with a comparatively narrow class of manifolds with angles, 
whose properties we now proceed briefly to describe. For more details, see subsection 3.2 
of the previous paper in this volume. 

Definition i. Let U be a smooth manifold. A closed subset R c U is called a manifold 
with angles if every point u e R c U has a neighborhood ~ in M and local coordinates ~:O-~ 
R r, ~ (u) = 0, such that ~(RNG) is a convex polyhedral cone in R r with vertex at zero. 

A vector $ e TuU is said to be tangent to the subset R if there exists a smooth curve 
y:[0, e] + R such that y(0) = u, (dy/d$)[$= 0 = $. The set of all vectors tangent to R at 

a point u forms a cone in TuU, which we denote by TuR. It is clear that if R is a manifold 

1858 



with angles then TuR is a convex polyhedral cone. In addition, it follows from Definition 

1 that there exists a diffeomorphism 0: ~u+ TuU of a neighborhood of u onto TuU such that 

�9 ( R N ~ )  = T~R. ( 1 ) 

Any convex polyhedral cone is given by a finite system of linear inequalities. In 

particular, TuR = {$ �9 TuUI<~ i, $> ~ 0, i = I, ..., N} for some ~i, ''', mN �9 Tu*U" Conse- 

quently, any manifold with angles is given locally by a finite system of smooth inequalities. 
Indeed, if the diffeomorphism ~: ~u + TuU satisfies condition (I), then 

~ N ~  = { v~a~  I < ~ ,  �9 (v) >~<o, i =  1 . . . . .  N}.  

Definition 2. We will say that two manifolds with angles Rz, R 2 c U are transversal 
at a point u e R I N R 2 if 

(--T~R~)-~-:TuRz= TuU. 

In particular, a smooth submanifold N c U is transversal to a given manifold with 
angles R at a point u �9 N N R if and only if the plane TuN is not contained in a supporting 
hyperplane of the cone TuR. 

Definition 3. An open face of a manifold with angles R is any maximal smooth connected 
submanifold of R (a submanifold is said to be maximal if it is not contained in any larger 
proper submanifold of R). A closed face of a submanifold with angles R is the closure in 
R of an open face. 

It is not hard to show that the intersection of any two distinct open faces of a mani- 
fold with angles R is empty. Consequently, every point u �9 R is contained in exactly one 
open face, which we denote by F u. In addition, any compact subset of R intersects only 
finitely many faces. Furthermore, if F is an open face in R and 7 its closure in R, then 
the set 7\F is a union of whole faces of R; and, moreover, both the closed face 7 and the 
set 7\F are themselves manifolds with angles. The set 7\F is called the polyhedral boundary 
of r and 7 (notation: ~r or ~r). 

The inclusion relation "C" defines a partial ordering of the set of all closed faces 
of a manifold with angles. It also generates a partial ordering of the set of all open 
faces: a face r I is subordinate to a face r 2 if r I c 7 2 . As is readily seen, any closed 
face is a topological manifold with boundary (the boundary need not be smooth) and the max- 
imal closed faces are precisely the (connected) components of R. 

Let u �9 R and let 71 ..... 7 k be all the closed faces containing u. The map taking 

each face 71 onto the complex cone Tu71 determines a one-to-one correspondence between the 

closed faces of R containing u and the closed faces of TuR. This correspondence preserves 

the inclusion relation. Moreover, Tu7 u = Tur u is a maximal subspace in TuR. 

Let h:U + M be a smooth map of the manifold U into a smooth manifold M, R be a manifold 
with angles in U, and u �9 R, r u be the open face containing u. 

Definition 4. The differential of the map hlR at u is the restriction Go the cone TuR 

of the differential h':TuU - Th(u)M of h at u. The image of the differential of hlR at u 

is a complex polyhedral cone h'(TuR). 

Definition 5. The null-Hessian of the map hlR is the Hessian 

(h [ Fu)": ker (h' [ T~F~) X ker (h' [ T~F~)-+ coker (h'] T~F~) 

of the map h]r u at the point u. 

Remark i. Unlike the differential, the null-Hessian of hlR need not coincide with the 
restriction of the Hessian h":ker h' • her h' § coker h' to the appropriate subspace. In 
fact, since it may well occur that h'(TuU) ~ h'(Turu), it follows that then also coker h' 

cokerh'ITuF u, so that the quadratic maps h"l(TuF u O kerh') and (hlFu)" assume values in 

different spaces. 

Remark 2. We are using the term "null-Hessian" (rather than simply "Hessian") because 
the corresponding quadratic map need not contain all the invariant information about the 
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second derivatives of h]R. We will not present the definition of the "true" Hessian here, 
since the null-Hessian is quite sufficient for dealing with quasi-extremality in problems 
with constraints. This situation is typical: the "true" Hessian almost always reduces to 
the null-Hessian, except in a few exceptional cases. 

2 ~ . Let T > 0 be a number and R a manifold with angles in U. Let L~([0, T]; R) denote 
the set of all maps u(') e L~([0, T]; R) such that U(Eu()) c R for some subset of full 
measure Eu(. ) in [0, T]. The subset L~([0, T]; R) of the Banach manifold L~([0, T]; U) pos- 
sesses properties analogous to those of submanifolds with angles in finite-dimensional mani- 
folds. 

Let ~ denote the set of all open faces in R. Clearly, ~ is an at most countable set. 
Let t § F t be an arbitrary measurable map of [0, T] into ~, Then the set 

F =~(.)~L~([0, ~];~)i~(t)6Pt for almost every t6[0, TI} 

is called an open face of L~([0, T]; R). Similarly, 

F . = ~ ( . ) 6 L ~  ([0, T]; ~ ) [~( t )~P  t f o r a . e ,  t6[0, T]} 

i s  a c l o s e d  f a c e  o f  L ~ ( [ 0 ,  T ] ;  R) .  I t  i s  e a s y  t o  see  t h a t  any open f a c e  r i s  a Banach sub-  
m a n i f o l d  o f  L ~ ( [ 0 ,  T ] ;  U). 

Any map u ( ' )  e L ~ ( [ 0 ,  T ] ;  R) i s  c o n t a i n e d  in  a u n i q u e  open f a c e  t + F u ( t ) ,  which  w i l l  
be d e n o t e d  by P u ( . ) "  

R e c a l l  t h a t  t h e  t a n g e n t  s p a c e  t o  L ~ ( [ 0 ,  T ] ;  U) a t  a " p o i n t "  u ( . )  i s  t h e  s e t  o f  a l l  
measurable essentially bounded maps t~v(t) such that v(t) e Tu(t)U , vt e [0, T]. We will 

denote this space by ~z~.). Accordingly, the tangent cone to the set L~([0, T]; R) at a 

"point" u(') is defined as the set of all measurable essentially bounded maps t + v(t) such 
that v(t) e Tu(t)U , V t e [0, T]. This cone will be denoted by ~u~.)(~). A maximal sub- 

space of ~u~.)(~) is 

The following definition of transversality is essentially the same as in the finite-dimen- 
sional case. 

Definition 6. Let ~" be a smooth Banach submanifold of finite codimension in L~([O, T]; 
U). We will say that J#is transversal to the set L~([O, T]; R) at a "point" u(') e d-fl 
L~([0, T]; R) if (Tu(.)J~+~u~.)(~))=~u~)(in other words, if the subspace ru(. )~- is not con- 

tained in a supporting hyperplane of the cone ~f-u~.)(~). 

Let H:L~([0, T]; U) § M n be a map, twice continuously differentiable at a "point" u(')e 
L~([0, T]; U) of the Banach manifold L~([0, T]; U) into a finite-dimensional manifold M n. 
Let H': ~u~) § TH(u(.))Mn be the differential of H at u('). Then the restriction H'I~.)(R) 

is called the differential of the map HIL~([0, T]; R). 

The null-Hessian of the map H[L~([0, T]; R) at the "point" u(') is defined as the Hes- 
sian 

(HIP~)~:kerH'lTuF~ X kerH'jTuPu-"cokerH'tTuFu 

of the map Hlr u at u('). 

Let Cu(.)~(L~([0, T]; U); M n) e~ be a smooth germ at u(') e Lm([0, T]; R). We let 

~e denote the germ ~IL~([0, T]; R). In the preceding section we defined the order of 

extremality of a germ ~; an analogous notion can be defined for~ 

Definition 7. The germ~R is said to be extremal if there exist a neighborhood ~ of 
u(') in L~([0, T]; U) and a representative H: G + M n of ~, such that H(u(')) e ~H(~ fl L~ x 
([0, T]; R)), i.e., the point H(u(.)) is on the boundary of the set H I ~ fl L~([0, T]; R). 

Definition 8. i) Let ~R be an extremal germ. We will say that~ehas extremality index 
k > 0 if k is the least number such that, for almost every germ ~ e C ~(u)(~l n, R n-k) the germ 

(r o~)~ is not extremal, ii) Assume that ~R is not extremal. We will say that~R has 
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extremality index s ~ 0 if 9 is the least number such that, for almost every germ q4 of a 
submanifold of codimension -s at a point u('), transversal to L~([0, T]; R), the germ~RlqIN 
L~([0, T]; R) is not extremal. If no such least s exists, the extremality index is defined 
to be -~. 

Remark 3. The transversa!ity condition is necessary because in general it is not true 
that almost every germ at a point u(') of a submanifold of finite codimension in L~([0, T]; 
U) is transversal to L~([0, T]; R). 

3 ~ Finally, let us consider a control system with the controls subjected to geometric 
constraints : 

x=xoft(u) ,  xEM ~, uORcU, to[0, T]. (2 )  

All the symbols here are used in the same sense as for system (i.i) and R is a given subman- 
ifold with angles in U. The elements of the set L~( [0, T] ; R) will be called admissible 
controls for system (2). The set of admissible controls is endowed with the topology in- 
duced by the topology of the space L~([0, T]; U). The linear space of all control systems 
of type (2) with fixed manifolds M n, U, time interval [0, T] and manifold with angles R, 
will be denoted by CSR(M n, U, [0, T]). If we "forget about" the set R, the control system 
(2) becomes a system of type (i.i). In other words, the spaces CSR(Mn , U, [0, T]) and CS x 

(M n, U, [0, T]) consist of the same families ft(u), t e [0, T], u �9 U of nonstationary vec- 
tor fields on M n, In particular, the seminorms l)fllK,a, W~ M n • U, ct <_ 0 (see p. 4) deter- 
mine a Frechet space structure in CSR(Mn, U, [0, T]). 

T 

F i x i n g  a p o i n t  x 0 �9 M n,  l e t  us c o n s i d e r  t h e  map FR:U(" ) § x 0 o exp f t ( u ( t ) ) d t  of  t h e  
0 

s e t  o f  a d m i s s i b l e  c o n t r o l s  L ~ ( [ 0 ,  T ] ;  R) i n t o  M n. Thus,  F R = F I L ~ ( [ 0 ,  T] I  R) ( s e e  p .  110) .  

D e f i n i t i o n .  Le t  k �9 [-"~, n ] .  An a d m i s s i b l e  c o n t r o l  u ( ' )  i s  s a i d  t o  have  l o c a l  e x t r e m -  
a l i t y  index  k w i t h  r e s p e c t  t o  a c o n t r o l  s y s t e m  (2)  w i t h  i n i t i a l  c o n d i t i o n  x 0 i f  t h e  germ o f  
t h e  map F R : L ~ ( [ 0 ,  T ] ;  R) § M n at t h e  " p o i n t "  u ( ' )  has  e x t r e m a l i t y  index  k. 

The d e f i n i t i o n s  o f  q u a s i - e x t r e m a l i t y  index  and q u a s i - e x t r e m a l i t y  c a r r y  o v e r  in  a s i m i -  
l a r  way t o  p rob l ems  w i t h  c o n s t r a i n t s .  As b e f o r e ,  t h e  q u a s i - e x t r e m a l i t y  index  o f  a c o n t r o l  
u ( ' )  w i t h  r e s p e c t  t o  a g i v e n  sy s t em f t ( u ) ,  u �9 R, i s  t h e  upper  l i m i t  o f  t h e  l o c a l  e x t r e m a l -  
i t y  i n d i c e s  o f  u ( . )  w i t h  r e s p e c t  t o  a r b i t r a r y  sy s t ems  g t ( u ) ,  u �9 R, where g t e n d s  t o  t .  
In  p a r t i c u l a r ,  t h e  q u a s i - e x t r e m a l i t y  index  of  a g i v e n  c o n t r o l  i s  an uppe r  s e m i c o n t i n u o u s  
f u n c t i o n s  o f  t h e  s y s t e m  f �9 CSR(M, U, [0, T]). 

F i x i n g  an a d m i s s i b l e  c o n t r o l  u ( ' )  once  and f o r  a l l ,  we i n t r o d u c e  t h e  f o l l o w i n g  n o t a -  
t i o n :  

FR': u (R) § TxTM n is the differential of F R at the "point" u('); 

FR0' = FRITuFv is the restriction of FR' to a maximal subspace of~ (R); 

FR0":kerFRo' • kerFR0' + cokerFR0' is the null-Hessian of F R at u('). 

Describing expressions for F R' and FRo", we will use the notation introduced when we 

derived the formulas for the differential and Hessian in the problem without constraints 
(pp. 112-113), without further ado. 

By the general definitions: 
T 

0 

im F~ = conv {xroO~vlv6T.a.(,)R , 

t is a Lebesgue point of the map t~ x T o DxZ}. 

im F a o =  span {xroDT, v I vfiT~oI'7(o, 
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t is a Lebesgue point of the map ~'x T o D~I}. 

Let 
.]o) "T r -+Der M"I.E t vuTt)" ~t) "Y(t)XT~(t)F ~(t) (T~t)r'~t)) 

be the second differential of a map u ~ft(u) of the smooth manifold F~(t) into DerM n at 

the point u(t) and 

O~t ) (* l ,  *2)--~-nuyr,tJr~t)(~l, ~2), V~l, v2@T~t)F~o. 
Using Lepta i.I and the definition of the null-Hessian, we obtain 

JiJ ] P o(V, ('), Dr;(oCva(t), v2(t))dt +-~r ~ D, vl(x)dz, D~v2(t) dt+imFRo, 
~ r  

'r F~o, i=1,  2. 
Before stating our main result, we recall that the polar cone imF r' c TxTMn is defined 

by 
�9 ~, o * -- T* a . e . .  (,mFn) -----{,@rTr],~40, Vg@imP~} --{,6 7r ,D~v..<O, vv~r~o R for t~[O, rl}. 

Clearly, (im}R')~ c (imFR0') • = (coker }R0')*- 

At the same time, for any ~ �9 (coker 9R0')* we have a well-defined scalar quadratic 

form ~gR0" 
THEOREM i. Let u(') be an admissible control. If (imFR) ~ = {0}, then the quasi-extrem- 

ality index of the control with respect to system (2) is 

dim coker F~o-- min {ind (~PL) I ,~( - ~m P~)o \o}. 

Proof. If cokerFR' = O, then F'(~ (R)) = TF(~)Mn. The proof in this ease differs 

only slightly from that of the corresponding part of Theorem i.i. We will therefore not 
swell on it here, but go on at once to consider the case dimcoker FR0' = k > O. 

Proposition i. An admissible control u(') has positive quasi-extremality index if 
and only if there exists a covector ~ �9 (-imFR') ~ ~ ~ O, such that the scalar quadratic 

form ~FR0" has index at most k - i. 

This proposition is the key to the proof of our theorem, which may be derived from it 
in almost exactly the same way as in the proof of Theorem i.I. 

Proof of Proposition i. 

I) Sufficiency�9 Suppose that some nonvanishing covector ~ �9 TF(u)*Mn satisfies the 
�9 ~ conditions: ~F'v( ) -> 0, V~(.)@ ~, the form ~FR0" is of index Z <_ k - i. 

If we have some Riemannian metric in U, we can identify the spaces TuU and Tu*U, u �9 

U. For any t �9 [0, T], the cone Tu(t)R n (Tu(t)ru(t)) • is acute-angled and any vector v �9 

Tu(v~R may be expressed uniquely as v = v o + vl~ where v I "~" • - - i ~ ^ �9 Tu(t)Fu(t)' v~ �9 Tu(t)R n 
(Tu(t)Fu(t)) . Clearly, x T o [~D t v 0) = u, x T o (~Dtlvl) ~ 0. Using the fact that the 

cones Tu(t)R N (Tu(t)Fu(t)) • are acute-angled, we easily construct a control system arbi- 

trarily close to ft(u), say {t(u), such that ~t(u) = ft(u) V u �9 Fu(t), t e [0, T] and at 

the same time, for some ~ > 0, 

xTo(, Ad > I I, 
F x vt~[O, TI, v~T~(,),q rl (T~v) ~(o) " 
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Consequently, 
T 

(" >=]Iv(0 Jdt==IJ*( )I11, (3) 
0 

V 

T 

(where F' is the differential of the map 

T 

u () x0oex  ]/, (0) at = (u ()) 
0 

at the "point" u(" )). It follows from this inequality and the identity ~ >, I TuFu = ~9' ]T u x 

F u = 0, in particular, that ker ~ = kerF R' fl T u F u. 

It remains to "perturb" the map FIF u = F[F u in a suitable way. Since Fu, unlike L~([0, 
T] ; R), is a Banach manifold, we can reason almost exactly as at the corresponding point in 
the proof of Theorem i.i, constructing a control system gt(u), arbitrarily close to ~t(u), 

T 

such that the differential G' and Hessian GR0" of the map G:u(') --x 0 oex-+pfgt(u(t))dt at 
0 

u(') satisfy the following relations: 

a) G' l (Turu)  • -- P '  I(Turu)• 

2 f o r  some ~ > 0 and V v ( . )  e k e r G '  These  two r e l a -  b) [ ~ G R 0 " ( v ( ' ) ,  v ( - ) ) ]  _> $ l lv( ' ) l ]2  
tions, together with inequality (3), imply that u(') is locally extremal with respect to 
the system gt(u), u e R. The proof that this is indeed so is the same as the proof of Pro- 

position 1.2. 

II) Necessity. Let codim(imFR0') = k > 0 and suppose that for every nonvanishing 

covector ~ e (imFR')O the form ~FR0" has index at least k. We must prove that the quasi- 

extremality index of u(') is not positive. 

The proof follows the same lines as that of the analogous statement in the problem 
without constraints. We need only "adjust" the statements of the appropriate lemmas so as 
to incorporate the constraints. 

LEMMA 1.4' There exists a finite-dimensional convex polyhedral cone K c ~ (R) such 
that W = K N kerFR0' is a linear space and for any nonvanishing ~ �9 F'(K) ~ the quadratic 

form ~F"IW has index at least k. 

Let V c TuF u be a subspace such that TuF u = V | ker FRo' and K be the cone whose exist- 

ence is quaranteed by Lemma 4. Choose a (finite-dimensional) submanifold with angles c 
L~([0, T]; R) such that T u~ = V s K. In the remainder of the proof, we will use only the 

subset ~ instead of the set of all admissible controls. 

Definition 1.5' Let N be a smooth (finite-dimensional) manifold, N m S be a manifold 
with angles and ~:N + ~,z be a smooth map. We will say that the map #IS is essential at a 
point q e S if, for any neighborhood ~q of this point in N, there exist e > 0, m > 0 such 
that for any smooth map $: ~q-+~= satisfying the condition Ib~ - ~IbOq.m < e the set ~(6~n S) 
contains the point ~(q). 

LEMMA 1.6' Let Cq' :TqN + R 'z be the differential of the smooth map r + l~ n at the 

point q e S c N. If Cq'(TqS) = R '~, then r is essential at q. 

LEMMA 1.7' The map F I ~:~ § M is essential at the "point" u('). 

The as yet unproven part of Proposition 1 follows without difficulty from Lemma 1.7' 
The proof of the latter, like that of Lemma 1.7, is by induction on k. We mention only 
that in the induction step the quadratic map (1.5) should be replaced by the map 

w), 

where w e kerFR0' 0 T u ~, 
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vfi (F'  (Tff.~)q-im -ff~o)C=coker F~o. 

It is essential here that (F'(T~ ~)+ imFR0') is a polyhedral and, therefore, closed cone, 

since it is a linear image of a polyhedral cone. 
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SMOOTH CONTROL SYSTEMS OF CONSTANT RANK 

AND LINEARIZABLE SYSTEMS 

S. A. Vakhrameev UDC 517.977.1;514.7 

An exposition of the results of the author and A. A. Agrachev concerning sys- 
tems of constant rank and bang-bang theorems for these systems. The author 
also presents a survey of results on the linearization of smooth systems and 
points out the relationship between systems which are linearizable by smooth 
feedback and systems of constant rank. 

INTRODUCTION 

This paper is devoted to a complete exposition of results partly announced in [i], [2], 
[5]; we will be concerned mainly with the class of smooth control systems 

x=f(x ,  u), x6M, u6U (1) 

( o r ,  in  t h e  n o t a t i o n  o f  t h e  f i r s t  paper  in  t h i s  volume,  ~ = ~ o g i  = b i  ~ R~, i = 1, . . . .  
m, $ o f = A~), which in the complexity of their structure most closely resemble linear 
control systems in R ~ and in fact inherit some of the latter's important properties. 

A linear control system in R n is a system 

~----~~ f%- u,gt ,  ~ C M = R  n, ufiR m, (2) 

in which the fields gi, i = 1 .... , m, are constant and the field f linear; ~ o gi = bi ~ 
R" , i = i, ..., m, g o f = At. The most important property of linear systems is that the 
map Ftg,T which associates to an admissible control u(t), 0 g t g T, the right endpoint 

t(T) = t(T; u, $0) of the trajectory of the system corresponding to that control and the 
initial state t0, is an affine map; thus an affine change of variables in the image of this 
map makes it linear. 

Those smooth control systems of type (i) which are most naturally considered as "near- 
ly" linear are the systems whose map Ft0,T (this map is frequently called the input-output 
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shie Dostizheniya, Vol. 35, pp. 135-178, 1989. 
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