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QUADRATIC MAPPINGS IN GEOMETRIC CONTROL THEORY

A. A, Agrachey 9DC 514.763.637+514.154
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Tkhe article is dedicated to local investigation of mappings of type " T "of smooth controlled systems.

The homologzcal theory o/’ quadrauc mappings and the geometry of the Lagrange Grassmannian are used for

the study of 3y j sy W ‘2 0f mappings of type " ... " including for the obtaining of the
necessary and sufficient conditions for local optimality. ‘f %UE ‘5 ‘fa ‘e

1. INTRODUCTION

I. Let M be a differentiable manifold with iselated point ug € M, and () a smooth vector field on M. Field
f is associated with a curve on M, a solution of the differential equation du/dr = fo(p) with initial condition u(0) = p,.
Let g(u) be another smooth vector field. Perturbing field fo with the help of fields proportional to g, we obtain new
curves that are trajectories of equations of the form

Fr=ToW+u@®e® 0

with the same initial condition uy. As u(r) we can take an arbitrary local summable function, but as soon as such 2
function is chosen, Eq. (1) (with the initial condition) uniquely determines trajectory u(t), t € R. Mappings F: u(-) —
u(t) of a space of functions in manifold M arise. The mappings are fairly complicated: - . gl f“‘;' _: the velocity
of each trajectory passing through point u € M lies on the same affine line f o(#) + ug(u), ueR, the t totality of the points
of all the trajectories can form a set of an arbitrarily large dimension; as a rule, the image of mapping F\ has a nonempty
interior in M.

We can consider a more general situation by replacing fy(s) + ug(s) with an arbitrary family f(u, u) of vector
fields on M that depend smoothly on u € U, where U is some smooth manifoid.

Again we define mappings F;: u(:) — u(t), where

v b= @@, u(®), pO)=p, (2

A one-parameter family of mappings F,, t > 0, is called a smooth controlled system.,

According to the viewpoint accepted in this work, optimal control theory consists of the study of image evolution
and sets of the level of mappings F, with the growth of parameter t. Only local investigations are conducted here, i.e.,
we study the behavior of mappings F, near a fixed critical point u(-) (it is easy to see that any point critical for Ft is also
critical for all F,, 0 < r < t).

The view of a controlled system as a family of mappings u(-) — g, t > 0, originates in the foundation-laying
works of L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, that are summed up in [14].
Paper [11] explicitly formulates a geometric approach to optimization problems for which the optimality, in some sense
or another, of trajectory B, =F_(u(-)), 0 < 7 < t,is interpreted as the belonging of point 4 to the boundary of the image
of F, or of some modification of this mapping. If the question is of local optimality, then we consnder the restriction
of F, to a small neighborhood of u(:).

The key result of classical theory, Pontryagin’s maximum principle, provides a necessary optimality condition
obtained by linearizing system (2) with respect to variable p along trajectory ,. This principle proved to be a very
effective tool for solving problems of opnmal control Nevertheless, in many problems, in the first place for systems
important in applications having the so-called - soextremals, the application of the maximum principle proves to be
insufficient for the e optimal tra;ectones (see, for example, [10]). For the study of such systems, various
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additional optimality conditions that take into account approximations of higher order, first of all of the second, were
found through the efforts of many experts. Within the scope of the geometric approach, beginning with the middle of
the 1970s, the optimality conditions of high order were also studied by Gamkrelidze and the author. In order to attain
present understanding, it was necessary to thoroughly reconstruct the theory's language and to significantly expand the
formulation of the problem (see [3—7]). An important moment at the beginning of this activity was the familiarity with
18}
o It is intuitively clear that the strict local optimality of trajectory g, = F (u(-)) is almost the same as the isolation
of point u(:) on’ e L], 22 F,~%u,). In the present work, we undertake to study the local structure of - 1..%% J@'
F,~'(): the traditional question of whether point j, lies on the boundary of or inside the image of the small
neighborhood of () under mapping F, is inserted into the problem of calculating relative homology groups H«(F,~ Yo
F 1 )\a ().
Classical examples and models are regular variational problems. A standard variational problem in R® with
integral functional

I=§(p(x(t), d"‘")dm ¢>0,

0

and boundary conditions x(0) = x4, x(T) = x, is, essentially, equivalent to the controlled system

dx » u (0)

Fotu(-)x(g), where o5-=-rm=e-

1
Indeed, the replacement of time 6 (t)=j (x (), dx (v) ) dx leads to a homeomorphism of ;, :a*.: . Fy™Y(x,) and
[}

I71(¢). Under such a homeomorphism the critical pomts of mapping F, turn into the critical points (extremals) of
functional L
Furthermore, under reasonable constraints on ¢ it turns out that:

the minimum of functional<=-x; is a boundary point of the

{ equal 0 image F,.

The most important information on the behavior of functional I in the neighborhood of the fixed extremal x(-)
is provided by the second variation {the Hessian of I at x(-)]. For regular problems the second variation is an integral
quadratic form of finite index; moreover, the index of this form completely defines the behavior of functional I near
(). ‘

The analog of the second variation for a general controlled system is the Hessian of mapping F, at the critical
point u(-). However, in contrast to the regular variational problem, the arising quadratic forms usually prove to be
singular and, what is even more significant, the Hessian is, generally speaking, not a scalar quadratic form but a vector
quadratic mapping! Moreover, these effects occur not in some pathological cases but for completely natural systems;
for example, when f(u, u) = fo(u) + ug(p), u € R, fy(u), and g(p) are left-invariant fields on a semisimple Lie group.
Phenomena of such kind greatly enrich our subject compared to the classical situation and a significant part of the
investigation becomes the study of the topology of quadratic mappings. However, before describing the obtained results,
it is necessary to refine the initial concepts.

2. Throughout the whole work smoothness means infinite differentiability while piecewise continuous and
piecewise smooth functions of a real argument are regarded as continuous on the left. Homology (cohomology) groups
are everywhere, unless otherwise stipulated, singular homology (cohomology) groups of a topological space. The assertion
that a typical element of a given tf)pological space has a certain property means that this property is fulfilled for all
elements of an open everywhere ;;/»o- . subset.

Suppose that M and U are smooth manifolds of dimensions d and r, respectively, g, € M and p+ f,(p, u) isa
family of smooth vector fields on M depending smoothly on u € U and piecewise smoothly on t € R. Thus, f,(s, u) €
TMVueM, ueU,te R Manifold M is called a phase space and U a set of controlling parameters.




E

Remark. As a rule, we consider in control theory sets of controlling parameters of a more general nature than
smooth manifolds. The methods of the present work are completely applicable in the case when U is a manifold with

},; o C; :#rand "with corners." They are designed for such applications, but the crux of the matter, in our view, is better

seen in a purely smooth situation. There are also such problems in which f,(, u) depends nondifferentiably on g; to
such problems our methods are not applicable in principle.

By L ({0, t]; U), as usual, we denote the totality of all measurable curves u(r) € U, 7 € [0, t] such that the set

u([0, t]\I") C U is compact for a subset [depending on u(-)] of Lmeasgggﬁer&l‘ C [0, t]. It is easy to see that L ({0, t], U)

is a Banach manifold of class C, modeled on L0, t].
Let u(-) € L_({0, t}; U). Consider the differential equation

= Felpu@), €0, ¢ @)

with the initial condition u(0) = u,.

The solution of such an equation is, generally speaking, not definable on the whole interval [0, t]. In order to
avoid similar difficulties, we assume the following conditions to be fulfilled:

Manifold M is imbedded into the Euclidean space RN as a smooth manifold and, simultaneously, as a closed
subset; in particular, f(s, u) € T M C 'I'“RN = RN, Forany K & U, t > 0, there is a constant ¢,(K) such that

|Felis @) | <<eo(K) (14| p]) for  ueK, 6[0, £], peMcR™.

The made assumption evidently guarantees the extendability of the solutions of equations of form (3) to the whole
interval [0, t]. We define mapping Fy L ([0, t}; U) — M by setting Fy(u()) = pu(t), where u(r), 0 £ 7 < t, satisfies
differential equation (3), 4#(0) = s,.

It is easy to show that F, is an infinitely differentiable mapping. The critical points of mapping F,, by analogy
with classical calculus of variations, are called extremals.

Fix some point u(-) € L ([0, t}; U), and let j, = F,(u(-)).

We are interested in the following questions:

I) Is it true that p, € int Fy( G’,—,(_)) for any neighborhood Oﬁ(,) of point u(-) in L ({0, t}; U)?

11) What can we say about the topology of the intersections of a set of level Ft"l(f.\(-)) and small neighborhoods
of point u(-), in the first place, about homology groups

Ht (Ft-l. (;‘t): t_l (l:t)\a()) ?

If u(-) is a regular point of mapping F,, then by the implicit function theorem there are local coordinates 9:
Ca() ~ LooT0, t] and ¢ Op, — R9, defined in some neighborhoods of points u(-) € L ([0, t]; U) and p, € M, such that
(p-Ft-@"lz LT0, t]— RY is a linear surjective mapping. Consequently, the answer to the first question is affirmative.
A set of level Ft"l(ht) near u(-) is arranged quite simply: F, ) N Oﬁ(,) is diffeomorphic to a subspace of codimension
d in L,70, t], in particular, Hy(F,~*(i), F,"M)\u(-)) = 0, i > 0. ,

Assume now that u(-) is an extremal and, furthermore, u(r) depends piecewise smoothly on r € [0, t]. Denote by
F,’ the differential of mapping F; at point u(-); then Fy* Ty5()Lo((0, t]; U) — T;M is a linear mapping. The tangent
space Tg()Loo((0, th U) consists of all measurable in essence bounded curves v(r),0< 1< t in TU such that v(r) € TG(,)U
vr € [0, t]. Each of spaces Tﬁ(,)U, 0 < 1< tis isomorphic to RY; moreover, isomorphism [ Tﬁ(,)U — RF can be, of
course, selected to depend piecewise smoothly on . We obtain isomorphism v(r) — Lv(r), r € [0, t], of spaces
Tﬁ(_)Lw([O, t}; U)and L0, t]. Since extremal u() is fixed in the sequel, it is convenient for the purpose of simplifying
notation to fix once and for all an isomorphism of spaces Tﬁ(_)Loo([O, t]; U) and L 10, t], and in the sequel not to
distinguish at all between these spaces. In particular, we shall write

Fi:LL10, t]—~ Ty M.

The fact that u(-) is an extremal (a critical point of mapping F) is equivalent to the relation

imFy#Tg M.
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Let L0, t] O ker Fy’ be the kernel and TgM/im F,’ = coker F,’ the cokernel of mapping F, at point u(.).
Denote by F, the Hessian of mapping F, at point u(-); then

Fi:ker F; X ker F;— coker Fy

is a symmetric bilinear mapping (see [1, Sec. 1}).

3. We will seek the answers to questions I and II by studying quadratic mapping v(-) — F,"(v(), v(-)), v(:) € ker
F,’. In the case when dim coker F,’ = 1, this quadratic mapping is actually a real quadratic form. If, in addition, the
quadratic form is definite on a subspace of a finite codimension in ker F,’, then to answer the questions interesting us
it is enough to find its inertia index (see [1, Sec. 1]). In reality, however, these remarkable properties are not very often
fuifilled. Not to be unsupported by evidence, we give a typical example.

Assume that a structure of a semisimple Lie group with Lie algebra M is defined on M; moreover, pg = € is a unit
element in M.

Consider the controlled system on M defined by the differential equation

L= fo@tu@e®), pO=e z@ER, 0<T<H,

where fo() and g(p) are left-invariant vector fields on M. Set ur)=0,0g 7 t.
Let a = fo(e) and b = g(e) be elements of Lie algebra M = TM. Instead of mapping Fy u(-) — u(t), it is
convenient to consider the equivalent mapping

G u(-)yetap(t).

It is easy to see that G,(0) = e. Let G, L [0, t] = R, G," Ker G’ x ker G’ — coker G’ be the differential
and the Hessian of mapping G, at the origin. Somewhat later, in Sec. 2, we will obtain explicit expressions for the
derivatives of arbitrarily high order of an arbitrary controlled system. For the time being, however, we give the
necessary formulas without justification:

t
Gio ()= § evdehy (v dv, Vo (-)ELo[O, £, @)

i s :
@i (0, (+), Vg (-))=§ [5 e%4ahp, (9) do, e%9py, (r)} dv+im G,
0

Yo,(-), 09(-)€ker Gy;

the brackets [, -] denote, as usual, a commutator in Lie algebra T and (ad™a)b = {a, (ad®!a)b],n = 1, 2, ..., (ad%a)b =
b.

Equation (4) implies that im G," = span {(ad"a)b l n=0,1,..}). Assume that qis a regular element of a semisimple
Lie algebra M. Let H, be a Cartan subalgebra containing a and (., -) the Killing form on 3. Since (H,, ad"ab) =0Vn >
0, and the restriction of Killing’s form on H, is nondegenerate, dim (H, N im G, ) £ 1. Consequently, dim coker
G, 2 rank I — 1, where by definition rank M = dim H,.

Thus, for any Lie algebra of rank at least three, G,”is certainly a vector (not scalar) bilinear mapping.
Furthermore, its scalar projections

YGi (01 () ()= bf P {S e%*3abo, (9) de, ev*4apo, (1)] dr,

0

where ¥ € (im G,")*, are completely continuous forms and we do not have to think of any definiteness.
Let us return to the general case. A reasonable nondegeneracy condition of a bilinear mapping F," is the
requirement that the origin in space coker F,” not be a critical value of mapping

v() > Fi(v (), o()), 'v(:)EkerF;\O.

s wldi2
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If dim coker F,’ = | and F,” is a real bilinear form, then this nondegeneracy condition is equivalent to the regular

condition ker F,” = 0. However, in the case when dim coker F,” > | the nondegeneracy of F,” does not at all entail the
nondegeneracy of all the scalar forms ¢F, ¢ € (im F,)*\0 [the latter would have meant that mapping (5) does not
always have critical values].

If F,” is nondegenerate in the specified sense, then cone {v € ker F,’ [ F,"(v, v} = 0) approximates well the

" level Ft‘l(ixt) near point u(-) and a natural "quadratic" analog of question I from subsection 2 turns out to be the
question of whether the quadratic mapping v(-) — F."(v(:), v(-)) is essentially surjective (see [I]).

The pairing of arbitrary vector x € T,M and covector { € T“‘M is denoted simply by ¢x (as a product of a row
by a column). Thus, for any ¢ € (im F,)* C TM*M, expression ¢F," is a real quadratic (= symmetric bilinear) form on
ker F,”. The most important invariant of an arbitrary real quadratic form q is its inertia index ind q which is either a
nonnegative integer or +co. For a vector quadratic mapping F.” the role of the index is played by function ¢ + ind
¥F,, ¥ € (im F,)*\0, which takes on nonnegative integer values and +eo. In [1] it is shown how to isolate various
properties of mapping F,” with the help of this function. However, in order to successfully apply the methods of the
mentioned work, it is necessary to have flexible explicit formulas for ind ¢F,”. Section 3 is devoted to the description
of such formulas. Before that, in Sec. 2 we give one special representation of the Taylor expansion of mapping F,, from
which, in particular, we obtain an invariant expression for F,”. A general study of quadratic mapping v(-) — F,"(v(:),
v(-)) is conducted in Sec. 4, while Sec. 5 is devoted to concrete calculations for certain special classes of systems.

In conclusion, I express my gratitude to my teacher R. V. Gamkrelidze for his constant support and attention to
this work.

2. VARIATION OF A CONTROLLED SYSTEM

1. When working with smooth controiled systems (as in many other cases), it is convenient to use the following
operator notation.

Point 4 € M is identified with homomorphism ¢ — () of algebra C(M) in R. Automorphism ®*: o(:) —
©(®()) of algebra C (M) corresponds to diffeomorphism @: M — M; value ®(u) of diffeomorphism @ at point 4 is
written in operator language as u-®*, a composition of an automorphism and a multiplicative functional (which is in turn
a multiplicative functional). At the same time, the composition operation (3,, ®,) — ®,.®, converts the totality of all
diffeomorphisms into a group denoted by Diff M. Note that ($,.®;) = ®,*.9,*. It is not hard to show that any
automorphism of algebra C (M) has form &* for some & € Diff M, so that relation ¢ — $* establishes an isomorphism
of group Diff M and a group of automorphisms of algebra C,(M). Smooth vector fields on M are identified with
derivations of algebra C_(M), i.e., with R-linear mappings X: C,(M) — C,,(M), that satisfy Leibnitz’s rule:

X (9192) = (X9)) P2+ @1 (X P2) YP;026C 0 (M),

Commutator [X, Y] = X.Y — Y.X converts the space of all smooth vector fields into a Lie algebra denoted by
Der M. The value of vector field X at point 4 € M (tangent vector to manifold M at point g) is written as 4.X. By
symbol T M, as usual, we denote a tangent space to manifold M at point p; for us this is the space of all R-linear
functionals ¢ on C (M) satisfying the condition £(p p,) = Yea(s) + o1 (8)(€py). By symbol Ad &, where ® € Diff
M we denote the inner automorphism Ad ®: X — $*.X.®*~! of algebra Der M and by symbol ad Y, where Y € Der
M, the inner derivation ad Y: X — [Y, X] of the same Lie algebra, X € Der M.

Let N be one more manifold of class C, and & M — N a diffeomorphism. By symbol ®« Der M — Der N we
denote the differential of mapping @, and by symbol &+, T M — Tg?(#)N, where s € M, the corresponding linear
mapping of tangent spaces. This differential is defined for any smooth mapping and not just for diffeomorphisms; if
& € Diff M, then & = Ad *1,

We introduce in algebra C (M) Whitney’s topology, the topology of the uniform convergence of derivatives of
any order on compacta. Whitney's topology can be specified with the help of the family of seminorms -l k2 0,
K @ M, where seminorm |- | ¢ x defines the topology of the uniform convergence of all derivatives up to order k on
compactum K. Seminorms |- |y x in contrast to the topology given by them are not uniquely defined by manifold M
and can be chosen by various methods. In what follows it is assumed that such a choice was made and the seminorms
are fixed. For an arbitrary vector field X € Der M we set
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DX e =sup {l| X le.x || @lles1,6=1}, £=0, KEM.

Diffeomorphisms and vector fields define continuous linear operators in Fréchet space Co(M) while points and
tangent vectors define continuous linear functionals. In the space Z(C.(M)) of all continuous linear operators in M and
the space Co(M)* of all continuous linear functionals in M we introduce a topology of pointwise convergence: sequence
AEZ(C M), i=1,2, ... [a; € Co(M)*, respectively], converges to A EZ(CM))[ae C (M)*]if and only if Ajp —
Ap (a(p) = a(p)) Yp € Co(M).

Suppose that ¢,, t € R is a one-parameter family of elements from C(M). It is said to be measurable if Vu €
M scalar function t — @,(ps) is measurable; a measurable family is defined to be locally integrable if

iy
[loclsxdr< + o V&, 6ER, £>0, K=M.
ty

ty ts
It is easy to see that for locally integrable families ¢, functions 5 PdTip—> Sq),(p.)dr, belong to C (M)},
I I

t;, t, €R. ,
A family p,, t € R is called absolutely continuous if there exists a local integrable family ¥, such that p, = 2

t .
+‘S"Y‘dx. Using the separability of C(M) we can prove, as we do for scalar functions, that for almost all t
le

!

d d

o= { Vetv=v,.
0

For one-parameter families A,, t € R, of operators from Z(C(M)) the concepts of measurability, continuity,
differentiability, local integrability, and absolute convergence are defined by the requirement that YV € C (M) family
A,p have the corresponding property. The fact that a local integrable family can be integrated and a differentiable one
differentiated as well as the validity of Leibnitz’s form

3 (AcB)=(% A, )-B,+ Ac[% B,)

is proved with the help of the Banach—Steinhaus theorem (for a more detailed proof of basic analysis operations for such
families, see [4, 5]). The same is analogous for one-parameter families of linear functionals from C(M).
. f

Family Ay, t € R is called absolutely continuous if it is representable in the form A,=A4,, +j B.dv. We have
[}

(d/dt)A; = B, for almost all t.

Locally summable families X, € Der M, t € R, are called nonstationary local vector fields on M and absolutely
continuous families ,*, where ®, € Diff M, t € R, satisfying the condition ®, = id are called nonstationary fluxes on
M or, simply, fluxes (symbol id denotes the identity mapping). A nonstationary field X,, t € R, defines an ordinary
differential equation (d/dt)u = 4. X, on M. A nonstationary field X, is called complete if for Yu, € M there is an
absolutely continuous solution u(t) of this equation satisfying the condition u(0) = 4 for all t € R. A complete field
defines flux ®,*, the uniquely absolutely continuous solution of operator equation (d/dt)A, = A,.X, with initial condition
Ag =1id; here p(t) = py-®,*. For flux &,* the following notation is used, which reflects well its origin and is convenient
for calculations:

= f
O} =exp i X.dv.
The asymptotic expansion

~ .
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ot o ¢ <, T~y
exng,dtzid—}-E fdr,idr, oj(x,mo...ox,,)drm,

the exact sense of which consists of inequalities

t m ¢ Ta—1
exp | Xear—id— X [dr ... | KegooroXo)du)o|| <
[} a=1 0 Q R K

t
L‘:j “X"”k. ~d% £ m+l
<ce? X (i I X< ”k+m,R‘d‘T) ‘lq:’||n+m+l,l~('

VoeCo (M), k, m>0, KEM,

N

where ¢, and ¢, depend only on k and m, holds (for details including estimates of the constants and K & M see [4n.
Next, family of operators Ad @,*, t € R, acting in space Der M, is the unique absolutely continuous solution of
the operator equation (d/dt)s% =s#.ad X, with initial condition $; = id, implying the asymptotic expansion

%

C e 2 T 1
AOY =Y+ [av{dn ... | @dXee. . cad XoY) dTm
0 .

mul 0 7]
Y € Der M with estimates of the remainder analogous to (1) (see [4]). These facts are reflected in the notation used
below:
-3 ! —_ !
Adexp | X.dv—=exp | ad X.dr.
0 0
When X, is independent of t, X, = X, t €R, the traditional notation is used:

¢ H
exp i Xdv=¢!X, e;p_gad Xdr=etrdX,

¢
For complete nonstationary fields X, and X, + Y, nonstationary field e;p j‘ ad X;d%Y, is also complete and the
0

"constant variation formula”
- ¢ - -f o = - ¢
&xp [ (Xe Yo dr—exp | (exp {ad XodﬁY,) dreexp | X, )
Q [1] [1} 0 '

which is 6hecked by direct differentiation of the right- and left-hand sides with respect to t, is valid.
2. Suppose that X,, Y,, t € R are nonstationary fields on M such that nonstationary fields of form X, + €Y, ¢ €
R are complete. Consider the one-parameter family of fluxes

t .
D; (e)=-exp § (X<+e¥y)dr, e, t6R.
Formula (2) and expansion (1) imply that

t
3 0} ()= Ad0% () Y <due0} (o). 3)

0

Set
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i
£, (5)= | Ad0; (9)Y<d.
Q
LEMMA 1. Assume that for a givent€ R, k2 I, equalities

ot
S;T gm0

. s gkt =
E, (=0, 0<i<k—1, G;gle_om(e)=€§ETu.Ms

hold. Then
p’OOO; (8) — (p.o+ -BT:— gf)o@: (0) +O (gH‘l).

The statement of the lemma follows from (1) and (3).
In the hypotheses of Lemma 1, vector

£he®7 (0)= (D (0), EET o,y M

is tangent to curve & — @,()(iy) at point ®,(0)(pg). In other words, the principal term in the power series expansion in
e of curve & — py(e) = By (e)(ip) in M coincides to within a positive factor with the principal term of the power series
expansion in € of curve & ,(0)-3,(0)+E8(e) in T“t(O)M, At the same time, if for curve u.(¢) only the principai term
of the expansion is a tangent vector; then the whole expansion of curve p,(0).8,(0):E(e), by def inition, consists of
tangent vectors. Since the aforementioned relates to the arbitrary fields X, and Y,, the power series expansion in & of
fields E,(¢) must, in principle, give a universal expression for the differential, the Hessian, and all the invariant
information about higher derivatives of an arbitrary controlled system.
Using formula (3) we get

t

7 &)= & (01 ()Y (0%(9)) dr=

¢
=§ [Ad 0% (e) Y odd, AdO:(e)Y<]dr={ [Z: (o) 3 B (0] dr.
0

Thus,

28 0= S ELG] 2 E(0)|dv, 2,(0)= § Ad 0; (0)Y<dr.
1]

For arbitrary absolutely continuous in r stationary fields s#;, %+ we set

{

(V.wﬁ-)r=§ [-941, 35:— 58,] d.

We have

2
3 8.= VBE-'

Differentiating this relation with respect to &, we get

a2 = =
5ot B.=Vygal + VaVaE.

G R0 MO 1T b7 F

et o

e
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TR A ST

L

Differentiating once again, we obtain an expression of (8%/8%)E through E with the help of operation V, etc. Thus, we

can write out the whole power series expansion in & of E,(¢) through E,(0), using only operation V. We can, however,
act differently.

Set , |
Z,=Ad O (O)Y,=exp § ad X dtY .

Equation (2) implies that

t

- § Ad (e’x’p 5 Xo+ eYo.dﬁ) Yedt=

( exp 5 eZodﬁ') (Ad exp | Xodﬁ) A=
- § exp § ead Zod0Z:dv.

Consequently,

Ty

2, (e) = D, embfdwo af dti... § (ad Zx_. . .ad Ze,Zx,) T @

mm==0

Consider a more general situation by replacing the family of fields X, + €Y, with an arbitrary family of complete
nonstationary fields X,(¢) that depends smoothly on € € R. The "constant variation formula," taking into account (1),
implies equality

¢ T
7;?; pS X1(e)d1—Se;)pS adXo(e)dﬁ% X< (e)dve
Y 0 0

t
oeXp § X<(e)dr.

So the assertion of Lemma 1 remains true if we set

)
O ()= e;p f X< (e)d,
b

¢
8 (0= { Ad 0 (6) - X< (o) dr=
0

¢

<
= (e { ad x4 (9 40 3 X< @) .
; :

0

Fork=1, 2, .., weset

-

, |
L
ZP = ad X O dr | Xi©:
1]
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It is easy to show that all the coefficients of the power series expansion in & of the family of fields § (@‘POS X
(K), k = 1, 2, ..., with the help of V. We shall

ad X (e} d© £~ Xeleyde is expressed through nonstationary fields Z;

not dwell on this and will write out the expansion that generalizes (4). We have

H t T :
exp § ad X+ (6) dv=exp S ad (exp S ad X o (0) d0 (X< (&) — X+ (0)))°
1]

0
¢ ¢

- — y iod R —_
°exXp S ad X 0) dv=exp § ad (}gl ET Zﬁk)) dreeexp S ad X« (0) d.

0 Q

Consequently,

t Te

i §dxo§d~c,...

me=0

{m“( S ek”' (k) ( > a;’“ 3 % k k-{;l
sese c—adZ T oueso —— ad Z¢! g, ) T
S -] kml m Rym=l kil o B0 k‘lzt' d (5)

0 L

T

H
§ (e?{p S ad X, @ de) 2 X:()dim
Q

Now everything is ready for the definition of the variations of system (1.2) at point u(-). We will give this
definition under the assumption that U is an open subset in R*. The general case is reduced to this by an introduction
of local coordinates L ({0, t]; U) (the variation, generally speaking, depends on the choice of local coordinates in the
space of controls L ([0, t], U), but it does not depend on the local coordinates in phase space M). A complete variation
of system (1.2) is defined to be the one-parameter family of mappings 2%, Loo([0, t];, V) x L 70, t] — Ty M, t> 0, which
are defined by the rule

Pie(); v())=

¢ L 4
=WSO (exp§ ad fo (-, 2(8)) dﬂ";“ (-, 26 v(r))dc.

Fork =1, 2, ..., a k-order variation at point (8(-), 0) is defined to be the (k — 1)-st derivative of mapping ¥, at the point
(3(), 0). A k-order variation is denoted by

P® @ NLLIO, 11X oo s XL [0, £} > Ty, M
and is a symmetric multilinear mapping. ,
The motivation for such a definition of variation is provided by Lemma I, and the method of calculation by

formula (5). Let

v (-)EL [0, £],

setting
— ! 13
zS”=(exp S ad f< (-, u (x) dw:) B%Ff‘ (vaE) @M, . ..,0m),
0
=12 ...,
we get

7 PP K PR N e e

o e SN




t
g <ﬂ<-»v<->=uoo§zé”dr,

4 T
PO @NEEH ('))=Po°§ z? + [§ Zyds, Zﬁ”] )dw
13 T

S @)@ v(-»=fxoo§ 9+ § [z, zM]+

(]
+2[z), 2942 D z{Mde, 129, z,‘"]]) dd)dc
A (6)

etc. ¢
- — -
We turn, finally, to mapping F,. Suppose that o, ==eXp§ f<(+, u(x))dv, t€R, Lemma | implies the following

relations for the differential and the Hessian of F, at point u{-):

Fro () =8, 2" @(-)o()
Vo (-)6La [0, ¢
Fi (@ () 02(-)=0uZ® @(-)) @1 (-), 02 (-))+1m Fy,
Vo, (-), 2 (-)Eker Fy.

It is convenient to make a change in M and consider instead of F, mapping G, = &’t’l.Ft, for which equality
Gyu(:)) = po is f ulfilled. Since &, is a diffeomorphism, from the standpoint of the questions interesting us, mappings
F, and G, are completely equivalent, for example, F, () = G, Mug). Let G, be the differential and G,” the Hessian
of mapping G, at point (-); then F’ + 2,sGy’, Fy” = ‘i’t*Gt"» so that

Go ()= w(-No ()
G (01 (), 02 (N =P @ () (@1 (-} ©2(-N+1m Cr, %)
0 (-)ELL [0, ], 1 (+), 2(-)Eker Gy

3, SECOND VARIATION AND SYMPLECTIC GEOMETRY

1. We begin by writing out the explicit expressions for Gy’ and G,”. Let

=_1 @ -~ - 2 -
L= &0 2 o0 B ), H =00 gz fi (2, #>0

¢
[recall that o' =exp § ad f« (-, (%)) dv, and extremal (r) depends piecewise smoothly on r]. ThenZ; R*— DerM i:

a linear mapping and Hy: RF x RF — Der M is a symmetric bilinear depending piecewise smoothly on t > 0. Formula:
i (2.6) and (2.7) imply that

t
o ()= 5 Zo(@)ds, imQi= MZ« (Z.R")

t
Qi (01 (), D2 (-))= P'o"é (H+ (@1 (%), 02 () +

+ [S Zov; (8) A6, Z:v2 (1)] dt+1m Gy,
3 .
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v(')ELrgo [09 t], Ul('): U?(')eker G".

Fix time t > 0 and set
M=imG;= 3 ZR’
I<r<t
Suppose that &y is a submodule in Der M consisting of all vector fields, the value of which at point p, lies in II, and
norm (&) is the normalizer of subspace & in Lie algebra Der M, i.e.,
norm (&) ={X€Der M|[X, Enjc&n}c&u.

Set Eq =&p/norm &p. The operation of vector field commutation defines in the following way the structure of

a nilpotent Lie algebra on space Ep @ T, M/
Letx,y€EEg, &, 1€ T’“OM/H; moreover, X = X + norm &y, y = Y + norm &q, where X, Y € &y, then

def
[£ 42, y+nl=GelX, Y]+ IDET s, M/1L

For any r € [0, t] we denote by h,(vy, v,) the image of vector po-H,(vy, Vvg)under factorization TnoM - T“OM/H,
vy, V4 € RY, while by 3,v we denote the image of vector field Z,v under factorization & — &p/norm &y = Eq. Then

G; (@ () 2 (D= (ke (0. (%), 22 () +
[+]

+ [i 3601 (0) 8, 302 (1)} dr. M

We turn to the description of space Ep.
Suppose that I, is the maximal ideal C (M) consisting of f unctions that vanish at point u,. The following chain

of inclusions is checked directly:

I3, Der Mc Iy &ncnotm Encly, Der MC&m. (2)

Using the penultimate inclusion in chain (2), we get that mapping Z — pgZ, which associates to each field Z €
E its value at point pq, vanishes on norm &y, and, consequently, induces some linear mapping g Ep — II. Here, as
it is not hard to see, im g = II, ker g = I, Der M/norm &p;. Next, taking into account the first two inclusions in
chain (2), we get that mapping (p, X) — ¢X, which associates to function p € I, and to vector field X € Der M the
field pX € I, Der M, induces some linear mapping j: T”D‘M ® (TFOM/I'I) — Eq. It is easy to see that

imj=1I,, Der M/norm&n, ker j=I1" (T, M/II).
Since T”O*M/H* = [I*, we obtain a (natural) exact sequence

;&
0 I* (T, M/T) > En 5 [0, 3)

where inclusion j induces mapping j. .
Let codim II = k > 0. The exact sequence implies that dim E = (d — k)(k + 1). The commutation operation in

Lie algebra Ep & TMM/II is connected to exact sequence (3) in the following way:

(2 J (@®V)]=(©8?) v, V2€Em @OVE*&(T,,M/1I).

ket T PN g
T

R T B e

L T

e AR it




The assignment of local coordinates q = (qy, .., qg)T: O — R9 in some neighborhood O of point Ho in M leads to
the identification of a space of vector fields in O with the space of smooth mappings q — X(q) from R¢ into R4, It also
automatically defines coordinates in space E;. Let coordinates q, be such that q,(#) =0, a = 1, ..., d, and subspace I C
T“OM are identified with plane q; = ... =g, =0 in R4, Then module & is identified with submodule (X = (X,,
Xa)T € Cood(RY) | X,(0) = 0, i = 1, ..., k} in C,3RY) and the space norm &p; with subspace

avoy

{(X=(X1 ..., X5 6CL (RY| X (0)=0,
(.9 . R
T O=0, i1, 0 ks j=kt 1 o d).

Consequently, values X;(0), 6X;/3q;(0), i = 1, ..., k; j=k+1,..,d give coordinates in space Eg =8 ;/norm &y. Letx =
(X100, ..., X4(0), 3X,/8q;,1(0), ..., 3X,/8q4(0)) be some element of space Eyy expressed in these coordinates. Clearly,
Hox = (Xyy 1(0), ...y Xd(O))T. Thus, our coordinates split the exact sequence (3). Besides that, for any x, y € Ep,

d 3. ov ax T
3 (x-tr)... 3 Snm 5.

[x, y]=(

Note that in the important special case k = codim II = 1, mapping (x, y) — [x, y] from Ep x Ey into T, M/M =
R is a symplectic form on Ey; moreover, the coordinates introduced above are canonic for this form. In this case, Lie
algebra Ef @ T“OM/H = E;; ® R is isomorphic to the generalized Heisenberg algebra (see [13]), and exact sequence 3)
takes on the form

0-—I1* i»EniH—-» 0.

Suppose now that k is arbitrary and ¥ € II*\0. Mapping (x, y) — ¥{x, y] defines a skew~symmetric bilinear form
on En. Identity ¥{z, j(w ® v)] = (wpez)(yv) implies that the kernel of this form coincides with j(I1* & (¥1)).
Consequently, form (x, y) — ¥{x, y] defines a symplectic structure on space

Eno=En/j [1*&(y1)-

Since, clearly, (T“OM/II)/(d)-'-) =~ R, and j is an injective mapping, we have exact sequence
0 1I*+FEne— 110, 4)

that is induced by sequence (3). As in the case when k = 1, the introduction of local coordinates in a neighborhood of
point pq splits exact sequence (4) and defines canonic coordinates.

Here and below in this section, vector ¥ € IT1\0 is fixed; set =& m,e and denote by ¢ a symplectic structure on
. According to the aforementioned, I is a quotient-space of &y by a subspace of codimension 2 dim IT = 2(d — k) in
8’n Symplectic structure o is induced by the skew-symmetric form (X, Y) — ¥(o[X, Y)) on&p. Denote by Il = ker
o the image of subspace I 3’ in ©. It is clear that Iy is a Lagrangian subspace in . In coordinates (qy, ... 4q) canonic
factorization &; — £ takes the form

X=(Xb""Xd)"*(Xk+X(O)"' » X4 (0),
2
PREe (;’;; (0)....,2@ g"*u)

{e=l

where $ = ($1, s Yo 0y o0y O
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Let z,(4)v be the image of field Z v under factorization &y — I; then

!
$3; (0 (+), 22 ())= 05 (s (01 (7). 02 () +

+o ( Jzo @000 2o, (v)) dr. ®)

$ .
Condition v,(-) € ker G’ is equivalent to relation § 2< () 0y(7) dvellye

In the sequel, argument ¢ in notation z (¢) and z,()(¥) = (di/dri)z,(¥), i 2 O will be, as a rule, dropped. Since
covector ¢ is fixed, this does not cause any misunderstanding. Finally wesetm=d —k = dim II.

2. The principal goal of this section is to obtain explicit and possibly more flexible expressions for the inertia
index of quadratic form $G,”. The problem of calculating the inertia index of an integral quadratic form has a long
history; for the second variation of the regular variation problem it was solved by Morse [19] in terms of the so-called
conjugate points. In a number of works (see [15, 17]) Morse’s formula was generalized to certain degenerate situations.
The interpretation of Morse’s results in terms of symplectic geometry is also sufficiently well known (see, for example,
[9]). Our problem is to obtain an explicit expression for the index that is stable for practically any degeneration. Here
it is reasonable to give up altogether the taking of conjugate points.

In the first place we should establish the conditions for the finiteness of ind ¥G,” or (which is very close) the
conditions for the nonnegativity of ¥G,"(v(:), v(-)) for any v(-) different from zero by only a subset of a sufficiently small
diameter in [0, t].

LEMMA 1. Assume that for some [ > 0 and half-interval (7, 7] C (0, t] identities a(z,(‘)vl, z4v,) =0, ¥ € (T,
1], ¥v,, v4 € R, Vi < [ are fulfilled. Then

1) o(zy( vy, 2,00v,) = (—1)io(zy0v,, 2pv,), T <8< 7, v, v, ERT, i< L

2) If I > 2m, then a(z,(i)vl, z,(j)vz) =0,Vi,j2 0, 7T <8< 1, vy, v, ER"

Proof. 1) Let us use induction on value /. For [/ = 0 there is nothing to prove. The step of the induction is:

o (2801, 200y) =T (260, 26, 7)) —0 (260, 2§00,) =

= —a (2§ oy, 200) = — 5 o (26 oy, 2800,) +
—{-—c(z&"z’v,, z@”vg)z— a(zé"’”v;, zgz)vg) = ...

ee.=(—1)0 (z&'“”v&, 280,).
. in {0, t] subset the following decomposition

P

2) Since diﬂm )Z‘: =2m, for all 7 from some open everywhere ¢~ i

[P

gl

. - 2. . . » . v .

is valid: z28™o= X &, (v, ) 2%, where o;(r, v) depends smoothly on r. Differentiating this identity with respect to
=0

7, we can represent a derivative of anarbitrarily highorder fromz,v in the form of a linear combination of the first 2r

— 1 derivatives. =

We can associate to each 7 € (0, t] an integer k, > 0 and a quadratic form 4, on R in the following way: if form
¥h, does not equal identically zero on any interval 7 < 8 < r; then we set k, = 0, 7,(v) = $h,(v, v); otherwise let k, be
a maximal number k such that cr(z,(i)vl, 2,vy) = 0 for i < 2(k — 1), v, v, € Rf on some interval 7T <§ < 7, 1,(v) =
o(z,(kr)v, z (kr—1)y), v € R¥; if, however, maximal k does not exist [that is, o(z,()v,, Z,v,) = 0 for i < 2m), then we set
ke=m+ 1,7 =0

Proposition 1. If ind ¥G,” < +oo, then:

a) o(z,(kr—lv,, 2,5, v,) = 0, Vv, v, €RF, 7 € (0, t];

b) 7{v) 2> 0,7r€(0,t], ve R".
Conversely, if condition a) is fulfilled and 7,(v) > €| v |2 for any v € R*, r € (0, t] and some ¢ > 0, then ind ¥G,”
< +C0,




Proof. Assume that $h, = 0 for v € RF, 1 € (ty, t;) and z, is smooth on this interval. Then for every function
v(:) different from zero only on segment [t,, t,] we have

$G; (@ (), 2(-))= f o (S 250 (8)d6, 20 (r)) dr.

T
Integrating by parfs [whereby v(r) is integrated and _f 2g0 (8)d9 and z, are diff erentiated] and setting
i
we get @, (V)= S v(0) d8,
LN

1 Y -
Y3/ 0 () 2 (N=—{ 0 (20 (¥), 2w, () de—

fs < .
_f o(f zov (8) do, 2" w, (r)) dv+c(§ 2.0 (7) d%, z¢,, (£2)) =

£ £y

iy fs
= 5 0 (2., (v), 2:0(v))dT+ S oz, (1), zw, (V) d3+
LN LN

s
+ o( [ 280w, @) d, 2w (v)) dr—

£ 1y
f1
-0 (f z.w, (7)dv, 24, (tg)).

If k, > 1 for r € (t, t,], then the first two summands on the right-hand side equal zero; in this case the third term is
integrated by parts again, and so on. If, in addition, k, = const for 7 € (t;, t,), then finally we get

¢
‘pG’”= g (Z‘(gk1—1) wk.t (T), z‘gkt—l)fwk‘_l (“.")) dT+

1

-

ty ts T
+5 ¥ (W, (7)) dv+f Y (f 2®) w, (8) dB, z{w,, (1:)) dr—

£ e

k=1 153 (6)
— 2 (—1)tig (j zé""'wkt 8) ds, sz)'w,.,x (fe)).

=0

<
where w,(¥)=0 (), @, ()= @, (8)do fori> 0.
L

Note that [ Wi() o € |t; =t | | Wim1() | o Clearly, (vy, vg) = oz, (kr=Dv,, 2, r—1v,) is a skew-symmetric
form on Rf. Assume that this form differs from zero for some 7 € [ty, t3], without loss of generality we can assume that
T =1, Itisnot hard to see that on a subspace of codimension rk, in L Tt;, t,], defined by conditions wj(tz) =0,j=1,
..., K, the following relation is true:

ts

$G/ @ () o (N =] o (287 e, (0), 2V wa o @)dT
£
40 ((t—t | || e () D)
If form $G,” has a finite index, then we can easily deduce from Iwe, O os [tz =t ] [ Wi,_,O) | o that form
i3
g ¢} (z}f“"wkt (T), zyf"”'wkf_; (T)) dz (7)

i

must also have a finite index. At the same time there exists involution J: RF — RF, J2 = id of space RF such that
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o (28 Vo, 2{Vy,)= —a (217D, 280,) vo,, 0,6R’

(the corresponding involution obviously exists for each skew-symmetric form on Rf). Consequently, each subspace in
L,Tt,, t,] on which form (7) is positive is put in correspondence to a subspace of the same dimension on which form (7)
is negative. Since the kernel of form (7) evidently has an infinite codimension, we arrive at a contradiction.

Thus, the finiteness of the index of form ¥G,” implies the identity

oz Ny, 2% N5} =0, Vo, 0:€R"

In this case, equality (6) implies that on a subspace of codimension rk, in L Tt,, t,] defined by conditions wj(tz) =0,
j=1, .., k,, the following relation is fulfilled:

$Gi (@ () 2 ()= § Ve (e, (1)) d+O (| fa— 11 ]| 1, () [2)-

ty
If the index of the form is finite, then the index of form S Ye (W, (7)) dr, must also be finite, which is evidently possible
only for v, 2 0. "

Assume now that hypothesis a) from the formulation of Proposition 1 is fulfilled and, in addition, 7,(v) > €| v|?
Vv € R*. The definition of numbers k, and forms 7, implies that in this case k, has discontinuities only at the points
where the smoothness of curves r — z, and r — ¢h, is violated.

Let 0 =1 < 7y < ... <7, =t be a partition of interval [0, t]; moreover, all the points where the smoothness of z,

and ¢h, is violated are among the points ;. ,
Every v(-) € L 10, t] is uniquely representable in the form fo(~)=z v,(-), where v(r) differ from zero only
for _; <7< 1. Let v() € L0, t] be such that =t

Ty

AT
{zo@mar=0, i=1,...,L @®)

!

Then $G;(@ () (D= 2¥C (@ () 21 ()

jmm]
Conditions (8) isolate in L 70, t] a subspace with a finite codimension. Consequently, to prove the finiteness

of the index of form ¢G,” it is sufficient to prove the f initeness of the index of each of the forms v(-) — ¥G,"(v;(), vi(:)).
In particular, it is enough to consider only such v(:) which vanish outside some segment (r;_,, r;]. Since k, = const for
r € (r,_;, 7], representation (6), where t; = 7,3, 3 =7, is valid. Taking into account hypothesis a), we obtain that on
a subspace of finite codimension in L, r,_;, 1;] our form coincides with the form

T

Ty ]
S Ve (@, (V) AT+ j‘ o § 280w, (9) d6, 24V W D)D) T,
Ty T

Tt -1

that is, with the restriction on some subspace of form

T L\ T .
Q@= | w@adt o [ tuEds @@
Ti-y Ti-1 tl—-l

()L |t I

However, according to the classical Hilbert—Schmidt theorem, the quadratic form Q is positively definite on some
subspace of finite codimension in L 2[r;_,, 7;].
As we already noted, if 7,(v) 2 ¢|v | 2v¥r €0, t}, v € R, then 4, and k, are piecewise smooth continuous on
the left functions on [0, t], smooth at any point where curve t — z, is smooth.
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First we will learn how to compute the index of form ¥G,” when 7,(v) > ¢ | v |2, and then in subsection 6 we
note what must be changed if 4, degenerates. Thus, everywhere below, if otherwise not stipulated, it is assumed that
7,(V)2 e|v|2V¥re(o,t], v € R", and some ¢ > 0.

3. In this and the following subsections we widely use notation and results from symplectic geometry that are
collected in the Appendix to this section.

Consider the families of subspaces

k-1 e—1
Te= 3 20R,, Ti= X 2URr,
e i Jmbe

LEMMA2. a) T, NI¢=0,T, N T,%=0;b)dimT, = dim F, = rk,; ¢) families of subspaces I'; and F, depend
piecewise smoothly on r € [0, t]; moreover, this dependence is smooth at any point where curves r — z,, r — $h_are

smooth,
( > z(l)'v,)AI‘

Proof. a) Identity oz, ), zJ) = 0, i, j < k,, equivalent to inclusion T, C T follows from Lemma 1. Assume that
moreover, v, #0, k, < n ¢ 2k, — 1. Then I=ke

n .

O=0c (zgkt—ﬂ—l),vm 2 z.(‘})'oj) =0 (zgkt—n—l),vm z‘(‘n).vn) =

J=ke

= (=" (o),

which contradicts the positive definiteness of form 4,. Consequently, I‘ N I‘ = 0,

Analogous arguments prove relation I‘ N T, %= 0 and also assertion b). Assertion c) follows from b) and the
constancy of k, near any point where curves z,, Yh(r) are smooth.

Form 1,, like every quadratic form on RF, is defined by some self-adjoint mapping :1,: Rf — R™* so that 1,(v) =
(1,v)v. Denote by 4,7} a quadratic form on R"" definable by mapping 7,2, that is, 7, 1(v*) = v¥(7~1v*). Next, for
every x € T mapping v — o(z,(¥r)v, x) is a linear form on R¥, thus, o(z,{r.), x) € R, and correspondence

2 y7 (0(2040, £)), xe3, ®

defines a quadratic form on symplectic space I.
Assume that v,}, ..., v,7 is a basis in R” such that (,v,})v, = 0 for i # j; then

r (k.‘) l
1 -1 (k ) " )
A ( * =
7 121 27<

Every smooth function on a symplectic space is a Hamiltonian; it defines a Hamiltonian system of differential
equations on this space; if the Hamiltonian depends on time r, then the system is nonstationary; if the Hamiltonian is
a quadratic form, then the Hamiltonian system is linear. Nonstationary quadratic Hamiltonian (9) is associated with the
Hamiltonian system

r 6 r) l
2 U")'v,, x€3, 7€[0, t]. (10)

-l ‘!

which is called a Jacobi system for the extremal of the controlled system under consideration. A flux on I defined by
the Jacobi system is a one-parameter family of linear symplectic transformations of space L. Since symplectic
transformations carry Lagrangian planes into Lagrangian planes, system (10) also defines a flux on the Lagrange
Grassmannian L(E). According to the notation given in the Appendix, this flux on L(Z) is generated by the
nonstationary vector field (1 /2)'7,"1(0(2 (ks). , A)), A € L(Z). The differential equation

A—'—' _l( (z(:‘)" A))! A€EL (&), €[0, ¢] . . an
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is also called the Jacobi equation.

In the sequel, solutions of Eq. (11) are defined to be not only continuous but also piecewise continuous curves
with the derivative with respect to 7 at a point of discontinuity taken to be the limit on the left of the corresponding
derivatives. Thus, to uniquely determine a solution of the Jacobi equation it is necessary to give the jumps at points of
discontinuity in addition to the initial value.

The following concept is key for what follows.

Definition. A Jacobi curve is defined to be a piecewise smooth curve A, on L(Z) satisfying the Jacobi equation

and the conditions Ag = Iy, Ap,q = A,T7+9, V7 €0, t].
Direct calculation shows that e(A,, T} = 0; consequently, , C A VTE[D, t]; therefore, the curve is continuous

at any point of continuity of T',. JENUEP S
Suppose that the collection of ‘points 0 = Tg< T <<=t contains all the points at which the smoothness of

curves =, st 5 sviolated. Curve A, is described more exphcxtly in the following way:

Ao=no Af‘+0=(Atl+Pf‘+0)lnrfl-!-Ov i=0, 1’ ceay I— 1;

( 9) 1

29 Ue » Xg (kg) 4

A:——{xxﬁzlxe— E ll o (9] ) —_—— 2 g, T;<OLT, Lr 406 40
6 9

for <7< Ty

To compute the index of quadratic form $G,” we need one symplecnc invariant of the triple of Lagrangxan
planes Let Ay, Ay, A C T be Lagrangian planes and ),e(A,+Ag)nAal ﬂ Ag Then A is represented in the form A /\1
+ As, where k,eA,/ n A,,J =1, 3. Assume that A,,=A.,+ n A,, j=1, 3 and set q(A) o()q, Ag). It is easy to see that
value q(A) is well defmed i.e., expression a(Al, As) 1s mdependent of the choice of the representatxon of the

corresponding coclasses. Thus, correspondence Ao q(A) defines a quadratic form on (A; +Az) N A/ ﬂ A,.We introduce
the notation

inda, (Ass A9 =Ind g ++ dim ker g=Ind g 3 (dim (A, A +

+dim (A5 Ad)—dim 1 &),

where ind q is the inertia index of quadratic form q(:\) and ker q is the kernel of this form.
Clearly, 0 < ind,, (A}, Ag) < m; moreover, indy, (A3, A1) =0

inda, (A1, Ag)=1ndy, (Ay, Ag)_ = (m—dim (A N Ag),
lndA: (All Aa) -+ lndA. (As' Al) + dim (Al N A3)—"= m.

We will consider other formal properties of this index (and, in particular, its expression through the Maslov index of
the triple of Lagrangian planes) in Sec. 4, while now we give one more definition.

Definition. Let A, t €[to, t;] be some piecewise smooth curve on the manifold of Lagrangian planes L(X). Curve
A. is called simple if there exists a Lagrangian plane £C I such that

Af n ?=O, indy (A“ A¢+0)=—‘0 Vte{to, tx].

LEMMA 3. Let A, t € [tg, t;], be a piecewise smooth curve on L(Z). Then for every t € [t,, t,] there is a
neighborhood Oy of point t in [tg, t;] such that curve A. I oy is simple.

Proof. Proposition AS of the Appendix to this section implies the existence ofa Lagranglan plane #such that
quadratic form X — o), M40) 0N (A, + Ayyp) ng’ where A = Ay + Mgy A € Ay, Myg € Agyq, is nonnegative and A, NP=
Ao N®@ = 0. In this case, ind g(Ay, Ayyg) =

THEOREM 1. LetA,,0< r< tbea Jacobian curve and /4] = 0 = 1y < 1, < .. <, = t an arbitrary partition of

interval [0, t]. Then
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D indg, (Ac, Ac,,) <Ind$G; + m. (12)

1m0

If, however, the given partition of interval [0, t] is such that all pieces A. [ [ririen] of the Jacobian curve are simple, 0 <
i < 1, then the inequality in formula (12) becomes an equality.

. Before proving the theorem, we describe several additional methods for calculating ind ¥G,"; they are all closely
connected with formula (12).

Consider the family of quadratic forms that depends on s € [0, t]
@, (@ (), o(-)= § YA (0 (@) dr+
g

+f g (§ 2q0(8) d8, 2.0 (r)) dr,
Q

o (-)ELL[O, s, § 20 (%) dvell,.

It is easy to see that ind ¢¥G,” is a nondecreasing continuous on the left function of parameter s. This function
is completely characterized by its jumps at the points of discontinuity, i.e., by the values ind ¥G,,o" — ind ¥G,”. I in
Theorem 1 ind $G,” is expressed in the form of an "integral sum," now we want to compute explicitly the "derivative"
of this integral." To do that we will have to introduce one more family of subspaces in I, but to construct this family
it is not even necessary to solve differential equations,

Let0< a< B < ¢ and set

Ag = no N {zfv l alT< ﬁ' UE'R'} -49 Ag+o=&L30Ag+e-

It is easy to see that

dim A§ = codim ( 2 ;oz“R’)v.v

a<t<f

Indeed, this is implied by the obvious relations

o< =I+ X =R, keriy=IL.

a<T<B

In particular, A9 = 0, since 2 Eoz,R'=H. Note also that Ag‘; C A ™ CAgif a<a<f< F If, however, g2z,
0Tt
depends analytically on 7 € [0, t], then &, *=0Va € [0, tl.

THEOREM 2. For any s € [0, t) the relation

ind pQis0—ind pG; = dim (Ao N T/ g N Al o) — dim (A2/AS o) +
indm, (Ae Asg) 7 (M (A,NTL) —dim (Asso N T)
is true.

The given expression looks outwardly rather cumbersome; however, the last three terms contribute only when
s is a point of discontinuity of the Jacobi curve and the second term is almost trivial.
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The point s € (0, t) is called the conjugate point to zero for the Jacobi equation if A, N Ty #0, and the value dim
(A, N Iy} is called the multiplicity of the conjugate point s. The following assertion specifies the exact limits within
which Morse's classic formula for the index of the second variation is true.

COROLLARY. Assume that A0 = ./iﬁo, and s is a point of continuity of Jacobi curve A. Then

ind $Gs 40— ind pGs=dim (A, N IL).

4. The proofs of Theorems 1 and 2 will be given in Sec. 5, while in this section we give a homotopy

interpretation of formula (12).
Let A € L(T). Below, without special stipulations, we constantly use the identification of the tangent space

T,L(Z) with the space of quadratic forms on A described in the Appendix to this section.

Definition. A smooth curvest,, 1 € [ty, t;] on L(Z) is called nondecreasing if velocity (d/dr)s#, € Td'L(E) isa
nonnegative quadratic form ons#, .

In other words, s#, is a nondecreasing curve if (d/dr)s#, = 0 Vrty, t;]. In particular, Jacobi curve A, is
nondecreasing since

L Aemgy7t @ AN >0,

LEMMA 4. Any two Lagrangian planesséy, s# € L(Z) can be joined by a simple smooth nondecreasing curve
d,,‘ 0< 1< 1.

Proof. Lemma 3 implies the existence of a Lagrangian plane B such thatsty, ¢, € #BY¥ and ind @(54’0, A) =0
In Proposition $#1 and its corollary a structure of an affine space is def’ ined on the set ¥, A rectilinear segment joining
Sho to 4, in this affine space is, as is not hard to see, a simple nondecreasing curve in L(Z).

In Proposition A6 a formula is given that allows us to calculate the Maslov index of a given continuous closed
curve in terms of the Maslov index of the approximate triple Lagrangian planes. If the curve is nondecreasing, then it
is convenient to use the index that was involved in the formulation of the assertion of Theorem 1. To begin with, we

express one index through the other.
LEMMA 5. Let A, € L(Z), i =1, 2, 3; then

B (An Az Ag)+2inda, (Ar, Ag)+dim (AN Ag)=m.
Proof. Recall that

inda, (Ay, A)=Ind g+ dimker g,

3 - .
where q is a quadratic form given on space A2V (A;+Ag)/ N A;. Here, q(A) = o(A,, Ay), where Aj € A4, =13, 2=+
3 {1
M+ ‘n IA,. At the same time, p(A, A4, Ag) coincides with the signature of form q. The assertion of the lemma follows
now from the equality
) 3
dim (A2 (At A/ N A)=m —dim (AN Ay).
COROLLARY. Let A; N Ay D S be an isotopic subspace in . Then
inda, (A, Aa)=1ﬂdAg (A1 Ag)-
Indeed, A,S = A;, AS = Ag, p(A5, 4,5, A55) = (A, A, Ag).

Proposition 2. Suppose thatsZ,, ty < 1< t, is a continuous closed nondecreasing curve on L(Z) and ty =g < 13 <
e < Ty < Tynyq =ty is some partition of segment [ty, t;]1, &€ L(Z). Then
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(13)
% indg (<, %+, ) <Ind 5£.
If, however, the partition of segment [t, t,] is such that curves .s#] [ririsq] 378 simple, then the inequality in formula (13)
becomes an equality.
Proof. Consider first the case when curves S#| [riri4g) 37 Simple.

Let T; be a Lagrangian plane transversal to curve .w{l[,i',i b 1=0, L, N Then, according to Proposition A6,

2Ind“ =E (}L(T(. &, d") p(Tl’ Q ‘#‘H-x))

temQ

At the same time the chain rule for the Maslov index implies

B (T Z, ‘”f‘)—P(Th 2, “vlﬂ)=l‘(gr ‘wfp '”YH. )—
—p(Ts 5‘1,; #1‘+,)= —P(&‘r‘» %, ‘9‘1“‘)‘—'}*(1‘1' ‘”1‘1 -”t“_‘),

Let r €[, 7;,,]; we denote by p,:Z — s, the projection operator of space I parallel to T; ontos#,. Then —u(T;,
.94-,l slf,‘ﬂ) coincides with the signature of quadratic form a — o(p,. @ a) given on space s’f Since $#, is a
nondecreasing curve, quadratic form a — o(p,a, @) is nonnegative ons#,, Vr € [r;, 1;,,]. At the same txme identity o(p.x,
&) = o(x, €), valid for any r € [r;, 1;,,;}, X € L, ¢ € T; (see Al) implies that o(p,x, §) =0, Vx € L, £ € T;. Therefore, form
a — o(p,a, a), being nonnegative on subspace #,, a direct complement to T, in Z, is also nonnegative on the whole Z.
Furthermore, for any « Ey"r; we have

T

o (pr,, 00 G)= _Y o (9o, @) d7 > 0.
¥

The kernel of form a — o(p,, o, a) on.s#,i coincides with .sé,i nsé Consequently,

Ti+l’

W (T by Sy, )= m—dim (e N 5, ).

According to Lemma 5,

_l"'(‘#fp 3, ‘”714-;):2 indg (‘%‘1’ '”‘H‘l)— m.

Adding everything, we get

N
Inds#, = 2 indg (%« ¥x,,,)-

i=0

Inequality (13) is now the "triangle inequality” for ind, which is important in itself.
LEMMA 6. For any A, A,, Az, BE L(T) the following inequality is valid:

dim (A (1 As) +indg (Ay, Ag) < lIndg (As, A+

3
+indg (As Ag)+dim (n A

Proof. By virtue of the corollary to Lemma 5, it suffices to consider the case ﬂ ACB. We join sequentxally

by simple continuous nondecreasing curves 4; to Ay, 4, t0 Ag,and Agto Ay, Accordmg to the already proven part of
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The p°i5{e Maslov index d of this curve can be computed from the formula

(A, N Ty) is-
which Mor d—1indg (Au Ag)+indg (Mg Ag)+indg (As, A)=
¢ —indg (A, Ag)+indg (As Ag)+m—dim (AN Ag) — indg (A Ao)-

Let us now use the fact that the equality is valid for any &. Substituting Lagrangian plane A, for 8, we obtain

d=tnda, (Bir A +Inda, (A Ad) H1nda, (s, A=
=L (m—dim (AN A+ 5 (m—dim (AN A+

3
+inda, (An Ay > m—dim 0, A

Comparing the two expressions for d, we arrive at the inequality
indg (A1, Ag)+indg (As Ag)—indg (Ay, A9 >dim(A N Agd—
3
— dim ( N Al)'
-1/

LEMMA 7. Letsf tg< r< tybea simple nondecreasing curve in L(Z). Then ﬁ:.ﬂ@:,=‘ <f;\<’ ..
» 3

Proof. Proposition 2 implies the equality

iﬂdg (‘”‘o’ Mh)‘:—-lﬂdg (‘”h’ ”t)'*‘indg(“n #1,),

vr € [tg, t;), B € L(2). Therefore, according to Lemma 6,

dim €Ar, N Ar) < dim (Ar, N AcN AL

The last is possible only when Ay N Ay, C A,
COROLLARY. Letst_ ty< r< tybea continuous nondecreasing closed curve in L(Z). Then

Ind %, > m —dim ( N w,).

1y<T<E g

Proof. Denote B ='s¢to =Sh1, andletty=Tg<Ty<..<Ty<TNy =ty bea partition of segment [t;, t;] such that
all the curves $#| . . are simple. Then

Ind &, = m— 4 (dim (B Sbs,) + dim (BN Fey)) +

N1 N~1
N\
+ 2, tndg (she, ) >mot 3 dim (B5#e)—
= =]
N—~-1

N
— Y dim (%, BN e, ) > m —dim (53 i”{”’l)'

[}

N
Using Lemma 7 we get B lﬂlﬂx,= n .
jad te<T<t s
THEOREM 3. Let A,, r€[0, t] be a Jacobian curve and 7y, ..., Ty all its points of discontinuity. Join in the order
specified below by simple continuous nondecreasing curves Il t0 Ao, 4,; 10 Arsori=1, ., Ny Ay tO Il,. Jacobian curve
A,, together with the pieces added this way, forms a continuous nondecreasing closed curve in L(X), which we denote

by A. Then

indyGr=IndA.—m.
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The proof immediately follows from Theorem 1 and Proposition 3.

5. Proof of Theorem 1. The triangle inequality (Lemma 6) implies that it is enough to prove the theorem for
the case when all the curves A | [risriq) 3T€ simple. At the same time, Proposition 2 implies that for nondecreasing simple
curve A ||y, ..., and arbitrary 1 € [r;, 7;,,] the equality

mdn. (A{ls At)"l" 1ndu. (Ag, At‘+‘)= indﬂ. (A‘l’ ATH-x)

is true, i.e., the triangle inequality becomes an equality in this case.

Thus, it is enough to prove Theorem 1 for a single, arbitrary, sufficiently small partition of the interval [0, t].
In particular, we shall assume that among the points 7y, ..., 74 there are points at which the smoothness of the curve A,
r€[0, t] is violated. When k, is constant on the half-intervals [r;, 7;,,], we set k, = k; for refr;, 1441, 1= 0, 1,, ..., &1,

In the sequel we will use special distribution spaces with supports on a given segment of the real line, Sobolev
spaces with negative numbers. Recall the definition of these spaces.
Let —oo < ty < t; < +0o and k > 0 is an integer. In the space Co,Tto, ty] we introduce the inner product

t, %
@ Bneora=) 2 (@, 6) dr, vaw b:€CT [hy ti;
fo =0 )

here a,() = (di/dri)a,, b, = (di/dr)b,, and (-, ) is the standard inner product in R".

The complez/ot of space CoMtg, t;]in norm [ajly o8, = V@, @)y [t 4,] iS» ObViously, a Hilbert space. It is called
Sobolev space of order k and is denoted by HyTty, t,]. It is easy to see that H,Tty, t;] consists of all k — 1 times
continuously differentiable functions a, such that a, (=1 is absolutely continuous and a,®) € L,Mty, ty].

Next, let u(r) € L,Ttq, t;] = Hgltg, t;]. Mapping @~ 5 (@  (v)) dv, where a, € H,Tt,, t,], determines a linear
t'

ty
continuous functional on H,Mtg, t;1. Set | uC) | feo.tq) =$1T;1 ‘5: (@s, #(r))dv to be a regular operator norm.
EELE TR

The compl€Z/an of space LyTtg, t3] in norm |- || .y jtq,e, is called a Sobolev space of order (—k) and is denoted by
H_,Mtg, t;]. Space H_,Mtg, t;] is obviously isomorphic to the dual space to HyTty, t;]); consequently, it is a Hilbert space.
In addition, since any functional on CTtg, t;] is continuous in norm Il * { k,[tg,t1], and, moreover, continuous in standard
topology of space CMty, t;}, then H,Tto, t’l] is contained in the space of all r-dimensional vector distributions with

support in [ty, t;]. Distributions lying in H_,Ttg, t,] can be characterized ‘n the following way. Let /
. N/
i=0,1,2, .. x%)=x(n (Heaviside function) and the asterisk denote the operation of convﬂzwlﬂ?" distributions:

vector distribution u(r) = (ul(r), ..., u’(r))T with support in [ty, t;] lies in H_,Mte, ;] if and only if distribution
X = (X ulE), e xk—1(y*ur(-))T is a locally summable vector function; moreover,

K ) # 20 it 0€L5 [foy 1] = HE [k, 1]

Note that no matter what distribution v with support in [to, t,] is, the result of its contraction with x¥~! has
support in [tg, +00); moreover, on the half-closed interval [t;, +o0) it coincides with some polynomial of degree at most
k — 1. The coefficients of this polynomial together with the restriction of x¥~'*v to [tq, t;] contain the complete
information on distribution v. When v € H_Tt,, 1,], this enables us to define, with the help of the norm of spa.ce L,
the norm equivalent to |- | —k ftgrt1l’ Since for our purposes it makes no sense to distinguish between the equivalent
norms, we save notation |- | _y jiq.s;) for 2 new norm. The exact definition is as follows: for every u &€ H_y (0,1 S€t

t, k—1 1
uuu_k,u..:.]=(5 |t e (@) Pdv+ 2| (ugt) P)’
fe =0
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(the angled brackets (u, x') denote the result of applying vector distribution u to function ri; if

ty
uEL{ [£o, £1]sthen (4, %' ) = S vlu (v) dvER".
1e

Let us return to consideration of partition 0 = 79 < 7y < ... < TL<Tfy41= t of interval [0, t]. Since any function
from L 10, t], being restricted to interval r;, 7} .+1)» certainly belongs to space H_y"Tr, 73411 2 Ho'lrs Tie1] D Loo T Tisads

norm
1—1 L
I ll-pe= (EOH . ||2—h,.(<i.f¢+,1)

is defined on space L0, t].
LEMMA 8. Bilinear from %G,” is continuous in norm ||| ..
Proof. Obviously it is enough to prove that for every i satisfying the condition k; > 0, the quadratic form

Ti4y

()~ 5 o (5 290 (8), 2.0 (1:)) dv
]

7]

is continuous in norm [+ || _y; r;.r,,}- But this immediately follows from equality (6) derived in the proof of Proposition
! and the obvious inequality

Tty

§ 1o @Pde <00 aiepm e
T

where ’w(“)=5%_-;-§)——)—de is k;-fold indefinite integral of v(.).
The complement of space L0, t]in norni ||+ | _y_, is Hilbert space @ H %4, [t 7). We introduce the notation

HL.[0, t]= j‘Z_OH—k, [® Tal;  element

’f«l) ’le-x
I RN =ty . 4_)EH L, [0, £]
uy Uy

will be denoted by the single symbol u. Note that u = (ug, ..., u,_l) is not, generally speaking, a distribution on interval
10, t] since this element assumes "two values” at points Tjs i=1, I for example, if y;_; = §,. . € H_y[r—,nlandy =

8, € H_ylr;, 7y,4]. Space H_, 70, ] is dual to space Hr.[0, f]—- @ H & [T Tl Inits turn, any piecewise smooth

function on [0, t] smooth on each interval (r;, 73,4, i=0, 1, ..., [, is identified in an obvious way with an element of

space Hyf0, t}; the elelments of space H_; 70, t] act on these functions like usual vector distributions do on smooth

functions (&, a) =2 (#p alizym,) ) (precisely the "bifurcation” of u € H_,T0, t] at points ; enables u to act on
=0 :

functions that have discontinuities at these points but are smooth on the right and on the left). Elements of H_; 70, t]
can also be multiplied by piecewise smooth functions that are smooth on intervals (r;, 7;,;) and by matrices the elements
of which are such functions. In particular, for v € H_, 10, t] we define z-v and pgz-v, which, when the bases in spaces
T and II are fixed, become elements from H_, >™{0, t] and H_, ™0, t], respectively.
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The complement of the domain of form $G,” in norm |- |, is the subspace

(vEH L. [0, 1]] ( w20, 1) =0} f—-e-f{;gz.}_‘"k .

which is a Hilbert subspace of dimension m in H_, 10, t].

The bilinear form $G,” is uniquely extended with respect to continuity to form Q given on space {(BoZ)ei -
Here ind Q = ind ¥G,". .

To write form Q in an explicit form we need to give an exact meaning to the expression xs(z:v), where v €
H_, 70, t], and ¥, as before, is the Heaviside function (double meaning may arise again because of the "bifurcation” of
v at points 7;). Let u = (ug, ..., Uy}, 4; € H_ki’[ri, 7i41]; then distribution xsu, has a support in [, +00); moreover, on
the interval (r;,,, +00) it coincides with the vector (u;, 1) € R". In turn, distribution ({x«u;)(r) — (u;, 1)x(r — 1i41)) €
Hy_y[73, 7i41] © Hoy 75 Tiaad: Set xsu = (Wg, ..y W), where

i=1

, (¢)=( (up 1) )(X (v =) =% (v — ")) + (x*21) (v) —

Jm=0
— (u, 1) X(r—mp).
Let —h_, be a symmetric r x r matrix corresponding to form yh,, i.e., Yh(vy, vy) = (F,vl, Vy).
LEMMA 9. Whatever v € (g2} L is, vector distribution o{(xs+(z:v), z.)T + ‘h-v lies in the space H "0, t}j C
H_, 10, t], here

Q@ D)= (7, o(xs(zv), ) + kv ).

Proof. It suffices to prove the existence of constant ¢ such that

<clloll—e. YOECS[O, £,
kot

. T
o (S 290'(8) 48, zz') + o (7)
0

from this inequality the assertions of the lemma are derived with respect to continuity. To prove the last inequality it
is enough, in turn, to establish inequalities

o (j 250 (8) d, zv’)
T

<¢ ” v ”-ki. 12Tyl V’UGC; [ri 11-{-1]’
JRUIBIN

i=0,1,...,1—1

for some constants ¢;.
Let 0 < n < kj; then taking into account Lemma 1, we get

< i1
dr ny.
=0 (izev (6) 8, 21'> =0 (lee'v (6) d8, z{™ )=

T
=(— o @A Pw (), 287 ) + (= o (f 200w (9) do, zi"")"
A

where
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T -
(=0

w(-r)=S =0 (0)db.

Al
The required inequality now follows immediately from the definition of norms |- |l ri; 4y 3nd Il =k irsriat
LEMMA 10. Quadratic form Q is positive definite on a subspace of finite dimension in (poz}_k}.
Proof. Fori=0,1,.., [ —1 we have

: 1=1
HLy [t talcHL [0, £]= leo H Iy, [% Tals
here

HIg % mal0 (o2} 2e =
_ def _,
= {06H Ly, [7 Tina] | ( P20, 1) =0} =(i2}=e;e

=1 _ _ ) . ) -1 _
Subspace & {Wo2)%s, evidently has a finite codimension in (o2} * Quadratic form Q, being restricted to subspace & {2}
o =
decomposes into the direct sum of forms
=1
Q(v, 0)=2, (o], o sz, 2-) +ho),
=0

if
9=(Tp, + sy Vr1)s 016{@2'}5:‘, i=01, ..., I—1.
Therefore, to prove Lemma 10, it suffices to establish the positive definiteness of each of the forms
def r T -—
Q! (0, 0)= { 7}, 0 (xx(2z0), 2°) +420)

on the subspace of finite codimension in {(Bp2)eggt i=0,1, 0, I — L. Denote w; = [xX™1/(k; — Nlev;. If

iy
S z?*)w, (t)dv =0, then
%
Ty
Q!(op v)= | Velm (W) det

]

Ty <

+ ‘f o (S 28w, () do, 2w, (1)) dr. (14)
] Af!

Indeed, when v; € L Tr;, 7i4,], equality (14) follows from (6) and the general case is obtained with respect to
continuity. In turn, since 7(w) 2 ¢ | w | 2, the quadratic form found on the right-hand side of equality (14) is positive
definite on some subspace of finite codimension in H_ 17}, Ti41]- This is the corollary to the Hilbert—Schmidt theorem
on the spectrum of a compact seif-adjoint operator. This implies that form Q is positive definite on some subspace
H_, 10, t].

Remark. It is very essential that form Q, unlike ¥G,”, is not simply positive on a subspace of finite codimension
but is positive definite.
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LEMMA 11. Suppose that p is a continuous quadratic form on Hilbert space E, which is positive def inite on
some subspace of finite codimension in E. For the arbitrary closed subspace V in E symbol p | V denotes the restriction
of the quadratic form p to subspace V and

VL ={e€E|p(e,v) =0, VuéV}.
Then
ind p=ind (p | V)+ind(p|V3) +dm(VNV3)—
—dim (V nker p). (15)

Proof. Passing, if it is necessary, to the space E/kerp, we can assume that kerp = 0. If in addition space E is
finite-dimensional, then the assertion of the lemma turns into a standard fact of linear algebra. The proof of the general
case repeats verbatim that of the finite-dimensional one since the hypotheses of the lemma guarantee the finiteness of
all values occurring in equality (15) and also (for kerp = 0) the fulfillment of the identity dim WP-'- = codimW for any
closed subspace W of finite codimension.

Let V; = {v = (Vg v, Vpuy) € (B2t |vj=0foris jsi—1) In particular, Vo = 0, V, = {592} *.
Introduce the notation Q; = Q| V;. Then, by virtue of Lemma 1,

Ind Qu1=1ind Q; +1nd (Quu1 | Vo, )+ dim (Vi Vig,,,)—

—dim(V; N ker Q..1). (16)

LEMMA 12. Let

Ry ={(A, vt)eAn@H—h, [*or Tl [ A4 (204 1) €Il CA1‘$
©H .r-k, [®1s Tiaal

and
Rit(d ) (0T, 0 (A+22(20) 2:) A0, ), (A, 0)ER,
is a quadratic form on ;. Then

1) 1nd (Qyu| Vi!i?,.,,,)“md R,
2) dim (VN Vi, )—dm(ViNnker Q)= |
=dlm(ﬂoﬂ Af!lnﬂnAfi n ATH")—"dim (0<n Ag/ n A;'), ~

<Yy °<f<fl+‘

Proof. It is easy to see that

Vo, = {06V 11 | 0 (@) 0 ((r20) (1) + 1, 2e) T =0}

for 0 < r < 1 for some n € I,
We present v € ViQ;+1L in the form v = (u, v;), where

i—1
qu@on.gi [¢j’ 'f],',‘], UIEHf-ﬁl I‘rh Ti-}lli

and set y =  + x+«(zu). Letr € (0, N7y s Tt )i differentiating relation

Bo(@)+0 (@), 2:)7=0
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2k, times with respect to 7, and taking into account Lemma 1, we obtain

Yotz (€) 4 (— D70 (go, 277 ) =0,

where 7, is a symmetric r X r matrix corresponding to the quadratic form ~,. Consequently,

d - - - .
= ==z, 71 (0 (gr 28T))-

Therefore, distribution ¥ (and, consequently, u, too) is 2 smooth function near r; moreover, its derivatives are uniformly
bounded with respect to r. Thus, if u = (ug, uy, ..., Ui—;), then each of the u; is representable in the form of a sum of
a smooth function on [r;, 7;,,] and a distribution of order k; — 1 that is concentrated at points r; and r;,, (recall that,
a priori, u; € H_kj"[rj, rj+1]).

Consequently, ¥ is also representable in the form of a sum of some piecewise smooth f unction y, and distribu-
tions concentrated at the points r;, j = 0, ..., i. Clearly, (y,j 0 y,j) € 1‘,j + Fr3+o; moreover, any vector from I‘,J, + I‘,j,,o
can be represented in the form of Yrje0 = y,.i at the expense of the appropriate choice of the *pointwise part” of
distributions u;__; and u;. Furthermore, yo = 1 € I, ¥, = (zu, 1) + pforrz 7

Forv={(u, v;) € ViQi+1’L we have

Qut (0 0)= (0T (1), 0(yr—1, 20 )+ A0 ) =
= ('UT(T")’ G (Y z‘r')r'*'/?t'v) —a(n, (27,1 Y)=
= (0, 0 (ys,+%*20,, 2:)T + kv, ) —0

(In this calculation we used the condition that (zv, 1) € Il Vv € V;,; and also the identity o(y,, z,-)'r + -}T,u(r) =0 for
0< 1« Ti)'

Assertion | of Lemma 12 now follows from the following representation of the Jacobian curve.
LEMMA 13. Let

Oy (0 <0< T)is a piece wise continuous curve

Ac={y:62 | yo=2otts for OFT; 0(yo, 20)7 + hote=0, Y€, .
(yv,+0'—!/~:j)€rv/+rzj+0o

Then A, = A, ® T,

Proof. Differentiating relation oy, z,)T + hyu = 0 2k, times with respect to 4, we obtain, by virtue of
equation y, = Z,Ug,

0 (a2 =0, i=0,1,...,28—1, e=(—1)"*""Ys "0 (o, 26)-
From this we conclude that A, C (T, + T} =T#n THA*

In addition, dim A, is locally constant for 1 #7;.
Suppose now that x, € A, moreover, X satisfies the Jacobi equation for 0 < 6 < r; then

d = ;
£ 0 (xe, yo) =0 (Y5 2{P0 (25", )7, yo) -+ 0 (<o, Zotis) =0,

0 (*ep Yx)=0, ; <.

Consequently, A_C A 4= A_. Thus, &, CA, N T,
T T T T T

*For the definition and properties of '-I:,, see the beginning of Section 3.
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Furthermore,

Aso =+ T 1) \TTH L = Ago (T

From dimension considerations we obtain that A, = A, N -I-‘-,-’- for 0 <7 < ry. Since F,‘ NT,=0and [, C4,
we have A, = A, ® T, for 0 <7 < ;. Consequently,

4 =L
Ar,r0=(Ax, + T4 +Tep0)NT . +0NT% 40 Ar“t'*‘onp
= Ag,+00 T4

1+°

Ario= 87408 Tr 4o BtC For any r we get the equality A, = A, ® T,

We move to the proof of assertion 2 of Lemma 12.

Element (u, v;) € VlQ 1‘L lies in V; N Vle+1 = ker Q, if and only if v; = 0; element (u, 0) € Viq ‘L lies in V;
if and only if n + {(zu, 1) € Iy N A, for some n € II;. Consequently,

dim(V,nVi,, )= dim(nonA,, / n Af)

Element (u, 0) € kerQ lies in V; N kerQ;,; if and only if 4 (2, 1Y€, N A, for some n € I, Therefore,

‘l<t<fl+x

dim (VN ker Q,,1)=dim (Ho n At/ n A:)-

T <IST 4y 0<T<Tyyy

Recall that A | [riried] is a simple nondecreasing curve and, according to Lemma 7, % «2““\* =A‘znA‘z+"

Lemma {2 is finally proven.
So then the application of Lemma 11 enabled us to reduce everything to the calculation of the index of form
R;; we do this calculation also by repeatedly applying Lemma 11, First we overcome the possible discontinuity at point

Ti.

Space H_ 7 7i41l contains the rk;-dimensional space H_,’(r; + 0), which consists of vector distributions
concentrated at point 1. Set

I =20 {A®HL, (1, +0)} =

-1 By,
{( Z 2 = ) xeAﬁ, (7»-1— Zzgioa,)eno}.

Elementary calculations show that

By—t
==0 )\., 4 +od
7 fe40 ;g‘ ) amn

while the index of form R;| Ig,* coincides with the index of form

T o) (0T, o (At (Zv)ﬂ-hv” )

given on the space

£T={(A’¥ 'U)GA-‘ﬁ.O@H—k‘ [Tl’ "ti-{»l] l (}“ + < 27, 1 ) )EHO}
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d R;* coincide, while the domains differ somewhat; recall that Ao = (A +Tryad 0
4). The following equality is a direct consequence of the definitions and relation (17):

(the expressions for forms R; an

F7i+0

ind (R, | [)=indn, (s, Ax40)— 5 (dim (Ae, N T+
=+ dim (A 40N IL)) 4+ dim (Ag, N Azj00 IL).

0) from I lies in ker(R;| 1) if and only if (V +7~+E z&{io)eA.;ﬁonHO for
: i

&
ment- {AM 22757
Next eleme ( 12 150 fe+

some v € A; N T, This element lies in 1IN ker R, if and only if

(v4a+ D 2Pg)el, 0 Ae=IhNAgsoNAxy,,.
i

1,<1<T)y,

Consequently,
ind R,=1ind (R, i [)+ind Rf -+ dimker (R, | /)—dim (ker R,n /)=
— tnd R +ndn, (Aep Aeys0)+ - dim (A, NI — 5 dim (A NT) —
—dim (Ax, N Ac,,, NI+ dim (A, N Ag, NTL.

Taking into account equality (16) and Lemma 12, we get

ind Q,,1=1Ind Q,+indm, (Axp Ac,+0)+1nd R +
4 dim (A, NIl 5 dim (Ac 0N ) —

— dim (Ao Acy, N —dim ( 0 A/ 0 Ad). (18)

<<ty <<y,

It remains to compute ind R;*. As is evident from the previous examinations, the use of our principal tool,
Lemma 11, is contingent on rather cumbersome calculations. To simplify these calculations at least outwardly we will
assume in the sequel that k; > 0 and, consequently, h, = 0 for r; <75 734y In fact, the case when k; = 0 is the most

simple one, but some expressions are more symmetric for k; > 0.
Consider the space

W,={(\ 0)6R A+ (20, 1) =0}c&f.
LEMMA 14. If partition 0 = 7y < 7, < ... <7, = t is sufficiently fine, then form R;* | W; is nonnegative, i.e.,

lnd(Rilei)z-O’ i=0, --nl—"l-

Proof. Subspace W; ={(}, v) € W; | v € Ly}, 1j,,]) is everywhere compact in W;; therefore, it is enough to prove

T -
@—) 1

the nonnegativity of form R;* on W;. Set w(r) =S BT ©(8)d0, the usual process of integration by parts leads

7]
to the inclusion

T Tits
(S 2.0 (v)di -+ j' 2N (r)dt)er,m.
% \]
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N Tidt
Therefore, for (), v) € W; we have (7«-— j zé”"ﬂ!(e)de>er‘m, and

]

RY (M o)= T‘ o ( A+ f 27 (8) 40, 2.0 (rr)) dv=
1

%y

i T
= S a(x—‘y 28w (9) 48, z:0 (1:)) dr.
%

7]

Integrating the last expression by parts repeatedly [v(r) is integrated while the rest is diff erentiated] we obtain

R (M )= 5 y (S 2{w @) do— K 2w (v>)+vt (m(v)) dr.

T 4

It is enough to establish the nonnegativity of the quadratic form (A, w) occurring on the right-hand side of the last
equality in the space

T+
Z= {(x, @)EA«,+00Li [y md\ ( [ aftw(mydi— 7~>€Pm,}'

i

if r,,, — 7; is sufficiently small.

k3
Setx,= g 280w (9) dg— M T, <T< Tiyn,and let

Ty

Zo={(n W)EL | %5, = O

Z,= {(;"s w)eZ |o (x‘h 280 )T + v (=0, ;<1< TH-I}

T

The pair (A, w), evidently, lies inZ, if and only if curve x, is a solution of Jacobi system (10) with boundary conditions
Xrii0 € Aripor Xrin € Lrivrr Since Ty, C Ap s by the definition of the Jacobian curve A, any solution of the Jacobian
system x, satisfying the condition x,, , € Iy also satisfies the condition x,, € A, . Consequently,

dmP,=diml;,, Z=Z8Z).

Ini addition, space £ is obviously contained in the kernel of our quadratic form and for (), w) €%, this form is

‘H-x <
f (S 2% (8) de, z‘fl)w('c)) dt +y< ( (3)) d7. (19)
1 \Y

Since 7,(w(r)) 2 €| w(r) |2, form (19) is positive for 7,,; — ; sufficiently small. @
We are justified to choose from the very beginning an arbitrarily fine partition0 =75 < 7y < ... < Ty =1, therefore,
according to Lemma 14,

ind RY =ind (RF | Wg,) +dim (WnW;ﬂ—-dim (W ker RY)-

The pair (X, v) from R;* lies in WRi+-‘- if and only if
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o (A (x* (20) (7), 2 ) =0 Ay 22%) TIL<T< 0

for some Ag € A0
Set y = A — Xg + x+(zv). The same arguments as in the proof of Lemma 12 show that distribution y is

representable in the form of a sum of a vector-valued function y, smooth on (r;, 7] and a distribution of order k; —
| concentrated at the points 7, and 7,,;. Lemma 13 implies that y. , € A, Here

RF (M @)= (0T, 0 (AF%#(20), 2)T ) = (0T, 0 (b, 2:)7 ) =
=0 (A (27, 1))=0(p ¥x,,,)-

We recall that g + Y1 = (A + (zv, 1)) € I,
The relations imply that the index of the quadratic form RI"

IW:.,. coincides with the index of the quadratic form
. . 1
given on (A« 40+ Aq, )NIL, that puts in correspondence to each

o=+ A"")G(A"l'*‘o + A‘H.,) n Ho (vhere MeAv,+01 7“2EA1H_‘)
the value o(},, ). Thus,
ind (RT | W':;,.) —ind, (As o Avy, ) — dim (Ae, 10N )=

1
-z dim (A‘lﬂ N1+ dim (Ho N A1‘+0 n Atlﬂ)'

Next, let (A, V) € W N WRiH-; then

A4 (20,1) —hy= —kDEAc,+,ﬂA<,+0== N A«

‘i<‘<‘i+1

In this case, y, = —Xq is a constant; so v(r) = 0 and A = —(zv, 1) = 0. Consequently,
Substituting an expression for ind(R;* | WRi+-‘-) in (18), we get

ind Q1 —ind Q,=10dm, (Ae, Ac,+0)+ 100, (At Acy )+

+'12-d1m (A« nno)""lz' dim (Ax,,, N11g) -+

+dim( N Av)-—dim( n A‘), 1=0,1,...,1—1. (20)
\0<T<T4y <<y

Proposition 2 and Lemma 4 imply that
indm, (Ax, Ac,+0) +10dn, (Acpro Acy, )= indm, (Aep Ax,,,)-
In addition, Q, = Q and
1
indm, (As» Agy=1ndn, (Ay o) =1 (m — dim (A; N ILy).

Therefore, adding equalities (20), we obtain

I -
ind Q= D, indm, (Acy Ae, ) Fdim( ) As)—1m- @1

iw=0

LEMMA 15. Foranyt,, t, €0, t], t; < t5, equality

Py

S T DT oT LA

L e R

o

ks




n A‘=A,,n( > z,R')j‘

1 <1<ty t <1<ts

is true.
Proof. 1) If z, is smooth on the half-interval t; <7 < t,, then

n A<=Az‘+oﬂ( 2 Z?’)R’)‘i-

<<y i <T<Es

. ‘ k) . . . . .
Indeed, if Lé( 2 z( t R’>. then X is a fixed point of Jacobi system (10) on [t,, t,], that is, the constant vector x, =
1, <1<ty

A t; < TS tyis a solution of system (10). Conversely, let A€ <ﬂ A then )\1 U A. Consequently, for every solution
<< <<ty

x, of system (10) satisfying the condition X¢y40 € Ayi00 identity a(A, x,) =0, t; <1< t,is fulfilled. Diff erentiating with
respect to 7, we get

) 2.
( 20(211 ‘xr)z(‘) ') Zc(zf‘)vi, x) o\, 2 D=

jmml f==l

R, (]
=0 (2 o (h, 240k 20 7ok, xv)

[

r
Consequently, Z o\, z( v ‘) z(k"vieA‘, Since ) also lies on the Lagrangian plane A,, we have
iw=]

r 2
( E 0 (M21 ¥y l)z( 1:)’Z’l)=2 (o z:kt)'ai)) .
=1

lam}

Sol€ (z,(kf)vi)‘, i=1, .t <7<ty
2) Under the same conditions we have

Ao 3 2RV = pnon( X 2 R4

i <T<ty <1<ty

Indeed, the obvious inclusion

i€ 2 zR" V1€(t,, t)), DER’

1, <TEy

implies
(k )
(3,4l 3, 0
;<1< s ‘x<T<f|

On the other hand, z,v € A, = A% consequently,
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( ) er)’[D(h \Q<“Ar)=1\fx+oﬂ( ) z(k,)R,)z_

i <T<ls t<1<ts

3) Let r € [t,, t,]; moreover, 7 does not have to be a point where curve Z is smooth. We have
AT N A1+0’—'= At ﬂl‘ﬁo.

Since

T'epo=span{zt+w|0<i < koo, VERT}C
c span{zev| T <8< T+¢, VER,

by virtue of 1) and 2)

N AgDAN 2 zeR’)‘-‘?. ve>0.

<B<THE (1<9<‘t+5

The inverse inclusion immediately follows from 1) and 2).
COROLLARY. 1L 0 A=A NAf * In particular, -

"<I<l

N Ac=A¢=0.
<<t

To conclude the proof of Theorem 1, it remains to use equality (21) and recall that

ind $Gr =1nd Q.

Proof of Theorem 2. Applying Theorem 1 to forms ¥G,” and ¥G,, ", we get that for a sufficiently small ¢ >

ind ¢0;+g —ind \pG; —indg, (As Aste)+indm, (Aste Iy — ,
—indx, (Aer Tl —dim (A A%4e)=1indm, (As Aste) +
L (dim (A, 01Tl — dim (Aose N TT)) — dim (A77274

Next, indp, (A, Agee) = indyiy(A,, Agso) + indpy(Ays00 Agse)- It is easy to see that mapping 7 — A, NIy is semicontinuous ;
from above (relative to the inclusion of subspaces) at any point of continuity of curve A,. Therefore, for ¢ sufficiently F
close to zero, subspaces Iy N A,,, do not increase monotonically with the growth of e. In addition, if A, is a :
nondecreasing curve in L(E), then indp, (44,0, 4, +o) does not decrease with the growth of €, we have indyy (A0 A, +0)
= A. From this it is easy to conclude that for e sufficiently close to zero

indp, (Ayy0 Aste)=dim (A0 NIL) —dim (Aspe N 1) =
—dim(A,onT)—dm @ A Al

s<T<Ste

The assertion of Theorem 2 now follows from the corollary to Lemma 15. ., 4

6. The Jacobi equation and the:/formula for calculating the irgﬁ/ex of the quadratic fof‘m ¥vG,” were obthf;‘ed
under the as;y"fnption that 7,(v) > ¢|v'| 2. However, according to Rrbfposition 1, a necessary condition for inq,vlfé," to
be finite is.only the nonnegativity of form +,. In this subsection we describe briefly how the Jacobi equatidh should
be modified if forms v, degenerate. g

*For the definition of space AH‘O see p. 2685 (before the statement of Theorem 2).
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Let0< k< m, r € (0, t]. Denote by V,* a subspace in R* consisting of all points v € RF for which there is a
smooth curve v, defined on some interval 7 < 4 < rand satisfying the conditions

Uv=70, ke (@, V(8)) =0 (2{)w, 200 (§)) =0, T<B<T, O0<i< 2k,

for any w € R*,
Clearly, V,*X2 c V k1 for k; < ky; in addition, v X = R* for k < k,, V_¥r = ker Ty
For 0 <k < m we set

yﬁ:(v—i—V'{)r—»(— 1)p#-1g (zi”z:, 2.0), veVE!

to be a quadratic form on v ¥~1/v k,

. . 1 def 0 def
Suppose that, in addition, V7'=R", Vo= A,

We have 7,% = 0 for k < k,, 7,% = ,.

The following assertion is an essential strengthening of Proposition 1 even though its proof differs from the
proof of Proposition 1 only by the need to use a larger number of indices.

Proposition 3. If ind ¥G,” < +0, then

a) a(z,(zk)vl, Z,v) =0Vv, v, €EV,50< k<m, 1€ (0, t];

b) 1,52 0,0< k< m, re(0,t] Conversely, if condition a) is fulfilled and 75V) 2 ¢| V|2 forany V
VEYvk 0< k< m, re(0,t], and some ¢ > 0, then ind ¥G,” < +o0.

It is easy to see that

éi?‘l: ViDVs, 0<k<m, 2600, #;

if, however, r is a point where z, is smooth and dim V,k = const for ¢ close to 7, then V,k depends smoothly on 4 near
. Assume that the sufficient condition for the finiteness of indyG,” given in Proposition 3 is fulfilled; then subspaces
V,“, 0 < k £ m depend piecewise smoothly on 7 € (0, t} and smoothly at any point where z,, Yh, are smooth. It turns
out that with the fulfillment of this finite condition for ind ¥G,” we can define a (generalized) Jacobi equation and a
Jacobi curve A, so that the assertion of Theorem | (and understandably all its corollaries) are fulfilled.

Set

i
I'i=span {f—r, (zxvo)| ve€VE™, O0<i< k}, O<t<m,

f“i'_:z P:y TE(O, t]

kw=(

to be a piecewise smooth family of isotropic subspaces in E.
Suppose that r & (0, t] and V;*~! 3 v, is a smooth curve defined for ¢ near r such that v, € V,%. Then,

obviously, (d*/dr¥)(z,v,) € T,® + T X*1, Therefore, whatever x £ (T,X + ' k*1) is, correspondence

B oG (2000, ),

where

V=(0:-+ VAV VE 1 meaVE vy,

B

PSS
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Let0< k< m, re (0, t]. Denote by V¥ a subspace in R* consisting of all points v € R for which there is a
smooth curve v, defined on some interval 7 < 6 < r and satisfying the conditions

Vo=, ho(w, V(B)) =0 (2{)w, zov (9))=0, T<B<T, 0<i <28,

for any w € RT,
Clearly, V, X2 C V_¥1 for k, < k,; in addition, v,X = R¥ for k <k,, V,*r = kerr,.
For 0 <k < m we set

Yo (0 Vi (— 1)-1g (220, z,0), veV*!

to be a quadratic formon v ~1/v k,
def def
Suppose that, in addition, V;'=R’, y0=4..

We have 7,% = 0 for k < k,, 7,% = v,.

The following assertion is an essential strengthening of Proposition 1 even though its proof differs from the
proof of Proposition 1 only by the need to use a larger number of indices.

Proposition 3. If ind ¥G,” < +c0, then

2) oz, 2,v;) = 0 Vv, v, € V5,0 < k<m, r € (0, t];

b) 1,2 0,0< k< m, re (0, t]. Conversely, if condition a) is fulfilled and 75¥) 2 ¢| V|2 forany V €
VX1V, k 0< k< m, 7€ (0, t], and some ¢ > 0, then ind ¥G,” < +00.

It is easy to see that

gfni VeoVE 0<k<m, T€(0, ¢];

if, however, r is a point where z, is smooth and dim Vak = const for 4 close to r, then V,,k depends smoothly on 4 near
7. Assume that the sufficient condition for the finiteness of ind ¥G,” given in Proposition 3 is fulfilled; then subspaces
V,", 0 < k < m depend piecewise smoothly on r € (0, t] and smoothly at any point where z,, $h, are smooth. It turns
out that with the fulfillment of this finite condition for ind ¥G,” we can define a (generalized) Jacobi equation and a
Jacobi curve A, so that the assertion of Theorem 1 (and understandably all its corollaries) are fulfilled.

Set

1]
['i=span {f;, (2e00)| ve€VE, 0< i< k}, O<k<m,

IA"‘.'=2 F:) IE(Oa t]
k=0

to be a piecewise smooth family of isotropic subspaces in .
Suppose that r € (0, t] and VX! 5 v, is a smooth curve defined for ¢ near r such that v, € V5. Then,

obviously, (d*/dr*)(z,v,) € T',® + T, **1, Therefore, whatever x £ (T,X + T',¥*1) is, correspondence

— R
8t (x):0— 0'(% (2:95), x).
T
where
= (s +V)EVEVE 1 0peVt vy,

unambiguously defines a linear form n,X(x) on V,.k_l/V,.k. Consequently, mapping
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R () E (%), X (TR TR

defines a quadratic form on (T% + I /¥*1)
m
xorgp ZOAT R (), £ LEHTE,
ka0 »

and mapping

el S, s
ey 2007 () -

defines a quadratic form on I,“ C Z.
We extend form (22) in an arbitrary way to some quadratic form J, on the whole space L. Form J, defines

vector field A — J (A) on L(E). The differential equation
A=J(A), AEL(Z), w€[0, £], . (23)

is called the (generalized) Jacobi equation. Observe that Eq. (23} is uniquely defined only for such r and A for which
ADT,.

As for Eq. (11), the solutions of Eq. (23) are defined to be not only continuous but also piecewise continuous
curves. Jacobian curves are called solutions A, of Eq. (23) satisfying the conditions

Bo=Th,  Apo=AS+0, Vg0, #).

It is not hard to show that f‘, C A,, Vr€(0, t). Consequently, the Jacobian curve (in contrast to the generalized
Jacobi equation) is uniquely defined by form (22) and does not depend on the choice of the extension of this form to
the whole space I. If the sufficient condition for the finiteness of ind¥G,” from Proposition 1 is fulfilled, then curve
A,, obviously, coincides with the Jacobian curve defined for this case in subsection 3.

Proposition 4. Assume that the sufficient condition for the Lf é,%i‘e;‘gf%?}v ind g.G(' formulated in Proposition 3
is fulfilled and A,, 7 € [0, t] is a Jacobian curve. Then for curve X ] eorem 1 is true,

Proposition 4, which generalizes Theorem 1, is proved in the same way as the theorem, but even more
cumbersomely because of the need to use a larger number of indices.

We have learned to construct a Jacobian curve and compute ind¥G,” in a more general situation than in Theorem
1; nevertheless, between the necessary and sufficient conditions for the finiteness of ind ¥G,” a gap still remains.

Assume that hypotheses a) and b) of Proposition 3 are fulfilled, and let

T= 0 ([0, ]\ Xe).
>0

where

He={t€0, t]{v: @) >e|vp VOEVITV: 0<k<m).
. . fopse ,
It is not hard to see that set T is nowhere <smpact on [0, t]; if, however, z, depends in a piecewise analytic manner on
1, then T consists of a finite number of points.
Further considerations are conducted under the assumption that T is a finite set (piecewise analyticity is
optional).

—.
A

By Sy

e
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APPENDIX TO SEC. 3. THE LAGRANGE GRASSMANIAN

Here we provide information from the symplectig N {}{ét was used in Sec. 3 in the form we need. The
proofss, as a rule, are replaced by references to the bibliography. Everywhere below I is a symplectic space of dimension
2m with a symplectic form o. The expression S, £ S, for subsets S,, S, C I means that o(sy, s;) = 0, Vs; €5,, 5, €S,.
We denote by S‘(’the skew orthogonal complement of the subset SC I, §¢={(x € & |o(x, s)=0V¥seS).

Subspace T' C S is called isotropic if T' C I'4, and Lagrangian (a Lagrangian plane) if T' = T4, The set of all
Lagrangian subspaces forms a closed submanifold in the Grassmanian G (), this submanifold is denoted by L{Z) and
is called the Lagrange Grassmanian. Thus,

L(Z)={AcZIA =A}.

I. Natural Atlas in L(Z). Let A € L(T); denote by A¥the set of all Lagrangian planes in L(Z) transversal to
A and for arbitrary A € A¥let P,: & — A be the projection operator of T onto A parallel to A.

Proposition Al. For every A € L(X) and A € AV¥the following identities are true:

i) 8(Pxy, X,) + 0(Xy, Pyx4) = o(xy, Xp) VX4, X, € L}

ii) P,A = {0).
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Conversely, if some linear operator A¥Usatisfies conditions i) and ii), then P = P, for some A € AV. For the proof
see [12, pp. 136—137].

COROLLARY. Set AWhas the structure of an affine space; moreover, the linear space associated with it is
naturally isomorphic to the space #(T/A) of all symmetric bilinear forms on T/A.

Indeed, the fact the collection of linear operators satisfying conditions i) and ii) forms an affine space is obvious.
These conditions, furthermore, imply that V A;, A, € AV the expression °((PA1 —_ PAz)xl, Xy), Xy, X4 € L defines a
symmetric bilinear form on®(Z/A). It is easy to show that any form from #(E/A) is realized in this way.

The set of affine spaces AY is a natural atlas in L(Z), dimL(E) = m(m + 1)/2 for all possible A.

II. Tangent Space T,L(X). Let A € L(Z) and A,, € € R be a smooth curve in L(T) satisfying the condition Ay =
A. In such a case, § = (d/de)A, I =0 IS @ tangent vector to L(Z) at the point A. Let X € A and X, be a smooth curve in
T satisfying the conditions ), € A, Ve, Ay = A. It is easy to see that coset (d/de)), | «=0 + A depends only on A € A and
(d/de)A, | «=0» and not on the choice of curve ), Consequently, correspondence A — (d/de)A, l «=o defines the linear
transformation D¢t A — E/A. Clearly, mapping § — D; is linear; moreover, D=0 ifand only if £ = 0,

So far we have nowhere taken advantage of the fact that we are dealing with Lagrangian spaces; everything we
have said is true for any tangent vector to a Grassmanian manifold. The fact of being Lagrangian implies that bilinear
form 1/20(D¢ly, Ag), Ay, Ag € A is unambiguously defined. Moreover, the identity

0= ‘;g 0 (AL, A2} lemo=0 (D1, Ag) -0 (M, Diho)

implies the symmetricity of this form, The corresponding quadratic form on A is denoted by the symbol 1/20(D£A, A).
Comparing dimensions we obtain the following:

Proposition A2. Correspondence { — | /2cr(D€A, A) establishes a natural isomorphism of the space T,L(Z) tangent
to L(X) at "point” A and of the space £(A) of the quadratic forms on A,

For us it is particularly important that the isomorphism described in Proposition A2 defines the relation of a
partial ordering in the space T,L(Z): tangent vector £ € T,L(X) is called nonnegative if the quadratic form correspond-
ing to it is nonnegative.

Let h, € P(T), t € R be a family of quadratic forms on T (a nonstationary quadratic Hamiltonian). A linear
Hamiltonian system in T corresponds to the Hamiltonian h,, t € R; we denote by H: & — £, t € R the fundamental
matrix of this system, Hy = id. Clearly, H, is a linear symplectic transformation. H, € Sp(Z). Since symplectic transfor-
mations carry Lagrangian planes into Lagrangian planes, flux H.* in I defines the corresponding flux 56,*,t € R in L(Z),

def
&, (ANy=H,A YVAEL(D).
On the other hand, a family of quadratic forms h,, t € R generates in an obvious way a nonstationary vector field

K, on L(D): It is sufficient to restrict quadratic form h, to the plane A € L(T) in order to obtain the following tangent
vector at "point” A:

—_— def
B\ {A) =k, | A YAEL(S),
or, using notation introduced above,
kel (A}=h, (A, A).

The following identity is established by direct calculation:

4
#;=exp [ Rudv, teR.
0
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I1I. Imbeddings and Projections. Let I' C & be an isotropic subspace, i.e., ' C T4, dimT = k < m. It is easy
to see that the skew inner product o(:, -) induces a symplectic structure in the space I'*/T: in addition, dim (T4/T) =
2(m — k). Suppose that $# € L(T'%/T); then the complete preimage of subspace & under the factorization of T'%/T is a
Lagrangian subspace in I. The described correspondence defines the imbedding of manifold L(I'*/T) into manifold
L(Z). Under this imbedding manifold L(I'%/T") passes into a submanifold in L(Z) consisting of all Lagrangian planes
containing T’ (or, which is equivalent, contained in I'*). Henceforth we will identify manifold L(I'¢/T") with the cor-
responding to it submanifold in L(XZ).

Conversely, for any A € L(Z) we set AT = A N T44T. Itis easy to see that A% € L(T4/T), and mapping A — AT
defines the projection of L(X) onto submanifold L(I'%/T). This projection is discontinuous on L(Z) but is smooth and
surjective on submanifolds {A € L(Z) | dim(A N T) = const}. If A € L(T%/T) C L(T), then the tangent space T,L(T'*/T)
C T,L(Z) ~#(A) consists of quadratic forms q on A such that T' C kerq.

Proposition A3. Imbedding L(I'4/T) € L(Z) induces an isomorphism of fundamental groups.

For the proof, see [12, pp. 152—154].

COROLLARY. =,(L(T)) = Z. Indeed, let dimI = n — |; then dim(T'%/T) = 2. At the same time, L(R?)=RP! =
sk

In fact, imbedding L(I'4/T") € L(Z) for dimT = n — 1 not only induces an isomorphism of fundamental groups
of manifolds L(X) and §! but also canonically defines the generator 4 € 7,(L(Z)). Indeed, nonzero tangent vectors to
submanifold L(I'¢/T) C L(T) are quadratic forms of rank one. Any such form is either nonnegative or nonpositive.
Denote by 7 the generator of group 7,(L(E)), which is expressible as a curve in L(T4/T) with nonnegative velocity.

We can show that this definition is unambiguous, i.e., it does not depend on the choice of I. Indeed, the
symplectic group Sp(Z) acts transitively on the set of isotropic subsets of fixed dimension. Since, in addition, group Sp
(D) is connected, for any isotropic I';, T'y C T of the same dimension there exists a diffeomorphism, isotropic to the
identity one, of manifold L(Z) onto itself that carries L(T'}4/T;) into L(T,%/T},).

Definition. Let A, 6 € S! be a continuous closed curve in L(E). Curve A, represents some element d of the
fundamental group of manifold L(Z), d € Z. The number d is called the Maslov index of curve A, and is denoted by
d = Ind A,

IV. Maslov Index. Definition. Let A;, A,, Ag € L(E), Maslov index u(A,, 4,, Ag) is defined to be the signature
of the quadratic form q on vector space A; ® A, ® Ag defined by the formula

g Qs Aoy M) =0 (Apy M) 0 (o, M)+ 0 (g, M), LEA;, E=1,2, 3.

Proposition A4 (the most important properties of the Maslov index).
1) Index u(Ay, A, Ag) is antisymmetric with respect to all arguments.
2) The following identity is true (chain rule):

P(AZ: A31 A~4)—}1(A1, A3A4)+P- (Ah A’b A-;)—'}"(Ah Ag, A3)=O
VAEL(Z), i=1,...,4."

3) For any A; € L(Z), i = 1, 2, 3 and any subspace I' C A; N Ay + A3 N Az + A3 N A, the identity

P’(AF, AZ, A§)=P(Ah Ag, Ag)

is true,
For the proof of properties 2) and 3) see [13, pp. 32—34]; property 1) is obvious.
We give another definition of the Maslov index, precisely this one is used in the main text,

*Property 1) means that u is a "2-cochain” on L(Z) and property 2) means that 4 is a "cocycle" on L(X).

2705




Definition. Let A; € L(Z),i=1,2,3. Arbitrary vector A€ A, N (A; + Ag) can be represented in the formof ) =
A, + Xy, where A) € Ay, Ag € Ag. Set g(d) = o();, Ag). It is easy to see that correspondence A — q()\) unambiguously
defines a quadratic form on A, N (A, + Ag), i.e., expression o(};, A;) depends only on the sum }; + Ay whenever Ay and
)g lie in fixed Lagrangian planes. Maslov index p(Ay, A,, Ag) is defined to be the signature of quadratic form qon A,
N(Ay + Ag). Note that kerq = A; N Ay + Ay N Ag.

The equivalence of the two definitions of the Maslov index when A, N Ag =0 is proved in {13, p. 317; the general
case is reduced to this one with the help of assertion 3) of Proposition Ad. The second definition of the Maslov index

implies the estimate
[ (A1, A, As) | Sm—dim(AiAz+A2NAs) VAEL(E).

Proposition AS. Let Ay, A, € L(Z). Then for any integer k satisfying the inequality | k| £ m—dim(A; N A,)
there exists a Lagrangian plane A transversal to A, and A, such that u(A,, A, A,) = k.

The proof uses the description of a set of Lagrangian planes transversal to a given one which is given in
subsection 1) as well as the antisymmetry of the Maslov index.

Proposition A6. Let A, t €[t;, t,] be a continuous closed curve in L(Z), Ay, = A;,. Suppose that, in addition,
we are given points t; = 7y < 7y < ... < Ty < T4 = t; and Lagrangian planes Ay, Ay, ..., Ay such that A;N A, =0 for 7; <
s i=0, L N

Then VII € A(Z) equality

T h

N
2Ind A, = X u (@ Ay Ac, )— 1 (L Ay Ax)
1==Q

is true.
The proof follows from the results of Sec. 1.9 in [13] (see, in particular, Proposition 1.9.5).
m
V. Unitary Model. Consider space C™ with the Hermitian product({ 7, @ ) =2 v,@,. The bilinear form Im

X {mml
(v, w) specifies a symplectic structure on C™ while Re (v, w) specifies a Euclidean structure. Denote by Ag the set of

ail real vectors in C™; clearly, Ay and also iAg are Lagrangian subspaces.

Any unitary transformation preserving the Hermitian structure also preserves the symplectic structure and,
consequently, carries Lagrangian planes into Lagrangian planes. Thus, group U(n) acts on the manifold of Lagrangian
planes L(C™). In fact, this action is transitive. Indeed, suppose that A € L(C™), and let ey, ..., e, be a basis in A
orthonormal i_n the sense of the Euclidean structure Re (., -}, i.e., Re (e;, ej) = §;» i,j=1, .. m

Since Im (e;, ej) =0,1, j=1, .., m (A is an isotropic plane), basis ey, ..., e, is orthonormal also in the sense of
the Hermitian structure, {e;, ej) = §;, 1, j = 1, ..., m. Therefore, there exists a unitary transformation U that carries the
standard basis into the basis e, ..., ¢;. Clearly, UAg = A. Furthermore, the unitary transformation U: C™ — C™ carries
Ay into itself if and only if all the elements of matrix U are real. Real matrices in U(m) form the subgroup O(m). Thus
we have established the isomorphism L(C™) = U(m)/O(m).

Let U € U(m); it is clear that magnitude det?(U) depends only on coset U in U(m)/O(m) and, consequently, is
unambiguously defined on L(C™). Here det(U)e (ve C: |v]| =1} =S

Proposition A7. Let A,, ¥ € S! be a continuous closed curve in L(C™), Ay = UpO(m). Then Ind A equals the
degree of mapping ¥ — det(U,) from S! into S!.

Suppose that A € L(Z), § € T,L(L), as above, tangent vector ¢ is identified with the quadratic form 1/20(D¢A,
A) on A (see Proposition A2). The existence of a Euclidean structure allows us to associate with a quadratic form the
symmetric operator s(¢): A — A, where

Re (@M k) =50 (Dghy ko) Yy, MgA.

From Proposition A7 we can derive
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Proposition A8. Let A;, 6 € S1 be an absolutely continuous closed curve in L(C™). Then

2
n

ot~ 45)

St

COROLLARY. Suppose that h,, 7 € [0, t] is a nonstationary quadratic Hamiltonian on T and H: & —- D is a
Hamiltonian flux. Let Ay € L(Z) be such that curve A, = H Ay, 7 € [0, t) in L(Z) satisfies the condition A, = A,. Then

¢

IndA,=2 trs (b A ar.
]

4. HOMOLOGY INVARIANTS OF THE SECOND VARIATION

In the present section we describe some invariants of a family of curves on a Lagrange Grassmanian and with their
help we study the second variation of a controlled system.

1. In this subsection we use notation from subsection 1 of Sec. 3. Recall that G,” is the quadratic mapping of space
ker G,’ into the k-dimensional vector space coker G/ =(IH)* Set¥=(y € MiindyG,” < +o0}. Set ¥ is obviously a
convex but, generally speaking, not a closed cone.

The next rule associates with each € (0, t] an integer nonnegative [, s m: if quadratic mapping v — hy(v, v), V€
R’ does not equal identically zero on any interval ¥ < § <, then we set 1, = 0; otherwise, let [, be a maximal (among the
cumbers 1, 2, ..., m) number / such that [‘aa(‘)vl, 3vel=0fori<2(l—1),vy, Vo € RF on some interval F <8 <.

Proposition 3.1 directly implies the following

Proposition 1. Set ¥ C IT* is contained in the intersection of subspace

{[3+ Vo, v V0,]{0<T<E, 0y, 2ERTI (1)

and the convex closed cone
{ls¢="V0, 3{'"0]|0< T <, vER'} . @)
-1 . .
If, in addition, the closure of set ([8$lr)v, 3,(51' )jb < r <t, M= 1) does not intersect with subspace (1), then the
interior of set ¥ relative to set (1) coincides with the interior of the intersection of (1) and (2) relative to (1). ‘
) Remark. Proposition 3.3 enables us to substantially ref ine the description of cone ¥ given in Proposition 1; moreover,
% we can isolate not only the interior but aiso the boundary points of ¥ relative to (1). We shall not, however, dwell on
this.
In subsection 1 of Sec. 3 we put in correspondence to each ¥ € IT+\0 a symplectic space Ep y, and the (natural) exact
sequence

0> II* > Eq, 110,

The introduction of local coordinates in the neighborhood of point yg leads to an isomorphism of Ey 4 and space I1
® II* with the standard symplectic structure o(x; @ {;, X3 ® €,) = (€3, x1) — {1» X, 5 EIL§ € I1*; moreover, diagram




m
-1
o

/

is commutative (the lower arrows denote the imbedding of TI* into II ® IT* as a second term and a coordinate projection
of TI & TI* onto the first term). This isomorphism is not natural and depends on the choice of local coordinates.
However, to construct such an isomorphism we need much less than the introduction of local coordinates. The following
assertion describes the situation exactly. (Recall II* = T“O"M/II-‘-.)

LEMMA 1. Let ®: 71+ — Der*M be a linear mapping such that for every y € I+ the relations uy - ¥ =9, g,
. d(®y) L 11 A 11 are fulfilled. Then for every ¢ € IT*\O mapping

“t,
3
H
i3

BRI sty s AR eI e
T '

iR A i
A ey

X = poeX® (po° LxP9+11+), X€& 1
induces an isomorphism of the symplectic spaces

S' . En,'*nen*.

G S R b e et o

The proof is a direct calculation.

Now fix once and for all mapping ® that satisfies the hypothesis of Lemma 1.

Let ¥ € ¥\0 be such that the Jacobian curve A, € L(Eg 4), 7 € [0, t] corresponding to form yG,” is defined (the
most general conditions for the existence of the Jacobian curve on the whole interval [0, t] are given in Proposition 3.3).
Set A, () =S,A, CcTI® I*, r €0, t]. Then A (¥) is a nondecreasing curve in L(Il @ IT*), A4(¥) = I* € L(Il & 11*). The
results of Sec. 3 enable us to calculate ind ¥G,” in terms of curve A, (¥),0< r< t.

2. The investigation of quadratic mappings on RN*+! conducted in [1] relied on objects connected with a space
of quadratic forms, namely the index of a form and classes 7,. Now it is evident that during the investigation of an
integral quadratic mapping G.” the role analogous to the space of quadratic forms is played by the set of all nondecreas-
ing curves on L(II ® II*) beginning in IT*. In this subsection we give a definition of the index for these curves and
introduce analogs to classes «,,. Really, the definition of the index is suggested by the results of Sec. 3.

Definition. Suppose that A,, 0 < r< tisa nondecreasing piecewise smooth curve inI® I1*, Ay =11*,and 1), =
0 =1y < ... <7 =t is a partition of interval [0, t] such that curves A. | [ririagl? i=0,1, .., —1 are simple. Set

A 'ﬂWﬂﬁiﬂMW:%&ﬂW

ey

b oy

W 2 A B
BIRENIRR

At b AR X4 R SN R

Yolitentumk

!
ind A= 3, inda, (Acy Ac,)+dim( 0 A)—m.

]

Value ind A. is a nonnegative integer and, according to the results of Sec. 3, does not depend on the choice of the
partition of interval [0, t]. Moreover, if at each point of discontinuity 7 of curve A. we introduce a simple nondecreasing
curve joining Az with A3 +¢ and, in addition, we join by a simple nondecreasing curve A, to A,, then for the nondecreasing
continuous closed curve A obtained as a result, the following identity holds:

A A AR T

Ind A, =indA,=Ind A, +dim( 0 Ay)—m- (3)
[ 24

Ao a5 iy Bt

Recall that Ind denotes the Maslov index of a closed curve. Identity (3) follows from Proposition 3.2 (see also Theorem
3.3).

In the sequel we assume that some complex structure and Hermitian form (-, -)are: fixed in the space o(x, ® ¢y,
Xy ® §;) = Im(x; ® £, x, ® £,). In the Appendix to Sec. 3 we have described an identification of the tangent space
T,L(Il ® IT*) with spaceP(A) of quadratic (= symmetric bilinear) forms on A. Below, this identification is used without :
special stipulations. To each form q € #(4) = T,L(Il & II*) there corresponds the symmetric linear operator s(q): A —
A, where (A, A;) = Re(s(q)Ay, A;) YAy, A, € A. We give a Riemannian structure on L(IT ® IT*) by defining the inner
product of a pair of tangent vectors q,, q, € T,L(Il & IT*) by the formula (a3, az) = tr(s(ay)s(ay)). The length of the
arbitrary piecewise smooth curve A, € L(IT ® IT*), 0 < r < t is denoted by the symbol p(A.),
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Proposition 2. Let 4, 0 < r< t be a nondecreasing piecewise smooth curve in I ® IT*, A, = IT*, having at most
N points of discontinuity, Set v=m —dim (kﬂ A). Then
<t

2 pA)—v<(indA) < VT p(A)+N.

Proof. Since A, is a nondecreasing curve, its velocxty A eT,LI®N%isa nonneganve quadratic form and
s(A ) is a nonnegative symmetric operator; moreover, rank s(A ) £ v. Therefore, tr(s(4,)?) < (trs(4,))? < utr(s(A N
If A. is a continuous closed curve, then the inequalities being proved below follow from proposition A8 of the Appendix
to Sec. 3 and from equality (3). In the general case we need to use also the fact that any pair of Lagrangian planes 4,,
A, lies on some nondecreasing continuous closed curve Ay, § € S! satisfying the condition Ind Ay = m —dim(A; N 4,).
This fact is established very simply: that at least some pair of Lagrangian curves lies on such a curve is obvious; at the
same time, a symplectic group acts transitively on a pair of Lagrangian planes with a fixed intersection dimension.

Denote by 840, t] the space of all piecewise smooth monotone curves A, € (Il @ II*), A = IT*, continuous on the
half-interval (0, t] with topology of uniform convergence on each segment [, t] where 0 <& < t. Discontinuity at zero
moment is admissible, i.e., IT* = Ay # A ,.

By &40, t] we denote a subset in &[0, t] consisting of all such curves A. € &[0, t], for which there is a partition
0=7y<r)<..<r1y, =tof interval [0, t] with the following properties: a) curves A. | [riris] 37 simple fori=20, ..., [
+ 1 b)A,iul'I*=0,i= 1, ..., !, A;UTI* = 0 on some interval T < § < t.

Remark. Subset 9.[0, t]\i’:“[O, t] has an infinite codimension in £[0, t], i.e., for an arbitrary finite-dimensional
manifold U and space C(U, &[0, t]) of all continucus mappings from U to £[0, t], subspace C(U, &40, t]) is an
everywhere compact subset C(U, £90, t]) = C(U, 0, t]).

Partitions of interval [0, t] satisfying conditions &) and b) are said to be compatible with a given curve A,

Let A.€ [0, tJand 0 = 7y <7y < ... <7, ; = t be a partition compatible with this curve. Denote D; = [r, 7;,,],
D = {r, ..., 7} and set

Kp (M= X [@*nA)ch?, i=1,....1

T <T<Tj4,

Kp (A)= ‘élKo‘ A).

Suppose, finally, that ¥(D) is a subset in g¢[0, t] consisting of all curves with which a given partition D is compatible.
It is easy to see that (D) is an open subset in 0, t].

Sets of the level of the integer-valued function ind determine a partition of space £°10, t]: set 8;[0, t]={A. €
20, t]| ind A. = n}. Correspondingly,

2 (D)= Zg [0, N8 (D).

LEMMA 2. Letn> 0,1 < i< /. Then
a) dimKp, (A) = indyps (A, Ay +1) —1/2dim(A, N 1m*),4
b) subspace Kp; (A)) depends continuously on A € L D),

¢) if some subpartition 1y = ;) < 7j; < .. < Ti(g41) = Tigy of segment D; is such that IT* N A =0forj=0,1,

;s then Kp, = JQZOKDU’ where D;; = [r;;, i(.i+1)]'

{The space A, N TI* can differ from zero only fori= 1.




Proof. a) Let T be a Lagrangian plane such that TUII* = TU A, =0 for r; < 7 < r,,. When proving
Proposition 3.2, we have established that

2indms (Ac, Acy,)= 1 (Ac,, 0%, T)—p(As, O%, T),

where p(:, -, -} is the Maslov index of the triple of Lagrangian planes. Suppose that p,: TI ® II* — A_ is the projection
operator of space II @ IT* parallel to T onto A, (that is, kerp, = T). Then u(A,, II*, T) coincides with the signature of
the quadratic form £ — a(p,¢, ), £ € IT*. The kernel of this quadratic form coincides with IT* N A,. At the same time,
for every ¢ € A, N II* we have (d/dr)o(p,£, §) 2 0 since A, is 2 nondecreasing curve. Consequently,

Kb, (A)=span {£€11* |0 (px,}, &) <0, 0 (P, 5 1) >0)

and

dim Ko, (4) =5 (4 (Ac,,p» TI% T)—p (A, T% T)—dim (Ac,,, NII%)

(Recall that certainly A,i NI*=0)
b) In a) it was implied that dim KDi(A) is locally constant in Q% (D). Since KDi(A) obviously depends on A inan
upper semicontinuous manner, the fact that the dimension is locally constant implies continuous dependency.
4] .
¢) By definition KDz (A)_—_E Ko, ; (A), on the other hand, Proposition 3.2 implies that

H
indme (Avc,» Axy, )= Indm (Ac,, As,,)
j=0

1 Iy
and, according to assertion a), dim Kp, (A)= 2 dim Ko“ (A). Consequently, the sum 2 KD” is direct. ®
7m0 j=0

N ! 7
Let A. € 85(D), and set Kp (A)= g‘KD, (A), According to assertion a) of Lemma 2, dim Kp (A)== z indpe (Ax,,

{=1
A,.,,)- Furthermore, since A, NTI* = 0, we have indm (II*, As,) =—l2' m, 0<Q<£/\:=0; indn- (Ag H‘)=%-(m —dim(AN
11*)). Consequently, dim Kp(A) = ind A.
Assertion b) of Lemma 2 implies that the family of linear spaces Kp(A.), A. € ﬁn'(D) forms an n-dimensional
vector bundle over £,%D) which we denote by X, a(D). At the same time, for a variable D sets £,°(D) form an open
covering of space £,%0, t]. For arbitrary D = {r)’, ..., 7,} and D;” = {r,", ..., Tp”) we have

8 (D)N LA (D", L2 (D'UD".

Suppose that D}’ = 1", 1;,,7, D;"=[r;", r;,,"], and Dj is the j-th segment of bundle I’ U D”. In such a case, each segment
D; is contained in some segment D,;’ and in some segment Dg;”. Assertion ¢) of Lemma 2 implies that inclusions

Ko, (A.)CKD; (A, Ko, (A)CKDE, (A)
1 ji
define the canonical isomorphisms

Kp(AY=Kp (M), Kpo(A)=Kp (M), YAER.(D)YNLD").

As a result, for various D bundles, X,(D) turn out to be coalesced into one vector bundle K, over & 40, t.
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Let x, € HY(2,%0, t]) be a one-dimensional Stiefel—Whitney class of bundle X, i.e., £, = w,(,).
3. Let us return to the investigation of the quadratic mapping G;”. In subsection 1 we defined cone ¥ C IT+.
Denote by ¥* a subset in ¥ consisting of all ¥ for which the Jacobian curve A.(¢) € &9[0, t] is defined. In addition, set

Y, =(pe¥\0|indyGi=n}, ¥r={pE¥*|ind A, (y)=n}.

Theorem 3.1 implies that

ind $G; =ind A. (), VPEY?,

therefore ¥ * C .

Quadratic mapping 8.” is defined on the subspace ker g, of the Banach space L0, t]. At the same time,
L7T0, t] is an everywhere compact linear subspace of the Hilbert space L,70, t]. It is easy to see that G;” is continuous
in the topology of space L,70, t]; this follows directly from formula (3.1). Denote by ker G’ the closure of space ker
G, in L,70, t], '

t
kerGi = {v (-)ELF [0, #] | poe § 0 (¥) dv= o},

and by g, the extension of mapping G,” to ker G, with respect to continuity. Mapping g, like G,", is defined by
formula (3.1):

g @ () v (.))=§ (h‘ (v (), fv(-r))—{-“ 307 (8) d6, 30 ('r)D dr,
0
v (-)eker G;.

Clearly, indy¥g = indy 8,” V¢ € IT*.

Thus, g, is a quadratic mapping of an inf inite-dimensional separable Hilbert space }EG{ into the k-dimensional
space cokerG,’ = T“OM/H. Subsection 7 in |1, Sec. 2] is devoted to such mappings. To each ¢ € ¥, an n-dimensional
vector space Ly C Ker G,’ corresponds — an n-dimensional invariant subspace of a self-adjoint operator definable by
the quadratic form ¥g such that ¥G,” | Ly < 0. The family of spaces Ly, ¥ € ¥, forms the vector bundle Z, over ¥ .
By 7, € HY(¥,) we denote the one-dimensional Stiefel—Whitney class of bundle L, le, 1= wiZ).

Denote by J: ¥* — %[0, t] the mapping ¢ — A.(¥), ¥ € ¥%, and by J: ¥,* — £,°0, t] the restriction of mapping
JtoW 2 ie, I, =1 RS

Proposition 3. Mapping J, continuously restricts J to ¥,* for every n 2 0.

Proof. Let ¢ € ¥, % according to definitions from Sec. 3, the Jacobian curve A,(1), 0 € 7 < tis an integral curve
of a nonstationary vector field on L(Il & IT*). Recall the definition of this field; here, for simplicity’s sake, we limit
ourselves to the case of the piecewise smooth function and one parameter (r = 1). In subsection 1 of Sec. 3 the piecewise
smooth function ¥h, and the piecewise smooth curve z, () EEqy, 05 72 twere derived. Since throughout this section
isomorphism S E ¢ — I ® IT* is fixed, we will identify curve z,(y) with the image of this curve under mapping Sy.

With each 7 € (0, t) we associate an integer k,(¥) > 0and a real number v,(_: if $h, #0, then k,(¥)=0,7,(¥) =
$h,; otherwise, k() is minimal among numbers k satisfying the condition

oz (), 247 @) A0, ye (¥)=a (@2 (), 28DV ().

The condition ¢ € ¥* (which guarantees the absence of singularities in the Jacobi equation) implies that X, <
m and k,(¥) is locally constant at any point where function ¢h, and curve z,(y), 0 <7< tare smooth; 7, > ¢ for some
e>0andall 7€ (0, t]. WesetT (¥)=span{z,)(¥)|0< i< k(¥)—1)tobea k,-dimensional isotropic subspace in IT
@ II*, depending piecewisé smoothly on r. Let A € L(IT ® IT*), as in Sec. 3 (see, in particular, the Appendix to that
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section); the quadratic form A — o(z,()(¥), M), A € A, and also the element of space T,L(Il ® II*) corresponding to this
form are denoted by the symbol a(z,(i)(«,b), A)%. The Jacobian curve A (%) is a continuous on (0, t] solution of the
differential equation

d 1
7 A=y S ET @), AP

with the initial condition A q(¢) = TT*T+0(¥),

It is easy to see that k(1) depends upper semicontinuously on ¥. If ¢ is such that k(¥ = k() for all r € [0,
t] and ¢ € ¥ sufficiently close to ¥, then the continuity of mapping J at point ¥ is the consequence of the standard
theorem on the continuous dependence of solutions of differential equations on parameters. If, however, for some
sequence ¥; € ¥*, i =1, 2, ..., ¥y — ¢ (i — o0) inequalities k.(4;) < k (¥) are fulfilled, then ~,(4,) — 0 (i — o0), and the
question of the continuous dependence of solutions on a parameter becomes far from trivial. Furthermore, mapping J
can turn out to be discontinuous at point ¢; only mappings J = J [ ¥, * are continuous.

Thus, let ¥ € ¥ 5, ¥, — ¢ (i — o0) and k. (¥;) < k,(¥) for some 7 € (0, t]. The definition of vectors z () implies
the existence of partition 0 = 15 < r; < ... < ry,; = t of segment [0, t] such that all integer-valued functions r — k(¥;),
i=1,2, .. are locally constant on the set (0, t]\{ry, ..., Tx}. Since all the considerations can be fully conducted separately
on each segment [r;, 75,41, j =0, 1, ..., N, without loss of generality (but simplifying the notation) we can assume that
k,(¢;) and k, (¥) do not depend on 7, i.e., k ($) =k(y;), 0 <72 t,i=1, 2, ..., k() = k(¥). Furthermore, passing, if need
be, to subsequences, we can attain the fact that K_(3;) should also not depend on i, k,(¢;) =k fori= 1,2, ....

Thus, we pass to the following situation. There is a sequence ¥, i = 1, 2, ..., ¥; — ¢ (i — o0), such that

d 2 +o
7= A (b)) = -Qv—‘l(rp-i-y o (2P (), AFy Ay () =T1"T0,
€0, ¢ IndA (p)=m; E<E@). )

We need to prove that A (¥;) — A (¥) (i — o) is uniform on every interval r € [7, t], 0 < T < t. Proposition 2
implies that the lengths of curves A (¥), r €{0, t] are uniformly bounded in i. We make a change of parameter on curves
A, (¥;) by parametrizing these curves with an arc length: let functions § — 7,(6), ;(0) = 0 be such that the velocity of
curve § — A,(,)('qbi) has for any § a unit length,i=1, 2, ....

For integer a, k € «, r € (0, t] we set

L ={A6L TSI | 2 ()eA, £ < j <o

to be a smooth submanifold in L(IT ® IT*), diffeomorphic to L(R2(M+k=a)) for k < « < k(¥),

@=L PN | cL® =L [T,
Consider the nonstationary vector field o(z,()(y), A)?, 7€ (0,t], A€ L(II® IT*). For A€ L,(@) | L{=+1) we have

/ 2
S7o (= ), A=
_{o, for j<2(a—k)
T2 0 (28 (), A)'#£0 for j=2(a—k), kE<a. (5

Since z,(j)(y')i) c¢onverges uniformly to z,(j)(¢) as i — oo for any j > 0 and functions 1,(¥;) are uniformly bounded in )
and i [in fact, 7,(4;) — 0 as i — oo}, (4) and (5) imply that functions 1,(8) are uniformly Holder

1
170 (8) — 7, (8) | < ¢ [ 0 —, |PHD=RD,




where ¢ is independent of i and 46,, 6,.

Thus, the sequences of curves § — A,'i(,)(gbi) and scalar functions # — r,(6) contain uniformly convergent
subsequences. Without loss of generality we can assume that sequences A,i(,)(zﬁi) and r;() themselves uniformly converge
to some curve A, and scalar functions r{f), 0 < 8 < 6, 7(6) = t. Since A,i(,)(1,bi), r(8) are a nondecreasing curve and
function, the same is also true for A,, 7(6); in addition, indA. < n. We will show that A,(,)(aﬁ) = Ay, 0 <4 < 6, moreover,
there is a function 8, > 0 such that function r(§) continuously and bijectively maps half-interval [§,, 4] into (0, t].

In the first place, we can derive from (4) and (5) the following fact: if on some interval (§;, 8,) C (0, 9),
relations Ay € L,(a)(")\L,.(a)(““), §, < 6 < 8, are fulfilled, then dA/df is positively proportional to a(z,(a)(“)(tﬁ), A,)z, i.e.,

»

dAg (@) . \2
7e—=ll(e) O'(zg(e) (q?), Ae) ’ u(e) >01 8; <8<0;.

Relation A, € L,(,)(") is equivalent to equality

o (2557 (), Re) =0, VheEho, 6 <0< 0x;

the differentiation of this equality with respect to ¢ (at the points where the derivative exists) leads to the identity

o (245h () 2o) [ 55 +20@) (255 (9. 248 () =0,
XoEAs,  0E(8:, 62),

and the difference analog of this identity (true already at all the points) establishes the absolute continuity of function
7(6) on (6,, 6,). Thus, dr/déd = 0 for a < k() and dt/dé = u(e)q,(,)(vl:) > 0 for a = k(¥).

We see that on any interval satisfying condition A4 € L,(e)kw‘), 8, < 6 < 65, function 7(f) is invertible and curve
A is subject to the equation

dA 1 y
& T ® o (280 AR, v @) <T<T (@)

the same equation as curve A (¢).
Therefore,

AGELYS (8, < 8 < 80) & Ao, +o=Asa,y=>o= Axco) (V) (81 <8 < 62)- (6)

At the same time, on interval 8 € (6, 6,) satisfying condition A, € L,(,)(“)\L,(,)("*l) with a < k(¢), function
(6) is constant, 7(8) = 7(4;), and curve A is subject to the "almost autonomous" equation

%%-=u(e)c(z£°(‘3‘), A)Qv u(9)>0, 9; <0< 02 N

Let A,l" = :‘01+o n {z,(,l)(")}‘ be an (m — 1)-dimensional isotropic subspace in L(II ® IT*). Equation (7) leaves

manifold

L(A3S108) =L (RY)=S!

invariant.
Note that

/ . (a
L (83 188) LG = 85, -+ span (265 = A 0
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is the only fixed point of Eq. (7) on L(A4/A).

The proposition being proved now follows from (6) and the following assertion.
LEMMA 3. Let off) = max {a]Ag € L,(,)(“)}, 0 < 9 < 4. Integer-valued function (§) does not decrease with

the growth of 4,0 <6 <8,
Proof. Let 4, € (0, 6), 7(6;) < t. Assume that %= lérﬁ_oa(ﬁ)<“(61)- Then there exists a 6, > §, satisfying

3
€
i
4
H
H
i
13

- . Z e
conditions 7(8,) = 7(61),“ Ay, = Agy such that the nondecreasing curve A ] (61.92] contains the whole circle L(A§X+0/A§,+o)
& 2

where Aj4+0= . 116m OAE- Indeed, finding ourselves on this circle on the "positive side" of the fixed point of the equation
. -0140
dA/dé = u(e)a(z,(g 1)(9‘-), A)? we cannot return into L,a(’l) without passing it all (we can return only along this circle and

only from the negative side); at the same time, until we return r(¢) does not increase.

The given argument and (6) imply that curve ;&o, d € (0, (3) contains the whole curve A, (¥), 0 <r < t, and also
the circle L(A,1+OE‘/ A01+02). (the orientations are uniquely determined by the fact that all the curves must be
nondecreasing). It remains to note that IndL(A,IWE‘/A,HOS) =1 > 0; therefore, n > indA: > indA(¥) + I =n+ 1.
Contradiction. We have not yet considered the case when (4,) = t, but this case reduces to the already considered one
if from the very beginning we extent z,(y;) and z,(¥) in a suitable way to some interval on the time axis containing (0,

t.

o e bl S R S e T

THEOREM 1. For any n > O the following isomorphism of vector bundles holds: Z |y =1, In
particular, 7, | ¥, * = I *x,.

Proof. Suppose that ¥ € ¥ *and A,(¥), 0< 7< tisthe corresponding Jacobian curve. In order not to encumber
the presentation too much we again assume thatr = 1 and that notation z(¥), k,(¥), and '1,'(3(:) has the same meaning
as in the proof of Proposition 3. )

LetO=rg<7y<..<7),=tbea partition of interval {0, t] compatible with curve A, Dy =1Ir, 141l D={ry,
..y T}, The fiber of bundle J ¥4, at point ¢ by the definition itself of this bundle is identified with the space

O T R AT

Ko (A ()= @Ko, (A. (9,

where

Ko, A= X @*NA), i=1 ...

T <T<T 0y

Let A € KDi(A.(gb)), and set Dy(A) = {r € D; | A€ A,). Assertion ¢) of Lemma 2 implies that Dy(}) is connected,
i.e., it is a subinterval in D;. In the case when this interval is not reducible to one point, the differentiation of identity
0 = o(x, X, (¥)), r € Dy(}) with respect to r leads to the equality o(2, z,(“r)(d»)) =0, r € Dy(}).

Assume that 7, € Dy(}), and denote by A, 0 <7< 74 the solution of the differential equation

) (kg)
dk.‘ U(z,‘ T (), A.‘) z(k")

A () L

satisfying the condition A, = A. Finally, set

A N A . < i o v+ o= st e s

(k)
o (25 ¥ (¥), M)
@)= 0<T<

0, ©€(0, 7]

to be a piecewise smooth function on (0, t]. From the aforesaid it follows that correspondence A — v,(-) unambiguously
defines a linear injective mapping of space KDi(A.(d))) into a space of piecewise smooth functions on R. Furthermore,




A R R el i s

{
associating with vector (A} ©...8 X)) € Kp(A.(¥) function E Ua, (+), we apparently obtain an injective linear mapping
iw=}

of Kp(A.(¥)) into a space of piecewise smooth functions.

Now we use some notation introduced in the proof of Theorem 3.1. By H_k_“,)[o, t] (see Lemma 3.8) we denote
N4t
the direct sum of some Sobolev spaces with negative weight H_j ({0, t] = &, H ¢ () [¢,_1s ], whereO=tg<ty<... <

tys1 = t, and ty, .., ty are all the points where the smoothness of z (¢) is violated. In Lemma 3.8 we established the
continuity of form $G,” in the norm of space H_y (4)[0, t) > L,[0, t]. The closure ostpace ker G’ (of the domain of

N def
form ¥G,") in H_y ()0, 1] consists of "distributions"” u= j@ A such that{ z.z, 1) =E ( zu;, 1)€I* the extension
=0
with respect to continuity of form $G,” to this space of "distributions" is denoted by Q(¥).

Let A € A, N II* and let A, 0 < 1 < 1, be a solution of the equation

dhe

% =T, (T) z-(:‘) ’

satisfying the condition A, =X, Then,, € A g consequently, vector Aq is uniquely represented in the form A g = v(3)
PR
-+ 2 @, (A) z,q Where vg(2) € IT* N T, ¢%, gi()) are scalars. The following formula associates with each A &€ KDi(A.(zl:))

v=0

the element uy of space H_ (4)[0, t}

aet 17! ya
= 20 3 () 0840+ 2 0 (@al 11y, 110),
Loui Ju=1

where §,,€ H_4[0, 1], a s-function concentrated at the origin, and 8 = —3/dr is the differentiation operator in the
distribution space.

!
Associating with each (3, ®..8 M) € Kp(A.(¥)) distribution 2 Uy, We obtain the linear injective mapping uy:
FE

Kp(A(¥)) = H_y (4)[0, t]. Observe that

el

4
(zap 1) = § a (M) 24 +£ 28, (v) dv= (A — v, (A)EIT*.

Consequently, the n-dimensional space u¢(KD(A.(¢))) lies in the domain of form Q(¥).
LEMMA 4. The restriction of form Q(¢) to subspace u‘ﬁ(KD(A.(yb))) equals zero; in this connection, u¢(KD(A.(¢)))
N kerQ(y) = 0.

Proof. Indeed, for X € A, N M*, ) eA.NTI* 0<1"g 7 < t we have (for the uniformity of formulas we
assumed that k, > 0 Vr)

¢ x
Q (s u’-')‘=§ ag (§ (— l)keZe'U:? (8)da+

Rpg—1 ¢

+ X a2t (— 1)'*z,v<;.*’<w)) dr=| (\w» )+

(=0 0

t - bye—1
+o Q 200, @) do+ ) a. (V) 28, zik'))) o (D de=
=0
H

=03 (), [ 2oy ) dem

Ripq—1
=0 (VO ("I)s Vo AN+ 2 a‘zf}f%—w') =0.

im0




The kernel of form Q(y) was described in the proof of Theorem 3.1 (see Lemma 3.12). Curve A.(¥) belongs to
%0, t]; consequently, Ay(¥) N II* = 0 on some interval T < ¢ < t. In such a case the space ker Q contains no nonzero
distributions equal identically to zero on the interval (7, t).

In Proposition 3 the continuous dependence of curve A.(4) on % € ¥_* is established. An analysis of the proof
of this proposition shows that spaces {(u, [re KDi(A.(\b))) depend continuously on y asdo f inite-dimensional subspaces
in the Sobolev space H_y[0, t] with suff iciently large N > 0.*

Consequently, n-dimensional spaces u,,,(KD(A.(a/)))) also depend continuously on ¢ if they are considered as

subspaces in H_x[0, tl.
QObserve that u¢(KD(A.(¢))) is independent of the choice of the partition of D, and set Uy = uw(KD(A.(x,b))). The

family of subspaces Uy CH_j (y) [0, t]jC H_7IO, t], Y € ¥ ° determines an n-dimensional vector bundle %, over ¥, *and
mapping uy Kp(A.($)) = Uy induces an isomorphism of bundles Jn‘."/’fn s U,,. It remains to construct an isomorphism
of fiber U, onZ, | ¥,

Recall that the fiber of bundles &, at point § € ¥,* is an n-dimensional invariant subspace Ly c kerG,’ of aself-
adjoint operator in ker G, defined by the quadratic form yg,, such that g, | Ly <0. In that case, Q) | Ly= s, | Ly <
0. Let Dom Q%) be the closure of subspace ker G, in H_k.w)[o, t], the domain of form Q(¥).

According to Lemma 3.10, form Q(¥) is positive definite on some subspace of finite codimension in Dom Q(¥);
subspace (L‘b)qmi’ has codimension n in Dom Q(), and according to Lemma 3.11,

Q (§)(Lo)diny > 0r ker (Q (WI(Lo)ser) =ker Q (¥)- ®

Equation (8) and Lemma 4 imply that Uy N (L¢)Q(¢)—'- =0.
Let Pry: Dom Q) — Ly be the projection of DomQ(¢) onto Ly parallel to Uy, in other words,

ker Pry==Uy, im Pry=_Ly, PryPre=Pry.

SetI,=Pry | Uy. Family Iz Uy — Ly ¥ € ¥, * of isomorphisms of linear spaces realizes an isomorphism of the bundles

%nzgn‘qr’,“

Suppose that X is a convex polyhedral cone in coker G’ and the quadratic mapping g is not degenerate relative
to K. In the case when inclusions

(aQu\F;) n KOC(,QOT‘) nK® n>0

are homotopy equivalent, Theorem 1 allows us to use effectively Theorem 2 from [1] for a highly exact estimatte of
homotopy groups of the set g~ }X)\O. Indeed, in many important problems equality ¥* = ¥ is fulfilled a'nd,
consequently, ¥ ° = T .

The case when K = 0 is especially interesting: the results from {1, Sec. 3], when applied to mapping G,, give
the following answers to questions I) and II) posed in the beginning of the present article in terms of homology groups
of sets g, 1(0)\0.

THEOREM 2. Assume that g, is nondegenerate; then

i) if 8,73(0) # 0, then p, € intFy(Ty,) for any neighborhood () of point u(-) in L ([0, t}; U);

ii) if 8,~1(0) = 0, then whatever the finite-dimensional submanifold V C L ([0, t}; U), containing the point u(),
is there is a neighborhood (3.) such that iy € 3F(V N Oy .

iii) for every i > 0 group H;_,(8,~(0)\0) coincides with the direct limit of the family of groups

. . 3 N
*Allowing some liberties, we denote by H_,[0, t] the space j@'f:H_.N [%-10 W)
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H (Fr@)nV, FilE)aV\Le)

where V runs the set of all finite-dimensional submanifolds in L ([0, t}; U), partially ordered with respect to inclusion,
and the homomorphisms

H,(F @)nV, Frl@)nV\e()—~
+H,(F' (p)nW, FT () NWN\L()

for V C W are induced by imbedding.

S. APPLICATION TO CONTROLLED SYSTEMS ON LIE GROUPS

In this section we use the methods developed above to solve some special problems. Basically we consider 2
neighborhood of a constant control for the stationary system

p=pef(u), neM, uEU,

on a semisimple Lie group, i.e., the phase manifold M is a semisimple Lie group and vector fields f(u), u € U are left-
invariant, First we study the behavior of the indices of Jacobian curves as t — +oo (the "elliptic" and "hyperbolic®
situations are characterized). Then we describe a class of systems on compact groups in which all the information is
extracted directly from the Stiefel diagram of group M. We do not reach for maximum generality but center our
attention on situations in which calculations can be finished and the results presented in a visible form.

1. The first result refers to the derivative of a controlled system not necessarily on a Lie group. We again use
notation of subsection 1 of Sec. 3; here t > 0 is assumed to be so large that

2 WooZRF = Z poZRr=II

0<i<+t o 103 244

Vector 3 € II1\0 is fixed throughout the present subsection, & = En,«/; is a symplectic space with a skew inner product
o. The integral quadratic form $G,” is defined by equality (3.5) and here ind$G,” does not decrease monotonically with
the growth of t.

Recall the definition of integer k, > 0 and of the quadratic form +, on RF introduced in subsection 2 of Sec. 3:
if the quadratic form yh, does not equal identically zero on any interval r <4 < t, then set k, = 0, 7, = ¥h,; otherwise,
k, is maximal among numbers k, 1 < k < m = dimII, such that o(z,{}v,, z4v,) = 0 for i < 2(k — 1), v;, v, € R¥ on some
interval 1 < 8 <'t, 7,(v) = o(z{kt)y, 2(ke~1)y), v € R™.

In the sequel we assume that o(z(kt—1v,, 2(ce—v 2 e

Vv, v, €R%, t>0and 7,(v) 2 & | v |2 Vv ER", t>0,and some g >0, i.e., the conditions for the finiteness of ind
¥G,” formulated in Proposition 3.1 are fulfilled.
Proposition 1. If lim ind¢yG,” < + o, then there exists a Lagrangian plane Ay, C Z, such that for every v €
f—+-tco .

Rf and any neighborhood O/\o C I of the arbitrary point Ay € A, the following relation is fulfilled:

-3

1 : (&;) 2 .
V% @y o 0 (er o, APdE< A e

Proof. Since 7, is a nonsingular quadratic form on R, a quadratic form 4,~! on R™ is defined, and relation
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x»%— vt X)), xE5

defines a quadratic Hamiltonian on T see 3.9)) If vyl ., visa basis in R such that

Ye (2 aivf) = X, @y, i

=i
then

LAY (zs"t)ul, x)’
vt o2, x))=zl-——g(—;l)——. )]
Jom

The restriction of quadratic form (1) to A is denoted, as in Sec. 3, by 7.~ No(z(*¢), ). Let A, t2 Obe the
Jacobian curve corresponding to Hamiltonian (1). In that case, at every point of continuity of zt(“'), 7, equality

dA; 2

| R
Ly O 0 A

is fulfilled.
In subsection 2 of Sec. 4, a definition is given of the index of an arbitrary curve in the Lagrange Grassmannian
L(Z); moreover, Theorem 3.1 implies the equality

ind \PG{” = ind (Ao ‘[0,”), t > 0.

Suppose that lim ind G, = N < + ¢o, Proposition 9.2 implies that the length of curve Ay, 0 < t < +oo does not
>4

exceed 7/2(N + m). Consequenily, the limit of A as t— +00 exists. Set. Ap== lim A,. According to Eq. (2), the length
00 ta4-co

1 . .
of curve A,, 0 <t < ooequals 3 S v (o (2 ,A) || d¢ < + o0 .Consequently, for any neighborhood 0 of point Ao,
b
in L(Z) we have

§ min ||y7' (@@, A)|dt< + 0,
AGOA,,

whence, taking into account equality (1), the proof of the assertion follows. B

Proposition 1 gives a rather strong necessary condition for the finiteness of the index of a Jacobian curve on a
half-line. However, as will be clear from what follows, this condition is far from sufficient. )

Suppose now that M is a Lie group and M is a Lie algebra of left-invariant vector fields on M; the controlled
system has the form

pe=pof (W), 46U, p(Q)=po, S WER vueU-
Let (1) = uy; then ju(t) = poett(20), Z, = et231(u0)(3f/8u) | ,; in particular, Zv, € I Vv. Without loss of generality
we can consider that pg is the unit element of group M, TMM ~M. In this situation the inertia index of the integral

quadratic form $G,” can be computed using purely algebraic means. We restrict ourselves to the case when M is a
semisimple Lie group and consider only the so-called bilinear systems with scalar control:

p=poatub), #€R, a, bER, u,=0. 3)
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3

The calculations for systems of form (3) also contain basic singularities of the general nonlinear case with
multidimensional control, the advantage, however, is in the fact that we use a minimal number of initial givens:
everything is determined by the two elements a and b of the Lie algebra M.

The Killing form of semisimple Lie algebra T determines a canonic identification of T and M*. Everywhere
to the end of this section the angled brackets (-, -) denote the Killing form; here,

StExeR|(x, ) =0}

for any subset S ¢ IR,
Below we assume the following general position conditions to be fulfilled:
1) a is a regular element of the semisimple Lie algebra R, i.e., dim ker(ada) = rank T,
2) element b does not lie in any invariant subspace of operator ada: M — M of codimension equal to at least rank

Conditions 1) and 2) are obviously equivalent to the equality codimspan {(adia)b |i2 0) = rank M— |,
We have

¢
Z,=e'193p, G, 1y () poexp zf e¥apy (v) dr,

Giu(+)= § evdapy (v) dr,
Gi (01 (), V2 (- )=

trs
==§ D e®42hg (8) dp, ev2dspo ('r)} dv+imGy, o, (-)eker G.

The notation of the initial point s, in terms of expressions for G,” and G, can be dropped by virtue of the
identification T“OM ~ M: the commutation operation as well as operators e™4% do not lead out of Lie algebra M.

Suppose that 56 = ker (ada) is a Cartan subalgebra of Lie algebra I containing a, and by € 56 is an orthogonal
projection of b onto 5% [so that (b — by) L£]. The general position conditions imply that

Il=im G; =span (¢, 0Kt < H)=H*+-Rb m=dimBL41.

Thus, ¥ € II* €36, [a, ¥] = 0. Consequently, values (¢, [z,(), z,(0))) = (¢, [adiab, adiab]) are independent of t €
R; therefore, k, = const, 4, = const. General position conditions imply that {3, [ad¥ab, b]) = ([b, ¥], ad®ab) # 0 for some
k<m—2,50k; < (m-—-1)/2.

Let k, = 1 for certainty (the case when k, > 1 is no more complicated; we simply desire to avoid superfluous
parameters). Set 7; = (¥, [adi*!ab, adiab]), i > 0; in that case, v, = ;.

Recall that by &; we denote the space of all vector fields on M, the value at point u, of which lies in II. The

symplectic space T is the quotient space &y; by the kernel of the skew-symmetric form (x; A x,) — (¥, g - [x,,‘ X))y X1,
X, € . Identifying II with the set of left-invariant fields lying in &y, we can assume that IT C &y. The image of

subspace II under the canonical factorization &5 — T is denoted by II. Recall that b.y Iy we denote the image under the
same factorization of the space of fields vanishing at the point pg. Clearly, T = IT ® Il however, in contrast to IT,
subspace i is not a Lagrange plane in a symplectic space (T, o). There is an obvious isomorphism of space T =11 & [T,
on I & 11, under which I transforms into the first term, IT, into the second, and the symplectic structure o into the skew-
symmetric form

CHENAYNE E) o (P [oon 2] ) 4+ (B XY — (B x2),
X, BEIlCM, i=1,2

The symplectic space (IL ® TI, 7) is a convenient model for the space (Z, ). Hamiitonian h, has the following
form in this model:
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he=g- ({9 [ (3, ] 5]) + (em[a, 6], ) " @

The linear Hamiltonian system in 11 & II, corresponding to Hamiltonian h,(x, £), has the form

{Yo’é;—’( L, [enda [a, b, x]) + ¢ esdalg, b], &) yetadefq, b1,
£=0.

The Jacobian curve is a curve on the Lagrange Grassmannian L(IT & TI), smooth for 0 < 1 < 400 and with initial
conditions Ag =0 ® I, A, = Rb & (I N (b}1), that is generated by this system.

Now we must make a small digression.

LEMMA 1. Suppose that g, is a nonnegative quadratic Hamiltonian on some symplectic space (I, g), T'is an
isotropic subspace in I, such that I'ckerh, Vr>0,and A € L(Z),r€[0,t]isa piecewise smooth curve continuous for
allr>0(forr=0a discontinuity is possible). If A, satisfies the equation

=g ), )

then curve A, also satisfies the equation. If, in addition, T C Ag, then ind A. = ind AT .

1
Proof. Let¢,,...§ bea basis of isotropic space I'. Consider the quadratic Hamiltonian 3~ 2 o (&, )% x€2.
r

j=1

This Hamiltonian generates in I flux x~—x--$§ Z a(Ep %) Ep SER. The corresponding flux on L(E) is denoted by E,,
L]

s € R. On the other hand, let §: L(Z) — L(E),jr € [0, t] be a flux generated by Hamiltonian¥,. Since §; € kerg,, j=
1, .., 1, 7€ (0, t], fluxes &, and g, commute: E, . 49,=9,. E,seR, 7€ (0, t]; therefore, for every s € R curve r —
E,(A,) satisfies Eq. (5). At the same time, it is easy to see that ,(A) — AT (s — +00) YA € L(Z). Consequently, curve Afr,
r € (0, t] indeed satisfies Eq. (5).

Note that subspace A, N T is independent of r for r € (0, t]. Taking into account this circumstance, it is easy
to show that under the condition T C A, equality ind A = ind AT is valid. ®

There is a close connection between the indices of continuous curves on Lagrange Grassmannians generated by
the same Hamiltonian system but with different initial conditions.

LEMMA 2. Suppose that g, is a nonstationary quadratic Hamiltonian on some symplectic space X and A,.‘, A,’,
0 < r < tare two continuous nondecreasing curves on L(T) satisfying the equation

dA
a7 8= (A).

Then
1 2
ind Al —ind Al=ind,, (A1, Ab)—ind,, (A%, 25)+

+ind,, (A, A})—mdA= (A3, As)+cnm(r3 AL)—dxm (Q A%).

Proof. Letr, =0=ry<r<...<ry=tbea partition of interval [0, t] such that curves Aj | [ristiesl i=0,1,
v I, j=1, 2 are simple. Let A € L(Z) be an arbitrary Lagrangian plane. According to Proposition 3.2, values

1
D=7 inda(al, AL, ), j=1,2 (6)

1=0

are independent of A.
Determine piecewise smooth curves A,3 on L(Z), j = I, 2 by the following rule:
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=

Ah O<T<E,

s AL, o<,
d ¢

A;':—h ‘é—<’r<t- T A:’ ?<\T\ .
Substituting A in (6) first with Ay} and then with 442, we get

ind A!'+dim (Al A= I1=ind A! 1Al
2( f’oﬂ« ‘) I'=ind Al +1nd,, (A%, A0)—
—ind,, (A3, Ao)—lndA, (A}, A) +dim (A},/A% n Ai).
o <<t

At the same time,
ind A?4dim (A%/ n Ai)_—_n_—.md A’4ind , (A}, A3)—
2 10<‘<‘ i 2 2 A; 2
—ind,, (A A)— ind, , (A}, A2)4dim (Ao/A, 0<Q<‘A,).

Suppose that 9,: L(Z) — L(Z) is a flux on L(X) determined by the Hamiltonian g, and 4, is a simple
nondecreasing continuous curve joining Ag? to Agl, ie., Ag = Ag? and A, = Al In that case, ¥r € [0, t], the simple
nondecreasing curve 8 — ,(A,) joins A% to A1

Consequently, continuous nondecreasing curves Al. Aand G (A). A.2, having common ends, are holomorphic:

4 i Al

Ag ¥.(Ag)
2 2

)
0 A% Ag

Identity (?3) relates the index of a nondecreasing curve with the Maslov index of the appropriate closed curve.
Tince the Maslov index is a homotopic invariant and

ind (A'eA)=1nd &', 1nd (¥, (A)oA)=ind A7,

we get
1ndA}+dim(A},/A% 0 AL)=mdA?+dxm(A%/ n Ai).
<t <<t

Comparing the already obtained equalities, we get an expression for ind A.l —indAZ. W
COROLLARY. Suppose that the continuous curve A, T € [0, t] on L(Z) satisfies Eq. (5) and °<Q< tker g:oT

is an isotropic subspace. Then

ind A¥ —ind A, =inda, (AF, A§)—Inds, (An Ap)+
+indy, (A AF)—inda, (B A5)+dim( n A% n A‘).
P 24 Tt

In particular,

1

|ind A" —ind A, —dim (N A%/ NAQ) | < 5 dim 2.
. x h 4

Let us return to the Hamiltonian system under investigation. For a nonstationary Hamiltonian (4) given on II
® II, we get
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n 0ker heO(ker ad p) N IDSRS.
>

Lemma 1 implies the equality

ind A| 0. =1nd A% |0 VE>0.

Note that curve 4,9®Rb0 is continuous on (0, +00) (while A, has a discontinuity at 7 = 0).

Set Ty, = (ker (ady) NI & 0 to be an isotropic space.in (I ® 11, ). It is easy to see that I‘h-‘-/l‘h ~im(ady) ©
im(ady) C 11 ® 11, while im(ad ¥) = ker(ad ¥)L. Denote by b the orthogonal projection of vector b onto im(ad ¢), and
let ¢ = [a, {)] [subspace im(ad ¥) is obviously invariant under both ada and ad ¥1.

Suppose that A, r > 0 is a curve on the Lagrange Grassmannian L(im (ad $) ® im (ad ¥)), generated by the

Hamiltonian system

Y055= (E_[.\p, .’C], grvadap ) gtvadap

=0, x, EGim (ad ) M

with the initial condition Ag = Ao =0 ® im(ad¥).

Lemma | implies that A, passes into Il,l‘h/l",l = (A,°@Rb)r h/Ty, under the isomorphism of symplectic spaces im
(ad ¥) ® im(ad ) ~ T t/Ty.

The formula given in the corollary to Lemma 2 enables us to calculate indA | [0,4) in terms of indA | [o,t in any

case,

lind A. | j0.1— ind A, | 1.1y — dim (ker ad PNabh) | <dimagt.

If, however, ¥ is a regular element of Lie algebra 2, i.e., kery =56, then ind A. | gy = ind A | o
Proposition 2. If the subalgebr of (;/artan algebra 8 has a ﬁu@p € C ®76* such that () #0, and p(a) is 2
purely imaginative number, then 5(? -3 090 /Z——-’ ,f W' j'
Before we prove this proposition we introduce some notation connected to the Cartan decomposition of Lie
algebra M. Denote by RC C ®J6* the set of all radicals not vanishing on vector ¥. o
Th - . . g ns . . wetd 7;“;1
esetR, gengrally speaking, contains real fang also pairs of nonreal complex conjugate & S, We

construct subset R C R by including into it all the real LR and also one of each pair {p, p} of nonreal complex

conjugate sﬁ%ﬁg so that for every pair p € R the condition Rep(a) Imp(a) > 0 is fulfilled (we choose from a pair of
. 1) e
purely imaginative radseals arbitrarily).
LetR,={p€ R|Repla)>0),R_=[p € R |Rep(a) <0}, and Ry = {p € R|Rep(a) =0}, so that R=R, UR_
' URg . negf .
Eigenvector e, € C ® imady corresponds to each radseal p € R so that adwe, = plw)e,, Vw € 56. We assume that
vectors e, p € R are normalized in a way such that

2, pskp
(€ e—p) {] p%g

3 ==

(recall that (epl,,epz) =0 for p; + p, #0).
For any x € imad ¢, p € R we set

1
Xp=75 (K e—p) .
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If p is a real padieal, then X, is a real number, and if p is a nonreal 5’5;6&%, then x, is a complex number.
Mapping x — {X,} ,er defines special coordinates in space imady (part of the coordinates are real and part are complex).
Note that x5 = ';Tp. For any x, y € imady the following relations are fuifilled:

[0, xl=p(0) %, pER; (8)

(£,4) =Re (2 xpy—o)'r ®)
2GR

(o, [x,5] ) =Re (2 p(@) x,,y_p). (10)
PER

Finally, set

E.={x6im adp|x,=0Vp€ER.}, E_={x€im ady|x,=0
Vp€R,}, Eo=E.NE- -

A
. . . KoOZ5 .
to be invariant subspaces corresponding to the sets of sadieals R, U Ry, R_U Ry, and Ry, respectively.

Proof of Proposition 2. Assume that lim ind th; < + oo. We need to prove that E; = 0. We use Proposition
t=++oo
1. By virtue of this proposition there is a Lagrange plane A € L(imady & imad ), such that for any neighborhood OI\O

of the arbitrary point Ay € A the relation

[ min 3 (, (etoc, O)pdT< +
o G0, :

is fulfilled.

Equality (8) implies that (e73d%¢) p =€ P(“)cp. According to the general position conditions we have ¢, = p(a)b,
#0, p(a) #9'(a), ¥p, p" € R. Therefore, all the integers converge only provided that A £ (E, & 0). Since A is a Lagrange
plane, the last relation is equivalent to the inclusion (E, ® 0) C A. Thus, space E, & 0 and hence its subspace E; & 0
are isotropic. At the same time, o((x, 0), (x’, 0)) = (¥, [x, x]), and (10) implies that space E; ® 0 is isotropic if and only
if it is empty.

COROLLARY 1. If R is a compact Lie algebra, then

COROLLARY 2. If T = slz(n) and matrix g € slg(n) has at most one real eigenvalue, thent li}_n PG = + .

We conduct further investigation under the assumption that the necessary condition for the f initeness of

; “in ind 9G/"; is fulfilled; in other words, to the end of this section we assume that Ry = . In that case, imad$ = E,
®E

—

{ o, [x, x']) =Re ( 2 P (m)(xpxi.p—x_px",)),
PER*

Voéz, x,x'€lmady

For every x € imad ¢ we denote by x* the orthogonal projection of x onto E_ and by x™ the orthogonal
projection of x onto E_. Then

(xhx*y=(x, x") =0, (x%x7) -—=Re< prx_p).
pER*
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We make a replacement of variables in Jacobi equation () by setting € =[n, ¥}, x=y—n. In variables (y, 1)
system (7) takes on the following form:

Yoy:g ( [y, m], evdac ) gvadap

. (11
n=0, y, n6imad+y.

The symplectic structure 7 on imad ¢ ® imady looks thus in these variables:

oM W)= {9 mhyl—Mmnl).

The Hamiltonian is h,(y, 7) = (1/27}¥, [y.[%, e™dac))2, Curve A,, 7> 0 on the Lagrange Grassmannian L(imady &
imad ) is generated by system (10) with initial condition Ay = ({v, ¥) |y € imad¥).

Note that the isotropic subspace 0 € E_ lies in kerh, Vr € R. Here (0 ® E,)* =imady ® E_, and symplectic
space (0 ® E,)*/(0 ® E,) is naturally isomorphic to space imad ¥ with symplectic structure oy, Y) = {4y, YD), ¥ Y
€ imady.

Hamiltonian system

'Yoi/= { [y, \p}' gradag etrdagp (12)

corresponds to Hamiltonian fl,(y) = (1/27Xy, [¥, e" adac))2 on imad ¥. i

Let A, be a curve on Lagrange Grassmannian L(imad ), generated by system (12) with initial condition Ay =
E,. The corollary to Lemma 2 enables us to express indA | o,4] through ind A ). An analysis of this expression enables
us to somewhat refine the general estimate given in that corollary. We have

-%rank ad Y < indA |jo,sj-ind A Jo,¢; < rank ad ¢ v£>0.

Recall that point t > 0 is called conjugate to 0 for curve A, if 50 N [A; # 0. According to the corollary to
Theorem 3.2,

ind&ho,r]=‘ 2 dim(&ﬂ.Ao) vi>0;

o<T<t

in particular, on each interval [0, t] only a finite number of points conjugate to zero occur.
Let x, be an arbitrary solution of system (12); setting x, = e"’d‘u,, we obtain

You=—(yoad 2+ { ¥, [, 4] ) )er (13)

Linear transformation u — (1/7){¥, [¢, ullc = (1/719){[#, ], u)c of the space imad ¢ is denoted by the symbol
¥, ¢/75] ® ¢. Then

Zt = etadaet({t.clv.]@c—ada)E+ vi>0.

Since e!™*E_ = E_, we have

dim (A,NA)=dim(A,NE,)= dim (E, Netive/nl®@cstap ).

Consequently,
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ind&‘[o,:] — 2 dim (E+ne‘t(l‘b.cw.]®c_ adE+)- (14)

o<T<?

LEMMA 3. Suppose that h is a quadratic stationary Hamiltonian on some symplectic space & and
aé = Hx, xGZ,

is the corresponding Hamiltonian system.
Then there exists a Lagrangian plane A, € L(Z), such that
1) Subspace Ay N HAy is invariant under H.
2) For any t > 0,

i

3 dim (A N e A AN HAY = D [#9)],

o<t ]l

where tizvy, ..., tinv, are all purely imaginative eigenvalues of matrix H; moreover, each is taken as many times as is
its multiplicity; square brackets [ ] denote the integer part of the number appearing in them.

3) If for some A € L(Z) quadratic form h | A is nonnegative, h | A 2 0, then also h | 45 > 0.

We omit the proof of this lemma, plane A, is clearly calculated using the Williamson canonical forms of the linear
Hamiltonian systems (the description of these forms is found, for example, in {9]).

The autonomous Hamiltonian system (13) corresponds to the Hamiltonian

b= ([0l 2> 2+ ([0 ) [a. 1]y, zElmady.

Since [w, E,]C E, Vw € #and (E,, E,) =0, we have h | g_2> 0.

Let H = [, ¢/7,] ® ¢ —ada and L(imady) 3 Agbe a Lagrangian plane the existence of which is guaranteed by
Lemma 3. Since h | E, 2 0,h | Ag 2 0 and Hamiltonian h is the first integral of the proper Hamiltonian system, then
e’“Ao, e7HE +» T2 0 are nondecreasing curves on L(imady). Lemma 2 enables us to express ind (e™ME, | [0,,]) through
ind (e’HAo I [O,t])'

In any case,

|1nd (¥, |10.1) —ind (%A, ljo,1) +dim (A6 " HAQ) | < - rank ad v,
Vi>0.

On the other hand, Theorems 3.1 and 3.2 imply that

ind (€¥E |j0,1) = O, dim (E,Ne*E,),
0

<t>¢

Ind (e Agto.n)= 2 dim (Ao e Aglo ) HA,)-

<t<t

From formula (14) we derive the identity

ind A lj0,sy==1nd (6¥7E_ |;0,.1) ¥¢>0.

Assertion 2) of Lemma 3 now reduces the calculation of ind A I [0,¢] to the calculation of purely imaginary
eigenvalues of matrix H = [, ¢/7,] ® ¢ —ada. In any case, tliin indA|jo,s; < + oo if and only if matrix H has no
—+4-c0

nonzero purely imaginary eigenvalues. Collecting together the inequalities established above, we obtain
Proposition 3. If lim indyG, < 4+ «, then

{t—+4co
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ind $G: <%~ min {5 rank ad y, codim 56} V¢ >0.

Remark. Inequality ind¥G,” < 1/4codim 5= 1/4(dim ;! — rank ) follows directly from the estimates given
above only for regular ¥ € 26~ bL; to nonregular ¢ it extends by continuity.

It is natural to call the situation when ind$G,” — +o0 (t — o) elliptic (the Jacobian curve oscillates”) and when
ind ¥G,” is bounded on the half-line (0, +00) hyperbolic (the Jacobian curve "does not oscillate”). In order to separate
one situation from another we must be able to ascertain whether or not matrix [, ¢/7] ® ¢ —ada has purely imaginary
eigenvalues. The knowledge of the purely imaginary eigenvalues themselves immediately gives (see Assertion 2 of
Lemma 3) the magnitude of ind $G,” to within a value of "order rank ad ¢."

Soon we shall express the characteristic polynomial of matrix ({¥, ¢/70] ® ¢ —ada) through the numbers 7;, i =
0, I, ... (see p. 2720) and the coefficients of the characteristic polynomial of matrix ad a.

According to equalities (8) and (10), the coordinate transcript of system (13) has the form

yozip = — Y0 (a)u, 4+ Re (2 P ¥) C‘)u—p) Cos PERv
PER

For any p € R, we set

p =_p_(%L)_ (colt—p— C—otp)
o, =2 (g1 + cptty).
Then
'59 =p(a) 'U'p
YoTp=="e0 (@) Tp+Re ( 2 'Up) p(P) CoC—ps PER4
: PER+ )
Consequently,

YoBp=Yop (@Pp +p (@) p (1) o€ Re ( > 'o,,), PER,. (15)
PER*
Let N = dimE,; recall that

ya= { y» [ad**iab, adtab] ) =(—1)*"2Re ( Y oo (a)n—xcpc_p)

PGR*

We make a linear replacement of variables in system (15) by setting
w,=Re 2 p(@P*v,, k=0,1,...,N.
PER+
We have
Vo= Yg®@as1 + (— DV =0, 1,..., N—1L.
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Another missing inequality is obtained from the condition that the numbers +p(a), p € R, are the roots of the
characteristic polynomial of operator ada. Let

N
det (ad a— sT)= s ¥ (—1)/ a;s%,

j=1

then

N N
3 (— 1) aw;=0 and 3, ay;=0.
j=0 J=0

Consequently,

N kel
33 (— 1 gyt =0,
ka0 j=a0
N k=l
Suppose that ¢(s) is the characteristic polynomial of the last equation, @ ()= 2 2 (— 1)¥* apy;s2t=7. The
k() jum0

roots of this polynomial are the characteristic roots of system (13). After elementary transformations we get

1 S
<90 —S)=28"‘2 AYh_je

F=1 kaa |

Now we sum up the principal results obtained in this subsection. Everything is formulated in terms of the
collection of numbers 7, k =0, ..., N — 1, where N = 1/2(dim t— rank ®?). Recall that numbers ay depend only on
a € M and numbers 4, depend alsoon b € M and (linearly) on ¢ €8N bt, where Fisa Cartan subalgebra containing
2. We assume the general position condition to be fulfilled:

codim span {ad‘ab|0<Cj<<{2N}=rank|M—1.

In the process of calculating we also assume that o > 0; however, it is easy to get rid of this condition.
THEOREM 1. I) Let t > 0. Then ind ¥G,” < +o0 & the first number different from zero in the sequence g,
Tis coor TN—1 18 positive.

N
N IAIr) Let ind¢G,” < +oo for some (and hence any) t> 0. Then lim ind $G; < -+ o0 <> polynomials 2 as! and
t—++4co Jj=0

2 sit Z o4Ye; in variable s € R do not have positive real roots.
Jj=1 k= |

HI) If lim ind$@; < + oothen ind ¥G,” s N/2 ¥t > 0.

t-+t-c0

In conclusion, we apply Theorem 1 to some Lie algebras of rank 2. In this case, dim(d6n bt) = 1, and vector
¥ is uniquely determined to within a scalar factor. The general position condition guarantees that at least one of the
numbers v, k=0, 1, .., N— 1 is different from zero. :

1) M = so(1, 3) is a Lie algebra of a Lorentz group. Here N=2,0a2% 4a If2Vag+a, #0, 72 0, M+
> 0, then ind¢¥G," < 1Vt > 0. :

Otherwise, ind $G,” — +00 (t — +00).

2) M = s0(2, 2). Again, N = 2; however, 4a; < a? foag>0,0,>0,7%2 0,017 +7 2 0, then ind ¥G,” <
1vt> 0.
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Otherwise, ind $G,” — +00 (t — 4+00).

3) M = so(4). This is a compact Lie algebra; therefore, ind $G,” — +o0 (t — +00).

4) M =slg(3). Here N = 3. If o> 0,j=0,1,2,7> 0and either (a7 + '11)2 < drglagrg + oy + 45) or (ag7y
+72 )& (a1 + a1 +122 0), then ind ¥G,” < 1 Vt > 0.

Otherwise, ind $G,” — +oo (t — +00).

3. If in the previous subsection we considered systems with one control parameter, now, on the contrary, we
study one class of systems in which there are sufficiently many control parameters. For these systems, ind ¥G,”, for
fixed ¥ L imGy’, is computed very simply; therefore, an opportunity arises to explicitly describe the partition of (imG,)*
into domains corresponding to various values of the index and to find homology groups of the set at‘l(O)\O.

Let M be a compact semisimple Lie group with a Lie algebra . Angled brackets (-, ), as above, denote a
Killing form on M. This form is negative definite. Suppose thata is a regular element of Lie algebra R, {(a, a) = —I1,
and 7€ is a Cartan subalgebra in T containing element 2. Denote by U the intersection of sphere {x € ®| (x, x) = —1)
with subspace Ra + 6%,

U={aa-+v|a€R, v.Ll38, (v, v)y=ai—1},

and consider the controlled system
p=pou, u€U, p0)=4y,

on M in the neighborhood of control u(r) = a.

We have
!

G,:u (-)»p.ooe_;p § (e¥*%eu (v)—a) dT,

i
Gio(-)= f ewdag (v)dv, (6L, Im G, =36"1.
Q

[

g (01 () 22 ()= § ({ o () 22(®) Yot

: . (16)
+ [§ etdag, (9) do, ¥4z, (w)] de+ 6%

G;=Gt‘

’ yre
kerotxkero‘,

The notation of the initial point s, in the expressions for G," and G,” can be dropped using the identification TMM )
. Similarly, without special stipulations, we use below the identification ;* ~ Mdefined by the Killing form.
Proposition 4. Let ¥ €5\0, t > 0. Then

Indy@, < + o= (pa) <0.
Proof. Since (v, v) <0 Vv £0, then (16) and Proposition 3.1 imply that inequality (¢, a) < 0 is a necessary and

inequality (¢, a) < 0 is a sufficient condition for the f initeness of ind$G,”. There still remains the case when (¢, a)=
0. In that case, according to Proposition 3.1, for the finiteness of ind $G,” the fulfillment of identity

{ P, [e¥4ony, evadagy] ) =0 Vo, 0,106, ViE[0, ¢].

is necessary. This identity, however, is not fulfilled since

{1y [e72990,, evdany] ) = (4, €% [vy, 7] ) = (P, [7n o] )

and

2728




[68*, #too6. A

Thus, when calculating ind ¥G,”, we must consider only the case when (¥, a) < 0. Below we assume the
normalization condition (¥, a) = —1 to be fulfilled.

We pass to the description of the Jacobi equation. In subsection 1 of Sec. 3, with the arbitrary subspace II C
T“OM and covector ¢ L II we associated the symplectic space Ey 4, and in subsection 1 of the present section (see p. 130)
we described a natural model of this space in the case when M is a semisimple Lie group. In our situation, II = FHL
while Epp , is naturally isomorphic to space 761 @56+ with the skew inner product

T (%1 EDA (e B (9 [0 %] ) + (B2 X1) —(EnX2),
X, L6585, i=1,2.

A Hamiltonian system on this space defined by the Hamiltonian

h(x, = —x (% P1+E [x W] +E) x 16"

corresponds to the Jacobian equation. .
As we see, the Hamiltonian proved to be autonomous. The Hamiltonian system has the following form:

{2=N” A=t a7
£=0.

The Jacobian curve A,, 7 > 0 is a smooth curve on the Lagrange Grassmannian L(Z6% @ #8+), defined by the
system (17) with the initial condition

 Ao=0@6L={(x, ) | x=0, £&36-}.

¢ ‘ '
[

According to the corollary to Theorem 3.2,

ind 9@, =Ind Al q= 2, dim (AN Ad)-

O<e<t

Since M is a compact Lie algebra, all of its radicals are purely imaginary. Suppose that dim#8t = 2N, and py, ..., PN €
6 are such that the linear forms on 3 of form w — 227i{p;, w), j =1, ..., N, make up a complete set of radicals of a

Cartan subalgebra 7. We get
Proposition 5. If t > 0 is such that numbers tlp;, ¥), j =1, .., Nare not integers, then

N
indyG; =2 2 [¢| Cop 9 (1,

j=1
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where [ ] is the "integer part.”
Recall that ¥ has the following normalization: (¥, a)=—1. Set QY1) = {wE #|(w, a) = —t},

Qe () ={06Q(¢)|Ind0C; <k}, £=0,1,....

Proposition 5 implies that

N
Qo (t)-“-'{mEQ @ ,iEx H<ep @) |]<k}, Qo () =222 (),

£=0,1,....
Without loss of generality we can (and will) assume that all the forms p; are negative on vector a, ie., {p; ay <
0,j=1, ... N.
Let
Q- (ty={weQ () [<ps» ©><O0, j=1,..., N}
and

Q- (1) = (HNQ- (1), &=0,1,... .

Set 1 (t), the intersection of hyperplane {)(t) and the closure of the Weyl chamber containing vector a, is a
simplex of dimension dim 56— 1. It turns out that filtrations Qy(t) C (1) C ... C t) and R~ () C 2,7 () c..ca(t)
are homotopy equivalent. Namely, the following holds:

LEMMA 3. There exists a homotopy retraction }(t) on ~(t) preserving filtration 001),k=0,1,2, ...

Proof. Let dimH =r. Among roots 2xip;, ..., 2ipy there are exactly r simple ones; without loss of generality,
we can assume that this is 2xipy, ..., 27ip,. Vectors py, ..., p, forma basis of the linear space 76. Any vector p;, i=1 .,
N is a linear combination of vectors with integer nonnegative coefficients. For every w € 76 we denote by w_an element
of space J6uniquely determined by the conditions

<qm>q'f (p:w><01
pl(m—)":{(),p}if <pl],m)_>!0, j=1 ...

The sought homotopic retraction of hyperplane Q(t) on (7(t) has the following form:

st

P 0m(1—9) Oy O

0EQ (), s€[o, 1.1

N
Let Z be a ring of Nintegers. The set & =191 {o]¢ pj» © ) €Z} is usually called a Stiefel diagram. The integer-

valued function 7 (m)=2 I Cop @) Il is locally constant on6/%. The closure of each component of set 6/ Ris a

Jm=1
convex polyhedron. The values of I(w) on a pair of neighboring components adjacent on an (r — 1)-dimensional face
lying in one Weyl chamber differ by a unit. We are only interested in the restriction of this function to a closure of the
Weyl chamber {w € 4 | (pj w) <0, j=1,.., N}, on which our integer-valued function takes the following form:

N
@)= [— (ppo) ]

Ju=t

For example, for Lie algebra su(r + 1) the number of radicals is 2N = r(r + !); on the isolated Weyl chamber
the function I(w) has the following form:
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I<e<f<r J=a

o= 3 [—é <p;-m>]-

The case when r = 2 can be represented on the figure

Proposition 5 implies the equality ind wG,” = 2I(w), Yw € Q(t)\ &.

We have aiready noted that the closure of any component of the connection of setdé /4.is a convex polyhedron.
The vertices of these polyhedra are called nodes of diagram #. These are points w € £, such that ("31’ wyez, .., (pj,
w) € Z for some linearly independent vectors Pigs = P, from set {py, ..., py)-

Proposition 6. Assume that a does not lie in the linear span of any r — 1 vectors from set {pys oy PN} If fOr
a given t > 0 the quadratic mapping g, is degenerate, then hyperplane X(t) contains a node of diagram &.

Proof. Making in formula (16) a substitution of parameters w(r) = e™d2y(r), we get the quadratic mapping

Q@ (), () =gy (0 (), v ()=
¢ £ 4
={ ( (m (1), w()) a+[j"w<e)de, w(r)DdH—a@*, (18)
[1] [1]

¢
BMEH: for 0<T <t | (W) dr=0.
0
Vector-valued function w(-) is a critical point of mapping Q, if and only if for some w €#+\0, b €56+ identity

(@a)w(r)-{-{m, f'w(e)de]sb, 0Tt (19)
0

is fulfilled.
The degeneracy of quadratic mapping Q, is equivalent to the fact that Q(w(-), w(-)) = 0 for some nonzero critical
point w(-). We consider separately two cases:

T
1) {(w, @) = 0. Differentiating identity [m, fw 0) de]—_—b with respect to r, we obtain [w, w(r)] = 0.
[}

Identity [w, w(r)] = 0 implies that

[@ (v:), w()]Espan{p;| (o © ) =0}+58" Vv, w€[0, ¢].
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Among Vectors p; orthogonal to w there are at most r — 1 linearly independent ones and the orthogonal projection

s
of vectorS [S w(0) do, @ (n:)] dvtto 38 is contained in their linear span. At the same time, according to the hypothesis
o 1]

vector a is not contained in this linear span.
2) (w, @) # 0. Without loss of generality, we can assume that {(w, @) = —t, i.e., w € f}t).

. t)ad
Differentiating Eqs. (19) with respect to r, we obtain tw = [w, w]. Consequently, w(t) = e('/ Jadup,
f
Equality _S.w(rr) dv=0 is equivalent to the relation exwph = b, Suppose that bj is an orthogonal projection of
0

vector b onto a two-dimensional invariant subspace of operator adw corresponding to eigenvalues t27ri(pj, w), j=1, ..,
N. .
We see that b; can differ from zero only for those j for which (p;, w) € Z. Consequently,

[ (1)), @ (v)lespan{p; | (pp @ ) EZ}+ 365, Vg, mE[O, £].

If among vectors p; satisfying condition {p;, w) € Z there are t linearly independent vectors, then w is a node
of diagram . Otherwise,

aé span {[w(11), w(w) ], 7, 12€[0, ]} 456+ W
COROLLARY. If a does not lie in the linear span of any r — 1 vectors from set {py, ..., px}, then on the half-

line [0, +oc0) there are at most an even number of points t such that the quadratic mapping g, is degenerate,
In the case when g, is nondegenerate, Theorem 2 from [1] enables us to estimate very accurately the homology

groups of set g,~%(0)]0 in terms of filtration O, ~(t), k=0, 1,2, ... In particular,
- r—1
rank 7, (g7 ONO)< X, rank H/(Qzy 41 (8), Qs () n=0,1,2, .05
j=0

here, if r < 3 (and also in many other cases), the inequality becomes an equality.* In its turn, Theorem 4.2 connects
homology groups I:In(gt‘l(O)\(O) = H,, (g, 40), 8,7}(0)\0) with the local structure of a set of level Gy~ ().

In conclusion of the present section we examine to the end the case of M = su(3).

Cartan subalgebra 56 is two-dimensional, N = 3. We introduce in 6 coordinates w = (w,, wy) by setting w; = {py,
w), wy = (py, w); then (pg, w) = Wy + wy.

The Killing form has the following form:

(@, 0) =—2 (0] + 03 + (0, + 0?);
=11 (1 _1 11
o ( 3’ 6)’ P?“(F' —3)’ Ps'—‘(—'a' "3‘)-
Let a; = {p;, a), ay = (p;, a); by hypothesis a; < 0, a; < 0. We assume that the general position conditions
formulated in Proposition 6 are fulfilled; in this case, they reduce to the relation a; # a,.
Line 0(t) is defined by the equation

(2a; +a2) o+ (a1 +2a) mz-‘-"';‘v
Set

— 2a,+a, = —t
a,+2a,’ 2(a, +2a,) *

*Recall that I:ln(-) denotes an n-dimensional group of singular homologies.
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By hypothesis a> 0, 7> 0, @ # 1. When changing the places of roots p; and p,, the number a changes into 1/a; therefore,
without loss of generality, we can assume that 0 < a < 1.
Let v = —w,; segment 7(t) has the form

Q’(t)={(—v, av_.«c)|o<v<§-}.

Identify (1—(t) with segment 0 £ v < r/c.
We have

I W=PF+Pr—av]+r+{1—a)v],
% () =ct {v6[0, & ]| M+ —avl+ [+ (1 —a) v <},
QG ()=0Qx@#), k=0,1,....

Assume that none of the numbers of form r —aj, j = 0, £1, £2, ... is an integer. Then, according to Proposition

6, the quadratic mapping 8, is nondegenerate.
Furthermore, g,~(0) = 0 if and only if 1;7(t) = Q. Consequently,

g:‘"(O)=0¢m'<a.

Below we assume that 7 > a.
Recall that

- H, (g7 ONO) = H(Qr,, (), Q; (0)OH" (%, (0 %y @),
' n=0,1,2...

(here there is indeed an isomorphism and not only an equality of ranks, since the groups on the right-hand side have
no torsion). A

Where it is convenient instead of homology groups H, () separately for each dimension n, we will consider graded

- 4o
groups H ()= GBOH" )
I3 =i
We introduce the notation: € = [r — [r] —al; «(n) = 4n + 4[(r — n)/a} —2 forn=0, 1, .., [r]}
Then

ﬁ(g;—l (0)\0);::}—}' (84111—2%)!"51 (ﬁ(S‘(")-l VSt(n)‘)).

naml
In particular,
rank A (87 ONO)=2(r]+¢) ~ 1.

Consequently, the rank of group I:I(gt‘l(O)\O) tends to infinity as t — +oo (whereas for a scalar quadratic form
this rank does not exceed one!). It is interesting to consider the asymptotic properties of this graded group as t — +co
(for_a fixed a). Recall that r is a linear function of t. Setting d(t) = min {n | Hn(ge"l(O)\O) # 0}, D(t) = max

(n | Ho(8,H0)\0) # 0}, we get

rank Ff (g7 ON\0) ~ 2t (£ + o)
d(#)=4t (f— -+ )

D (t)z—‘g- (¢~ + <0).
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Thus,

d(t) 48

D@ Y (£ + o). .

It is interesting that for large t homology groups behave as continuous: parameter a definable by the position

of vector a in Cartan subalgebra can be restored from these groups. The family of quadratic mappings g,, t > 0, proves
to be completely different topologically for different values of a. T

]
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