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FILTRATIONS OF A LIE ALGEBRA OF VECTOR FIELDS
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OF CONTROLLED SYSTEMS
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A. A. AGRACHEV AND A. V. SARYCHEV

1. Let M be an n-dimensional manifold of class C, let Der M be the Lie algebra of
the smooth vector fields on M, and let gy € M be a distinguished point. To each subset
£ ¢ Der M and integer [ > 0 there corresponds a degenerate Hag 0 = Ey C E, € -+ C
E, C T;uM, where

(1) Er =span{(ad X, 0---ocad X; 1 Xi)(qo): Xy €€, 1 <j<e, ¢ < k}.

We shall consider only those sets & for which E; = Ty, M this immediately iﬁlplies that
E, # 0. Apart from this the spaces E, are arbitrary. Some of them may coincide, and
we do not exclude the case n < [.

In §2, given a set £ we construct a filtration of the Lie algebra Der M and a nilpotent
Lie algebra V(&) of length ! associated with this filtration. We show that there exists
a coordinate map ®: Oy, — R™ of a neighborhood Oy, of the poiut go € M into R™ that
reduces the fields of the set € to canonical form and induces an isomorphism of the Lie
algebra V() and a certain Lie algebra of the polynomial vector fields on R™ which
depends only on the dimensions of the subspaces £;.

Next, in §3 we consider a controlled system of the form

(2) g=flg)+ > g (@u', geEM. & €R q0)=q,
=1

where f(q) and the g'(q), ¢ = 1,....7, are smooth vector ticlds on M. Let 4(r) =
(@(r),...,u"(r)) € L be a fixed control, let the time-dependent field f{g) +
S g*(q)@*(r) be complete and let Pr:M — M, 7€ R, be the flow on M determined by
this field, that is,

P

5 Pr@)f(Pra) + ST P w)E(n,  Rl@) =4

i=1
A time-dependent change of coordinates ¢(r) — P~ Y(g(r)) transforius (2) into the systein
T
(3) g=Y higu',  q(0)=qo, hy =P g
1=1
The controlled system (3) which is equivalent to (2) is particularly convenient in that its
right-hand side is homogeneous with respect to the control parameters u* (for details see

[1]). Let t > 0; and for all controls u(-) = (W' (),....u"()) € L [0,¢] sufficiently near
zero let a map Gy:u(-) — g(t) be defined, where

g(r) =Y hi(g(r)ui(r), €0t ql0) =g
=1
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For any € > 0 the image of an e-neighborhood of zero in L7_[0,] under the map Gy is
called the e-attainability set of system (3) within the time ¢ and is denoted by %, (e).
Putting

(4) € ={h' | is a point of density on the curve r — RL, 0<7<t i=1,...,7},

and applying the results of §2, we get in §3 the canonical “nilpotentization” of system
(3), and then we compare the e-attainability sets of system (3) and its “nilpotentization”
for small e.

The idea of using different nilpotent approximations of the Lie algebra connected with
a controlled system and the flag it generates in the tangent space to the manifold M is
often met in papers on geometric control theory (see [2]-[4]). In addition, a canonical
form for the family of vector fields determining a regular distribution of planes was given
in [5] in connection with nonholonomic variational problems, and the flags generated by
such families were used systematically.

2. We again consider the subset £ C Der M and the flag (1). For k = 0,1,....] we
put

(5) éep={Y eDerM|(adX;0--0ad X;¥)(qo) € Eirs, VX;eé, 1 <5<y,
0<i<l—k)

Obviously & C €_; C --- C oy =DerM and £ C £_;. Our aim is to prove that the
filtration of the C°°(M)-module Der M thus obtained is compatible with the structure of
the Lie algebra, but first we describe some constructions concerning differential operators
on R™,

We put k; = dim(E;/E;—y), ¢ = 1,...,], and let B* = @izl R* be the standard
decomposition of R™ into a direct sum such that

R”:{zz(zl,...,xg)jzi:(xil,...,ziki) ERki, 1=1,...,1}.

Any differential operator on R™ with smooth coefficients has the form
> aa(2)81%1 /02 where a, € C®(R™) and a is a multi-index:

ky
a=(ay,...,0q), =01, .. ) o= Zaij’ i=1,.... 1
J=1

o] = Jaa |+ + .

The space D(R™) of all differential operators with smooth coefficients forms an associative
algebra with composition of operators as multiplication. The differential operators with
polynomial coefficients form a subalgebra in D(R™) with generators 1, z;;, 8/0z;;, 1 =
L...,l, g = 1,...,k;. We introduce a Z-grading into this subalgebra by giving the
weights v to the generators by v(1) = 0, v(z;;) =7, and v(8/8z,;) = —i. Accordingly

81! :
v <$0m> = Z(J&i! =181,
=1

where o and § are multi-indices.

A differential operator with polynomial coefficients is said to be homogeneous of weight
7 if all the monomials occurring in it have weight . It is easy to see that v(DyoDy) =
v(D1) + v(Ds) for any homogeneous differential operators D; and Dj (it is possible to
ascribe an arbitrary weight to the zero operator). All that has been said is also true
for vector fields which are differential operators of the first order; moreover, of course,
v([X1, X2]) = v(X1) + v(X3) for any homogeneous vector fields X; and Xo. We note
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further that a differential operator of order NV has weight at least —NN1; in particular, the
weight of nonzero vector fields is at least —{. We let

denote the linear span of the set of homogeneous vector fields of negative weight. Clearly
V~{ky,..., k) is a nilpotent subalgebra of length [ in the Lie algebra Der RB".

Now let X = Zi,j a;;0/0z;; be an arbitrary smooth vector field. Expanding the
coefficients a;; in a Taylor series in powers of z, and grouping the terms with the same
weights, we get an expansion X ~ Ejnf—z XM where X(™) is g homogeneous field
of weight m. This expansion enables us to introduce a decreasing filtration in the Lie
algebra Der R™ by putting

Der™(ki,..., k) = {X €Der R*"|X\V =0 fori <m}, —I<m< +oo.

It is easy to see that
[Der™ (ky, ..., ki), Der™2(ky.... k)] C Der™ ™2 (ky, ... k).

There is an obvious isomorphism of graded Lie algebras which is nevertheless impor-
tant for our purposes

—1
P Der™ (k... k)/Der™ (k... k) = V7 (ka,. .. k).

m=—1

THEOREM 1. There exist a neighborhood qu of the point qo 1n M and a coordinate
map ®:0qy — R™, ®(qo) = 0, Pug, (E;) = @;:1 Rfi 1 < ¢ <1, such that ®.6_;, =
Der™"(ky,..., k).

In particular, ®.& C Der™!(ky,..., k), and we get

COROLLARY. Under the conditions of Theorem 1, for any X1,...,X; € £, { =
1,...,1,

B, (adXjo0- - oad X; 1 X;) € Der “(ki..... k).

Theorem 1 implies that the filtration (5) is compatible with the structure of the Lie
algebra in Der M; that is, [§_;, 6,1 C &, Weput V(&) = @'_,(E_;/& _); then
the map ®. induces an isomorphism of the graded nilpotent Lie algebras: V(&) ~
V= (ky,...,k;); this isomorphism also is denoted by ®,. The image of the vector field
X € & C £y in the Lie algebra V(&) under the canonical factorization &1 — £_1/&
ig'denoted by X .

3. We return to a consideration of the controlled system (3) and the map Gy;
everywhere below the set & is determined by (4) and ¢ > 0 is fixed. Recall that we
are assuming E; = T,,M; the Nagano-Sussmann theorem enables us to suppose that
this condition is satisfied for any regular controlled system, in particular for any analytic
system with fixed initial value ¢(0) = ¢q [6].

Obviously on taking quotients the time-dependent fields AL € & generate the curves
Ri=, 7 € [0,t], in the algebra V~(&). Let ®:0,, — R™ be a coordinate map satisfying
the conditions of Theorem 1. Then A = ®,Ai" € V~(ky,...,k;) are nonstationary
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vector fields in R™ with polynomial coefficients.(*) The controlled system
7
(6) T = Z hi(z)u', © € R™, z(0) =0,
i=1

is the “nilpotentization” of system (3).
For every u(-) € L7, [0,t] we put G(u(-)) = z(t), where

i(r) = Z Ri(z(r)ui(r), €[04, 2(0)=0.

It is not hard to show that
!

) t Ti—1 T L
(1) Gilul) = P /{) dry - /O ar <Zhauﬂ<m)o~~o STkt w(n) | |
1=1 i=1

i=1

where z; = (2,1, .. ., zikz)T is a coordinate vector-valued function, the components of the
vector-valued function z; have weight ¢ and the differential operator applied to them has
weight —¢; as a result a vector-valued function of weight 0 is obtained; that is, an element
of RFi. The e-attainability set of the system (6) within time ¢ is denoted by Ay (e).

Let A (2, .. X ;) — (gz3,...,€ ;) be a dilation of the space ™. Then (7) implies
that Vei,e2, Ae, Ui(e2) = Ai(e1€2).

DEFINITION. The point ¢ € %;(e) (z € A (€)) is normally attainable for system (3)
(system (6)) if the set G; ' (q) (G7Y(z)) contains a regular point of the map G (the map
Gy).

PROPOSITION 1. Assume that the point T = (T1,...,T1) € ﬁlt(l) is normally
attainable for system (6). Then for all sufficiently small € > O the point q(e) =
®~1(eTy,...,e'T) lies in Us(e) and is normally attainable for system (3).

Everywhere below the fields f and ¢* (see (2)) and also the set M are assumed to be
analytic.

PROPOSITION 2. There exists € > 0 such that the set of regular points of the map G,
is open and everywhere dense in an e-neighborhood of zero in the space L} 0,1].

COROLLARY. The set of normally attainable points is open and everywhere dense in
2: () for all sufficiently small e > 0.

We define a (nonsmooth) homeomorphism I': R* — R" by the formula
!
I(z) = @ 13’31"(1_1)/%@ T'(0) =0
i=1

clearly T'(Ag(z)) = el'(z).

DEFINITION. Let M(g) , € > 0, be a family of sets in R, where M(e1) C M(ez) when
g1 < &2 and M(0) = 0. We call a vector y € R™ interior for the family P(e) if there is a
neighborhood Oy, of the point y in R™ such that {az[z € Oy, 0 < a < e} C Me) for all
sufficiently small € > 0.

Propositions 1 and 2 imply the following result (the words “almost all” mean “all in
a certain open everywhere dense subset”).

(})The flelds ﬁ§ unlike hi_, depend on the choice of the coordinate map ®. The difference between
hi” and ﬁf, is of the same kind as that between the k-jet of a smooth function at a given point and its
Taylor polynomial of degree k.




THEOREM 2. Almost all the interior vectors of the family of sets T(9,(c)), € > 0,
are interior vectors of the family T o (%, (e)).

In order to obtain an inverse inclusion one must introduce some restriction on the
“speed of oscillation” of the admissible contrels. We get

Ule,c) = {u(-) € LL[0.4] | [u()lo <& Varpgu() < cllu()lz, },

and X
Ae(e,c) = G(Ule,c)) Ai(e,0) = C‘t(s, ¢)).

THEROEM 3. For any ¢ > 0, almost all the interior vectors of the family of sets
To®(WU(e,c)), e 20, are interior vectors of the family T (s (g, ¢)).

Thus it has been shown that the attainability sets of system (3} and of its “nilpoten-
tization” (6) in a certain definite sense have locally “almost the same” structure.

This work was carried out in the context of a seminar directed by R. V. Gamkrelidze,
to whom the authors express their thanks for his constant support.
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