IOPscience

HOME | SEARCH | PACS & MSC | JOURNALS | ABOUT | CONTACT US

ON REDUCTION OF A SMOOTH SYSTEM LINEAR IN THE CONTROL

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1987 Math. USSR Sb. 58 15 (http://iopscience.iop.org/0025-5734/58/1/A02)

The Table of Contents and more related content is available

Download details: IP Address: 147.122.5.50 The article was downloaded on 25/06/2009 at 11:16

Please note that terms and conditions apply.

Матем. Сборник Том 130(172) (1986), Вып. 1

ON REDUCTION OF A SMOOTH SYSTEM LINEAR IN THE CONTROL UDC 517.977.1 + 514.7

A. A. AGRACHEV AND A. V. SARYCHEV

ABSTRACT. A method is presented for reducing a smooth system linear in the control on an n-dimensional manifold M to a nonlinear system on an (n - 1)-dimensional manifold. This reduction is used to obtain sufficient conditions for a high order of local controllability of the system, and the problem of a time-optimal control of the angular momentum of a rotating rigid body is investigated.

Bibliography: 7 titles.

§1. Introduction

In this article a method is presented for investigating a controllable system of the form

$$\dot{x} = f(x) + g(x)u \tag{1.1}$$

on a smooth *n*-dimensional manifold M. Here $x \in M$, $u \in R$, f(x) and g(x) are complete smooth vector fields on M, and the admissible controls u(t) are bounded measurable functions of t.

It is shown that (1.1) can be reduced to a system nonlinear in the control with an (n-1)-dimensional phase space. This reduction is used here to obtain sufficient conditions for local controllability of high order for system (1.1), and also in the problem of time-optimal control of the rotation of an asymmetric rigid body by means of a moment applied along an axis fixed in the body.

§2. Preliminary material

We introduce some notation which mainly follows [1]. Denote by $C^{\infty}(M)$ the algebra of infinitely differentiable functions on M. We must deal below with operators B and families of operators B_t ($t \in R$) mapping $C^{\infty}(M)$ into itself. Following [1], we define the properties of continuity, differentiability, integrability, etc., of a family of operators B_t with respect to t in the weak sense: B_t has property (*) with respect to t if the function $B_t\varphi$ has property (*) with respect to t for all $\varphi \in C^{\infty}(M)$.

A vector field on M is defined to be an arbitrary derivation of the algebra $C^{\infty}(M)$, i.e., a linear mapping X of $C^{\infty}(M)$ into itself such that $X(\varphi_1\varphi_2) = (X\varphi_1)\varphi_2 + \varphi_1(X\varphi_2)$. If we introduce local coordinates on M, then the field X can be written in the form $X = \sum_{i=1}^{n} X_i \partial / \partial x_i$, where $X_i \in C^{\infty}(M)$. The value of a vector field X at a point $x \in M$ is a vector, denoted by $x \circ X$, in the tangent space $T_x M$.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 49B10, 49E15; Secondary 58F25, 93B05.

The Lie bracket (commutator) [X, Y] of vector fields X and Y is defined by the formula $[X, Y]\varphi = X(Y\varphi) - Y(X\varphi)$. In local coordinates, $[X, Y] = \frac{\partial Y}{\partial xX} - \frac{\partial X}{\partial xY}$. As we know, the commutator [X, Y] is also a vector field; the Lie bracket introduces the structure of a Lie algebra in the space of vector fields. For a vector field X the linear operator ad X is defined on the space of vector fields by the formula (ad X)Y = [X, Y]. Finally, a nonautonomous vector field X_t ($t \in R$) is defined to be a family of vector fields integrable with respect to t.

Consider a diffeomorphism P of M onto itself. It determines an automorphism of the algebra $C^{\infty}(M)$ by the formula $(P\varphi)(x) = \varphi(P(x))$ for $\varphi \in C^{\infty}(M)$. This automorphism of $C^{\infty}(M)$ is also called a diffeomorphism and is denoted by the same symbol P. So that there will be no confusion, we denote the image of a point x under a diffeomorphism P by $x \circ P$, and the value of a function φ at x by $x \circ \varphi$.

Following [1], we define a flow P_t to be an absolutely continuous family of diffeomorphisms. It is easy to show that the composition $P_t^{-1} \circ (d/dt)P_t$ is a family of derivations of $C^{\infty}(M)$ that is integrable with respect to t, i.e., a nonautonomous vector field X_t . It follows from the equality $P_t^{-1} \circ (d/dt)P_t = X_t$ that

$$\left(\frac{d}{dt}\right)P_t = P_t \circ X_t. \tag{2.1}$$

Thus, any flow P_t is generated by some nonautonomous vector field X_t in view of the differential equation (2.1). A solution of (2.1) will be denoted by $\overrightarrow{\exp} \int_0^t X_\tau d\tau$ and called [1] a chronological exponential. If the vector field X_t is autonomous, i.e., $X_t = X$, then the flow generated by this field is denoted by e^{tX} .

According to [1], the chronological exponential can be expanded in a series

$$\overrightarrow{\exp} \int_0^t X_\tau d\tau = I + \int_0^t X_\tau d\tau + \int_0^t \int_0^\tau X_{\tau_1} \circ X_\tau d\tau_1 d\tau + \cdots$$
 (2.2)

We also give a variational formula for the chronological exponential [1]:

$$\overrightarrow{\exp} \int_0^t (X_\tau + Y_\tau) d\tau = \overrightarrow{\exp} \int_0^t \overrightarrow{\exp} \int_0^\tau \operatorname{ad} X_s ds Y_\tau d\tau \circ \overrightarrow{\exp} \int_0^t X_\tau d\tau.$$
(2.3)

In (2.3) the operator exponential $Q_{\tau} = \overrightarrow{\exp} \int_0^{\tau} \operatorname{ad} X_s \, ds$ is an absolutely continuous family of operators on the space of vector fields that satisfies the equation

$$(d/d\tau)Q_{\tau}Z = Q_{\tau} \circ (\operatorname{ad} X_{\tau})Z$$

for any vector field Z. The flow $\overrightarrow{\exp} \int_0^{\tau} \overrightarrow{\exp} \int_0^{\tau} \operatorname{ad} X_s \, ds Y_{\tau} \, d\tau$ (see (2.3)) was called a perturbation flow in [1].

We consider a controllable system on M of the form

$$\dot{x} = X(x, u), \qquad u \in U. \tag{2.4}$$

The right-hand side of (2.4) can be regarded as a family $\mathscr{X} = \{X(x, u): u \in U\}$ of vector fields depending on the parameter $u \in U$. It will be assumed that the vector field X(x, u) is complete for any u.

The orbit \mathcal{O}_x of system (2.4) at the point $x \in M$ is defined to be the set of points of the form

$$\mathcal{O}_{x} = \left\{ x \circ \left(e^{t_{1}X_{1}} \circ e^{t_{2}X_{2}} \circ \cdots \circ e^{t_{k}X_{k}} \right) \colon t_{i} \in \mathbb{R}, \ X_{i} \in \mathscr{X} \right\}.$$

Obviously, if $x' \in \mathcal{O}_x$, then $\mathcal{O}_{x'} = \mathcal{O}_x$.

THEOREM 2.1 (SUSSMANN [2]). For any point $x \in M$ the orbit \mathcal{O}_x is a smooth submanifold of M that is invariant for system (2.4).

The positive orbit \mathcal{O}_x^+ of system (2.4) at a point $x \in M$ is defined to be the set of points of the form

$$\mathcal{O}_x^+ = \left\{ x \circ \left(e^{t_1 X_1} \circ \cdots \circ e^{t_k X_k} \right) \colon t_i \in \mathbb{R}, \ t_i \ge 0, \ X_i \in \mathscr{X} \right\}.$$

Obviously, $\mathcal{O}_x^+ \subseteq \mathcal{O}_x$.

Denote by $\mathscr{L}[\mathscr{X}]$ the smallest Lie algebra of vector fields such that $\mathscr{L}[\mathscr{X}] \supseteq \mathscr{X}$. The rank of the controllable system (2.4) at a point $x \in M$ is defined to be

$$\dim \operatorname{span} \{ x \circ X \colon X \in \mathscr{L} [\mathscr{X}] \}$$

THEOREM 2.2 [2]. The value of any vector field $X \in \mathscr{L}[\mathscr{X}]$ at a point $x' \in \mathscr{O}_x$ is a tangent vector to \mathscr{O}_x . In particular, the rank of system (2.4) at a point $x' \in \mathscr{O}_x$ does not exceed dim \mathscr{O}_x .

The following condition is assumed in what follows (it is true, in particular, for all real analytic systems): the rank of (2.4) at any point $x' \in \mathcal{O}_x$ coincides with the dimension $\dim \mathcal{O}_x$. What is more, for our purposes it suffices to consider the restriction of system (2.4) to the orbit \mathcal{O}_x , which enables us to assume without loss of generality that the orbit \mathcal{O}_x of (2.4) coincides with the manifold M, and that the rank of (2.4) is equal to dim M at each point. In this case we have

THEOREM 2.3 (KRENER [2]). If the rank of system (2.4) at each point $x \in M$ is equal to dim M and $\mathcal{O}_x = M$, then the set of interior points of the positive orbit \mathcal{O}_x^+ is dense in \mathcal{O}_x^+ .

THEOREM 2.4 (SUSSMANN AND JURDJEVIC [2]). If the rank of system (2.4) at a point x is equal to dim M, then for any T > 0 the set of attainability $A_{\leq T,x}$ of (2.4) from the point x in a time $\leq T$ has nonempty interior, and int $A_{\leq T,x}$ is dense in $A_{\leq T,x}$.

Along with the Lie algebra $\mathscr{L}[\mathscr{X}]$ we consider the smallest Lie subalgebra $\mathscr{L}^0[\mathscr{X}]$ of it containing all the fields of the form $X^1 - X^2$ $(X^1, X^2 \in \mathscr{X})$ and $[Y^1, Y^2]$ $(Y^1, Y^2 \in \mathscr{L}[\mathscr{X}])$. We call dim span $\{x \circ X: X \in \mathscr{L}^0[\mathscr{X}]\}$ the *exact rank* of the system. Obviously, the exact rank of the system does not exceed its rank.

THEOREM 2.5 [2]. If the exact rank of system (2.4) at a point x is equal to dim M, then for any T > 0 the set of attainability $A_{T,x}$ of (2.4) from x in the time T has nonempty interior, and int $A_{T,x}$ is dense in $A_{T,x}$.

§3. Reduction of the controllable system (1.1)

We consider a controllable system (1.1) and an admissible control u(t). The flow P_t generated by the differential equation

$$\dot{x} = f(x) + g(x)u(t)$$
 (3.1)

can be represented in the form of the chronological exponential

$$P_t = \overrightarrow{\exp} \int_0^t \left(f(x) + g(x)u(\tau) \right) d\tau.$$

According to the variational formula (2.3),

$$\overrightarrow{\exp} \int_0^t \left(f + gu(\tau) \right) d\tau = \overrightarrow{\exp} \int_0^t e^{\left(\int_0^\tau u(s) \, ds \right) \operatorname{ad} g} f \, d\tau \circ e^{\left(\int_0^t u(\tau) \, d\tau \right) g}, \tag{3.2}$$

or, with the notation $v(\tau) = \int_0^{\tau} u(s) ds$,

$$\overrightarrow{\exp} \int_0^t (f + gu(\tau)) d\tau = \overrightarrow{\exp} \int_0^t e^{v(\tau) \operatorname{ad} g} f d\tau \circ e^{v(t)g}.$$
(3.3)

The right-hand side of (3.3) is the composition of the flows generated by the respective nonautonomous vector fields $e^{v(t) \operatorname{ad} g} f$ and v(t)g.

Consider a neighborhood V of a point $\tilde{x} \in M$ such that $g|_V \neq 0$. We define on V an equivalence relation that puts in a single class all the points lying on a single trajectory of the vector field $g|_V$, and we denote by V^g the quotient set by this equivalence relation. We can regard V^g as a set of segments of trajectories of the vector field g. Obviously, V^g can be parametrized by the points of the set $N \cap V$, where $M \supset N$ is an (n-1)-dimensional submanifold of M transversal to the trajectories of the field g in the neighborhood of \tilde{x} .

Suppose that $g \neq 0$ on the whole manifold M and, moreover, satisfies the "nonrecurrence" conditions: for each point $x \in M$ there exist a neighborhood $V_x \ni x$ and an (n-1)-dimensional manifold $N_x \subset M$ ($x \in N_x$) transversal to g such that any trajectory of g intersects the set $V_x \cap N_x$ in a unique point. In particular, the "nonrecurrence" condition holds when $M = R^n$ and g is a constant vector field. Under these conditions the equivalence relation can be defined globally on the manifold M. The corresponding quotient manifold (the manifold of trajectories of g) is denoted by M^g .

We consider the family of vector fields $F_v = e^{v \operatorname{ad} g} f(v \in R)$, and prove that it is well defined on M^g , i.e., under the action of the diffeomorphism $(e^{tg})_*$ a vector field in the family F_v passes into a vector field in the same family. Indeed, under the action of $(e^{tg})_*$ the field $F_v = e^{v \operatorname{ad} g} f$ passes [1] into the field $e^{t \operatorname{ad} g} F_v = e^{t \operatorname{ad} g} e^{v \operatorname{ad} g} f = e^{(t+v)\operatorname{ad} g} f = F_{t+v}$, i.e., the group of diffeomorphisms $(e^{tg})_*$ carries the family F_v into itself. We prove

PROPOSITION 1. Let M^g be the quotient manifold described above, π the canonical projection of M onto M^g , and $D_{T,\tilde{y}}$ ($D_{\leq T,\tilde{y}}$) the set of attainability in the time $T (\leq T)$ from a point \tilde{y} for the controllable system

$$\dot{y} = y \circ F_v = y \circ \left(e^{v \operatorname{ad} g}f\right) \tag{3.4}$$

on the manifold M^g , where essentially bounded measurable scalar functions v(t) are taken as the controls. The set of attainability $A_{T,\tilde{x}}$ ($A_{\leq T,\tilde{x}}$) of (1.1) in the time $T (\leq T)$ from a point \tilde{x} is contained in the inverse image $\pi^{-1}(D_{T,\pi(\tilde{x})}) (\pi^{-1}(D_{\leq T,\pi(\tilde{x})}))$, and if the exact rank (the rank) of system (1.1) at \tilde{x} is equal to dim M, then the interior of $A_{T,\tilde{x}}$ ($A_{\leq T,\tilde{x}}$) is dense in $\pi^{-1}(D_{T,\pi(\tilde{x})}) (\pi^{-1}(D_{\leq T,\pi(\tilde{x})}))$.

REMARK. In other words, Proposition 1 means that the sets $A_{T,\tilde{x}}$ $(A_{\leq T,\tilde{x}})$ and int $A_{T,\tilde{x}}$ (int $A_{\leq T,\tilde{x}}$) are contained and everywhere dense in the "cylinder"; that is "swept out" in the motion of the set $D_{T,\pi(\tilde{x})}$ $(D_{\leq T,\pi(\tilde{x})})$ along trajectories of g.

PROOF OF PROPOSITION 1. Let $\hat{u}(t)$ be a fixed admissible control of (1.1), and T a fixed time. Setting $\hat{v}(t) = \int_0^t \hat{u}(\tau) d\tau$, we get by (3.3) that

$$\overrightarrow{\exp} \int_0^T \left(f + g\hat{u}(\tau) \right) d\tau = \overrightarrow{\exp} \int_0^T F_{\hat{v}(t)} dt \circ e^{\hat{v}(T)g}.$$
(3.5)

Obviously, the point $\tilde{x} \circ (\overrightarrow{exp} \int_0^T F_{\hat{v}(t)} dt \circ e^{\hat{v}(T)g})$ is contained in $\pi^{-1}(D_{T,\pi(\tilde{x})})$, since $\tilde{x} \circ \overrightarrow{exp} \int_0^T F_{\hat{v}(t)} dt \in D_{T,\pi(\tilde{x})}$; and this proves the inclusion $A_{T,\tilde{x}} \subseteq \pi^{-1}(D_{T,\pi(\tilde{x})})$.

To prove the second part of Proposition 1 we use the auxiliary

LEMMA 2 [1]. The point

$$\tilde{y} \circ \left(\overrightarrow{\exp} \int_0^T F_{v(t)} dt\right) = \tilde{y} \circ \left(\overrightarrow{\exp} \int_0^T e^{v(t) \operatorname{ad} g} f dt\right)$$

depends continuously on $v(\cdot)$ in the metric of $L_1[0, T]$.

Suppose that $\hat{x} \in \pi^{-1}(D_{T,\pi(\tilde{x})})$ and $\hat{v}(\cdot)$ is a corresponding control carrying system (3.4) from the point $\pi(\tilde{x})$ to $\pi(\hat{x})$ in time T. We consider on M the differential equation $\dot{x} = x \circ (e^{\hat{v}(t)\operatorname{ad} g}f)$ and the trajectory $\hat{x}(t)$ of it satisfying $\hat{x}(0) = \tilde{x}$. Let $\hat{x}(T) = \hat{z}$. Since $\hat{v}(\cdot)$ carries system (3.4) from $\pi(\tilde{x})$ to $\pi(\hat{x})$ in time T, the points \hat{x} and \hat{z} lie on a single trajectory of g in view of (3.5), i.e., $\hat{x} = \hat{z} \circ e^{sg}$. Choose an absolutely continuous function $v^{\delta}(\cdot)$ in the δ -neighborhood of $v(\cdot)$ in the $L_1[0, T]$ -metric and satisfying the conditions $v^{\delta}(0) = 0$ and $v^{\delta}(T) = s$. We let $u^{\delta}(t) = \dot{v}^{\delta}(t)$, and consider the Cauchy problem $\dot{x} = f(x) + g(x)u^{\delta}(t)$, $x(0) = \tilde{x}$. According to (3.3), a solution $x^{\delta}(t)$ of this Cauchy problem is defined by

$$x^{\delta}(t) = \tilde{x} \circ \left(\overrightarrow{\exp} \int_0^t e^{v^{\delta}(\tau) \operatorname{ad} g} f d\tau \circ e^{sg} \right).$$

By choosing δ sufficiently small it is possible by Lemma 2 to make the point $\tilde{x} \circ (\overrightarrow{exp} \int_0^T e^{v^{\delta}(t) \operatorname{ad} g} f dt)$ arbitrarily close to $\hat{z} = \tilde{x} \circ \overrightarrow{exp} \int_0^T e^{v(t) \operatorname{ad} g} f dt$, and thereby to make $x^{\delta}(T)$ arbitrarily close to $\hat{x} = \hat{z} \circ e^{sg}$.

Thus, it is proved that the set of attainability $A_{T,\tilde{x}}$ is dense in $\pi^{-1}(D_{T,\pi(\tilde{x})})$. According to Theorem 2.5, int $A_{T,\tilde{x}}$ is dense in $A_{T,\tilde{x}}$. Consequently, int $A_{T,\tilde{x}}$ is dense in $\pi^{-1}(D_{T,\pi(\tilde{x})})$. Analogous arguments can be carried out for the set $A_{\leq T,\tilde{x}}$. Proposition 1 is proved.

It follows from Proposition 1 that the investigation of the set of attainability of the controllable system (1.1) of order n can be reduced to an investigation of a system (3.4) of order n-1 which, contrary to (1.1), is nonlinear (and often nondegenerate) in the control.

Proposition 1 admits a natural generalization to the case of a system linear in the vector-valued control $u = (u_1, ..., u_l)$ and of the form

$$\dot{x} = f(x) + \sum_{i=1}^{l} g_i(x) u_i.$$
 (3.6)

Suppose that the fields $\{g_i(x), i = 1, ..., l\}$ are linearly independent at each point $x \in M$ and generate an involutory *l*-dimensional distribution G on M. By the Frobenius theorem, there exist functions $b_{ij}(x)$, i, j = 1, ..., l, such that the vector fields $\hat{g}_i(x) = \sum_{j=1}^{l} b_{ij}(x)g_j(x)$ form a basis for the distribution G and have commutator $[\hat{g}_i, \hat{g}_j] = 0$ for any *i* and *j*. Obviously, the determinant of the matrix $B = ||b_{ij}(x)||$ is nonzero on M. Let $B^{-1}(x) = C(x) = ||c_{ij}(x)||$; then

$$g_i(x) = \sum_{j=1}^{l} c_{ij}(x) \hat{g}_j(x), \qquad i = 1, \dots, l.$$
(3.7)

Substituting (3.7) into (3.6) and introducing the new controls $v_j = \sum_{i=1}^{l} c_{ij}(x)u_i$, j = 1, ..., l, we get that (3.6) can be reduced to the system

$$\dot{x} = f(x) + \sum_{i=1}^{l} \hat{g}_i(x) v_i$$
(3.8)

with pairwise commuting fields $\hat{g}_i(x)$, i = 1, ..., l, which generate the same distribution G on M.

According to the Frobenius theorem, M is stratified into the integral manifolds of the distribution G. A literal repetition of the arguments given above with the integral curves of g replaced by the integral manifolds of G enables us to define from G an equivalence relation on M and an (n - l)-dimensional quotient manifold M^G by this equivalence relation.

PROPOSITION 1'. Let M^G be the indicated quotient manifold, π the canonical projection of M onto M^G , and $D_{T,\tilde{y}}$ ($D_{\leq T,\tilde{y}}$) the set of attainability in the time $T (\leq T)$ from a point $\tilde{y} \in M^G$ for the controllable system

$$\dot{y} = y \circ \left(e^{\sum_{i}^{l} w_i \operatorname{ad} \hat{g}_i} f \right)$$
(3.9)

on M^G , where the essentially bounded scalar functions $w_i(t)$ are taken as controls. The set of attainability $A_{T,\tilde{x}}$ ($A_{\leq T,\tilde{x}}$) of system (3.6) (or (3.8)) in time $T (\leq T)$ from a point $\tilde{x} \in M$ is contained in the inverse image $\pi^{-1}(D_{T,\pi(\tilde{x})})$ ($\pi^{-1}(D_{\leq T,\pi(\tilde{x})})$), and if the exact rank (the rank) of (3.6) at \tilde{x} is equal to dim M, then the interior of $A_{T,\tilde{x}}$ ($A_{\leq T,\tilde{x}}$) is dense in $\pi^{-1}(D_{T,\pi(\tilde{x})})$ ($\pi^{-1}(D_{\leq T,\pi(\tilde{x})})$).

Thus, by Proposition 1', the investigation of the system (3.6) of order n with *l*-dimensional control reduces to the investigation of the system (3.9) of order n - l.

§4. Sufficient conditions for local controllability

Let us consider a controllable system (1.1) and a trajectory $\tilde{x}(t)$ of this system with the initial condition $\tilde{x}(0) = \tilde{x}$ generated by an admissible control $\tilde{u}(t)$. We introduce a special norm in the space of controls $u(\cdot)$; namely, we let

$$\|u(\cdot)\|_{[0,T]} = \sup_{t_1,t_2\in[0,T]} \left|\int_{t_1}^{t_2} u(\tau) d\tau\right|.$$

This kind of norm is used in investigating sliding regimes [3]; therefore, the metric generated by it is called the sliding regime metric.

For what follows it is convenient to introduce the notation $A_{T,\tilde{x}}^{\epsilon}$ for the set of attainability of system (1.1) in time T from the point \tilde{x} by means of a control $u(\cdot)$ with $||u(\cdot)||_{[0,T]} < \epsilon$.

DEFINITION. Let $\tilde{x}(\cdot)$ be the trajectory of (1.1) generated by the zero control, $\tilde{x}(0) = \tilde{x}$. Then system (1.1) is *weakly locally controllable* from the point \tilde{x} in time T if $\tilde{x}(T) \in$ int $A_{T,x}^{\epsilon}$ for all $\epsilon > 0$.

PROPOSITION 3. Consider on M the two-parameter family of vector fields $Z_{t,v} = e^{t \operatorname{ad} f} e^{v \operatorname{ad} g} f - f$, and let

$$\Theta_{T,\varepsilon}(\tilde{x}) = \operatorname{con}\left\{\tilde{x} \circ Z_{t,v} : 0 \leqslant t \leqslant T, |v| \leqslant \varepsilon\right\},\tag{4.1}$$

$$\Xi_{T,\epsilon}(\tilde{x}) = \operatorname{con}\{\Theta_{T,\epsilon}(\tilde{x}) \cup \{\tilde{x} \circ g, \tilde{x} \circ (-g)\}\}$$

$$(4.2)$$

(here con *B* denotes the convex cone generated by a set *B*; $\Theta_{T,\epsilon}(\tilde{x})$ and $\Xi_{T,\epsilon}(\tilde{x})$ are thus convex cones lying in the tangent plane $T_{\tilde{x}}M$).

Suppose that $\tilde{x}(t)$ is the trajectory of system (1.1) generated by the zero control, $\tilde{x}(0) = \tilde{x}$, and $\gamma(s)$ ($s \ge 0$) is a curve on M with $\gamma(0) = \tilde{x}$. If $\gamma'(0) \in \operatorname{int} \Xi_{T,\varepsilon}(\tilde{x})$ for all $\varepsilon > 0$, then for any $\varepsilon > 0$ the point $\gamma(s) \circ e^{Tf}$ lies in $\operatorname{int} A^{\varepsilon}_{T,\tilde{x}}$ for all sufficiently small $s \ge 0$. PROOF OF PROPOSITION 3. For an arbitrary control $u(\cdot)$ we represent the trajectory of (1.1) generated by it in the form of the chronological exponential $exp \int_0^t (f + gu(\tau)) d\tau$. According to (3.5),

$$\overrightarrow{\exp} \int_0^T (f + gu(\tau)) d\tau = \overrightarrow{\exp} \int_0^T e^{v(\tau) \operatorname{ad} g} f d\tau \circ e^{v(T)g}, \qquad (4.3)$$

where $v(t) = \int_0^t u(\tau) d\tau$. We represent the vector field $e^{v(t) \operatorname{ad} g} f$ in the form

$$e^{v(t)\operatorname{ad} g}f = f + \left(e^{v(t)\operatorname{ad} g}f - f\right).$$

By the variational formula (2.3),

$$\overrightarrow{\exp} \int_{0}^{T} e^{v(t)\operatorname{ad} g} f \, dt = \overrightarrow{\exp} \int_{0}^{T} e^{t\operatorname{ad} f} \left(e^{v(t)\operatorname{ad} g} f - f \right) dt \circ e^{Tf}$$
$$= \overrightarrow{\exp} \int_{0}^{T} \left(e^{t\operatorname{ad} f} e^{v(t)\operatorname{ad} g} f - f \right) dt \circ e^{Tf}.$$
(4.4)

Combination of (4.3) and (4.4) gives us that

$$\overrightarrow{\exp} \int_0^T (f + gu(\tau)) d\tau = \overrightarrow{\exp} \int_0^T (e^{t \operatorname{ad} f} e^{v(t) \operatorname{ad} g} f - f) dt \circ e^{Tf} \circ e^{v(T)g},$$

or [1]

$$\overrightarrow{\exp} \int_{0}^{T} (f + gu(\tau)) d\tau = \overrightarrow{\exp} \int_{0}^{T} (e^{t \operatorname{ad} f} e^{v(t) \operatorname{ad} g} f - f) dt \circ e^{v(T) e^{T \operatorname{ad} f} g} \circ e^{Tf}$$
$$= \overrightarrow{\exp} \int_{0}^{T} Z_{t,v(t)} dt \circ e^{v(T) e^{T \operatorname{ad} f} g} \circ e^{Tf}.$$
(4.5)

We prove that

$$\operatorname{con}\left(\Theta_{T,\varepsilon}(\tilde{x}) \cup \left\{\tilde{x} \circ \left(\pm e^{T \operatorname{ad} f} g\right)\right\}\right) = \Xi_{T,\varepsilon}(\tilde{x}) \tag{4.6}$$

(cf. (4.2)). To do this we first show that $(\tilde{x} \circ (\pm e^{t \operatorname{ad} f}(\operatorname{ad} f)g)) \in \Theta_{T,\epsilon}(\tilde{x})$. Since $(\tilde{x} \circ Z_{t,\pm v}) \in \Theta_{T,\epsilon}(\tilde{x})$ for $t \in [0, T]$ and $|v| \leq \epsilon$, and $\Theta_{T,\epsilon}(\tilde{x})$ is a convex cone, it follows that

$$\frac{\partial}{\partial v}\Big|_{v=0}(\tilde{x}\circ Z_{t,\pm v})\in\Theta_{T,\epsilon}(\tilde{x}).$$

A direct computation yields

$$\frac{\partial}{\partial v}\Big|_{v=0} (\tilde{x} \circ Z_{t,\pm v}) = \tilde{x} \circ (\pm e^{t \operatorname{ad} f} (\operatorname{ad} g)f) = \tilde{x} \circ (\mp e^{t \operatorname{ad} f} (\operatorname{ad} f)g) \in \Theta_{T,\varepsilon}(\tilde{x}).$$

We now prove that

$$\left(\tilde{x}\circ\left(\pm e^{t\,\mathrm{ad}\,f}g\right)\right)\in\Xi_{T,\varepsilon}(\tilde{x}).\tag{4.7}$$

Obviously,

$$\frac{d}{dt}(\tilde{x}\circ(\pm e^{t\operatorname{ad} f}g)) = \tilde{x}\circ(\pm e^{t\operatorname{ad} f}(\operatorname{ad} f)g) \in \Theta_{T,\epsilon}(\tilde{x}) \subseteq \Xi_{T,\epsilon}(\tilde{x}).$$

On the other hand, $(\tilde{x} \circ (\pm e^{t \operatorname{ad} f}g)) = (\tilde{x} \circ (\pm g)) \in \Xi_{T,\epsilon}(\tilde{x})$ for t = 0. Since $\Xi_{T,\epsilon}(\tilde{x})$ is a convex cone, we get (4.7) and, in particular, $(\tilde{x} \circ (\pm e^{T \operatorname{ad} f}g)) \in \Xi_{T,\epsilon}(\tilde{x})$, which implies that

$$\operatorname{con}(\Theta_{T,\epsilon}(\tilde{x}) \cup \{\tilde{x} \circ (\pm e^{T\operatorname{ad} f}g)\}) \subset \Xi_{T,\epsilon}(\tilde{x})$$

To prove the reverse inclusion we show that $(\tilde{x} \circ (\pm (g - e^{T \operatorname{ad} f}g)))$ lies in $\Theta_{T,\epsilon}(\tilde{x})$. Indeed,

$$\frac{d}{dt}\left(\tilde{x}\circ\left(\pm\left(g-e^{t\operatorname{ad} f}g\right)\right)\right)=\left(\tilde{x}\circ\left(\mp e^{t\operatorname{ad} f}(\operatorname{ad} f)g\right)\right)\in\Theta_{T,\epsilon}(\tilde{x}).$$

Since $g - e^{t \operatorname{ad} f}g = 0$ for t = 0, we get that $g - e^{t \operatorname{ad} f}g \in \Theta_{T,\varepsilon}(\tilde{x})$ for all $t \in [0, T]$. The equality (4.6) is proved.

We consider the set

$$C_{T,\tilde{x}}^{\epsilon} = \left\{ \tilde{x} \circ \left(\overrightarrow{\exp} \int_{0}^{T} Z_{t,v(t)} dt \circ e^{v(T)e^{T \operatorname{ad} f}g} \right) \right\},$$

where the $v(\cdot)$ are absolutely continuous functions with $|v| \le \epsilon$. By (4.5), it suffices to show that for small $s \ge 0$ the points of the curve $\gamma(s)$ with $\gamma'(0) \in \operatorname{int} \Xi_{T,\epsilon}(\tilde{x})$ lie in $C_{T,\tilde{x}}^{\epsilon}$. Let $Y_{t,v(\cdot)} = v(t)e^{t\operatorname{ad} f}g$. Then

$$C_{T,\tilde{x}}^{\varepsilon} = \left\{ \tilde{x} \circ \left(\overrightarrow{\exp} \int_{0}^{T} Z_{t,v(t)} dt \circ e^{Y_{T,t(\cdot)}} \right) \right\}.$$
(4.8)

Note that $Z_{t,v(\cdot)} = Y_{t,v(\cdot)} \equiv 0$ for $v(\cdot) \equiv 0$. Using formula (2.2) for the exponentials on the right-hand side of (4.8), we get that

$$\overrightarrow{\exp} \int_{0}^{T} Z_{i,v(i)} dt \circ e^{Y_{T,v(i)}} = I + \int_{0}^{T} Z_{i,v(i)} dt + Y_{T,v(i)} + \cdots,$$
(4.9)

where the dots stand for terms of higher than first order of smallness in Z and Y. Let $W(v(\cdot)) = \int_0^T Z_{t,v(t)} dt + Y_{T,v(\cdot)}$. The range of the mapping W when $v(\cdot)$ is replaced by the set of absolutely continuous functions with $|v| \le \varepsilon$ is a convex subset of $T_{\tilde{x}}M$. The interior of the cone spanned by it coincides with int $\Xi_{T,\varepsilon}(\tilde{x})$ by the definition of $\Xi_{T,\varepsilon}(\tilde{x})$. Therefore the points of any curve $\gamma(s)$ ($s \ge 0$) lying in int $\Xi_{T,\varepsilon}(\tilde{x})$ for small s > 0 also lie in the interior of the range of W for $|s| < \delta$ if δ is small.

Arguments analogous to those used in proving the maximum principle (see, for example, [3], Theorem VII.1) imply the existence of a δ' , $0 < \delta' < \delta$, such that for $|s| < \delta'$ the points of the curve $\gamma(s)$ lie in $C_{T,\bar{x}}^{\varepsilon}$, and this proves Proposition 3.

The next result follows directly from the proof of Proposition 3.

$$0 \in \operatorname{int} \Xi_{T,\epsilon}(\tilde{x})$$

= $\operatorname{int} \operatorname{con}\left(\left\{\tilde{x} \circ \left(e^{t \operatorname{ad} f} e^{v \operatorname{ad} g} f - f\right): 0 \leqslant t \leqslant T, |v| \leqslant \epsilon\right\} \cup \left\{\tilde{x} \circ (\pm g)\right\}\right), \quad (4.10)$

then system (1.1) is weakly locally controllable from the point \tilde{x} in time T.

§5. Algebraic conditions for weak local controllability

Everywhere in this section we consider a controllable system (1.1) with the extra condition $\tilde{x} \circ f = 0$. Denote by Φ the Jacobi matrix $\Phi = \tilde{x} \circ (\partial f / \partial x)$. Then $\tilde{x} \circ (e^{t \operatorname{ad} f} X) = \tilde{x} \circ (e^{t\Phi}X)$ for any vector field X on M. In this case condition (4.10) for system (1.1) takes the form

$$0 \in \operatorname{int} \Xi_{T,\varepsilon}(\tilde{x})$$

= $\operatorname{int} \operatorname{con}(\{e^{\iota \Phi}(\tilde{x} \circ (e^{\upsilon \operatorname{ad} g}f)): 0 \leq t \leq T, |v| \leq \varepsilon\} \cup \{\tilde{x} \circ (\pm g)\}).$ (5.1)

Since the matrix $e^{t\Phi}$ determines a linear transformation of the tangent space $T_{\tilde{x}}M$, it follows from (4.6) that

$$\Xi_{T,\varepsilon}(\tilde{x}) = \left\{ e^{v\Phi} \left(\operatorname{con} \left\{ \left\{ \tilde{x} \circ \left(e^{v \operatorname{ad} g} f \right) : |v| \leqslant \varepsilon \right\} \cup \left\{ \tilde{x} \circ \left(\pm g \right) \right\} \right) \right\} : 0 \leqslant t \leqslant T \right\}.$$

Let us investigate the set $con({\tilde{x} \circ (e^{v \operatorname{ad} g} f): |v| \le \varepsilon} \cup {\tilde{x} \circ (\pm g)})$. To do this we consider the smallest even $j \ge 0$ such that

$$\left(\tilde{x} \circ \left((\operatorname{ad} g)^{j} f \right) \right) \notin \operatorname{span}\left(\left\{ \tilde{x} \circ \left((\operatorname{ad} g)^{i} f \right) : 1 \leqslant i < j \right\} \cup \left\{ \tilde{x} \circ g \right\} \right).$$
(5.2)

If condition (5.2) does not hold for any even j, then we set $j = +\infty$. Let

$$\hat{\mathscr{L}}_{\tilde{x}} = \begin{cases} \operatorname{span}\left(\left\{\tilde{x}\circ\left((\operatorname{ad} g)^{i}f\right): 1\leqslant i < j\right\}\cup\left\{\tilde{x}\circ g\right\}\right) & \text{if } j < +\infty, \\ \operatorname{span}\left(\left\{\tilde{x}\circ\left((\operatorname{ad} g)^{i}f\right): 1\leqslant i < +\infty\right\}\cup\left\{\tilde{x}\circ g\right\}\right) & \text{if } j = +\infty. \end{cases}$$

PROPOSITION 5. The linear space $\hat{\mathscr{L}}_{\tilde{x}}$ and the vector $\tilde{x} \circ ((\operatorname{ad} g)^{j} f)$ (if $j < +\infty$) are contained in the cone

$$\mathscr{F}_{\varepsilon} = \operatorname{con}\left(\left\{ \tilde{x} \circ \left(e^{v \operatorname{ad} g} f\right) \colon |v| \leqslant \varepsilon \right\} \cup \left\{ \tilde{x} \circ (\pm g) \right\} \right) \subseteq \mathrm{T}_{\tilde{x}} M.$$

The proof is by contradiction. If this assertion is false, then, since \mathscr{F}_{ϵ} is convex, there exist a vector $q \in \hat{\mathscr{L}}_{\bar{x}}$ and a covector $\psi \in T_{\bar{x}}^*M$ ($\psi \neq 0$) such that with the notation $\varphi(v) = \langle \psi, (\tilde{x} \circ (e^{v \operatorname{ad} g} f)) \rangle$ we have

$$\left(\left(\left\langle\psi, \left(\tilde{x}\circ\left(\left(\operatorname{ad} g\right)^{j}f\right)\right)\right\rangle > 0\right) \lor \left(\left\langle\psi, q\right\rangle > 0\right)\right)$$

$$\land \left(\forall v \colon |v| \leqslant \varepsilon, \varphi(v) \leqslant 0\right) \land \left(\left\langle\psi, \tilde{x}\circ g\right\rangle = 0\right).$$
(5.3)

Obviously, $\varphi(0) = 0$. It follows from (5.3) that the first nonzero derivative $\varphi^{(k)}(0)$ must be even, and $\varphi^{(k)}(0) < 0$. We prove that $k \ge j$. Indeed, if k < j is even and $\varphi^{(l)}(0) = \langle \psi, (\tilde{x} \circ ((\operatorname{ad} g)^l f)) \rangle = 0$ for all l < k, then by the definition of j

$$(\tilde{x} \circ ((\operatorname{ad} g)^k f)) \in \operatorname{span}(\{\tilde{x} \circ ((\operatorname{ad} g)^l f) : l < k\} \cup \{\tilde{x} \circ g\}),$$

and, consequently, $\varphi^{(k)}(0) = \langle \psi, (\tilde{x} \circ ((\text{ad } g)^k f)) \rangle = 0$. Thus, $k \ge j$, and hence $\varphi^{(j)}(0) = \langle \psi, (\tilde{x} \circ ((\text{ad } g)^j f)) \rangle \le 0$, which contradicts (5.3). Proposition 5 is proved.

A consequence of Propositions 4 and 5 is

PROPOSITION 6. Let \mathscr{K} be the cone generated by the space $\hat{\mathscr{L}}_{\tilde{x}}$ and the vector $(\tilde{x} \circ ((\operatorname{ad} g)^{j}f))$ (if $j < +\infty$). If $\Phi = \tilde{x} \circ \partial f / \partial x$ and $\operatorname{con} \{ e^{t\Phi} \mathscr{K} : 0 \leq t \leq T \} = \operatorname{T}_{\tilde{x}} M$, then system (1.1) is weakly locally controllable from \tilde{x} in time T.

PROOF. By Proposition 5, $\mathscr{F}_{\varepsilon} \supseteq \mathscr{K}$, and hence

$$0 \in \operatorname{int} \operatorname{T}_{\tilde{x}} M = \operatorname{int} \operatorname{con} \{ e^{t \Phi} \mathscr{K} \colon 0 \leq t \leq T \}$$
$$\subseteq \operatorname{int} \operatorname{con} \{ e^{t \Phi} \mathscr{F}_{e} \colon 0 \leq t \leq T \} = \operatorname{int} \Xi_{T,e}(\tilde{x}),$$

i.e., condition (4.10) of Proposition 4 holds. Proposition 6 is proved.

We deduce from Proposition 6 that system (1.1) is weakly locally controllable from the point \tilde{x} in some sufficiently large time T.

Let $\hat{\mathscr{L}}_{\tilde{x}}$ be the subspace of $T_{\tilde{x}}M$ defined above, and let $\mathscr{L}_{\tilde{x}}^0$ be the smallest Φ -invariant subspace of $T_{\tilde{x}}M$ containing $\hat{\mathscr{L}}_{\tilde{x}}$. In this case Φ is well defined on the quotient space $T_{\tilde{x}}M/\mathscr{L}_{\tilde{x}}^0$. If $\mathscr{L}_{\tilde{x}}^0$ coincides with $T_{\tilde{x}}M$, then by Proposition 6 the system is weakly locally controllable from \tilde{x} in any time T > 0. In the opposite case we have

PROPOSITION 7. If the vector $(\tilde{x} \circ ((\text{ad } g)^j f))$ does not belong to any nontrivial Φ -invariant subspace of $T_{\tilde{x}}M/\mathscr{L}_{\tilde{x}}^0$ and all the eigenvalues of Φ on $T_{\tilde{x}}M/\mathscr{L}_{\tilde{x}}^0$ are nonreal, then system (1.1) is weakly locally controllable from \tilde{x} in a sufficiently large time T > 0.

PROOF. We consider an arbitrary covector $\psi \in (T_{\tilde{x}}M/\mathscr{L}_{\tilde{x}}^0)^*, \psi \neq 0$. If

$$\left\langle \psi, \left(\tilde{x} \circ \left(e^{t\Phi} \left((\operatorname{ad} g)^{j} f \right) \right) \right) \right\rangle \equiv 0,$$

then this means that the Φ -invariant subspace span{ $\tilde{x} \circ (e^{t\Phi}((ad g)^{j}f)), t \in R$ } contains the vector ($\tilde{x} \circ ((ad g)^{j}f)$) and is orthogonal to ψ , i.e., does not coincide with $T_{\tilde{x}}M/\mathscr{L}_{\tilde{x}}^{0}$, which contradicts the condition.

Suppose that $\omega(t) = \langle \psi, (\tilde{x} \circ (e^{t\Phi}((\operatorname{ad} g)^j f))) \rangle \neq 0$. We prove that $\omega(t)$ changes sign on some interval [0, T]. Indeed, let $R(\lambda)$ be the characteristic polynomial of Φ on $T_{\tilde{x}}M/\mathscr{L}^0_{\tilde{x}}$, $R(\Phi) = 0$, and consider the differential operator R(d/dt). Obviously, $R(d/dt)\omega = 0$, i.e., $\omega(t)$ is a nonzero solution of a linear homogeneous equation with constant coefficients. Since all the eigenvalues of Φ are nonreal, $\omega(t)$ has the form

$$\omega(t) = \sum_{k=1}^{m} e^{\alpha_k t} \Big(P_{r_k}(t) \cos \beta_k t + Q_{r_k}(t) \sin \beta_k t \Big) = \sum_{s=1}^{N} a_s e^{\alpha_s t} t^{r_s} \left(\frac{\cos \beta_s t}{\sin \beta_s t} \right).$$
(5.4)

On the right-hand side of (5.4) we single out all the monomials corresponding to the largest of the α_s , and then we single out those of them for which the power r_s of t is maximal. Obviously, for large t the sign of $\omega(t)$ is determined by the sum of these monomials, i.e., by an expression of the form

$$e^{\alpha t} t^r \left(\sum_{l=1}^m \left(a_l \cos \beta_l t + b_l \sin \beta_l t \right) \right), \qquad \beta_l \neq 0.$$

As is known, any nonzero trigonometric polynomial of the form

$$P(t) = \sum_{l=1}^{m} \left(a_l \cos \beta_l t + b_l \sin \beta_l t \right)$$

is a function of variable sign on any interval of the form $(\hat{t}, +\infty)$, which proves that $\omega(t)$ is of variable sign.

Since the choice of ψ was arbitrary, what has been proved implies that the cone $\mathscr{H}_T = \operatorname{con} \{ e^{t\Phi}(\tilde{x} \circ ((\operatorname{ad} g)^{j}f)): 0 \leq t \leq T \}$ is a complement of $\mathscr{L}_{\tilde{x}}^0$ for all sufficiently large T, i.e., $\mathscr{H}_T + \mathscr{L}_{\tilde{x}}^0 = \operatorname{T}_{\tilde{x}} M$, and hence, by the inclusion $\mathscr{H}_T + \mathscr{L}_{\tilde{x}}^0 \subseteq \operatorname{con} \{ e^{t\Phi} \mathscr{K}: 0 \leq t \leq T \}$, we find ourselves under the conditions of Proposition 6, i.e., system (1.1) is weakly locally controllable from \tilde{x} in a sufficiently large time T. Proposition 7 is proved.

We now investigate weak local controllability of system (1.1) in an arbitrarily small time T > 0. Obviously, if there is a number *m* such that span{ $\Phi^k \hat{\mathscr{L}}_{\tilde{x}}: 0 \le k \le m$ } = $T_{\tilde{x}}M$, then for any arbitrarily small T > 0 the conditions of Proposition 6 hold for the system (1.1); hence we have

PROPOSITION 8. Let j be the index defined in Proposition 5. If there exists a number m such that

$$\operatorname{span}\left(\left\{\tilde{x}\circ\left(\left(\operatorname{ad} f\right)^{k}\left(\operatorname{ad} g\right)^{i}f\right): 0 \leqslant k \leqslant m, 1 \leqslant i < j\right\} \cup \left\{\tilde{x}\circ g\right\}\right) = \operatorname{T}_{\tilde{x}}M, \quad (5.5)$$

then system (1.1) is weakly locally controllable from \tilde{x} in any (arbitrarily small) time T > 0.

REMARK. The following condition for local controllability of system (1.1) in an arbitrarily small time T > 0 was presented in [4].

THEOREM [4]. Suppose that $S^k(f, g)$ is the linear hull of the values at a point \tilde{x} of all possible commutators of the vector fields f and g, with g appearing at most k times. If $\tilde{x} \circ f = 0$ and

1) $S^{k}(f, g)$ coincides with $T_{\tilde{x}}M$ for some k,

2) $S_{i+1}(f, g) = S_i(f, g)$ for any odd *i*,

then system (1.1) is locally controllable from \tilde{x} in an arbitrarily small time T > 0.

A comparison of condition (5.5) in Proposition 8 with conditions 1) and 2) in the theorem shows that these two assertions do not reduce to each other.

§6. Time-optimality in the problem of controlling the angular momentum of a rotating rigid body

The free rotation of a rigid body is described by the Euler equation (see [5]): $\dot{K} = K \times BK$, where $K \in R^3$ is the angular momentum vector in a coordinate system connected with the body, B is the symmetric 3×3 matrix inverse to the inertia tensor of the body A, and the sign "×" denotes the vector product in R^3 . Denote by $I_1 < I_2 < I_3$ the principal central moments of inertia of the body (the body is dynamically asymmetric), and by $J_1 > J_2 > J_3$ the quantities inverse to them $(J_1, J_2, \text{ and } J_3 \text{ are the eigenvalues of the matrix } B)$.

If a controlling moment is applied to the body along an axis \overline{L} passing through the center of mass, then the controlled motion of the angular momentum vector K is described by

$$\dot{K} = K \times BK + Lu, \tag{6.1}$$

where L is the unit vector on the axis \overline{L} .

We assume that the axis \overline{L} is in general position: \overline{L} does not coincide with any of the principal axes of inertia of the body and does not lie in one of the planes of the separatrices Π_1 and Π_2 given in the principal axes by the equations $\sqrt{J_1 - J_2} K_1 \pm \sqrt{J_2 - J_3} K_3 = 0$.

It follows from results in [6] that the exact rank (and thus also the rank) of system (6.1) is equal to 3 when \overline{L} is in general position. The same is obviously true for the time-reversed system (6.1), denoted by (6.1 –). Hence, the conditions of Theorems 2.4 and 2.5 (see §2) and Proposition 1 in §3 are satisfied for systems (6.1) and (6.1 –).

For a controllable system (6.1) we consider the time-optimal problem

$$T \to \min$$
 (6.2)

with boundary conditions

$$K(0) = \tilde{K}, \qquad K(T) = \hat{K}.$$
 (6.3)

To investigate problem (6.1)–(6.3) we apply the reduction described in §3 to system (6.1), setting $f = K \times BK$ and g = L. As a result we get the planar system

$$\dot{K} = K \circ (e^{v \operatorname{ad} g} f) = K \circ (e^{vg} \circ f \circ e^{-vg}),$$

which, since g = L is a constant field, is equivalent to the system $\dot{K} = K \circ (e^{vg}f)$ or

$$\dot{K} = (K + vL) \times B(K + vL). \tag{6.4}$$

We remark that in the case of a constant field g = L the quotient manifold $(R^3)^g$ can be identified with the plane P passing through the origin O and perpendicular to the axis \overline{L} . Under this identification system (6.4) on $(R^3)^g$ is carried into the system

$$\dot{K} = (K + vL) \times B(K + vL) - \langle (K + vL) \times B(K + vL), L \rangle L$$

= $(K + vL) \times B(K + vL) - \langle K \times B(K + vL), L \rangle L,$ (6.5)

whose right-hand side is the projection of the right-hand side of (6.4) on P. Any trajectory of system (6.5) generated by an absolutely continuous control v(t) is the projection on P of some (nonunique!) trajectory of (6.4).

We introduce the Cartesian coordinate system Oy_1y_2 on P by directing the Oy_1 axis along the vector $L \times BL$ and the axis Oy_2 along the vector $L \times (L \times BL)$. In this coordinate system (6.5) takes the form

$$\dot{y}_1 = b_{13}y_2^2 + (-b_{23}y_1 + (b_{11} - b_{33})y_2)v + v^2,$$

$$\dot{y}_2 = -b_{13}y_1y_2 + ((b_{22} - b_{11})y_1 + b_{23}y_2)v,$$
 (6.6)

where the b_{ij} are the components of the tensor *B* in the basis *L*, $L \times BL$, $L \times (L \times BL)$. Obviously, $b_{ij} = b_{ji}$, and a direct computation gives us also that $b_{13} < 0$ and $b_{22} - b_{11} \neq 0$.

For the controllable system (6.6) let us consider the time-optimal problem with the conditions

$$y(0) = \tilde{y}, \quad y(T) = \hat{y}, \quad T \to \min \quad (y = (y_1, y_2)).$$
 (6.7)

We establish a connection between the optimal trajectories of problems (6.1)–(6.3) and those of problem (6.6)–(6.7).

DEFINITION. A control $\overline{u}(t)$ and the trajectory $\overline{K}(t)$ generated by it for system (6.1) are said to be *strongly locally optimal* if for any points $K^1 = \overline{K}(t_1)$ and $K^2 = \overline{K}(t_2)$ there exists a δ -neighborhood of $\overline{u}(t)$ in the sliding regime metric (δ is the same for all the pairs of points K^1 , K^2 of the trajectory $\overline{K}(t)$) such that $T \ge t_2 - t_1$ for any control $u(\cdot)$ in this δ -neighborhood that carries system (6.1) from K^1 to K^2 in the time T.

DEFINITION. A control $\bar{v}(t)$ and the trajectory $\bar{y}(t)$ generated by it for system (6.6) are said to be *locally optimal* if there exists a δ -neighborhood of $\bar{v}(t)$ in the $L_{\infty}[0, T]$ -metric such that $T \ge t_2 - t_1$ for any points $y^1 = \bar{y}(t_1)$ and $y^2 = \bar{y}(t_2)$ of the trajectory $\bar{y}(t)$ and any control $v(\cdot)$ in this δ -neighborhood that carries system (6.6) from y^1 to y^2 in the time T.

Let $\bar{v}(t)$ and $\bar{y}(t)$ be locally optimal for system (6.6), with $\bar{v}(\cdot)$ absolutely continuous, and let $\bar{u}(t)$ and $\bar{K}(t)$ be a control and the corresponding trajectory of (6.1) that pass under the reduction of (6.1) to (6.6) into $\bar{v}(t)$ and $\bar{y}(t)$, respectively. By the definition of the reduction (see §3), the δ -neighborhood of $\bar{u}(\cdot)$ in the sliding regime metric is mapped under the reduction inside the δ -neighborhood of $\bar{v}(\cdot)$ in the $L_{\infty}[0, T]$ -metric. This implies immediately that the local optimality of $\bar{v}(t)$ and $\bar{y}(t)$ for system (6.6) yields the strong local optimality of the corresponding pair $\bar{u}(t)$, $\bar{K}(t)$ for (6.1).

It turns out that the time-optimal problem (6.1)-(6.3) under consideration has many strongly locally optimal trajectories, but does not have any globally optimal ones. Namely, we have the following assertion.

PROPOSITION 9. For any point $\tilde{K} \in \mathbb{R}^3$ there exists a one-parameter family of strongly locally time-optimal trajectories $K^{\alpha}(t)$ of system (6.1) emanating from \tilde{K} and generated by the corresponding controls $u^{\alpha}(t)$.

PROOF. For the reduced controllable system (6.6) we form the Hamiltonian

$$H = \psi_1 (b_{13} y_2^2 + (-b_{23} y_1 + (b_{11} - b_{33}) y_2) v + v^2) + \psi_2 (-b_{13} y_1 y_2 + ((b_{22} - b_{11}) y_1 + b_{23} y_2) v),$$
(6.8)

and write out the conjugate system

$$\dot{\psi}_1 = -\partial H/\partial y_1 = b_{23}v\psi_1 + (b_{13}y_2 - (b_{22} - b_{11})v)\psi_2,$$

$$\dot{\psi}_2 = -\partial H/\partial y_2 = -(2b_{13}y_2 + (b_{11} - b_{33})v)\psi_1 + (b_{13}y_1 - b_{23}v)\psi_2.$$
(6.9)

Obviously, if $\psi_1 < 0$, then the Hamiltonian H, which is quadratic in v, attains for

$$v = -\frac{1}{2} \left(-b_{23} y_1 + (b_{11} - b_{33}) y_2 \right) - \frac{\psi_2}{2\psi_1} \left((b_{22} - b_{11}) y_1 + b_{23} y_2 \right)$$
(6.10)

a maximum equal to

$$H_{\max} = b_{13} (\psi_1 y_2^2 - \psi_2 y_1 y_2) - \beta^2 / 4 \psi_1,$$

where, for brevity, β denotes the coefficient of v in (6.8). Obviously, the strengthened Legendre condition $\partial^2 H/\partial v^2 = \psi_1 < 0$ holds for $\psi_1 < 0$, and $H_{\text{max}} > 0$ under the additional condition $\operatorname{sgn} \psi_2 = \operatorname{sgn} y_1 y_2$ (with the inequality $b_{13} < 0$ taken into account), i.e., the corresponding transversality condition holds in problem (6.6)–(6.7).

Substituting (6.10) into (6.6) and (6.9), we get a system of fourth-order differential equations. Specifying the initial conditions $y_1(0) = \tilde{y}_1$, $y_2(0) = \tilde{y}_2$, $\psi_1(0) = -1$, $\psi_2(0) = \alpha$ (α is a parameter, and sgn $\alpha = \text{sgn } y_1 y_2$), we get the family of trajectories $y^{\alpha}(\cdot)$, $\psi^{\alpha}(\cdot)$ of this system, and from (6.10) the corresponding family of controls $v^{\alpha}(\cdot)$. The maximum principle in combination with the strengthened Legendre condition and the transversality condition ensures the local time-optimality of some part of any of the trajectories $y^{\alpha}(\cdot)$.

By the foregoing, any pair $u^{\alpha}(\cdot)$, $K^{\alpha}(\cdot)$ passing under reduction into the pair $v^{\alpha}(\cdot)$, $y^{\alpha}(\cdot)$ is strongly locally time-optimal for system (6.1). Proposition 9 is proved.

PROPOSITION 10. In problem (6.1)–(6.3) there exists a minimizing sequence of controls $\{u_n(\cdot)\}\$ carrying system (6.1) from \tilde{K} to \hat{K} in time T_n , where $\lim_{n\to\infty} T_n = 0$. In other words, system (6.1) can be carried from \tilde{K} to \hat{K} in an arbitrarily small time T > 0.

REMARK. Generally speaking, an assertion stronger than Propositions 9 and 10 is valid. It can be shown that for any fixed compact set $C \subset R^3$ (for example, a compact ball) containing \tilde{K} and \hat{K} and for the set of trajectories γ of (6.1) going from \tilde{K} to \hat{K} in a time T_{γ} while remaining in C we have that $\inf_{\gamma} T_{\gamma} = T_{C,\tilde{K},\tilde{K}} > 0$. If C_n is a collection of compact balls such that $C_1 \subset C_2 \subset \cdots$ and $\bigcup_i C_i = R^3$, then $\lim_{n \to \infty} T_{C_n,\tilde{K},\tilde{K}} = 0$.

PROOF OF PROPOSITION 10. We first formulate and prove an auxiliary lemma.

LEMMA 11. The statement of Proposition 10 is true for the reduced system (6.6).

PROOF OF LEMMA 11. In polar coordinates (r, φ) $(y_1 = r \cos \varphi, y_2 = r \sin \varphi)$ system (6.6) takes the form

$$\dot{r} = r \cdot F(\cos\varphi, \sin\varphi)v + \cos\varphi v^2, \tag{6.11}$$

$$\dot{\varphi} = -b_{13}r\sin\varphi - (1/r)\sin\varphi v^2 + G(\cos\varphi,\sin\varphi)v, \qquad (6.12)$$

where F and G are homogeneous polynomials of degree 2, and $G(\pm 1, 0) = b_{22} - b_{11} \neq 0$.

We prove that (6.6) has trajectories γ beginning and ending on the positive semi-axis Oy_1 and encircling the origin O. We remark that the first and second terms on the right-hand side of (6.12) have (since $b_{13} < 0$) different signs. Setting

$$\hat{v}_{\varepsilon}(r,\varphi) = \hat{v}_{\varepsilon}(\varphi) = \begin{cases} 0, & \sin \varphi > \varepsilon, \\ \pm k, & \sin \varphi < -\varepsilon, \\ (b_{22} - b_{11}), & |\sin \varphi| \leq \varepsilon, \end{cases}$$
(6.13)

we get that for all $\rho_0 > 0$ there exist a sufficiently large k and a sufficiently small $\varepsilon > 0$ such that for $|r| \ge \rho_0$ we have (by (6.12) and (6.13))

$$\dot{\varphi} \ge a > 0, \tag{6.14}$$

i.e., φ is monotonically increasing along any trajectory γ of system (6.11), (6.12) generated by the control (6.13) and contained in the region $r \ge \rho_0$.

We prove the existence of such a trajectory. Since $\rho_0 > 0$ is arbitrary, it suffices to prove the existence of a trajectory of system (6.11) generated by the control (6.13) and not passing through O. It follows from (6.6), (6.12), and (6.13) that any trajectory (6.6) passing through O at the time \hat{t} is tangent to the axis Oy_1 , and $\lim_{t \to \hat{t} = 0} \varphi(t) = \pi - 0$.

Let us fix ρ_0 and take the initial point \bar{y} on the axis Oy_1 with polar coordinates $r = \rho_1, \varphi = 0$ ($\rho_1 > \rho_0$). Since $\hat{v}_{\varepsilon}(\varphi)$ is a bounded function, the right-hand side of (6.11) admits the estimate

$$|\dot{r}| \leqslant \mu r + \nu. \tag{6.15}$$

It follows [7] from the differential inequality (6.15) that as φ varies along the trajectory from $\varphi(0) = 0$ to $\varphi(t_{\varepsilon}) = \arcsin \varepsilon$ we have that $r(t) \ge \rho_1 e^{-\mu t_{\varepsilon}} - \nu t_{\varepsilon}$, or, by (6.14),

$$r(t) \ge \rho_1 e^{-\mu \arcsin \varepsilon/a} - \nu \arcsin \varepsilon/a$$

As φ varies along the trajectory from $\arcsin \varepsilon$ to $\pi - \arcsin \varepsilon$ the control $\hat{v}_{\varepsilon}(\varphi)$ is equal to 0 in view of (6.13), and (6.11) implies that r(t) = const. As φ varies along the trajectory from $\pi - \arcsin \varepsilon$ to π we get from (6.14) and (6.15) that

$$r(t) \ge r(t_{\epsilon})e^{-\mu \arcsin \epsilon/a} - \nu \arcsin \epsilon/a,$$

or

$$r(t) \ge \rho_1 \cdot e^{-2\mu \arcsin \varepsilon/a} - 2\nu \arcsin \varepsilon/a$$

Obviously, by choosing ε sufficiently small we can get that $r(t) > \rho_0$, which is what was required.

Thus, the trajectory γ of system (6.6) generated by the control (6.13) and beginning on the positive semi-axis Oy_1 does not pass through the origin and, in view of the monotone variation of φ along γ , returns to the positive semi-axis Oy_1 in a finite amount of time t_0 . Similarly, it is possible to construct a trajectory Γ of (6.6) that completes two circuits about O in a finite amount of time T_{Γ} (see the figure) and is generated by the control $\hat{v}(\cdot)$.

29

We remark that system (6.6) (as well as (6.1)) has an obvious self-similarity—it is invariant with respect to the change of variables $y_1 \rightarrow \alpha y_1$, $y_2 \rightarrow \alpha y_2$, $v \rightarrow \alpha v$, $t \rightarrow \alpha^{-1}t$ ($\alpha > 0$). Consequently, the curve $\Gamma^{\alpha} = \alpha \Gamma$ also is an admissible trajectory of system (6.6) generated by the control $\hat{v}^{\alpha}(\varphi) = \alpha \hat{v}(\varphi)$, and its circuit time is $T_{\Gamma^{\alpha}} = \alpha^{-1}T_{\Gamma}$.

We prove that if \tilde{y} and \hat{y} are arbitrary points of the plane P and $\varepsilon > 0$, then \hat{y} can be reached from \tilde{y} by means of (6.6) with the help of some control $w(\cdot)$ in a time $T \leq \varepsilon$.

Choose $\alpha > 0$ such that 1) the points \tilde{y} and \hat{y} are covered by the trajectory Γ^{α} , and 2) $\alpha^{-1}T_{\Gamma} \leq \epsilon/3$. It follows from the form of the right-hand side of (6.6) that by choosing vlarge in absolute value we can ensure an arbitrarily rapid motion of system (6.6) in the positive direction of the axis Oy_1 along a trajectory close to the horizontal. Similarly, for the reversed-time system (6.6) a control v large in absolute value ensures an arbitrarily rapid displacement in the negative direction of the Oy_1 -axis. Consequently, there exists a control $v^1(t)$ carrying system (6.6) from \tilde{y} to a point y^1 on the trajectory Γ^{α} in a time $\tau_1 \leq \epsilon/3$, as well as a control $v^2(t)$ carrying the reversed-time system (6.6) from \hat{y} to a point $y^2 \in \Gamma^{\alpha}$ in a time $\tau_2 \leq \epsilon/3$. The latter means that system (6.6) goes from y^2 to \hat{y} with the help of the control $v^2(t)$ in the same time $\tau_2 \leq \epsilon/3$. Passage of (6.6) from y^1 to y^2 by means of the control $\hat{v}^{\alpha}(t) = \alpha \hat{v}(\alpha^{-1}t)$ along the trajectory Γ^{α} takes place in the time $\tau_0 \leq T_{\Gamma^{\alpha}} \leq \epsilon/3$ (see the figure).

The desired control $w(\cdot)$ is determined by

$$w(t) = \begin{cases} v^{1}(t), & 0 \leq t \leq \tau_{1}, \\ \hat{v}^{\alpha}(t), & \tau_{1} < t \leq \tau_{1} + \tau_{0}, \\ v^{2}(t), & \tau_{1} + \tau_{0} \leq t \leq \tau_{1} + \tau_{0} + \tau_{2}. \end{cases}$$

Obviously, w(t) carries the system (6.6) from \tilde{y} to \hat{y} in time $\tau_1 + \tau_0 + \tau_2 \leq \epsilon$. Lemma 11 is proved.

Let us consider again the time-optimal problem (6.1)–(6.3). We project the points \tilde{K} and \hat{K} onto the plane P into the respective points $\tilde{y} = \pi(\tilde{K})$ and $\hat{y} = \pi(\hat{K})$, and consider the δ -neighborhood $U_{\delta}(\hat{y})$ of \hat{y} . By Lemma 11, for any $\varepsilon > 0$ and any $y \in U_{\delta}(\hat{y})$ there exists a control w(t) carrying system (6.6) from \tilde{y} to y in a time $\leq \varepsilon/2$. Let $D_{\leq \varepsilon/2, \tilde{y}}$ be the set of attainability of system (6.6) from \tilde{y} in a time $\leq \varepsilon/2$; then $U_{\delta}(\hat{y}) \subseteq D_{\leq \varepsilon/2, \tilde{y}}$. By Proposition 1, the interior of the set of attainability $A_{\leq \varepsilon/2, \tilde{K}}$ of system (6.1) from \tilde{K} in a time $\leq \varepsilon/2$ is dense in $\pi^{-1}(U_{\delta}(\hat{y})) \subseteq \pi^{-1}(D_{\leq \varepsilon/2, \tilde{y}})$, i.e., in the cylinder C_{δ} with base $U_{\delta}(\hat{y}) \subset P$ and generator parallel to \overline{L} . Obviously,

$$\hat{K} \in \pi^{-1}(\hat{y}) \subset \operatorname{int} C_{\delta}, \qquad \hat{K} \in \operatorname{clos} \operatorname{int} A_{\leq \varepsilon/2, \tilde{K}}.$$

As mentioned above, Theorem 2.5 in §2 is applicable to system (6.1 -) (system (6.1) with reversed time). In particular, the set of attainability $A_{\leq \epsilon/2,\hat{K}}^-$ of this system in a time $\leq \epsilon/2$ from the point \hat{K} has a nonempty interior that is dense in $A_{\leq \epsilon/2,\hat{K}}^-$. It follows from the inclusions

$$\hat{K} \in A^{-}_{\leq \epsilon/2, \hat{K}}, \quad \hat{K} \in \operatorname{int} C_{\delta}, \quad \hat{K} \in \operatorname{clos} \operatorname{int} A_{\leq \epsilon/2, \hat{K}} \supseteq C_{\delta}$$

that int $A_{\leq e/2,\hat{K}}^- \cap C_{\delta} \neq \emptyset$, and, consequently,

$$\operatorname{int} A_{\leq \varepsilon/2, \hat{K}}^{-} \cap \operatorname{int} A_{\leq \varepsilon/2, \tilde{K}} \neq \emptyset.$$

If $K^1 \in \operatorname{int} A_{\leq \epsilon/2, \hat{K}}^- \cap \operatorname{int} A_{\leq \epsilon/2, \hat{K}}$, then (6.1) can be brought from \tilde{K} to K^1 in a time $\leq \epsilon/2$ and from K^1 to \hat{K} in a time $\leq \epsilon/2$, hence from \tilde{K} to \hat{K} in a time $\leq \epsilon$. Proposition 10 is proved.

All-Union Institute of Scientific and Technical InformationReceived 11/MAR/85State Committee of the Council ofMinistries of the USSR on Science and TechnologyAcademy of Sciences of the USSRMoscow

BIBLIOGRAPHY

1. A. A. Agrachev and R. V. Gamkrelidze, *Exponential representation of flows and the chronological calculus*, Mat. Sb. **107(149)** (1978), 467–532; English transl. in Math. USSR Sb. **35** (1979), no. 6.

2. Hector J. Sussmann and Velimir Jurdjevic, *Controllability of nonlinear systems*, J. Differential Equations 12 (1972), 95–116.

3. R. V. Gamkrelidze, *Principles of optimal control theory*, 2nd ed., Izdat. Tbilis. Univ., Tbilisi, 1977: English transl., Plenum Press, 1978.

4. H. J. Sussmann, *Lie brackets, real analyticity and geometric control*, Differential Geometric Control Theory (Proc. Conf., Houghton, Mich., 1982; R. W. Brockett et al., editors), Birkhäuser, 1983, pp. 1–116.

5. V. I. Arnol'd, Mathematical methods of classical mechanics, "Nauka", Moscow, 1974; English transl., Springer-Verlag, 1978.

6. A. A. Agrachev and A. V. Sarychev, *The control of rotation for an asymmetric rigid body*, Problems Control Inform. Theory/ Problemy Upravlen. Teor. Inform. **12** (1983), 335–347.

7. Philip Hartman, Ordinary differential equations, Wiley, 1964.

Translated by H. H. McFADEN