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MaTeM. C6opHHK Math. USSR Sbornik
TOM 130(172) (1986), Bun. 1 Vol. 58(1987), No. 1

ON REDUCTION OF A SMOOTH SYSTEM LINEAR IN THE CONTROL
UDC 517.977.1 + 514.7

A. A. AGRACHEV AND A. V. SARYCHEV

ABSTRACT. A method is presented for reducing a smooth system linear in the control on an
«-dimensional manifold Μ to a nonlinear system on an (n - l)-dimensional manifold. This
reduction is used to obtain sufficient conditions for a high order of local controllability of
the system, and the problem of a time-optimal control of the angular momentum of a
rotating rigid body is investigated.

Bibliography: 7 titles.

§1. Introduction

In this article a method is presented for investigating a controllable system of the form

x=f(x) + g(x)u (1.1)

on a smooth «-dimensional manifold M. Here χ e M, u <E R, f(x) and g(x) are

complete smooth vector fields on M, and the admissible controls u(t) are bounded

measurable functions of t.

It is shown that (1.1) can be reduced to a system nonlinear in the control with an

(n — l)-dimensional phase space. This reduction is used here to obtain sufficient condi-

tions for local controllability of high order for system (1.1), and also in the problem of

time-optimal control of the rotation of an asymmetric rigid body by means of a moment

applied along an axis fixed in the body.

§2. Preliminary material

We introduce some notation which mainly follows [1]. Denote by C°°(A/) the algebra of

infinitely differentiable functions on M. We must deal below with operators Β and

families of operators Bt (t e R) mapping CX(M) into itself. Following [1], we define the

properties of continuity, differentiability, integrability, etc., of a family of operators Bt

with respect to t in the weak sense: Bt has property (*) with respect to t if the function

Β,ψ has property (*) with respect to t for all φ e ϋχ(Μ).

A vector field on Μ is defined to be an arbitrary derivation of the algebra CK{M), i.e.,

a linear mapping X of CX(M) into itself such that Χ(φιφ2) = (Χφ1)φ2 + φ1(Χφ2). If we

introduce local coordinates on M, then the field X can be written in the form X =

Σ" Χβ/dXj, where Xt e CX(M). The value of a vector field X at a point χ e Μ is a

vector, denoted by χ ° X, in the tangent space TXM.
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16 Α. Α. AGRACHEV AND A. V. SARYCHEV

The Lie bracket (commutator) [Χ, Υ] of vector fields X and Υ is defined by the formula

[Χ, Υ]φ = Χ(Υφ) - Υ(Χφ). In local coordinates, [X, Y] = dY/dxX - dX/dxY. As we

know, the commutator [X, Y] is also a vector field; the Lie bracket introduces the

structure of a Lie algebra in the space of vector fields. For a vector field X the linear

operator ad X is defined on the space of vector fields by the formula (ad X)Y = [X, Y].

Finally, a nonautonomous vector field Xt (t e R) is defined to be a family of vector fields

integrable with respect to t.

Consider a diffeomorphism Ρ of Μ onto itself. It determines an automorphism of the

algebra C°°(M) by the formula (Ρφ)(χ) = φ(Ρ(χ)) for φ e CX(M). This automorphism

of CCO(M) is also called a diffeomorphism and is denoted by the same symbol P. So that

there will be no confusion, we denote the image of a point χ under a diffeomorphism Ρ

by χ ° P, and the value of a function φ at χ by χ ° φ.

Following [1], we define a flow P, to be an absolutely continuous family of diffeomor-

phisms. It is easy to show that the composition Pt

l °(d/dt)Pt is a family of derivations of

CX(M) that is integrable with respect to t, i.e., a nonautonomous vector field Xr It

follows from the equality P~l °(d/dt)Pt = X, that

(d/dt)Pt = P,°Xt. (2.1)

Thus, any flow Pt is generated by some nonautonomous vector field Xt in view of the

differential equation (2.1). A solution of (2.1) will be denoted by exp/0' XT dr and called [1]

a chronological exponential. If the vector field Xt is autonomous, i.e., Xt = X, then the

flow generated by this field is denoted by e'x.

According to [1], the chronological exponential can be expanded in a series

e x p Γ X T d r = / + Γ Χ τ ά τ + [' f Χτ ° Χ Ύ ά τ λ ά τ + ••• . (2.2)

We also give a variational formula for the chronological exponential [1]:

exp [' (XT+ YT) di = exp Γ exp Γ ad XsdsYTdr ° exp Γ XTdr. (2.3)

In (2.3) the operator exponential QT = exp/0

T ad Xs ds is an absolutely continuous family

of operators on the space of vector fields that satisfies the equation

(d/dT)QTZ=QT°(adXT)Z

for any vector field Z. The flow exp/0'exp/0

T ad XsdsYTdr (see (2.3)) was called a

perturbation flow in [1].

We consider a controllable system on Μ of the form

χ = X(x,u), u^U. (2.4)

The right-hand side of (2.4) can be regarded as a family 3C= {X(x,u)\ u e f/}of vector

fields depending on the parameter u e U. It will be assumed that the vector field X(x, u)

is complete for any u.

The orbit &x of system (2.4) at the point x e M i s defined to be the set of points of the

form

Obviously, if x' e Θχ, then Θχ, = Θχ.
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THEOREM 2.1 (SUSSMANN [2]). For any point χ e Μ the orbit Θχ is a smooth submanifold

of Μ that is invariant for system (2.4).

The positive orbit 0x of system (2.4) at a point χ e Μ is defined to be the set of points

of the form

Φ+ = {^o(e '.^io . . . oe'i**); t. e R, t. > 0, X, e i T } .

Obviously, 0+ c 0x.

Denote by ££\2£\ the smallest Lie algebra of vector fields such that 3?\9[\ 2 %. The

rank of the controllable system (2.4) at a point χ e Μ is defined to be

dimspan{x°X: I e i " [ i ] } .

THEOIREM 2.2 [2]. 77ze ua/we o/a«y vector field X e <£\β\ at a point x' e C?x w α tangent

vector to &x. In particular, the rank of system (2.4) at a point x' e Θχ does not exceed

dim Θχ.

The following condition is assumed in what follows (it is true, in particular, for all real

analytic systems): the rank of (2.4) at any point x' e Gx coincides with the dimension

dim(9v. What is more, for our purposes it suffices to consider the restriction of system (2.4)

to the orbit Θχ, which enables us to assume without loss of generality that the orbit Ox of

(2.4) coincides with the manifold M, and that the rank of (2.4) is equal to dim Μ at each

point. In this case we have

THEOREM 2.3 (KRENER [2]). // the rank of system (2.4) at each point χ e Μ is equal to

dim Μ and &x = M, then the set of interior points of the positive arbit Θχ is dense in Θ*.

THEOREM 2.4 (SUSSMANN AND JURDJEVIC [2]). If the rank of system (2.4) at a point χ is

equal to dim M, then for any Τ > 0 the set of attainability A ̂ T x of (2.4) from the point χ in

a time < Τ has nonempty interior, and int A ̂  T x is dense in A ̂ T x.

Along with the Lie algebra £/?\3C\ we consider the smallest Lie subalgebra <£\9£\oi\\

containing all the fields of the form X1 - Χ2 (Χ1, Χ2 ε ί ) and [Y\Y2] (Υ1,Υ2 e

£?[&]). We call dimspan{x ° X: X e ^ 0 [ ^ ] } the exact rank of the system. Obviously,

the exact rank of the system does not exceed its rank.

THEOREM 2.5 [2]. If the exact rank of system (2.4) at a point χ is equal to dim M, then for

any Τ > 0 the set of attainability AT x of (2.4) from χ in the time Τ has nonempty interior,

and int AT x is dense in AT x.

§3. Reduction of the controllable system (l.l)

We consider a controllable system (1.1) and an admissible control u(t). The flow P,

generated by the differential equation

x=f(x) + g(x)u(t) (3.1)

can be represented in the form of the chronological exponential

P,= Έφ Γ (f(x)+g(x)u(r))dT.
•'n
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According to the variational formula (2.3),

/ + g l l ( T ) ) < / T =

or, with the notation v(r) = /0

Tu(s) ds,

e*P f (f+gu(T))JT= ^ f e ^ s / i i T " ^ ^ . (3.3)

The right-hand side of (3.3) is the composition of the flows generated by the respective

nonautonomous vector fields ev(l)ildgf and v(t)g.

Consider a neighborhood V of a point i e M such that g | κ Φ 0. We define on Κ an

equivalence relation that puts in a single class all the points lying on a single trajectory of

the vector field g | v, and we denote by Vs the quotient set by this equivalence relation.

We can regard Vs as a set of segments of trajectories of the vector field g. Obviously, Vg

can be parametrized by the points of the set Ν (Ί V, where Μ 3 Ν is an (n — 1)-

dimensional submanifold of Μ transversal to the trajectories of the field g in the

neighborhood of x.

Suppose that g Φ 0 on the whole manifold Μ and, moreover, satisfies the " nonrecur-

rence" conditions: for each point χ e Μ there exist a neighborhood Vx 3 χ and an

(n — l)-dimensional manifold Nx a M (x <s Nx) transversal to g such that any trajectory

of g intersects the set Vx η Nx in a unique point. In particular, the " nonrecurrence"

condition holds when Μ = R" and g is a constant vector field. Under these conditions

the equivalence relation can be defined globally on the manifold M. The corresponding

quotient manifold (the manifold of trajectories of g) is denoted by Mg.

We consider the family of vector fields Fv = e"&dgf (v & R), and prove that it is well

defined on Mg, i.e., under the action of the diffeomorphism (e'g)* a vector field in the

family Fu passes into a vector field in the same family. Indeed, under the action of (e'g)#

the field Fv = evadgf passes [1] into the field e"*dgFl} = e'^se

v!iagf = e

u+v)adgf = Ft+V,

i.e., the group of diffeomorphisms (e'g)* carries the family Fv into itself. We prove

PROPOSITION 1. Let Mg be the quotient manifold described above, π the canonical

projection of Μ onto Ms, andDT -y (D^T<i) the set of attainability in the time Τ (< Τ) from

a point y for the controllable system

y =yoFv= y°(ev*dgf) (3.4)

on the manifold Mg, where essentially bounded measurable scalar functions v(t) are taken as

the controls. The set of attainability AT x (A^ T<-) of (1.1) in the time Τ ( < Τ) from a point

χ is contained in the inverse image rr~l(DT m ( i )) ( " 1 ( ΰ < Γ , ( χ ) ) ) ι and if the exact rank (the

rank) of system (1.1) at χ is equal to dimM, then the interior of AT - (A <T x) is dense in

•n-l(DTMk))^'\D<TMx))). • · . ^ '

REMARK. In other words, Proposition 1 means that the sets AT x (A ̂ T -) and intATx

(int A^Tx) are contained and everywhere dense in the "cylinder"; that is "swept out" in

the motion of the set DTMx) (D<TMx)) along trajectories of g.

PROOF OF PROPOSITION 1. Let u(t) be a fixed admissible control of (1.1), and Τ a fixed

time. Setting v(t) = /0' ΰ(τ) dr, we get by (3.3) that

(T(f+&(r))dT= ^ Γ FHt)dtoe^T)g. (3.5)
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Obviously, the point χ ° (exp jj^ Fb(l) dt ° ev(T)x) is contained in TT~1{DT CT(jt)), since

χ °exp/o

rF b ( t )dt e DT7T(i): and this proves the inclusion AT x c v~l{DT^(x)).

To prove the second part of Proposition 1 we use the auxiliary

LEMMA 2 [1]. The point

y°(l^lTFvU)dt)^y»(^fo

Te^fdt)

depends continuously on v(-) in the metric o / L J O , T].

Suppose that χ e TT'1(DTπ{χ)) and β(·) is a corresponding control carrying system

(3.4) from the point π(χ) to π(χ) in time T. We consider on Μ the differential equation

χ = x°(eb(')adgf) and the trajectory x(t) of it satisfying x(0) = x. Let x(T) = z. Since

v{·) carries system (3.4) from w(x) to π(χ) in time T, the points χ and ζ lie on a single

trajectory of g in view of (3.5), i.e., χ = ζ ° ί?ί?. Choose an absolutely continuous function

νδ(·) in the δ-neighborhood of v(-) in the L^O, r]-metric and satisfying the conditions

vs(0) = 0 and vs(T) = s. We let u\t) = bs{t), and consider the Cauchy problem χ =

f(x) + g(x)us(t), x(0) = x. According to (3.3), a solution xs(t) of this Cauchy problem

is defined by

s(/) = *° fe Γ ei:eiT)*dgfdroes

By choosing δ sufficiently small it is possible by Lemma 2 to make the point

χ °{expJQevS{t)iidsfdt) arbitrarily close to i = χ °~s^>JQe"{t)ad!ifdt, and thereby to make

xs(T) arbitrarily close to χ = ζ ° esg.

Thus, it is proved that the set of attainability AT-X is dense in V1(DT^{X)). According

to Theorem 2.5, int AT x is dense in ATx. Consequently, int AT % is dense in π~ι(Ότ π ( ί ) ) .

Analogous arguments can be carried out for the set A <T x. Proposition 1 is proved.

It follows from Proposition 1 that the investigation of the set of attainability of the

controllable system (1.1) of order η can be reduced to an investigation of a system (3.4) of

order η — 1 which, contrary to (1.1), is nonlinear (and often nondegenerate) in the

control.

Proposition 1 admits a natural generalization to the case of a system linear in the

vector-valued control u = (ul7.. .,U/) and of the form

* = / ( * ) + Σ g,(*)«,· (3.6)
( = 1

Suppose that the fields {g,-(x), / = 1,...,/} are linearly independent at each point

χ e Μ and generate an involutory /-dimensional distribution G on M. By the Frobenius

theorem, there exist functions b^ix), i, j = 1,.. ., /, such that the vector fields g,(x) =

Y.'j=lbij{x)gl(x) form a basis for the distribution G and have commutator [gt, g;] = 0 for

any ; and j . Obviously, the determinant of the matrix Β = ||fe;/(x)|| is nonzero on M. Let

B~\x) = C(x) = ||c,7(x)!|; then

£, ·(*)= Σ c^xHjix), z = l , . . . , / . (3.7)
7 = 1

Substituting (3.7) into (3.6) and introducing the new controls Vj = Y.'j=lcij(x)ui, j =

1,...,/, we get that (3.6) can be reduced to the system

* = / ( * ) + Σ &(*)«/ (3-8)
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with pairwise commuting fields g,(x), / = 1,...,/, which generate the same distribution G

on M.

According to the Frobenius theorem, Μ is stratified into the integral manifolds of the

distribution G. A literal repetition of the arguments given above with the integral curves of

g replaced by the integral manifolds of G enables us to define from G an equivalence

relation on Μ and an (« — /)-dimensional quotient manifold MG by this equivalence

relation.

PROPOSITION Y. Let MG be the indicated quotient manifold, π the canonical projection of

Μ onto MG, and DT -v (D<T -v) the set of attainability in the time Τ («ξ Τ) from a point

y e MG for the controllable system

y=yo^eA^MhfY (3.9)

on MG, where the essentially bounded scalar functions wt(t) are taken as controls. The set of

attainability AT - (A<Tjt) of system (3.6) (or (3.8)) in time Γ ( < Τ) from a point χ e Mis

contained in the inverse image ^ ( D ^ ^ ) i'T~1(DsiT,!T{i))), and if the exact rank (the

rank) of (3.6) at χ is equal to dimM, then the interior of ATx (A<Tx) is dense in

^-\DTMi))^-\D<TMi))).

Thus, by Proposition 1', the investigation of the system (3.6) of order η with /-dimen-

sional control reduces to the investigation of the system (3.9) of order η — /.

§4. Sufficient conditions for local controllability

Let us consider a controllable system (1.1) and a trajectory x(t) of this system with the

initial condition x(0) = χ generated by an admissible control u(t). We introduce a special

norm in the space of controls u( •); namely, we let

l«(- ll[0,7-] I dr

This kind of norm is used in investigating sliding regimes [3]; therefore, the metric

generated by it is called the sliding regime metric.

For what follows it is convenient to introduce the notation A\ % for the set of

attainability of system (1.1) in time Τ from the point χ by means of a control u(-) with

ΙΙ«(·)ΙΙ[ο.7·] < ε ·

DEFINITION. Let jc(·) be the trajectory of (1.1) generated by the zero control, Jc(O) = x.

Then system (1.1) is weakly locally controllable from the point χ in time Τ if x(T) e

int Af x for all ε > 0.

PROPOSITION 3. Consider on Μ the two-parameter family of vector fields Zt v =

et!iafevaagf - f, andlet

Θ Γ ε ( ί ) = c o n { χ ο Ζίυ: 0 < t ^ Τ, \υ\ < ε ) , ( 4 . 1 )

Ξ Γ J x ) = οοη{ΘΓΧχ) U{x°g,x° ( -g) } } (4.2)

(here con Β denotes the convex cone generated by a set B; &Te(x) and Έτ e(x) are thus

convex cones lying in the tangent plane T^M).

Suppose that x(t) is the trajectory of system (1.1) generated by the zero control, Jc(O) = x,

and y(s) (s > 0) is a curve on Μ with γ(0) = χ. If γ'(Ο) e int Έτ c(x) for all ε > 0, then

for any ε > 0 the point y(s) ° e7^ lies in int A\ -x for all sufficiently small s > 0.
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PROOF OF PROPOSITION 3. For an arbitrary control u(-) we represent the trajectory of

(1.1) generated by it in the form of the chronological exponential e x p / 0 ' ( / + gu(r))dT.

According to (3.5),

exp Γ ( / + gu(r))dT = exp Γ eHT)adgfdT ° ev(T)g, (4.3)
Jo Jo

where v(t) = / O 'M(T) dr. We represent the vector field e"
('udgf in the form

eu(i)adgj-_ r_|_ iev(t)adgf _ ί\

By the variational formula (2.3),

exp Γev(')&dgfdt = exp Γ et<idf(ev<')!idgf - f) dt ° eTf

= ^ Γ (etadfev^dgf-f)dt°eTf. (4.4)
Jo

Combination of (4.3) and (4.4) gives us that

^ Γ {f+gu{r))dr= ^ Γ {e'^fe»W^Bf _ /) d t „ eV a e»mg-
π ο

or[l]

exp Γ ( / + gu(r))dT = exp* Γ ie<^fe»«)^gf - f) dt ° e"(T)eT'aig o e

Tf

= exp (T Zt t dt ° £?"(7> r a d /« ο e

Tf_ (4.5)

We prove that

conf© (Jc) U ( χ °( + eTad^s)}) — Ξ τ- ( χ ) (4 6)

(cf. (4.2)). To do this we first show that (jc °( + e ' a d / ( a d / ) g ) ) e Θ Γ ε ( χ ) . Since (x ° Z, ±v)

e Θ Γ ( , ( χ ) for ί e [0, Γ] and |ϋ | < ε, and Θ Γ ε ( χ ) is a convex cone, it follows that

A direct computation yields

d_

dv

We now prove that

Obviously,

d ι

On the other hand, (x °( + e / a d / g)) = ( x ° ( + g)) e Ξ Γ ε ( χ ) for r = 0. Since Ξ η ε ( χ ) is a

convex cone, we get (4.7) and, in particular, (x ° ( ± e r a d / g ) ) e Ξ Γ ε ( χ ) , which implies that

To prove the reverse inclusion we show that (x °(±(g — eTad^g))) lies in Θτε(χ). Indeed,



22 Α. Α. AGRACHEV AND A. V. SARYCHEV

Since g - <?'ad/g = 0 for t = 0, we get that g - <?'ad/g e Θ Γ J x ) for all / e [0, Γ]. The

equality (4.6) is proved.

We consider the set

Γ Ζ A o e i ( r ) e r "

where the υ(·) are absolutely continuous functions with |υ| < ε. By (4.5), it suffices to

show that for small s > 0 the points of the curve y(s) with γ'(0) e int Έτc(x) lie in Cf s .

Let y i , [ j ( . ) = v(t)e'*dfg. Then

Note that Zt v{.) = Yt v(.) = 0 for υ(·) = 0. Using formula (2.2) for the exponentials on

the right-hand side of (4.8), we get that

^pfTZtMl)dtoeY^ = I + Γ ZtMt)dt+ YTM.}+ • · · , (4.9)
•Ό -Ό

where the dots stand for terms of higher than first order of smallness in Ζ and Y. Let

W(v(·)) = J(f Zt u(t)dt + YTv,.y The range of the mapping W when v(-) is replaced by

the set of absolutely continuous functions with |u| < ε is a convex subset of T^M. The

interior of the cone spanned by it coincides with int Έτ e(x) by the definition of Ξτ ε(χ).

Therefore the points of any curve y(s) (s > 0) lying in int Έτ e(x) for small s > 0 also lie

in the interior of the range of W for |s| < δ if δ is small.

Arguments analogous to those used in proving the maximum principle (see, for

example, [3], Theorem VII.1) imply the existence of a δ', 0 < δ' < δ, such that for |s| < δ'

the points of the curve y(s) lie in Cj-X, and this proves Proposition 3.

The next result follows directly from the proof of Proposition 3.

PROPOSITION 4. //

0 e \ntZTε(χ)

= i n t c o n ( { j c ° ( e ' a d V ' a d ! ; / - / ) : 0 < t < Τ, \υ\ < ε } u { x ° ( + g ) } ) , ( 4 . 1 0 )

then system (1.1) is weakly locally controllable from the point χ in time T.

§5. Algebraic conditions for weak local controllability

Everywhere in this section we consider a controllable system (1.1) with the extra

condition x » / = 0 . Denote by Φ the Jacobi matrix Φ = x°(df/dx). Then χ °(e'adfX)

= χ °{β'φΧ) for any vector field X on M. In this case condition (4.10) for system (1.1)

takes the form

( { : 0 < t < Τ, \υ\ ^ ε} u{ jc°( + g)}). (5.1)

Since the matrix e'® determines a linear transformation of the tangent space T ;M, it

follows from (4.6) that

Ξ Γ . , ( * ) = { e t < ! > { c o n { { x o ( e ^ ^ f ) : \υ\ ̂  ε) u { x ° ( ± g ) } ) ) : 0 < t < τ } .

Let us investigate the set con({jc ° (e" a d g /) : \v\ ̂  ε} U {χ °(±g)}). To do this we

consider the smallest even j 5s 0 such that

( j c o ( ( a d g ) 7 / ) ) e s p a n ( { i o ( ( a d g ) i / ) : U i < ; ) u { i o g } ) . (5.2)
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If condition (5.2) does not hold for any even j , then we set j = + 0 0 . Let

| s p a n ( { x o ( ( a d g ) 7 ) : 1 < i < j) u { x ° g } ) i f ; < + c o ,

I s p a n ( [ i ° ( ( a d g ) ' / ) : 1 «Ξ / < + o c } U {jc ° g}\ if j = + 0 0 .

PROPOSITION 5. The linear space J?- and the vector χ °((ad g)jf) {if j < +00) are

contained in the cone

J^ = c o n ( { j t ° ( e " a d ? y ) : \v\ < ε} u ( i » ( + g ) } ) c Ί-ΧΜ.

The proof is by contradiction. If this assertion is false, then, since J^ is convex, there

exist a vector q e J&. and a covector ψ e T-*M (ψ Φ 0) such that with the notation

<p(u)= ( f ( i ° ( c " d s / ) ) ) we have

A(Vo: |V| < ε,φ(ϋ) ^ 0) Λ ( ( ψ , ϊ ο ^ ) = 0). (5.3)

Obviously, φ(0) = 0. It follows from (5.3) that the first nonzero derivative φ ( Α )(0) must be

even, and <p<<:)(0) < 0. We prove that k >_/. Indeed, if k <j is even and φ(/)(0) =

<ψ, (χ °((ad g)'/))> = 0 for all / < k, then by the definition of j

(jco((adg)7)) e span({x°((adg)7): / < k) u { i » g } j ,

and, consequently, φ(/°(0) = (ψ, (Jc °((adg)*/))) = 0. Thus, k >_/, and hence φ ( / )(0) =

(ψ, (χ °((ad g)'f))) < 0, which contradicts (5.3). Proposition 5 is proved.

A consequence of Propositions 4 and 5 is

PROPOSITION 6. Let X be the cone generated by the space ££-x and the vector

(χ ο ((ad g){/")) (//7 < + 00). // Φ = χ ° df/dx and con{et<s>Jir: 0 < t < T) = TXM, then

system (1.1) « weakly locally controllable from χ in time T.

PROOF. By Proposition 5, J«J 3 Jf, and hence

0 e intT-M = intcon{β'ΦΧ: 0 < t < Γ}

c i n t c o n l e " 5 ^ : 0 < t < 7 } = intE r E (Jc) ,

i.e., condition (4.10) of Proposition 4 holds. Proposition 6 is proved.

We deduce from Proposition 6 that system (1.1) is weakly locally controllable from the

point χ in some sufficiently large time T.

Let ££x be the subspace of T~XM defined above, and let if/ be the smallest Φ-invariant

subspace of ΎΧΜ containing &x. In this case Φ is well defined on the quotient space

ΤχΜ/Sf?. If Ji?x

0 coincides with TXM, then by Proposition 6 the system is weakly locally

controllable from χ in any time Τ > 0. In the opposite case we have

PROPOSITION 7. If the vector (jc °((ad g)Jf)) does not belong to any nontriuial Φ-invariant

subspace of TXM/^CX° and all the eigenvalues of Φ on T^M/^® are nonreal, then system

(1.1) is weakly locally controllable from χ in a sufficiently large time Τ > 0.

PROOF. We consider an arbitrary covector ψ e (T-M/Ji?®)*, ψ Φ 0. If
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then this means that the Φ-invariant subspace span{jc °(ε'φ((&άg)jf)), t e R} contains

the vector (x °((adg) 7/)) and is orthogonal to ψ, i.e., does not coincide with Ί-ΧΜ/^,

which contradicts the condition.

Suppose that ω(/) = (ψ, (χ ° (e1® ((ad g)Jf)))) Φ 0. We prove that ω(ί) changes sign

on some interval [0, Γ]. Indeed, let R(X) be the characteristic polynomial of Φ on

T-M/5?-0, Λ(Φ) = 0, and consider the differential operator R(d/dt). Obviously,

R(d/dt)ic = 0, i.e., ω(ί) is a nonzero solution of a linear homogeneous equation with

constant coefficients. Since all the eigenvalues of Φ are nonreal, ω(ί) has the form

ω(0= Σ
k = l

(5.4)

On the right-hand side of (5.4) we single out all the monomials corresponding to the

largest of the as, and then we single out those of them for which the power rs of t is

maximal. Obviously, for large t the sign of ω(ί) is determined by the sum of these

monomials, i.e., by an expression of the form
m

Σ (a,cosfi,t + b,sinβ,ή
1=1

As is known, any nonzero trigonometric polynomial of the form

Σ (
1=1

is a function of variable sign on any interval of the form (f, + oo), which proves that ω(ί)

is of variable sign.

Since the choice of ψ was arbitrary, what has been proved implies that the cone

JfT = οοη{β'φ(χ °((adg) 7/)): 0 < t < T) is a complement of £f? for all sufficiently

large T, i.e., J f r + £>? = Ί-Μ, and hence, by the inclusion J f r + ^ ° c con{e'®JT:

0 < t < T), we find ourselves under the conditions of Proposition 6, i.e., system (1.1) is

weakly locally controllable from χ in a sufficiently large time T. Proposition 7 is proved.

We now investigate weak local controllability of system (1.1) in an arbitrarily small time

Τ > 0. Obviously, if there is a number m such that span{ Φ * ^ : 0 < A ; < w } = T i M, then

for any arbitrarily small Τ > 0 the conditions of Proposition 6 hold for the system (1.1);

hence we have

PROPOSITION 8. Let j be the index defined in Proposition 5. // there exists a number m

such that

s p a n ( { j c ° ( ( a d / ) * ( a d g ) 7 ) : ( U * < i w , l <i<j) u { x ° g } ) = T x M , ( 5 . 5 )

then system (1.1) is weakly locally controllable from χ in any (arbitrarily small) time Τ > 0.

REMARK. The following condition for local controllability of system (1.1) in an

arbitrarily small time Τ > 0 was presented in [4].

THEOREM [4]. Suppose that Sk(f, g) is the linear hull of the values at a point χ of all

possible commutators of the vector fields f and g, with g appearing at most k times. If

χ ° / = 0 and

1) Sk(f,g) coincides with T^M for some k,
2 ) Si+1(f, g) = S,(f, g) for any odd i,

then system (1.1) is locally controllable from χ in an arbitrarily small time Τ > 0.
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A comparison of condition (5.5) in Proposition 8 with conditions 1) and 2) in the

theorem shows that these two assertions do not reduce to each other.

§6. Time-optimality in the problem of controlling the angular momentum

of a rotating rigid body

The free rotation of a rigid body is described by the Euler equation (see [5]):

Κ = Κ X BK, where Κ e R3 is the angular momentum vector in a coordinate system

connected with the body, Β is the symmetric 3 x 3 matrix inverse to the inertia tensor of

the body A, and the sign " X " denotes the vector product in R3. Denote by Ix < I2 < /3

the principal central moments of inertia of the body (the body is dynamically asymmetric),

and by Jx> J2> J3 the quantities inverse to them {J^, J2, and J3 are the eigenvalues of

the matrix B).

If a controlling moment is applied to the body along an axis L passing through the

center of mass, then the controlled motion of the angular momentum vector Κ is

described by

K = KX BK+ Lu, (6.1)

where L is the unit vector on the axis L.

We assume that the axis L is in general position: L does not coincide with any of the

principal axes of inertia of the body and does not lie in one of the planes of the

separatrices Π 1 and Π 2 given in the principal axes by the equations pi~J2K1

± p 2 - J3 κ3 = o.
It follows from results in [6] that the exact rank (and thus also the rank) of system (6.1)

is equal to 3 when L is in general position. The same is obviously true for the

time-reversed system (6.1), denoted by (6.1 - ). Hence, the conditions of Theorems 2.4

and 2.5 (see §2) and Proposition 1 in §3 are satisfied for systems (6.1) and (6.1 — ).

For a controllable system (6.1) we consider the time-optimal problem

r ^ m i n (6.2)

with boundary conditions

K(0) = K, K(T) = K. (6.3)

To investigate problem (6.1)-(6.3) we apply the reduction described in §3 to system (6.1),

setting / = Κ X BK and g = L. As a result we get the planar system

K= K°(ev:idgf) = K°(evg°f°e-Vg),

which, since g = L is a constant field, is equivalent to the system Κ = Κ °{e"gf) or

K= (K+ vL) XB(K+ vL). (6.4)

We remark that in the case of a constant field g = L the quotient manifold (R3)g can be

identified with the plane Ρ passing through the origin Ο and perpendicular to the axis L.

Under this identification system (6.4) on (R3)8 is carried into the system

Κ = (Κ + vL) X B(K + vL) - ((K + vL) X B(K + vL), L)L

= (K+ vL)x B(K + vL) - (KX B(K + vL), L)L, (6.5)

whose right-hand side is the projection of the right-hand side of (6.4) on P. Any trajectory

of system (6.5) generated by an absolutely continuous control v(t) is the projection on Ρ

of some (nonunique!) trajectory of (6.4).
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We introduce the Cartesian coordinate system Oy1y1 on Ρ by directing the Oyx axis

along the vector L X BL and the axis Oy2 along the vector L X (L X BL). In this

coordinate system (6.5) takes the form

Λ =
+ ((b22 - bu)yl + b23y2)v, (6.6)

where the bri are the components of the tensor Β in the basis L, L X BL, L X (L X 5L).

Obviously, i>/7 = bJf, and a direct computation gives us also that b13 < 0 and b22 — bu Φ 0.

For the controllable system (6.6) let us consider the time-optimal problem with the

conditions

y(0)=y, y{T)=y, Τ ^ mm (y = (yi,y2)). (6.7)

We establish a connection between the optimal trajectories of problems (6.1)-(6.3) and

those of problem (6.6)-(6.7).

DEFINITION. A control u(t) and the trajectory K(t) generated by it for system (6.1) are

said to be strongly locally optimal if for any points Κ1 = Κ(ί{) and K2 = K(t2) there

exists a δ-neighborhood of u(t) in the sliding regime metric (δ is the same for all the pairs

of points K1, K2 of the trajectory K(t)) such that Τ > t2 - tx for any control u(-) in this

δ-neighborhood that carries system (6.1) from i^1 to K2 in the time T.

DEFINITION. A control v(t) and the trajectory y(t) generated by it for system (6.6) are

said to be locally optimal if there exists a δ-neighborhood of v(t) in the £^,[0, 7"]-metric

such that Τ > t2 - tY for any points yl = y(tx) and y2 = y(t2) of the trajectory y(t) and

any control ;;(•) in this δ-neighborhood that carries system (6.6) from yl to y2 in the time

T.

Let v(t) and y(t) be locally optimal for system (6.6), with v(-) absolutely continuous,

and let u{t) and K(t) be a control and the corresponding trajectory of (6.1) that pass

under the reduction of (6.1) to (6.6) into u(t) and y(t), respectively. By the definition of

the reduction (see §3), the δ-neighborhood of M(·) in the sliding regime metric is mapped

under the reduction inside the δ-neighborhood of ϊ>(·) in the LQJO, T]-metric. This implies

immediately that the local optimality of v(t) and y(t) for system (6.6) yields the strong

local optimality of the corresponding pair u(t), K(t) for (6.1).

It turns out that the time-optimal problem (6.1)-(6.3) under consideration has many

strongly locally optimal trajectories, but does not have any globally optimal ones. Namely,

we have the following assertion.

PROPOSITION 9. For any point Κ e R3 there exists a one-parameter family of strongly

locally time-optimal trajectories Ka(t) of system (6.1) emanating from Κ and generated by

the corresponding controls ua(t).

PROOF. For the reduced controllable system (6.6) we form the Hamiltonian

Η = ^Pi{buyi +{-b23y1 +(bn - bi3)y2)v + υ2)

+ ^7{-bnyiy2 +((b22 - bn)y1 + b23y2)v), (6.8)

and write out the conjugate system

Ψι = -dH/dyl = b23v4>l +{bl3y2 - (b22 - bn)v)i2,

ψ 2 = -dH/dy2 = -(2bny2+(bn - b33)v)^1 +(bl3yv - b23v)^2. (6.9)
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Obviously, if ψχ < 0, then the Hamiltonian H, which is quadratic in υ, attains for

« = - | ( -*23^i + (*n " b33)y2) - ^{{b12 ~ bn)yi + b23y2) (6.10)

a maximum equal to

where, for brevity, β denotes the coefficient of υ in (6.8). Obviously, the strengthened

Legendre condition d2H/dv2 = ψχ < 0 holds for ψλ < 0, and HmiDi > 0 under the addi-

tional condition sgnii<2 = s g n ^ ^ (with the inequality bu < 0 taken into account), i.e.,

the corresponding transversality condition holds in problem (6.6)-(6.7).

Substituting (6.10) into (6.6) and (6.9), we get a system of fourth-order differential

equations. Specifying the initial conditions yx(Q) = y\, y2(0) = y2, ψχ(Ο) = - 1 , ψ2(0) = α

(a is a parameter, and sgna = sgnj^j^X w e get the family of trajectories ya(-), ψα(·) of

this system, and from (6.10) the corresponding family of controls va(·). The maximum

principle in combination with the strengthened Legendre condition and the transversality

condition ensures the local time-optimality of some part of any of the trajectories ya{-).

By the foregoing, any pair u°(-), Ka(·) passing under reduction into the pair va(-),

ya( •) is strongly locally time-optimal for system (6.1). Proposition 9 is proved.

PROPOSITION 10. In problem (6.1)-(6.3) there exists a minimizing sequence of controls

{«„(·)} carrying system (6.1) from Κ to Κ in time Tn, where \imn^.xTn = 0. In other

words, system (6.1) can be carried from Κ to Κ in an arbitrarily small time Τ > 0.

REMARK. Generally speaking, an assertion stronger than Propositions 9 and 10 is valid.

It can be shown that for any fixed compact set C c J i 3 (for example, a compact ball)

containing Κ and Κ and for the set of trajectories γ of (6.1) going from Κ to Κ in a time

Ty while remaining in C we have that inf γ Ty = Tc % % > 0. If Cn is a collection of

compact balls such that Cx c C2 c · · • and U,C, = R2, then limn_>00 Tc %• ^ = 0.

PROOF OF PROPOSITION 10. We first formulate and prove an auxiliary lemma.

LEMMA 11. The statement of Proposition 10 is true for the reduced system (6.6).

PROOF OF LEMMA 11. In polar coordinates (Λ φ) (>Ί = r cos φ, y2 = rsincp) system

(6.6) takes the form

r — r • F(cos9,βίηφ);; + costpu2, (6-H)

φ = -b^rsincp - ( 1 / r ) sincpi;2 + G(coS9,8ΐηφ)ι;, (6-12)

where F and G are homogeneous polynomials of degree 2, and G(±l,0) = b22 ~ bn + 0.

We prove that (6.6) has trajectories γ beginning and ending on the positive semi-axis

Oyx and encircling the origin O. We remark that the first and second terms on the

right-hand side of (6.12) have (since bl3 < 0) different signs. Setting

( 0, sinqp > ε,

±k, άηφ<-ε, (6.13)
(ft22 ~ fcn)> i s i n <Pl < ε>

we get that for all p0 > 0 there exist a sufficiently large k and a sufficiently small ε > 0

such that for \r\ > p0 we have (by (6.12) and (6.13))
φ 2s a > 0, (6.14)



28 Α. Α. AGRACHEV AND A. V. SARYCHEV

i.e., φ is monotonically increasing along any trajectory γ of system (6.11), (6.12) generated

by the control (6.13) and contained in the region r > p 0 .

We prove the existence of such a trajectory. Since p 0 > 0 is arbitrary, it suffices to prove

the existence of a trajectory of system (6.11) generated by the control (6.13) and not

passing through O. It follows from (6.6), (6.12), and (6.13) that any trajectory (6.6) passing

through Ο at the time t is tangent to the axis Oyx, and lim ;_ ?_o(p(/) = <n - 0.

Let us fix p 0 and take the initial point y on the axis Oyx with polar coordinates

r = p x, φ = 0 (p x > p0). Since ϋε(φ) is a bounded function, the right-hand side of (6.11)

admits the estimate

+ v. (6.15)

It follows [7] from the differential inequality (6.15) that as φ varies along the trajectory

from <p(0) = 0 to ψ(ίε) = arcsin ε we have that r(t) 3ί ρ^~μ'> - vte, or, by (6.14),

> Pi? -/larcsin ε/a v arcsin ε/α.

As φ varies along the trajectory from arcsin ε to π — arcsin ε the control νΕ(φ) is equal to

0 in view of (6.13), and (6.11) implies that r(t) = const. As φ varies along the trajectory

from π — arcsin ε to π we get from (6.14) and (6.15) that

r(t) > r ( ? e ) e - ^ r c S i n E / a _ νΆτ05[ηε/α^

or

r(t) > Pl • e-^arcsinε/α _ 2 „ arcsin ε/α.

Obviously, by choosing ε sufficiently small we can get that r(t) > p 0, which is what was

required.

Thus, the trajectory γ of system (6.6) generated by the control (6.13) and beginning on

the positive semi-axis Oyx does not pass through the origin and, in view of the monotone

variation of φ along γ, returns to the positive semi-axis Oyl in a finite amount of time t0.

Similarly, it is possible to construct a trajectory Γ of (6.6) that completes two circuits

about Ο in a finite amount of time TT (see the figure) and is generated by the control

v(-).

ΠΓΛ)
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We remark that system (6.6) (as well as (6.1)) has an obvious self-similarity—it is

invariant with respect to the change of variables y1 -> ayl7 y2 -* ay2, ν -> αν, t -» a~lt

(a > 0). Consequently, the curve Γα = αΤ also is an admissible trajectory of system (6.6)

generated by the control ΰα(φ) = αν (φ), and its circuit time is TTa = α'λΤΓ.

We prove that if y and y are arbitrary points of the plane Ρ and ε > 0, then y can be

reached from y by means of (6.6) with the help of some control w( •) in a time Τ < ε.

Choose a > 0 such that 1) the points y and y are covered by the trajectory Γα, and 2)

a~xTv < ε/3. It follows from the form of the right-hand side of (6.6) that by choosing ν

large in absolute value we can ensure an arbitrarily rapid motion of system (6.6) in the

positive direction of the axis Oyx along a trajectory close to the horizontal. Similarly, for

the reversed-time system (6.6) a control ν large in absolute value ensures an arbitrarily

rapid displacement in the negative direction of the Oj^-axis. Consequently, there exists a

control vl(t) carrying system (6.6) from y to a point y1 on the trajectory Γα in a time

Tj < ε/3, as well as a control v2(t) carrying the reversed-time system (6.6) from y to a

point y2 e Γ" in a time τ2 < ε/3. The latter means that system (6.6) goes from y1 to y

with the help of the control v2(t) in the same time τ2 < ε/3. Passage of (6.6) from y1 to

y2 by means of the control va(t) = av(a~xt) along the trajectory Γ" takes place in the

time τ0 < TT« < ε/3 (see the figure).

The desired control vv( ·) is determined by

Ό ' '2·

Obviously, w(t) carries the system (6.6) from y to y in time τχ + τ0 + τ2 < ε. Lemma 11

is proved.

Let us consider again the time-optimal problem (6.1)—(6.3). We project the points Κ

and Κ onto the plane Ρ into the respective points y = π(Κ) and y = π(Κ), and

consider the δ-neighborhood Us(y) of j). By Lemma 11, for any ε > 0 and any y e Us(y)

there exists a control w(i) carrying system (6.6) from y to y in a time ^ ε/2. Let D<e/2 -v

be the set of attainability of system (6.6) from y in a time < ε/2; then Us(y) c D^,2 -.

By Proposition 1, the interior of the set of attainability A < e / 2 ^ of system (6.1) from Κ in

a time < ε/2 is dense in ir~x(Us(y)) c w~1(i)<E/2 p), i-e., in the cylinder Cs with base

i7g( j>) c Ρ and generator parallel to L. Obviously,

Κ e 77"x( j>) c i n t Q , A" e closint ^4<f/2 A··

As mentioned above, Theorem 2.5 in §2 is applicable to system (6.1 — ) (system (6.1)

with reversed time). In particular, the set of attainability A ~ ε / 2 ^ of this system in a time

=ς ε/2 from the point Κ has a nonempty interior that is dense in A ~ ε / 2 ^. It follows

from the inclusions

^F/2k, s Κ e closint

that int 4̂ ~ f / 2 ^ f l Q * 0, and, consequently,

0.
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If Κ1 e inty4~E/2i^-Π mtAKe/,2,K> t n e n (6-1) c a n t>e brought from Κ to K1 in a time

< ε/2 and from iT1 to Κ in a time < ε/2, hence from AT to Κ in a time < ε.

Proposition 10 is proved.
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