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A SECOND ORDER OPTIMALITY PRINCIPLE FOR A TIME-OPTIMAL
PROBLEM

UDC 519.3

A. A. AGRAfcEV AND R. V. GAMKRELIDZE

ABSTRACT. In this paper, a general necessary optimality condition of second order is
proved for a time-optimal problem. Necessary optimality conditions of second order are
applied, in general, in studying singular optimal regimes which can not be found with the
aid of the first-order necessary condition for optimality, i.e. with the aid of the Pontrjagin
maximum principle.

Bibliography: 4 titles.

Recently, second-order necessary conditions have been intensively studied in view of
their importance in the theory of singular extremals. Here, we give a general approach to
the solution of this problem for a time-optimal problem with fixed end-points and linear
control. For the case under consideration, the necessary condition that we formulate,
Theorem 2.2, is apparently definitive. The general nonlinear case can be reduced to the
case considered in this work with the aid of sliding regimes. However, this case requires a
special investigation and will be published later.

The work consists of four sections. In §1, basic notions are introduced and the
methods necessary for subsequent presentation are developed. In §2, the basic result of
the work, i.e. the optimality principle in the form of Theorem 2.2, is stated. This principle
is proved in §3. Finally, in §4 the basic operator necessary in order to formulate the
optimality principle is expressed in terms of the right-hand side of a differential equation
with the aid of Lie brackets. The expressions thus obtained are identical with the
expressions contained in the work of A. J. Krener [4].

There is an extensive literature devoted to the problem studied here; we have made
use of the works [l]-[4]·

In conclusion, the senior author would like to express his gratitude to Professors Pavol
Brunovsky (Czechoslovakia), Claude Lobry (France), Czeslaw Olech (Poland) and
Henry Hermes (USA) for useful discussions at the Banach Cenier in Warsaw during the
winter of 1974.

§1. Legendre families (packets) of perturbations,

Legendre representations of the second variation, and

Legendre forms and operators

The controlled equation that we consider has the form

AMS (MOS) subject classifications (1970). Primary 49B10.

547

© American Mathematical Society 1978



548 Α. Α. AGRA£EV AND R. V. GAMKRELIDZE

x=f{t,x,u)=g(t,x) + G{t,x)u, u£U(ZRr, (1.1)

where g(t, x) is an и-dimensional infinitely differentiable column vector and G(t, x) is
a n n X r infinitely differentiable matrix^1) The set U of admissible values of the control
parameter is an arbitrary closed convex polyhedron in Rr (not necessarily compact, so
that coincidence with Rr is not excluded).

An arbitrary measurable function u(t), t G R, square-integrable on every finite inter-
val and assuming values in U will be called a control.(?)

Let us fix a solution

u(t), x(t), 0</<a, (1.2)

of equation (1.1). We shall denote by 8u(t) an arbitrary perturbation of the control u(t)
on [0, a], i.e. a measurable and square-integrable function on [0, a] which satisfies the
condition u(i) + 8u(t) G U for all t G [0, a].

Let us write down the Taylor expansion in 8x and 8u of f(t, χ + 8x, и + 8u), up to
terms of third order:

f(t,x + bx, и + bu) = / (/, χ, и) + fx {t, x, и) bx + fu (t, χ, и) bu

+ fxu (U х, и) [би, δχ] + — /χ* (U х, и) [Ьх, δχ\ + ·

We denote the linear and bilinear forms

fx {t, x, u) bx, fu (tt x, и) бы, fxu (/, x, ы) [Ьи, bx], fxx (/, JJC, u) [6x', bx"l

evaluated along the solution (1.2) respectively by

/* (t) bx = U (t, x ( 0 , и (ή) bx, fu (t) bu = fu (t, x(t),Z (/)) бы,

fxu (0 [bu, bx] - fXB (/, χ ( 0 , « ( 0 ) [bu, bx],

fxx (0 [^', δ*"] = /«(/, JC (Ζ), и (0) [ftx'f бл;"].

The solutions 5,jc(i) and δ2Λ:(ί), 0 < t < a, with zero initial values 8x(x) = 82(x) = 0, of
the equations (linear in 5,л:(/) and 82x(t) and having the same matrix fx(t) in the
homogeneous part)

= /x (0 б2д; + fxu (t) [bu (0, 6^ (/)] + 4-/« (0 №iJC (0. δι* (01.

will be called the first and second variation of the trajectory x(t), 0 < t < a, corresponding
to the perturbation 8u(t).

Next, we denote by T(t), 0 < t < a, the fundamental matrix of the equation Γ =
fx(t)T, and let Γ(/, τ) = Г(0Г"Чт). Finally, let h(t) with t G R be the Heaviside
function:

h(t) = O for / < 0 , Λ(0) = 4~. Λ(/)=1 for

(') It is assumed that finite-dimensional spaces are arithmetic spaces; consequently matrix notation is used.
Vectors denoted by small Roman letters are always columns, while vectors denoted by small Greek letters are
always rows; the scalar product is formed only from a row and column of the same dimension. The operation
of taking the adjoint matrix is denoted by a star.

(2) Since equation (1.1) is linear in u, for controls we can also take a wider class of functions, integrable on
finite intervals. The definition given here has been adopted for purely technical reasons, namely for termino-
logical convenience in investigating the integral quadratic forms that are defined below ("Legendre" forms).
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We shall show that the end-point of the second variation δ2χ(α) corresponding to the
perturbation 8u{t) can be expressed as an integral quadratic form in 8u(t):

(a) = [\h(t—s)B(t, s)[bu(t), bu(s)]dtds,
0

where B(t, s)[pXip2] is an л-dimensional bilinear form in the r-dimensional columns px

a.ndp2, the explicit expression for which is given below.
The formula for the solution of a linear nonhomogeneous equation yields

а

b^x (а) = J Γ (α, t) {fxu (t) [bu (t), bxx (ή] + ± fxx (/) [blX (/), b,x (/)]| dt.
о

Substituting here the expression for the first variation

t а

\x (t) = Ι Γ (/, s) fu (s) bu (s) ds= \h (t—s) Г (t, s) fu (s) bu (s) ds,
о о

we obtain

6^ (a) = j pi (^-s) Γ (α, t) fxu (t) [6u (t), Г (/, s) fu (s) bu (s)] dtds + - |-Jr (a, x) dx
о о

а

χ ξ С h (x-t) h (x-s) fxx (χ) [Τ (t, ή fu (t) bu (/), Γ (χ, s) fu (s) bu (s)] dtds.

0

Introducing the bilinear forms

Ρχ (Λ s) [pv p2] = fxu (0 [p l f Γ (4 s) /« (s) p2],

Ft (t, ,̂ s) [Pl,p2] = fxx (τ) [Γ (τ, /) fu (/) Λ , Γ (τ, s) fu (s) p2],

we write

а

b^x (a) =\\h (t—s) Г (a, 0 Fr (t, s) [bu (t), bu (s)] dtds
0

(1.4)
α α

+ JL Г г (a, t) ίίτ Π"/ι ( t — 0 /ι (t—s) F 3 (r, /, s) [ow (/), bu (s)] dtds.

о о

Since the form fxx(r)[8xr, δχ"] is symmetric, the form F2 satisfies a relation of
"selfadjointness with respect to /, s and pvp2":

F 2 (ΐ, /, s) [pv p2] = F 2 (r, s, 0 [p2J p j . (1.5)

Therefore the function under the double integral in the second term in (1.4) is symmetric
with respect to / and s. Moreover, the identity h{t — s) + h{s — t) = 1 holds. Thus

а

— ^h{x—t)h(x—s)F2(τ, /, s)[bu(t), bu(s)]dtds

о
а

= Wh(x—t)h(x — s) h(t — s) F2 {x, t, s) \bu (t), bu (s)] dt ds.
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Hence

α a

— f Γ (α, t) dx f f h {x—t) h (τ—s) F2 (τ, t, s) [bu (/), bu (s)] dt ds

о о
a a

= f f h (t—s)dtds \h{x—t)h(x—s)T(a, x)F2(t, t, s) [6u {t), bu(s)]dx,

= f f /t (/—s) ittds f Γ (α, τ) F2 (t, /, s) [δα (Q, δ« (s)] dt.
0 f

Substituting this expression for the second term in (1.4), we arrive at the required
representation

a

(α) = f f h (t—s) В {t, s) [bu (t), bu (s)] dt dst

0

a
(1.6)

В (t, s) [pv p2] = Г (a, t) Fx {t, s) [pv p2) + j Γ (α, τ) F 2 (t, t, s) [pv p2] dx,

where the л-dimensional bilinear forms Fx and F2 are given by (1.3), and F2 satisfies the
selfadjointness condition (1.5).

Generalizing the notions of special variations introduced by Kelley, Kopp, and Moyer
[1], and of packets of variations (Gabasov and Kirillova [2]), we shall now define
Legendre families, or packets, of perturbations.

Let σ be an arbitrary point of the interval (0, a). We perform a parallel shift of the side
of smallest dimension of the polyhedron ( / c R f containing the point п(о) to the origin
of Rr, and denote by R^ the subspace spanned by the transferred side. If σ is a point of
continuity of the control u(i), we denote by πσ the orthogonal projection of Rr onto B^;
in the contrary case, тгст denotes the projection of Rr into the origin. Note that, if й(а) is a
vertex of the polyhedron U, then πσ is the zero mapping.

We denote by P ( m ) , m > 0, the set of all measurable and square-integrable /--dimen-
sional column vectors on [— 1, 1] which satisfy the conditions

1

J ϊ ' ρ ( 0 d i = 0, i = 0, . . . , m. (1 .7 )
- 1

Thus the set P ( m ) is the subspace of the Hubert space L{ containing all measurable and
square-integrable r-dimensional functionsp(t) on the interval [—1, 1] which consists of
thosep{t) all coordinates of which are orthogonal to the first m + 1 Legendre polynomi-
als on [— 1, 1]. For convenience, we shall assume that functions in L£ are defined for all
/ £ R and vanish outside of [— 1, 1].

Let there be given an integer m > 0 and an arbitrary point σ Ε (0, a). For any
function p{i) G P ( m ) and any two positive functions α (ε) and β (ε), ε > 0, which tend to
zero as ε -> 0, the family of functions

(ε)
(1.8)

will be called the Legendre family of perturbations or the packet (of perturbations) of wth
order determined by the point σ, the functionsp{t) G P^m\ and α(ε) and β (ε).
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Obviously, for all ε > 0 sufficiently small, every function in the family (1.8) is a
perturbation of the control u{i).

Let us evaluate the end-point of the second variation δ2χ(α) "on the packet" (1.8), i.e.
let us substitute the packet (1.8) into (1.6) in place of an arbitrary perturbation Su(t).
Then we obtain

(α; ε) = α* (ε) jj/i (τ,-t,)В (tlf τ2) [π
0

or, introducing the new variables

η =

β (ε) ' β (ε) '

and taking into account the relation β (ε) —» О,

1

δ ^ (α; ε) - α2 (ε) β2 (ε) J j hits) Β (σ + β (ε) t, σ + β (ε) s) [ΐΐσρ (/), πσρ (s)] d/ds. (1.9)
- 1

One can give a concise expression for the expansion of the bilinear form В under the
integral in a power series in β{έ)ί and P(e)s at the point (σ, σ), without mentioning each
time the order to which such an expansion is possible (which obviously depends on the
order of differentiability of the control u(J) at the point σ). One can do it by adopting the
following notation and conventions, which we shall use throughout the presentation.

Any interior point of the set on which all partial derivatives up to order m of a
function Ф(т,, т2, . . . ) of several variables exist and are continuous will be called & point
of m-fold differentiability, m > 0, of this function.

Next, we introduce the differential operators Dx, D2, . . . with respect to the variables
τ,, τ2, . . . . The symbol

я д а ... Φ (tlf χν ...) | t „ σ

will mean the corresponding partial derivative at the point (σ, σ, . . . ) if this point is an
(/, + /*2 + . . . )-fold point of differentiability of the function u(t); in the contrary case
this expression is equal to zero.

We shall make use of formal power series in the commuting operators Dx,
D2, . . . , especially exponential series:

where the product of two formal power series is meant in the usual (Cauchy) sense.
We replace the kernel В in (1.9) by its formal expansion into an infinite Taylor series

in powers of β{ε)ί and β{ε)ς at the point (σ, σ). We obtain the correspondence

V (α; ε) ~ α2 (ε) β2 (ε) J J h(t — s) e№WD^DW {xv t2) [πσρ {ή, π σρ (s)] dtds
- 1

ι (1.10)

= α2 (ε) β2 (ε) | j ^ f J h (t—s) (tD, + sD2)' В (тг, т2) [яар (t), лар (s)] dtds,
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where the kernel of the (/ + l)th term

(tDt + sDtf В {xv t2) [pv p2] = Bt (/, s; σ) [Pv p2], i = 0, 1, . . . , (1.11)

is an /th order homogeneous polynomial in t and s with л-dimensional coefficients which
depend bilinearly on the r-dimensional vectors px and/>2·

Obviously the meaning of this correspondence is that, at every point σ of m-fold
differentiability of the control u(t), the series in question yields an asymptotic expansion
of the end-point 82x(a; ε) of the second variation up to order m with respect to β (ε).
This means that the relation

β'<«0 α 2 (ε) β2 (ε) ^

(8-0)

t> s ;
•0

holds for any I < т.
Independently of the order of differentiability of the control u(i) at the point σ, the

correspondence (1.10) will be called the asymptotic expansion of the end-point of the
second variation on the packet (1.8) at the point a.

Let us represent the kernel Bt as the sum Д = St + Kt of self- and skew-adjoint parts
St and К» where

Si (/, s; σ) [Plt p j = -L (Bi (i, s; σ) [рг, p2] + Bt· (s, ί; σ) [рг, рг]),

(1.12)

/С* (s s; σ) [p lt p2] = -1- (Bf (/, s; σ) [pv p2\—Bi (s, /; σ) [pit pj)..

The fact that the bilinear functions St and A, are selfadjoint and skew-adjoint, respec-
tively, means that

Si (/, s; σ) [ρλ, p2] = Si (s, t\ σ) [p2, p j , 1С* (/, s; σ) [р1У р2] = —/Cf (s, f; σ) [p2, p j .

Replacing the kernels Bt in (1.10) by their skew-adjoint parts, we obtain the correspon-
dence

62x (α; ε) ~ α* (ε) β2 (ε) | ] E l ^ Lt- (σ) [ρ (Ob

0.13)
г

U (σ) IP (01 = j j Λ (/ —s) /Ci (Λ s; σ) [πσρ (0, лор

which will be called the Legendre representation of the end-point of the second variation
on the packet (1.8). Since the coefficients of the representation L,(a)[/?(i)] do not depend
on the functions α(ε) and β (ε), but only on σ and p{t), we shall also speak of the
representation on a packet defined by the point σ and function p(t), or even of the
representation at the point σ, if the coefficients L,(a)[/?(/)] are viewed as quadratic forms
of p{t) that depend on the parameter σ.

In order to clarify the meaning of this definition, which is expressed in Proposition 1.2,
we shall first prove Proposition 1.1.

PROPOSITION 1.1. Let S(t, s)[pup2] be a polynomial of degree < m (m > 0) in t and s
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with vector coefficients that depend bilinearly on the r-dimensional column vectors ρ χ andp2,
and let this polynomial satisfy the selfadjointness condition S(t, s)[pvp2] = S(s, t)[p2,px].
Then the integral quadratic form

1

fj h(t—s)S(t, s)[nop(t), nop(s)]dtds
- 1

inp(t) is identically zero on P^:

^ h (t—s) S {t, s) [πσρ (t), KoP (s)] dtds = 0 γ Ρ (0 6 P(m)-

PROOF. Since, together with p(t), 77^(0 also belongs to the set P ( m ) , and since the
degree of the polynomial S does not exceed m,

S(t,s)[Pl,p2]= 2 t'stStjfa, P2]= 2 StiV'Pi'S'PJ'

we have by (1.7)

t'+/<m -1

\tljiap{t)dU \sijtap{s)ds = 0 .
L-i -i J

Therefore, making use of the identity h(t — s) = 1 — h(s — t) and of the fact that 5" is
selfadjoint, we obtain

1

j J h {t—S) S (t, S) [ЯаР (О, ЯаР (s)\ dtds
- 1

ι
= — j J h (s — /) S (s, 0 [ а д (s), itap {t)\ dtds,

which proves the proposition.
As an immediate corollary, we obtain

PROPOSITION 1.2. The first m + 1 coefficients Lo, . . . , Lm in the Legendre representation
(1.13) o/ /Ae end-point of the second variation on an arbitrary mth order packet coincide
with the first m + 1 coefficients

1

f f h (/—s) B{ (t, s; σ) [ησρ (t), τί^ρ (s)] dtds, i = 0 , . . . . m ,
- 1

of the corresponding asymptotic expansion (1.10).

We now define the third basic notion of this section, namely the notion of Legendre
forms.

We denote by Q}1^ the convex cone spanned from the origin in R" by the set of first
variations δ, χ (α) that correspond to all possible perturbations Su (t) of the control u(t).
This cone will be called the///-.у/ order cone for the solution (1.2). We denote by Na с R"
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the maximal subspace contained in the closure Q}1) с R" of the cone ζ?α

(1), and we
denote by Q}1) the cone dual to Q}1) (and therefore dual to Q}iy), i.e. the set of all
Ai-dimensional row vectors χ such that χδχ < 0 VSx Ε Q}1\ The subspace Na is the
intersection of all the supporting hyperplanes to the cone Q}1\ Therefore we can write

# « = П tfx, 0.14)

where Νχ is the subspace of R" orthogonal to χ. If Q}1) = R", then Na = R", and the
right-hand side of (1.14) is to be understood as the intersection of an empty set of
subspaces Νχ.

To every coefficient Lm(a)[p{i)] in the Legendre representation (1.13), there corre-
sponds a family of integral quadratic forms inp(t) depending on the parameter χ:

1

ω«(Χ, σ) [ρ (01 = ^h (is) Жт (t, s; σ) [лар (/), π~ρ (s)]dtds, X£ Q?\ (1.15)

which will be called the Legendre forms of the solution (1.2) at the point a.
The following proposition gives an explicit expression for the kernel of the Legendre

form xKm(t, s; σ)[ρι,ρ2] in terms of the form B(t, s)[pvp2] in a particular case. Such an
expression is necessary for the statement of the optimality principle (Theorem 2.2).

PROPOSITION 1.3. Let a vector χ Ε Qal\ cm integer m > 0, and r-dimensional vectors ρ χ

andp2 be such that all the polynomials χΚ/(ί, s; σ)[ρνρ2] in t and s vanish identically for
any point σ of the interval О С (0, a) and any I < m — 1. Then

Шт (/, s; σ) [p l f pt] = 1 (s — f)mQn (Χ, σ) [P l, p2l,

(1.16)

&m (Χ, σ) [plt pt] = X {D?B (σ, t 2 ) [plt Pt] —D?B ( t l t σ) [p2, Pl]} V σ б О,

Ω/η (Χ, σ) [ft, ρ2] =Qm (Χ, σ) [ρ2, /?J ( U 7 )

/or οίώ/ m,

Ω™ (Χ, σ) [p lf ρ2] = — Qm (Χ, σ) [ρ2, p j ( υ 8)

/or ece/i m.

PROOF. We denote by $ the permutation of the variables px a.ndp2 in the expression

Χ, t 2 ) [ft, p2] = Β (τχ, t 2 ) [p2, ftl.

On the basis of (1.11) and (1.12), one can write

Σ " ^ Ki { t ' s ; σ ) [ P l ) P a ] = {{ββ ( ε ) ( < Ζ ) ι + 5 θ 2 )-ββ ( ε ) ( 8 / ) ι '+ < Ζ ) 2 )φ} Β (rv t 2 ) [Pi, p2]
(1.19)

where the derivatives are taken, as before, at the point τ, = σ, τ 2 = σ. Since the
application of the operator Dx + D2 to an arbitrary function Ф(т„ т^ at the point
τ, = τ 2 = σ can be expressed in the form of the total derivative
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"f Φ (*, *) U = ̂ 1 φ (*ΐ. σ) + ̂ Φ (σ· ^
•uT

(1.16) follows from (1.19) by an obvious inductive argument.
Since Km(t, s; σ)[ρνρ2] is a skew-adjoint polynomial in t and s, the equality

(s-OmQ,n (Χ, σ) [pv p2] = —(t—S)
mam (Χ, σ) \p2, Pl]

holds for all m > 0; which is equivalent to (1.17) and (1.18).
The expression (1.16) for пт can be further simplified. In order to do this, we replace

the form В in the difference within the braces in (1.16) by the expression for В from
(1.6). We obtain

D?T (α, σ) Fx (σ, t2) [pv p2] — D?T {a, xx) Fx (xlt σ) [p2, Pl]

+ D? J Γ (α, τ) F 2 (t, σ, t2) [р ь p2] dx -D? j Γ (α, t) F 2 (t, t l f σ) [ρ2, p j dr.
σ ^ t

We introduce the operator Do of differentiation with respect to τ0, and by the
symmetry property (1.5) of F2 we write

σ

σ
m-i ιχ

D? j Γ (α, τ) F2 (χ, σ, τ2) [plt p2] dx — D? f Γ (α, χ) F2 (χ, t l f σ) [ρ2,

τι

§r(a,x)F2(x,xl,o)[p2,Pl]dx
σ

2 ~̂ ~~η ^οΓ (α, r0) F 2 (τ0, χ,, σ) [ρ2, p j d t
σ ΐ=ο

— Γ) \Π /• ̂  ^ F) " Τ (π τ \ Ρ (τ τ rt\ Τη η λ
— u i 2J ~\ Ο ν ' Ο/ r 2 Ι τ θ ' Χ1» ϋ Η ^ 2 > FiJ·

1 = 1

By the identity Γ(α, t) = T(a, σ)Γ(σ, /), we arrive at

&m (Χ, σ) [plt p2] = ΧΓ (α, σ) { D ^ i (σ, t2) [pv p2]

+ D? 2 ( τ ι ~ σ ) М'"1}Г (σ, t0) F2 (τ0, χν σ) [ρ2,
1 = 1

where the function in parentheses is evaluated at the point т0 = τ, = τ2 = σ, and the
third term is to be set equal to zero for m = 0.

The expression in parentheses is an л-dimensional bilinear form in the /--dimensional
vectors ρ j and/>2, and it can be viewed as the result of applying a certain operator Sm to
the function f(t, x, u) "along the solution x(t), u{i) at the point / = σ." The operator S w

has a "local character"; namely, it is expressed explicitly in terms of the partial
derivatives of/ at the point (σ, χ(σ), ΰ(σ)) and the derivatives of u(t) up to order m + 2
at the point σ. Indeed, the values D[D{T{rx, τ2) evaluated at τλ = τ2 = σ are expressed in
terms of these derivatives. This follows at once from an obvious inductive argument,
since T(T1,T2) = T(T1)T~\T2), and since the functions Γ(τ,) and Γ " 1 ^ ^ satisfy the
adjoint differential equations

Γ"1(τ2) = - Γ - 1 ^ ) / * ^ ) .

The operator Sm will be called the Legendre operator of order m (> 0); and the result
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of its application to the function f(t, x, u) along the curve x(t), u(t) evaluated at the

point σ will be denoted by

%mf (σ, χ (σ), и (σ)) [р 1 э рг] = £ m f (σ) [ρν Рг].

Thus

£mf (σ, χ (σ), и (σ)) [ρν ρ2] = D?FX (σ, τ2) [Pl, ρ2] - £ ? Γ (σ, t x ) F v ( t l f σ) [ρ2, p j
m ι (1 20)

+ Σ J£ZK\ *'~1)/)("~1)г ^σ' ro) ^2 ( ν *ι.σ) [p.. pj.

In conclusion, we shall prove two auxiliary propositions, which are made use of in the

sequel.

PROPOSITION 1.4. Let Ω(/, s)[pl,p2] be a skew-adjoint homogeneous polynomial in t and s

of even degree m > 0 with scalar coefficients that depend bilinearly on ρλ and p2,

u(t, s)[pl,p2] = — Ω(ί, t)[pvp2]. Assume that the quadratic form in p(t)

ω [ρ (t)] = j j h (t—s) Ω (/, s) \p (/), ρ (s)]dtds

has a constant sign, e.g. is nonnegative on P^:

<*lP(t)]>0 Vp(06P ( m ) .

Then the form u{p(t)] is identically zero on P(m\ and therefore, by Proposition 1.5,

Ω(/, s)[pv p a ] = 0 .

PROOF. Since the degree of Ω is m, the conditionp{t) G P ( m ) yields (see (1.7))

ω [ρ (t)] = f J (1 —h (s-ή) Q (t, s) [ρ (Ο, ρ (s)] dtds
- 1

= - ^ h (s—t)Ω(t, s) [ρ (ή, ρ (s)] dtds.

Further, since m is even,

Ω(ί, s)[pu p2]=Q{—t, —s)[pu p2].

Moreover, together with ρ(t), the function p{i) = p( — t) belongs to the subspace P ( m ) .

Therefore, performing the substitution t = — t', s = — s' in the double integral, we

obtain

Since ω does not change sign on P{m), we have ω[ρ(ί)] = 0 Vp(t) G P ( m ) .

PROPOSITION 1.5. Let K(t, s)[px,p2] be a skew-adjoint homogeneous polynomial in t and

s of degree m > 0 with vector coefficients that depend bilinearly on the r-dimensional

vectors ρ! and p2. If, for some / > 0 (which does not depend on m), the form

L [p(/)] = f j ' h ( t — s)K{t, s) [p(0, Ρ (s)] dtds = 0 Vρ(t)6P { 1 ),
-i

then the kernel K(t, s)[pvp2] = 0.
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PROOF. It is sufficient to assume that I > m, because P ( / ) с Р(п for / ' < / " .
Moreover, it can be assumed that A' is a polynomial in t and s with scalar coefficients.
Therefore it can be represented in the form

K(t, s)[pvp2]

where K(t, s) is an r X r homogeneous matrix polynomial of order m which satisfies the
skew-adjointness condition K(t, s) = — K*(s, t).

In the Hubert space L2 of /--dimensional square-integrable functionsp(i) on [— 1, 1],
we define the (completely continuous) "Volterra operator" V by the formula

Vp(t) = § K(t,s)p(s)ds. (1.21)
- 1

Then for any px(t),p2(t) £ L2 we have

J J h ( t - s ) K (/, s) [Pl (t), p 2 (s)] dtds = j p\ (0 d t $ К (t, s) p 2 (s) ds

- 1

where (·, · ) is the scalar product in L2.
It is easy to see that

(Pi (0, Vpt (0) = (VPl (0, P2 (0) V P l (0, p2 (0 6 P{1). (1 -22)

Indeed, since the degree of K(t, s) does not exceed m, and since Ρχ{ί), p2(t) Ε .Ρ(/),
/ > m, it follows that

Therefore, making use of the identity h{t — s) = 1 — h{s — t) and of the fact that
K(t, s) is skew-adjoint, we obtain the required equality

(Pi (t), УРг (0) = - j j h (s-t)pl (s) К1 (tt s) Pl (t) J*ds
-1

= J j h (s-t) pl (s) К (s, t) Pl (t) dtds = (pt (t), VPl (0).

We denote by Sft the orthogonal projection of L2 onto the subspace P ( / ) . The mapping
91V takes P(l) into itself, and by virtue of (1.22) it is self adjoint on P ( / ) . Moreover,

, vP (0) = (Яр (о, К/> (о) = (о (о,
Therefore, the fact that the form L[p(t)] = (p(t), Vp{t)) vanishes on /*(/) is equivalent to
the fact that the self adjoint operator 9? V vanishes on i>(/).

We shall show that

= 0 Vp(06P ( / ) (1.23)

implies K(t, s) = 0.
The dimension of the orthogonal complement of Р ( / ) с L2 is finite (it is equal to

r(m + 1)). Therefore (1.23) implies that the dimension of the subspace VL2 с L2 is also
finite (and does not exceed 2r(m + 1)).
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The proposition will be proved if we show that the Volterra operator (1.21), whose
kernel is a nonzero r χ r homogeneous matrix polynomial, cannot map L^ onto a
finite-dimensional subspace.

Let Kjj(t, s) be a nonzero element of the matrix K(t, s). By virtue of the homogeneity,
it can be expressed in the form

where Ft φ 0, 0 < / < т. We take an arbitrary, linearly independent sequence of
infinitely differentiable scalar functions bx(i), b2(i), . . . on [-1, 1] which vanish on an
interval - 1 < t < ε, ε > 0. It is easy to see that the Volterra integral equation of the
first kind

(1.24)

is solvable in zk(t), — 1 < / < 1, for every к = 1, 2, . . . .
Indeed, differentiating both sides of the equation / + 1 times, we obtain

- 1

whose solution zk(t), — 1 < / < 1, is zero on the interval — 1 < / < ε, and coincides on
the interval ε < t < 1 with the solution of the Volterra integral equation of the second
kind

t

/! Fttm-lz (0 + j W {t, s) ζ (s) ds = b(tx) (t).

Therefore the function zk(t) is a solution of the original equation (1.24).
With the aid of the solutions zk(t), we construct an infinite sequence of r-dimensional

functions

defined by the conditionspk\t) = 0 for k' ̂  j andp^(i) = zk(t). The mapping V takes
this sequence into a linearly independent sequence Vpk(t), к = 1, 2, . . . , since theyth
coordinate of the vector Vpk(i) is equal to zk(i). This completes the proof of the
proposition.

§2. Statement of the optimality principle

Beginning with this section, we assume that

u{t),x(t), 0</<fl, (2.1)

is a time-optimal solution of the control problem (1.1) with fixed end-points. We denote
by Ψ the set of all nonzero solutions \p(t), 0 < t < a, of the equation

Ψ = —W* (', * (0, и (/)) = —ψ/, (0, (2.2)

which satisfy the maximum condition

ψ (t) f (t) = sup ψ (/) / (/, x(t), u) (2.3)
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for almost all / G [0, a]. A solution ψ(7) of (2.2) obviously belongs to the set Ψ if and
only if ψ(α) £ ρβ

(1) and ψ(α) φ 0.
The basic optimality criterion is expressed by the following theorem.

THEOREM 2.1. There exists a function \p(t) G Ψ such that the following two assertions
hold for an arbitrary point σ G (0, a):

(A) The Legendre form ωο(4>(α), S)[p(t)] — 4>(a)L0(a)[p(t)] vanishes identically on P ( 0 ) :

«ο (Ψ (β), σ) [ρ (/)] = 0 V ρ (/) € Ρ ( 0 )· (2-4)

(Β) If m > 1, ли*/ if a function ρ(t) G P ( m ) w .я/сЛ /Лд/ the equalities

< М Х . * ) [ л 5 р ( 0 ] = 0 VXeQi 1 }, V a e O s , Vi = 0, . . . , m — l , (2.5)

hold for a neighborhood O- of the point 6, then

ω,«(ψ(α),σ)[ρ(0Γ<0. (2.6)

The assertions (A) and (B) are trivial if σ is a discontinuity point of the control u(f), or
if й(6) is a vertex of the polyhedron U. This is so because in these cases тт* = 0, and
therefore

ω* (Χ, σ) [ρ (/)] = ω< (Χ, σ) [«9j5 (ί)] = 0

for an arbitrary χ and / = 0, 1, 2, . . . . For this reason, Theorem 2.1 does not yield
anything new for such points σ, since the condition \p(t) G Ψ is the Pontrjagin maximum
principle.

The assertions (A) and (B) can be given a simple geometric interpretation.
The assertion (A), i.e. (2.4), means that the first coefficient in the Legendre representa-

tion of the end-point of the second variation of the optimal trajectory x(t) on an
arbitrary packet of zero order lies on the supporting hyperplane N^ay to the cone Q}1^
which is orthogonal to the vector ψ(α).

The assertion (B) can be reformulated as follows. If, in the Legendre representation of
the end-point of the second variation on the mth order packet defined by an arbitrary
point σ G O~ and a fixed function ir^p(t) G P(m), the first m coefficients

lie in the subspace Na (see (1.14)), then the (m + l)th coefficient Lm(S)[^^p(t)] =
Lm(a)[p(t)] in the representation defined by the point σ and the functionj?(i) lies on the
same side of the supporting hyperplane Л^(д) as the cone Q}1). If, moreover, the vector
Lm(d)[p(t)] does not lie in Na, then the chain of equalities (2.5) terminates at / = m — 1,
and nothing can be said a priori about the coefficient Lm+i(a)[p(t)]. But also in the case
Lm(d)[p(t)] G Na one cannot draw any conclusions concerning Lm+l(o)[p(t)]. This is so
because in order to pass to the (m + l)th coefficient we must have the relations
LmiPfcrsPV)] e Na for any σ G Os.

In the form presented, the assertion (B) is entirely useless in practical application.
Indeed, if the integral quadratic forms inp(t)

3 Φ ( α ) Δ ί ( σ ) [ Λ 5 ρ ( 0 ] > ввОд, i = 0, . . . , m — 1,

vanish not identically in p{t) G P(m) but only for particular values of p(t) G P(m\ then
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we have to verify the relations (2.4)-(2.6) for these particular values. However, there are
no effective criteria (using, for example, the kernel of the form) that would allow one to
find the particularp(i) at which the forms vanish, or to verify for these p(i) the sign of
the form without a direct computation.

Nevertheless, from Theorem 2.1 and the auxiliary assertions proved in §1 we at once
easily obtain an optimality principle convenient for actual application, namely Theorem
2.2.

An arbitrary point σ G (0, a) will be called a stationary point of rank no less than m
(m > 0) of the Legendre representation of the second variation end-point at σ if there
exists a neighborhood Ojm) such that the first m coefficients of the expansion of Ц
satisfy the conditions

i.e. if

«MX, σ)[πδρ(/)] = 0 onp{m), f

A stationary point σ of rank no less than m is said to be a stationary point of rank m if
there exists a row χ Ε (5α

(1) such that ωη(χ, σ)[ρ(ή] Ξ* 0 on P(m\
The set of all stationary points of rank m is denoted by Dm, and the set of all

stationary points of rank no less than m, by Em. The closure of Dm is denoted by Dm.
The sets Dm and Em are open, Em D Dm and it follows from Proposition 1.5 that
Em, с Ет,. for m' > m". Moreover, Eo = (0, a).

An obvious induction argument shows that

(0,fl)C U DtUBm, V m > 0 (Z).1 = 0 ) .

Therefore, for any m > 0, the open set U / < m - i A U Em is everywhere dense in the
interval (0, a), since this set is obtained from U,-<M-iAu £ и by deleting the
boundaries of the open sets Д.

We shall say that the solution (2.1) satisfies the optimality criterion of rank m > 0 with
a function \(/(t) G Ψ at a point σ Ε (0, a) if there exists a neighborhood O^ such that for
any / < m the conditions

cMX,<j)[Jtsp(OM) onP(Z) Y%eQ{a\ Va60 (

s

m ), V i < / — 1, (2.7)

imply the inequality

ω/ (Ψ (α), σ) [ρ (ή] < 0 V ρ (ή 6 Ρ(/), (2-8)

which for even / is equivalent to the identity

ω/ (Ψ (α), σ) [ρ(ί)\ = 0 on P(/)

(see Proposition 1.4).
Theorem 2.1 implies the existence of a function ψ(/) £ t such that, for arbitrary / > 0

and / < m, the optimal solution (2.1) satisfies the optimality criterion of rank m at all
points of the sets Д and Em. Therefore the successive construction of the sets Di and Eit

/ = 0, 1, 2, . . . , yields at the wth step the open set

U Di\jEm, m = 0f 1,2, . . . , (2.9)
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which is everywhere dense in (0, a). The optimality criterion of rank m holds at every
point of this set.

If the intersection Еж =_П ™Em is nonempty, then, at every point σ Ε Еж,

(дт (Χ, 5) [ρ (t)]. = 0 on Pim) V X6 C&\ V m = 0, 1, 2,

and the optimality principle cannot yield anything new at these points in comparison
with the maximum principle. A typical example of points of this kind is the points in a
neighborhood of which the control u{t) is constant and concentrated at a vertex of the
polyhedron U, because then π- = 0. Also, interior points of the set of discontinuity
points of u{t) are of this kind. Indeed, by the formal definitions that we adopted in §1,
all the Legendre forms vanish at these points. In fact, we introduced these definitions in
order to obtain uniform statements for the basic Theorems 2.1 and 2.2, and formally not
to exclude from consideration those discontinuity points of the control at which the
Legendre representations (essentially local) are not meaningful.

We combine what we have said in the following proposition.

PROPOSITION 2.1. For any optimal solution (2.1), there exists a function ψ(/) G Ψ such

that for all m > 0 the solution (2.1) satisfies the optimality criterion of rank m with the

function yp(i) at every point of the open set (2.9), which is dense everywhere in (0, a).

PROPOSITION 2.2. The solution (2.1) satisfies the optimality criterion of rank m at a point

σ if and only if the following condition holds at a.

For some I < m, suppose all the bilinear forms in px,p2 Ε Rr

are identically zero, where \p(i) is an arbitrary function in Ψ, σ is an arbitrary point near σ,

and i < / — 1. Then the bilinear form in px,p2 Ε Rr

ΐ (σ) 2if (σ) [π~ρν л-р2] (2.11)

vanishes identically for even I, and for odd I the quadratic form in ρ Ε R r with symmetric

matrix
1+3

* $ ) [ ^ P , x d p ] (2.12)

is nonpositive on W. Here the £,· are Legendre operators {see (1.20)).

PROOF. By Propositions 1.5 and 1.3, and by (1.20), the identities (2.7) are equivalent to
the identities

XT (α, σ) Ztf (a) [*spv л~р2] = 0, V 1 6 Q?>f

whose left-hand sides range over all the bilinear forms (2.10), since ψ(/) = χΤ(α, t) is an
arbitrary function in Ψ when χ ranges over the cone Q}1^. Moreover, also by Proposition
1.3, the kernel of the form (2.8) is equal to

(

Therefore the bilinear form (2.11) is zero for even / (Proposition 1.4), and self adjoint for
odd/(see (1.17)).
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Thus it remains to prove that for odd / the fact that the quadratic form (2.12) in the
r-dimensional argument ρ e Rr is nonpositive is equivalent to the fact that the integral
quadratic form (2.8) is nonpositive on Ρ(/).

We have

1 ' ι
-γ ($ (β), α) [ρ (ή] = (-1) J dt J <lZ-iL$ (3)&/ (σ) [пър(t), лдр (s)]ds. (2.13)

- 1 - 1

It follows from the convolution formula

t , t U 4

f ( ' ~ s ) p(s)ds= {dt. [ d L . . . dh Γ p(s)ds (2.14)
J « J J J

- 1 - 1 - 1 - 1

that

V t < / . (2.15)

We integrate (2.13) by parts (/ + l)/2 times. Making use of (2.14) and (2.15), we
obtain

1+3 1
2ω» /~ л — ρ — л л .
- — (ψ (α), σ) [̂7 (/)] = (— 1) \ *ψ.(<τ) S// (σ) [πΐΛ^ (ί), л^^1 (t)]at, (2.16)

- 1

where

-1 - 1 2 -1

Since ψ(σ)δ/(σ)[τ^,/?ι, тг̂ ,/>2] is a scalar selfadjoint bilinear form inp h p 2 £ Rr, it has
r mutually orthogonal eigenvectors in Rr, to which there correspond eigenvalues
Xj,. . . , \.. We denote by 93Ϊ, the orthogonal projection onto the /th direction. It is easy
to see that, for all / = 1 , . . . , r,/>,·(/) e P(l) can be chosen so that the image Щд&) of
the corresponding qt{t) (formula (2.16)) does not vanish identically on [— 1, 1]. Therefore
we obtain the equalities

2ωι (ψ (α), σ) [pt (i)] = ( - 1 ) ~ J ψ (σ) S;/ (σ) [я5ЗЙ^, (0, я ^ З » ^ (/)] dt.

which imply the proposition.
Combining Propositions 2.1 and 2.2, we arrive at the following basic theorem of this

paper. In its statement we employ the convention

δ-ί/ίσ, χ(σ), й{о))=0 Va6(0, α).

THEOREM 2.2 (OPTIMALITY PRINCIPLE). Let (2.1) be a time-optimal solution of the
control problem (1.1) with fixed end-points. Then there exists a function \p(t) £ Ψ such that,
if all the bilinear forms in px,p2 E. Rr
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5 ' (2.17)
Vt = — 1 , . . . , m — 1,

where O- is a neighborhood of σ, vanish identically for an arbitrary σ G (0, a) and a given
m > 0, then the bilinear form in px,p2 G Rr

$ (σ) 2mf Κ * (σ), Ζ (σ)) [ndplt пърг] = 0 on Rr,

for even m, and the quadratic form in ρ G Rr

т+з

(—1) Ψ(tf) SOT/• (̂ » -̂  (̂ )> w (c)) [jt^x?, Я л ρ ] - ^ 0

/or oii/ m.

We denote by Em the open set of points σ G (0, a) for which all the forms (2.17) are
zero, and by Dm the open subset of Em whose points satisfy the following additional
condition: there exists a function ψ(7) G Ψ such that the form inρ λ ,ρ 2 G Rr

ί И Smf (σ, * (σ), и (σ)) [я s p l f я 5 p j φ 0.

Then the open set U , < m - i A u £ w (^-i = 0) is everywhere dense in (0, a) for any
w > 0.

The family Ψ consists of all nonzero solutions of (2.2) which satisfy (2.3). An explicit
expression for the Legendre operators S w is given by (1.20).

The statement of the optimality principle given here combines the Pontrjagin maxi-
mum principle (the family Ψ is nonempty) with a second-order necessary condition for
optimality.

If m = 0, then the forms (2.17) are zero by definition (S_j = 0), and we obtain a
necessary condition for optimality for all σ G (0, a):

ψ (σ) Sof (σ, χ (σ), и (σ)) [π-p l f я~/?2] = 0.

As can be seen from (1.20), this condition is equivalent to the condition that the form
ψ(σ)/Ί(σ, o)['7ripi, чт^р2\ ^ е selfadjoint. The latter condition is automatically satisfied
when the control и is a scalar (r = 1). Therefore in this case we can apply the optimality
criterion beginning with m = 1 at every point σ.

§3. Proof of Theorem 2.1

Let there be given a point σ G (0, a) and a function p(t) G P ( m ) . For brevity, we
denote by Sz(m\o,p(t)) the (m + l)th coefficient Lm(o)[p(t)] in the corresponding
Legendre representation (1.13), if there exists a neighborhood O6 such that

Ο-, V t < m — 1.

where the subspace Na is given by (1.14). In the contrary case, we set Sz(m\d,p(t)) = 0.
We denote by Τ the union of the vectors 8z(m\d,p(t)) over all possible σ and

p(t) G /»<w> with m = 0, 1, 2,
The cone spanned from the origin by the convex hull conv (Q}1) υ Τ) of the union of

the first-order cone Q}1) and the set Τ will be called the second-order cone (?a

(2) с R" of
the trajectory x(t) at the end-point x(a).

Theorem 2.1 will be proved if we show that the convex cone Q}2) does not coincide
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with the entire space R":

Q i 2 ) ^ R n . (3.1)

Indeed, let χ be a vector orthogonal to a supporting hyperplane of the cone Q}2\

directed away from <2a

(2). Obviously χ G Q}a\ If ψ(/), 0 < ί < a, is the solution of the

differential equation

Ψ=-ΨΜ',£(0.«(0).
satisfying the boundary condition ψ(α) = χ, then

Ш™ (σ, ρ (ή) = ω,η (ψ (α), 8) [ρ (/)] < 0,

for all m = 0, 1, 2 , . . . , i.e. the assertion of Theorem 2.1.

Turning to the proof of (3.1), we note, first of all, that, if 8z{m\a,p{t)) φ 0, then the

equality παιτ- = ir- Va £ O- (which holds for a sufficiently small neighborhood O·)

implies

Further, it is clear that for fixed σ a n d / ( 0 we have

όζ<™> (σ, π~ρ (/)) = Lm (σ) [ ^ ρ {t)]-+Lm (a) [nfp (/)J = Lm (σ) fp (/)] = &<·»> (σ, ρ(0).

as σ —» σ.

Therefore, if we are given an arbitrary number of nonzero vectors from 8z{m>\aj, pj{t)\

Pj(t) G pW, j = 1 , . . . , / , from Γ, we can transfer the points σ1? . . . , σ, into distinct

points σι, . . . , at by an arbitrarily small shift, and thus obtain the vectors

8z^\aj7r-pj(t)), j = 1 , . . . , / , from Τ which differ arbitrarily little from the correspon-

ding initial vectors.

Let us show that the equality (?a

(2) = R" leads to a contradiction.

If the equality holds, then there exist 1 + к + / nonzero vectors

such that the origin of R" is an interior point of the convex hull of these points,

c o n v [bx0, . . . . b x k \ bzv ..., bzt] d R % (3.2)

Moreover, by what we have said, we can assume that the points σ ΐ 5 . . . , σ7 are distinct.

We shall now apply the following basic lemma, whose proof we postpone to the end of

this section in order not to interrupt the presentation.

LEMMA. Let there be given vectors 8x0, . . . , 8xk G Q}1\ I distinct points σχ, . . . , σ/5 and

the same number of functions Pj{t) G P^ satisfying the following condition: for each

7 = 1 , . . . , / , the first mj coefficients Ц(ау)[р^)], / < m, - 1, of the corresponding
Legendre representation lie in the subspace Na:

Li(<*j)[Pi(t)]£Na, У , < . т , — 1. (3.3)

Denote by A the (k + I)-dimensional simplex

A = {λ = (λ0, . . . , λ*+/) Ι λ, > 0 ,λο + . . . + λ * + / = 1}.

Then there exists a family of perturbations 8u(t, λ, ε) of the control u{t) which is defined

for λ G Λ and all sufficiently small ε > 0, and is such that the differential equation
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has a solution

χ(ί;λ,ε), 0 < / < α ; χ(0;λ,ε) = 7(0),

which depends continuously on (t, λ) G [0, α] Χ Λ /<зг a fixed ε and satisfies the condition

ft I

χ (α; λ, ε) —x (a) — ε 2 λιδχ{ + ]g λ / + л + ιLm / (σ,·) [/?, (/)]
ί=0 /=1

ο(ε)/ε —» О ЛУ ε -» 0.

, (3.4)

Since δζ, τ^ 0, we have 8zj = L,^,(oj)[Pj(t)], j = 1, . . . , / , and (3.4) can be expressed in

the form

(k j , ^
χ (α; λ, ε) — χ (α) —ε ν λίδ^ί + У\ ^i+K+^zi ^ ° (ε) * ̂  € Λ. (3.5)

\ ι
\t=:0 /=1 /

We define the family of continuous mappings У (λ, ε); Λ -* R", ε > 0, by the formulas

Κ (λ; 0) - 2 λ,δΛτ,- 4- 2 λ/+*+1δζ7.

Elementary geometric considerations allow us to choose in Λ an (n — l)-dimensional

polyhedral sphere S"~l (composed of the sides of the simplex Λ) such that the mapping

У (λ; 0) is a (piecewise linear) homeomorphism of Sn~l onto the boundary of the convex

set (3.2). Since the origin of R" is an interior point of the set (3.2), the image of S"1"1

under the mapping Υ (λ; 0) touches the origin of R". Therefore, by (3.5), the image of

the sphere also touches the origin under any mapping Υ(λ; ε) with ε > 0 sufficiently

small.

We identify the lower base {0} X Sn~l of the cylinder [0, a] X S"~l with a single

point. We denote by C" the л-dimensional ball thus obtained, and we consider the

family of continuous mappings

( ' λ ) ( 0 ,a]xSn-\ ε>0,

of the cylinder [0, a]X S"~l into R".

By virtue of the condition л:(0; λ, ε) = x(0), VA Ε Λ, ε > 0, this family can be viewed

as a family of continuous mappings of С into R". Since the mapping X(t; λ, ε)

coincides on the boundary 3 C = {a} X Sn~l of the ball С with the mapping Υ (λ; ε),

ε > 0, the image of the boundary 3 C under the mapping X(t; λ, ε) touches the origin

for all sufficiently small ε > 0. Therefore the image of the entire ball С under the
mapping X(t; λ, ε) covers the origin of R" for all sufficiently small ε > 0. Since the

image of the boundary cannot contain the origin, for any sufficiently small ε > 0 there

exist a te < a and a \ 6 S"~l с Л such that

; λε, ε) = = 0,
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or x{te\ \, ε) = x(a). This equality contradicts the assumption of the optimality of the
solution (2.1).

PROOF OF THE LEMMA. Let α:(ε) be an arbitrary positive function of ε > 0 which tends
to zero as ε -»0. For every function/>,•(;), we take the w,th order packet

(3.6)

and prove the existence of a family of functions &υγ\ί, ε), uniformly bounded in
absolute value, which is such that the end-point of the first variation of the trajectory
x(t) evaluated on this packet and added to the end-point of the first variation evaluated
on the family of perturbations α(ε)ε2δνγ\ί, ε) is zero:

X (α; α (ε) πσ .ρ, Λ 1 ^ Υ\ + \х (α; α (ε) eW/* (/, ε))
I

= α (ε) 6

2 + Ш / j Λ (σ, + tz+m'') ΐίσ.ρ}- (ί) dt (3.7)
- 1

+ α ( ε ) ε 2 J Л (ί) δ * ^ (/, e) d i = 0 V / = l . . . , / ,
о

where
A (t) = Г (α, t) fu (t) = Γ (α, /) G (t, x(t)).

Expanding the kernel A in the first integral in powers of te2/{2+m>\ and integrating
term by term with respect to t, by the condition pj(t) e PW we can write (see (1.7))

Л (a

where the family δν(Λ(ε) is uniformly bounded in absolute value and

(ε) 6 Qa\ (3.8)

This is so because

± α ( ε )

is the family of perturbations of the control u(t).
The existence of a family δν^\ί, ε) follows easily. Indeed, let us take an arbitrary

simplex of maximum dimension contained in Q^ and with center at the origin:

л

= 2 νίδ#'''v»· > °» v o+ · · · + v r = ι .
The condition (3.8) and the uniform boundedness of δγϋ\ε) imply that there exist
bounded nonnegative functions ^ ( ε ) such that
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Since 8у( е Q}1\ there exist perturbations Sw^t) satisfying the equalities

Therefore we can set

567

t==0

We now construct a uniformly bounded family of functions Sv^\t, ε) which satisfy the
condition

my - ι 2t

δ,χ (a; a (ε) ε 2 δ # (/, ε)) + σ2 (ε) 82+m/ / -^ L i ^ [p< W1

ί = 0

- ο (α2 (ε) ε2) .(3.9)

This condition asserts that the end-point of the first variation evaluated on the family of
perturbations α(έ)ε2δν^\ί, ε), added to the sum of the first m, terms of the Legendre
representation of the end-point of the second variation on the packet (3.6), is a quantity
of higher order than α2(ε)ε2.

In order to accomplish the construction, we recall that the subspace Na (see (1.14)) is
contained in the closure of the cone ζ?α

(1). Therefore the conditions (3.3) imply the
existence of a nonnegative function φ>,(ε) (possibly increasing very rapidly as ε -» 0) and
of a family of perturbations 8\^(ί, ε) such that the sum

6tx (α; φ, (ε) <ta,c/> (/, ε)) +
2+Ш/ jrΤΓ^ΜΙΡ,®]

tends to zero arbitrarily fast as ε —> 0. We need only the estimate

bxx (α; φ, (ε) δ^ω (/, ε)) + Г^ γ Lt (σ,) \ρ, (ή] = ο(ε2). (3.10)

We choose a function α (ε) which tends to zero as ε->0 so fast that, for each

j = 1, . . . , / ,

α(ε)φ / (ε)<

Moreover, we assume that α (ε) is monotone.
It is easy to see that we can set

t, ε)
, α (β)< ε3. (3.11)

since the first of the inequalities (3.11) yields

and (3.9) follows from (3.10).
The families of perturbations

1 + I 6a»W (ί, ε)



568 Α. Α. AGRACEV AND R. V. GAMKRELIDZE

. < / ) - • • - • • r ~ - ^δ«(/\(/; λ;·, ε) = α (ε

+ α (ε) ε2 Υ^υψ (t, ε) + α (ε) ε%δν^ {t, ε), Ο < λ/ < 1, / = 1 /.

have a number of properties which are important for the proof of the lemma and which
can be verified directly. We shall now enumerate these properties.

The end-point of the second variation evaluated on the family Su^Xt; Xj, ε) differs
from the end-point of the second variation evaluated on the packet

/t — σ/
α (ε) у 'kjtrijUPj I

2+/71;

ε ;

by ο(α2(ε)ε2). Therefore

δ 2* (α; «ω (/; λΛ ε)) - Ъгх (α; α (ε) V\^\-oPi ( '- 2 \ + ο (α2 (ε) ε2)

•г+гп:
ε '

=α2(ε) г2+т/ к,т,\ 2 г+т'-^( (σ,) [ρ,- (()] -f α2 (ε) e%Lmj (σ;·) [Ρί {ί)\ ro (α2 (ε) ε2).

Thus (3.7) and (3.9) imply that the sum of the end-points of the first and second
variations evaluated on 8uu\t; Xj, ε) differs from the vector α2(ε)ε2λ7Χ^(σ,)[/>/(/)] by a
value of order ο(α2(ε)ε2):

|δ ν* (α; δαω (/; λ/, ε)) +δ2λ' (α; δ«ω (/; λ7-, ε))-α 2 (ε) eaXyLm/ (σ;·) [Ρ]· (1)}\ < ο (α2 (ε) ε2). (3.12)

Next, making use of the condition ay φ ay, ΐοτ/ φ j " and the fact that

θ; α (ε) π σ / ^ / *-Ι^1Χ\ = 0 (α (ε) ε2) V0 =/= oh

we can also directly verify the equality

/ \
δ^ α; 2 δ«ω (/; λ,·, ε) =

V %ι Ι
Hence, making use of (3.12), we obtain

\χ[α; у. δ" ( / ) {t; %h ε) ) f Ь2х Ια; У ЬиМ (/; λ/, ε) |
V /-χ / \ /ti У

- 2 l 5 ^ (α ; δ " ( / ) (/; λ /' ε)) + δ2* (α> δ«(/) (^ λ/, ε))] + ο (α2 (ε) ε2) (3.13)

- μ2 (ε) ε2 2 λ,Ζ^. (σ,) [ρ, (/)] + ο (α2 (ε) ε2).

We define the family of perturbations
k ι

bu (t; λ, ε) = α2 (ε) ε2 ^ \*M(i) (0 + 2 ό " ( / ) ^ λ'Ί в)»
1 = 0 /=1
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where λ — (/ig,..., /^; λ , , . . . , λ/), Ο < /ι»· < 1, 0 < Лу < 1, and the perturbations

8u('\t) are chosen so that

6 t * (α; δ//ί·") (/)) = δ*,, ί = 0 , . . . ,6 .

Then (3.13) implies

6tjc (a; бы (/; λ, ε)) + ό2χ (a; bu (t; λ, ε))
, * / λ (3.14)

= α2 (ε) ε2 JJ Μ * + 2 λ ' 4 <σ'

We now note that the functions g(t, x) and G(t, x) are three times continuously

differentiable, and that the family of perturbations 8u(t, λ, ε) is continuous in λ,

uniformly with respect to t and ε, and satisfies the estimate

max | bu (t; λ, ε) | = R (λ, ε) <; Const · α (ε).

Therefore, by a standard theorem on the dependence of a solution of a differential

equation on the right-hand side, for all ε > 0 sufficiently small and all λ with 0 < μ*- <

1, 0 < λ, < 1, the perturbed equation

x = g (t, x) + G (/, x) u(t) + G (t, x) bu (t; λ, e)

has a solution

x(t;X,B), 0 < / < α , χ (0; λ, ε) = x(0)t

which depends continuously on the point

for every fixed ε > 0, and satisfies the estimate

max | χ (t; λ, ε) — χ (t)—\x (t; bu (t; λ, ε))

— δ ^ (*; bu(x; λ, ε)) \< Ο (R3 (λ, ε)) - Ο (α3 (ε)).

Hence, by (3.14) and the second of the inequalities (3.11), for / = α we obtain the final

estimate
k I

<σ(α2(ε)ε2),
ί=0

2 μίδ*ι+ ^hjLmjiOf) [Pf{t)]\
£ = 0 /=1 J

which is equivalent to (3.14). Indeed, introducing the new parameter ε' = α2(ε)ε2 and

solving this equation for ε (by assumption, the function α (ε) is monotone), ε = γ (ε'), we

define the required perturbation by the equality Su(t; λ, ε') = 8u(t; λ, γ(ε')). The corre-

sponding trajectory is x(t; λ, ε') = x(t; λ, γ(ε'))·

REMARK. We say that the necessary condition for optimality just proved is a second-

order optimality principle, since it has been obtained as a result of studying the Legendre

representation of the end-point of the second variation of a trajectory. A similar method

applied to the end-point of the first variation leads at once to necessary conditions for

optimality that are direct consequences of the maximum principle. An attempt to obtain

necessary conditions of higher order by the method presented, e.g., by the decomposition

of the end-point of the third variation of the trajectory on packets, does not lead to a
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successful result without additional assumptions.

§4. The expression of the Legendre operator in terms of

Lie brackets(3)

This section can be viewed as a direct continuation of §1. Here, we shall express the
operator Sm in terms of Lie brackets (formula (4.11)), whereas in (1.20) this operator was
expressed in terms of the fundamental matrix T(t, τ). Naturally, both formulas are
equivalent, although it is difficult to say which one will turn out to be more convenient
for computations.

In order to simplify the formulas, we assume that we are considering the solution

/7(/) = 0, x(0, 0 < / < α ,

of the autonomous equation

x = [(x,u)=g(x)-\-G(x)u, (4.1)

so that x(t) = g(x(t)). The corresponding equation for \p(t) has the form

Ψ = -Ψ£*ΗΟ). (4·2)

Further, we assume that U = Rr. This saves us the necessity of introducing the corre-
sponding projection operator πσ. The case of an arbitrary control u(t) reduces to the case
u(i) Ξ 0 by a standard method. It is sufficient to add the scalar equation dt/dr = 1 to
(4.1), assuming that t is an additional phase coordinate and τ is the new time.

We begin with several commonly adopted definitions.
Let v(x), χ G R", be an η-dimensional, infinitely differentiable column-vector. It can

be viewed as an operator acting on the set of all infinitely differentiable vector-valued
functions g(x) (of an arbitrary, given dimension) by the formula

This operator is said to be the differentiation of q(x) by virtue of the equation χ = ν (χ), or
the field of the function v(x). The function v(x) can be reconstructed by means of the
operator ν according to the formula v(x) = υ ° x. The value of the function v(x) at the
point χ(σ) will also be expressed as ν ° χ(σ).

The successive application of two fields ν and w to q(x) yields an operation υ ° w in
the set of all q(x) (of a given dimension), which, generally speaking, is not a field:

ν ο w о q (x) =j= -^-^ (v ow ο χ),
дх

However, as can easily be verified by direct computation, the operator

[υ, w] = vow—w ΟΌ,

which is called the Lie bracket of the fields υ and w, is always a field:

[u,w]oq(x)=<*M[V,w]ox Yq(x).
dx

The set of all /i-dimensional fields v(x) will be denoted by 33.
We introduce the operator ad v, acting in 33 (and depending on the choice of ν Ε 33)

(3) This section was added to the initial text of the paper after the authors became acquainted with the work
of A. J. Krener [4], from which they took the idea of employing the notion of field for the corresponding
calculations.
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by the formula

(ad ι») w = [v,w].

A basic property of Lie brackets, besides the obvious property of skew-symmetry

is the Jacobi identity

(ad v) [vv v2] = [(ad ν) υν v2] -f [olt (ad v) v2],

which can be verified directly. Hence, denoting the /th power of the operator ad υ by
ad' v, we obtain the (Leibniz) formula

(adlv) [vv v2] = 2 . l . [(ad71^) νλ, (ad/lu) v2]

by induction.
We shall consider formal power series of operators; in particular, exponential series

TT2

Let us prove the simple formula

eO о w о erv = ea^°w (л х\

We introduce the operator-valued function of the scalar argument /

dt

We have

and, by induction,

° owoe~iv—e<u owovoe~tv = etv о (v ow—до о у) о e~tv = e'1' o(ad у) wo е~

Therefore we obtain the equality

ψ ν ; = (ad у)а;,
л'

which implies the formula being proved.
Finally, for any solution \p(t) of (4.1) and any «-dimensional infinitely differentiable

column vector q{x), an obvious induction yields

— Ψ (О Я Й 0 ) = Ψ (0 (ad'$) 7 · * (0· (4.4)

We return to our basic problem of evaluating й„/.
Letp(t), t G R, be an arbitrary, л-dimensional square-summable column vector which

vanishes outside the interval [— 1, 0], and let σ be a point of (0, a). We consider the
family of perturbations p((t — σ)/ε) of the control u(t) = 0 and the corresponding
family of perturbed equations
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We denote by xe(t), with 0 < t < a, the solution of the perturbed equation with the
initial condition χεφ) = x(0). We have χε(σ — ε) = χ (σ — ε).

Let 82χ(ί, ε), 0 < ί < a, be the second variation of the trajectory xe(t), 0 < / < a,
corresponding to the perturbationp{{t — α)/ε). We shall now concern ourselves with the
Legendre representation of the end-point δ2χ(α; ε) by a method different from that in
§1, and we shall obtain an expression different in form from the corresponding
expression (1.13).

First we find an asymptotic expansion in powers of ε of the value of the trajectory
xe(t) at the point t = σ.

We denote by fT, with — 1 < τ < 0, the family of fields which depends on the
parameter τ and is determined by the family of the /i-dimensional functions of JC

/, (*) = £ (x) + 0 {χ) ρ (ι), - 1 < t < 0.

Introducing the "fast" time τ = (t — α)/ε, we express the differential equation for
jce(a + ετ) in the form

— = efe(*e) + C
dx

For an arbitrary function q(x)

= q(x&(a—ε)

0

— 1

><*>/> Μ). - K t < o .

> and an arbitrary integer m

% dq (χε (σ + ετ))

- 1

0

— 1
0 T t

J J τ«
- 1 - ι

т о т , τ ί - ι

^ε

we

.•A

(tf-e)

have

л 4_/7 /у

= Γ(σ — ε).

Ϊ (σ + ετ2))

J j
i=i -ι -ι

о tt τ/π

j d t t j dxt... j' dxm+ifXm+i о / t m о · . . ° /τι ο q (хв (σ + 8t m + 1 ) ) .
- 1 - 1

Setting q{x) = χ, we obtain the required asymptotic expansion

OO 0 tj Ti-1

x* (σ) — χ ε ( σ — ε ) + 2 ε < j ^ ι j ^ 2 . . . J d t ^ o ...ofXj[oxB ( σ — ε ) . (4.5)
ί=1 - 1 - 1 -1

This makes it easy for us to obtain the asymptotic expansion in powers of ε of an
arbitrary variation Sjx{t; ε) at the point t = a. We restrict ourselves to the evaluation of
the variation δ2χ(σ; «)> which is of interest to us.

In order to do this, we obviously need to substitute for /T in (4.5) the corresponding
expression g + Gp{r,), and to separate the terms bilinear in 6ρ(τ,) and Gpirj), placing
them in increasing powers of ε:
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0 T, "Чг t θ,
л γ (α· ρ\ ^ Ρ2 ν ι ρ ί ν ι С АГ (' АГ f4r. С Af С ла Г ла

2 V ' / ^ ^ /ι /ι I U l i I Ul>2 • · · / ι ι ι ·**'ι ι · · * / ι
i=0 jx+jt+it=*i-i -χ -1 -1 -1

χ I ds Γ dft, Γ . . . d*/,-! Γ d^/.g7'· о Gp (s) og/iQ Gp (/) oghox (σ—ε).
- 1 - 1 - .1 - 1

With the aid of the convolution formula (2.14), the interior sum can be written in the
form

о t

j j 0 o p { s ) . .ар (0

Therefore, by (4.3) and the equality p(t) = 0 for / > 0,

2 f ("<'+;) ^·

ο ί

/ ( ) = ε 2Γ f e'W&oGp (s)°ee«-№oGp(t)oe-*<eo)T(a—E)dtds (4.6)
/l' J J

- 1 - 1

о j* Γ Λ (/—s) ^ s a d2Gp (s) о ee'ad«Gp (/) ο χ (σ — ε) d/rfs.

For an arbitrary function q(x) we have

— q {χ (σ + ετ)) = ε1^' ο q (χ (σ

Therefore, the following asymptotic representation holds:

Я (x И ) - 2 ~ Γ ° ? ( χ ( σ — ε)) = eZg ° Я (х (σ—ε)),

which allows us to give (4.6) the form

1

δ2χ (σ; ε) — ε2 j ' j h (t—s) eesadsGp (s) о e^^Gp (/) ο * (σ) d/ds. (4.7)
- 1

We show that, if p{t) e P(m), then the end-point of the second variation 82χ(α; ε) and
its value δ2Λ:(σ; ε) at the point σ are connected by the relation

Ι δ2χ (α; ε) — Γ (α, σ) д2х (σ; ε) | = Ο (ε2(-+^)). (4.8)

Hence, by (4.7), we can assert that for p(t) G .P ( m ) the first m + 1 terms of the series

1

ε Τ (α, σ) ί f /ι (' — s) e£Sad^Gp (s) о e**d&Gp (t) ο χ (σ) dtds (4.9)
-ι

express the end-point of the second variation δ2χ{α; ε) to within O(em+3).
In order to prove (4.8), we write
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σ

\x (σ; ε) = j Γ (σ, t) G (χ (/» ρ (^-2\ dt

о

о

= ε Γ Γ (σ, σ + ετ) G (χ (σ + ετ)) ρ (x)dx
- 1

о

= ε Γ <*τΟΓ (σ, θ) G (χ (θ)) ρ (τ) dt = ег+ту (ε).
- 1

Since fijjc satisfies the homogeneous equation

on the interval σ < / < a, we have

Further, for σ < t < a we have

bx=gx & (0) ^2A: + | ^ (л (О) [Лг

and we obtain (4.8):

_2(2+i7!)
) ^ \gxx(x(t))[r(t,a)y(e),T(t,u) у (e)]dt.

a

By Proposition 1.1, the property of the series (4.9) formulated above is retained if this
series is replaced by its skew-adjoint part, i.e. by the series

•i82Γ (α, a) f f h {t—s) [eesad«Gp (s), е**аЮр Щ ο ̂ (σ) dtds,

-1

Thus the latter is the Legendre representation of the end-point of the second variation
(1.13) (for α (ε) = 1 and β (ε) = ε). Hence, by an obvious generalization^1) of Proposition
1.5, we arrive at the basic formula

0 0 ε1' ' ,

2 -Kc{t,s;o)[pvp2]. (4.10)
ί=οΙ

We now note that one can derive the relation

Γ (α, σ) 2mf (σ) \ρν ρ2] = A 2 (/, s; σ) [Ρν p2]

from (1.19) and the definition of Sm. Utilizing (4.10), we obtain from this the equalities

(*) The generalization consists in the fact that the identity K(t, χ)[Ρι,Ρτ] = 0 follows from the equality

ι

h(i-s)K(t, s)[p(t), p(s)]dtds=0
- 1

for arbitrary p(t) G P ( / ) which vanish outside of a fixed interval in [-1, 1], but not necessarily for all
p(t) e ? « .
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2 дГ "

m " 2 ε"1 ds'
^ 1-KA

= — Γ (α, σ) -2- [e^Gpv <**'Щ}рж\ ο χ (σ) | ε_ 0
гт dsm

Gp2)oZ (σ),

which yield the required expression for S J 1 found by Krener in [4]:

*W И [Pi. ft] = [(admg) GPt. Gp J ο χ (σ). (4·11)

The operator series

S ~ Kad'g) Gp,, Gp2] = [eead*Gpt, Gp2l

will be called the generating series for the Legendre operators й„/.
We denote by

Gl=-2-(g + Gu)=—f(x,u)
dul dul

the /th column of the η X г matrix G, i = 1, . . ., r. By (4.11), the r X r matrix ||/^·|| of
the scalar form *p(a)%mf(a)[pl,p2] can be expressed in the form

II Ui (σ) 1 = ||ψ (σ) [(ad1^) Git Gj] ο χ (σ) ||.

Let us give a somewhat different representation of elements 10(σ), which, in essence, is

contained in the work of Kelley, Kopp, and Moyer [1]. We have

—. adM+1 (g + Gu) \ \ Gj = 2 (ad**) (ad Gt) (ad""^) G,.

Hence by (4.4) we can write

du1

= ψ (σ) [Gtt (admg) Gy] ο χ (σ) + J- \ Ψ (σ) [ ° Й (adm"V) G7] ο χ (σ).

If the identities (inpl,p2)

г|) (σ') fift/ (σ') [p,,p2j = ψ (σ') [(adfe^) Gpv Gp2] ο χ (σ')=0 νσ'^Ο σ, Vk= I,..., m—I,

hold for a neighborhood Οσ of σ, then

ψ (σ) ( A ad m + 1 /) | ^ο ϊ (σ)=ψ(σ)[0 ί , (8ά ' ι ι

ί Γ)σ / ΙοΛ(σ) . (4.12)

Since the matrix ]|/у-(а)|| is symmetric if the conditions (4.12) are satisfied, we obtain the
required expressions

h И = - Ψ И A (adm+1/) -^ о J (α) |м=0,

which hold at any point σ that satisfies (4.12).

Received 11/MAR/76
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