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INTRODUCTION

In computer vision it is common to extract salient curves via
minimal paths or geodesics [1]. These geodesics minimize
a length functional based on a cost function on the image
domain that has a low value on locations with high curve
saliency. Inspired by [2], we lift the image to extended do-
main SE(2) = R2 o S1 of positions and orientations, endowed
with a sub-Riemannian (SR) metric. We present a wavefront
propagation algorithm that finds SR-length minimizers in SE(2)
with a metric tensor depending on a smooth external cost
C : SE(2) → [δ, 1], δ > 0, computed from image data. First
we compute the SR-distance map as a viscosity solution of
a Hamilton-Jacobi-Bellman (HJB) system. Subsequent back-
ward integration gives the SR-minimizers. Trackings in syn-
thetic and retinal images show the advantage of including the
SR-geometry.

ROTO-TRANSLATIONS GROUP SE(2)

Lie group SE(2) = R2 o S1 3 (x, y, θ) = g with operation

gg′ = (X,Rθ)(X′,Rθ′) = (RθX′ + X,Rθ+θ′),

where X = (x, y), and Rθ is a planar rotation over angle θ.
A moving frame of references:

A1|g = cos θ ∂x|g + sin θ ∂y|g = (Lg)∗ ∂x|e ,
A2|g = ∂θ|g = (Lg)∗ ∂θ|e ,
A3|g = − sin θ ∂x|g + cos θ ∂y|g = (Lg)∗ ∂y|e ,

where (Lg)∗ is push-forward of left multiplication Lgh = gh.

SUB-RIEMANNIAN (SR) STRUCTURE

SR-manifold (SE(2),∆,GC), with
left-invariant distribution ∆ = span{A1,A2} ⊂ T(SE(2)) and
inner product GC on ∆:

GC|γ(t)(γ̇(t), γ̇(t)) =

C2 (γ(t))
(
ξ2|ẋ(t) cos θ(t)+ẏ(t) sin θ(t)|2 + |θ̇(t)|2

)
,

with γ : R→SE(2) a smooth curve, ξ > 0 constant, and

C : SE(2)→ [δ, 1], δ > 0 is a given external smooth cost.

SR-distance:

d(p, q) = inf{
T∫
0

√
GC|γ(t)(γ̇(t), γ̇(t))dt |

γ(0) = p, γ(T) = q, γ̇(t) ∈ ∆|γ(t) a.e. in [0,T ]}.
SR-minimizers are solutions to the optimal control problem
γ̇ = u1A1|γ + u2A2|γ , γ(0) = e, γ(T) = g, (u1(t), u2(t)) ∈ R2,

l(γ(·)) =

∫ T

0
C(γ(t))

√
ξ2|u1(t)|2 + |u2(t)|2 dt→ min .

DATA-DRIVEN SR-GEODESICS

A: Every point of planar curve γ2D(t) = (x(t), y(t)) is lifted to
a point g = γ(t) = (x(t), y(t), θ(t)) ∈ SE(2) of horizontal curve
(solid line) by setting θ(t) = arg(ẋ(t) + iẏ(t)). Then, tangent
vectors γ̇(t) ∈ ∆|γ(t).
B: In SE(2) crossing structures are disentangled.
C: SR-geodesic (green) better follows curvilinear structure
along the gap than Riemannian geodesic (red).

WAVEFRONT PROPAGATION

1. Compute SR-distance map.
2. Find SR-minimizers by steepest descent.
Denote by W : SE(2) → R a SR-distance between given ele-
ment g ∈ SE(2) and unit element e = (0, 0, 0).

HJB system
{√

ξ−2|A1W|2 + |A2W|2 = C,
W(e) = 0,

(1)

describes SR-wavefront propagation. When the wavefront in-
tersect itself a geodesic is not longer a SR-minimizer (it loses
optimality). By imposing a viscosity condition, our method pro-
duces the part of the wavefront before self intersection.

THEOREM 1 (NEW)

Let W(g) be the viscosity solution of (1). Then the iso-contours
St = {g ∈ SE(2) | W(g) = t} are geodesically equidistant with
unit speed. A SR-geodesic is found by backward integrationγ̇ = − 1

C2

(
1
ξ2A1W(γ)A1|γ +A2W(γ)A2|γ

)
,

γ(0) = g.
(2)

THEOREM 2 (NEW)

Let W(g) be the viscosity solution of (1) with C(g) ≡ 1. Then:
I St equals the SR-sphere of radius t,
I backward integration (2) gives optimal geodesics reaching

e at t = d(g, e).

IMPLEMENTATION

We resort to subsequent auxiliary initial value problems (IVP)
on SE(2), and obtain the solution of (1) via:

W(g) = lim
ε→0

lim
n→∞

Wε
n+1(g, (n + 1)ε),

where Wε
n+1 satisfies IVP for HJB-equation, explained in SSVM

paper, and more detailed in [8].

New Fast Marching [6] implementation to appear in [7].

VALIDATION FOR UNIFORM COST C ≡ 1
A 1st Maxwell point is a point where two distinct geodesics
meet for the first time with equal length (and lose optimality)

∃γ̃(t) – geod. : γ(t) 6≡ γ̃(t), γ(0) = γ̃(0), γ(T) = γ̃(T).

All 1st Maxwell points form the 1st Maxwell set. Comparison
with exact 1st Maxwell set, obtained in [5], verifies our novel
PDE method. The advantage of our PDE approach is that it
extends also to C 6≡ 1. The Maxwell set can be computed by:

Mnum =
2⋃

i=1
{(x, y, θ) ∈ SE(2) | A+

i W(x, y, θ) > 0, A−i W(x, y, θ) < 0}.

APPLICATION IN RETINAL IMAGING

The retinal vasculature enables non-invasive observation of
the human circulatory system. A variety of eye-related and
systematic diseases such as glaucoma, diabetes, hyperten-
sion etc, affect the vasculature and may cause functional or
geometric changes. Automated quantification of these defects
promises massive screening for vascular diseases on the ba-
sis of fast retinal photography. Prior to the diagnosis, the full
vascular tree must be detected.

CONSTRUCTION OF EXTERNAL COST

Typical problems that arise are crossing and bifurcation of ves-
sels, and their high curvature. To avoid these problems we lift
the image to extended domain SE(2) of positions and orien-
tations, endowed with a sub-Riemannian (SR) metric. Local
optimization problem for vessel tracking in SE(2) is proposed
in [4]. We improve this, by considering a global optimization.
This allows us to track a vascular network in an optimal way.
Based on image f (x, y) define external cost C(x, y, θ) via invert-
ible Orientation Scores in SE(2) [3].

RESULTS

As a feasibility study for the application of our method in retinal
images we tested the method on many image patches exhibit-
ing crossings, bifurcations, and low contrast.
We compared to wavefront propagation methods based on a
data-adaptive Riemannian metric on R2, and a data-adaptive
Riemannian metric on SE(2). The advantage of including
the sub-Riemannian geometry is clear. The advantage of
our approach over previous work on automated vascular
tree detection [4] is that each curve is a global minimizer
of a formal geometric control curve optimization problem.
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BIBLIOGRAPHY
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