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INTRODUCTION

In computer vision it is common to extract salient curves via
minimal paths or geodesics [1]. These geodesics minimize
a length functional based on a cost function on the image
domain that has a low value on locations with high curve
saliency. Inspired by [2], we lift the image to extended do-
main SE(2) = R* x S! of positions and orientations, endowed
with a sub-Riemannian (SR) metric. We present a wavefront
propagation algorithm that finds SR-length minimizers in SE(2)
with a metric tensor depending on a smooth external cost
C : SE(2) — [4,1], 0 > 0, computed from image data. First
we compute the SR-distance map as a viscosity solution of
a Hamilton-Jacobi-Bellman (HJB) system. Subsequent back-
ward integration gives the SR-minimizers. Trackings in syn-
thetic and retinal images show the advantage of including the
SR-geometry.

ROTO-TRANSLATIONS GROUP SE(2)

Lie group SE(2) = R* x S! > (x,y,0) = g with operation
g8 = (X, Ry)(X', Ry) = (RoX' + X, Rp1),

where X = (x,y), and Ry is a planar rotation over angle 6.
A moving frame of references:

.= cos 6 6x]g +sinf 8y]g = (Lg)+ Oy
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where (L, ). is push-forward of left multiplication L,h = gh.
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SuB-RIEMANNIAN (SR) STRUCTURE

SR-manifold (SE(2), A, G*), with
left-invariant distribution A = span{A,, A,} C T(SE(2)) and
inner product G° on A:
G L (1(1),7(1) = |
C2 (y(1)) (€24i(r) cos 0(e) + (1) sin (1) P + [0(1))

with v : R—SE(2) a smooth curve, ¢ > 0 constant, and

C : SE(2) — |4, 1],6 > 0 is a given external smooth cost.
SR-distance:

d(p.q) = int{ [ /6L (303 ()

7(0) = p,y(T) = g,7(1) € Al ae. in [0, T}
SR-minimizers are solutions to the optimal control problem
7 — ul Al’y T u2 ;42’77 ’V(O) — €, /Y(T) — & (ul(t)7 uz(t)> S Rza
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DATA-DRIVEN SR-GEODESICS

R2 % Sl— .

A: Every point of planar curve vp(t) = (x(¢),y(¢)) is lifted to
a point g = ~(t) = (x(z),y(¢),0(t)) € SE(2) of horizontal curve
(solid line) by setting 6(t) = arg(x(¢) + iy(z)). Then, tangent
vectors (1) € Al .

B: In SE(2) crossing structures are disentangled.

C:. SR-geodesic (green) better follows curvilinear structure
along the gap than Riemannian geodesic (red).

WAVEFRONT PROPAGATION

1. Compute SR-distance map.
2. Find SR-minimizers by steepest descent.

Denote by W : SE(2) — R a SR-distance between given ele-
ment ¢ € SE(2) and unit element e = (0,0, 0).

VEAWE + | AW]E=C, ()
W(e) =0,

describes SR-wavefront propagation. When the wavefront in-
tersect itself a geodesic is not longer a SR-minimizer (it loses
optimality). By imposing a viscosity condition, our method pro-
duces the part of the wavefront before self intersection.

HIJB system {
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THEOREM 1 (NEW)

Let W(g) be the viscosity solution of (1). Then the iso-contours
S, ={g € SE(2) | W(g) = t} are geodesically equidistant with
unit speed. A SR-geodesic is found by backward integration

Y= —% (é«‘hW(W) Al + AW (Y) A2’7) ,

(2)
v(0) = g.

SR-spheres

SR-geodesic

THEOREM 2 (NEW)

Let W(g) be the viscosity solution of (1) with C(g) = 1. Then:
» S; equals the SR-sphere of radius ¢,

» backward integration (2) gives optimal geodesics reaching
eattr=d(g,e).
SR-Sphere (t = 4)

SR-Wavefront (¢ = 4)
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IMPLEMENTATION

We resort to subsequent auxiliary initial value problems (IVP)
on SE(2), and obtain the solution of (1) via:

W(g) = lim lim W, (g, (n+ 1)e),

e—0n—oo

where W;_ , satisfies IVP for HJB-equation, explained in SSVM
paper, and more detailed in [8].
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New Fast Marching [6] implementation to appear in [7].

VALIDATION FOR UNIFORM CoOST(C =1

A 1st Maxwell point is a point where two distinct geodesics
meet for the first time with equal length (and lose optimality)

3y(t) — geod. : (1) # 7(t),7(0) = ¥(0),y(T) = H(T).
All 1st Maxwell points form the 1st Maxwell set. Comparison
with exact 1st Maxwell set, obtained in [5], verifies our novel
PDE method. The advantage of our PDE approach is that it
extends also to C # 1. The Maxwell set can be computed by:

2
Mﬂum — U{<x7y7 9) = SE(Q’) |A1+W<x7y7 9) > 07 A;W(X,y, 8) < O}
i=1

Maxwell Set Exact Maxwell Set Numerically Maxwell Point

-7

R\

APPLICATION IN RETINAL IMAGING

The retinal vasculature enables non-invasive observation of
the human circulatory system. A variety of eye-related and
systematic diseases such as glaucoma, diabetes, hyperten-
sion etc, affect the vasculature and may cause functional or
geometric changes. Automated quantification of these defects
promises massive screening for vascular diseases on the ba-
sis of fast retinal photography. Prior to the diagnosis, the full
vascular tree must be detected.

Diabetic Retinopathy (tortuous vessels)

Healthy retina Vessel Tracking

CONSTRUCTION OF EXTERNAL COST

Typical problems that arise are crossing and bifurcation of ves-
sels, and their high curvature. To avoid these problems we lift
the image to extended domain SE(2) of positions and orien-
tations, endowed with a sub-Riemannian (SR) metric. Local
optimization problem for vessel tracking in SE(2) is proposed
in [4]. We improve this, by considering a global optimization.
This allows us to track a vascular network in an optimal way.
Based on image f(x, y) define external cost C(x, y, #) via invert-
ible Orientation Scores in SE(2) [3].

RESULTS

As a feasibility study for the application of our method in retinal
Images we tested the method on many image patches exhibit-
Ing crossings, bifurcations, and low contrast.

We compared to wavefront propagation methods based on a
data-adaptive Riemannian metric on R?, and a data-adaptive
Riemannian metric on SE(2). The advantage of including
the sub-Riemannian geometry is clear. The advantage of
our approach over previous work on automated vascular
tree detection [4] is that each curve is a global minimizer
of a formal geometric control curve optimization problem.

R2 - Riemannian SE(2) - Riemannian ~ SE(2) - Sub-Riemannian
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