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SUMMARY

We consider the problem Pcurve(S2) of minimizing
∫ l

0

√
ξ2 + k2

g(s) ds for a curve [0, l] 3 s 7→ n(s) ∈ S2, with free length l and geodesic curvature kg, on S2 with fixed boundary points and
directions. This problem is a natural spherical extension of a flat model of primary visual cortex. We are motivated by the fact that the retina is not flat, which is important both for cortical
modeling and for processing retinal images. We derive stationary curves for general case ξ > 0.
Stationary curves in considered problem can be used for retinal vessel tracking on a spherical image of a retina. We compute stationary curves as projections of sub-Riemannian geodesics in
left-invariant problem on SO(3). In such a way, this work continues to study application of Sub-Riemannian geodesics to image analysis.
We analyze cusp points and evaluate the first cusp time, i.e. the instance of time where the spherical projection of a sub-Riemannian geodesic has a cusp.

STATEMENT OF Pcurve(S2) PROBLEM

Given

ξ > 0 ni ∈ S2, i ∈ {0, 1},
n′i ∈ Tni S2, ‖n′i‖ = 1.

To Find n : [0, l]→ S2 s.t.

n(0) = n0, n(l) = n1,

n′(0) = n′0, n′(l) = n′1,∫ l

0

√
ξ2 + k2

g(s) ds → min .

S2 = {n ∈ R3|‖n‖ = 1}

s =

∫ s

0
1ds′ =

∫ s

0
‖n′(s′)‖ds′,

kg(s) = n′′(s) · (n(s)× n′(s)).

STATEMENT OF Pmec PROBLEM

Left-invariant sub-Riemannian problem on SO(3)

Ṙ = −u1RA2 + u2RA1,R(0) = Id,R(t1) = R1,R ∈ SO(3),

E(R(·)) =
∫ t1

0

√
ξ2u2

1 + u2
2 dt → min, (u1, u2) ∈ R2, ξ > 0.

We parameterize SO(3) 3 R(x, y , θ) = eyA3 e−xA2 eθA1,
where (x, y , θ) ∈ [−π/2, π/2]× R/{2πZ} × R/{2πZ},
and use the map projection from SO(3) 3 R 7→ Re1 ∈ S2.

CONNECTION Pmec AND Pcurve(S2)

Let Rmin be a smooth minimizer of Pmec without cusp. Set
Rmin(t1)e1 = n1 = Rfine1,

Rmin(t1)e3 = n′1 = Rfine3,

n0 = e1, n′0 = e3.

Then for such boundary conditions Pcurve is well-posed and

n(s) = Rmin(t(s))e1,

{
u1 = ds

dt ,

u2 = kg
ds
dt ,

with t(s) =
∫ s

0

√
ξ2 + k2

g(σ)dσ, for all 0 < s ≤ l < smax,

and t1 = t(l). Here smax is 1-st positive root of u1(s) = 0.

OPTIMAL CONTROL PROBLEM ON S2×S1

Apply PMP to problem Pmec:

ν̇ = u1X1 + u2X2, ν(0) = ν0, ν(T ) = ν1, (u1, u2) ∈ R2,

Ẽ =
∫ T

0
(ξ2u2

1+u2
2)

2 dt → min, ν ∈ S2
x,y ×S1

θ, ξ > 0,

where ν = (x, y , θ)T , ν0 = (0, 0, 0)T and

X1 = (cos θ,− sec x sin θ, sin θ tan x)T , X2 = (0, 0, 1)T .

The Hamiltonian system of PMP
ḣ1 = −h2h3,

ḣ2 = 1
ξ2 h1h3,

ḣ3 =
(

1− 1
ξ2

)
h1h2,


ẋ = h1

ξ2 cos θ,
ẏ = −h1

ξ2 sec x sin θ,
θ̇ = h1

ξ2 sin θ tan x + h2.

vertical part horizontal part

VERTICAL PART

In SR-arclength parametrization vertical part is equivalent to
equation of the mathematical pendulum β̈ = −r sinβ, that
was integrated explicitly in terms of Jacobi elliptic functions.
Here h1 = ξ cosβ/2, h2 = sinβ/2, h3 = 1

2ξβ̇, r = 1
ξ2 − 1.

Integral Manifolds: the Hamiltonian (green), ‖h‖2 (red), and
the full energy of pendulum (blue)

Elliptic ξ < 1 Linear ξ = 1 Hyperbolic ξ > 1

In spherical arclength vertical part reduces to linear

h′2(s) = h3(s), h′3(s) = (ξ2 − 1)h2(s).

EVALUATION OF FIRST CUSP TIME

In linear case smax(h20, h30) =
sgn(h30)−h20

h30
.

Define χ =
√
ξ2 − 1. In elliptic and hyperbolic cases

smax(χ, h20, h30) =


+∞ for κ < 0 or h20χ+ h30 = 0,
1
χ

log
(

s1(
√
κ+χ)

h20χ+h30

)
otherwise.

s1 = sgn (Re (h20χ+ h30)), κ = h2
30 + (1− h20)

2χ2 ∈ R.

HORIZONTAL PART

Horizontal part was explicitly integrated in terms of Jacobi
elliptic functions and elliptic integral of the third kind. Similar
formula are obtained as in SE(2) case.

Projections of cuspless extremal trajectories on S2

Elliptic ξ < 1 Linear ξ = 1 Hyperbolic ξ > 1

ASYMPTOTICS OF 1ST CONJUGATE TIME

Asymptotics near stable equilibrium of the pendulum

t1
conj =

2π
√

r
− 2((ϕ0 +

π

2
√

r
) mod

π
√

r
).

where
√

r =
√

1
ξ2 − 1, s1 = sgn h10,

ϕ0 = 1√
rF (arg( h30√

ξ2−1
+ i s1h20

k ), k2), k =
√

h2
20 +

h2
30

1−ξ2

WAVE FRONT

Wave fronts in Pmec(S2) in elliptic (green), linear (red) and
hyperbolic (blue) cases. Comparison with SE(2) shows local
similarity of wave fronts in SE(2) and SO(3).

SO(3) SO(3)

SE(2) and SO(3)

CUSP SURFACES IN LINEAR CASE

Red surface: endpoints of geodesics starting from cusp.
Blue surface: endpoints of geodesics ending in cusp.
In SO(3) case:

In SE(2) case:

PLANS

We plan to generalize our wavefront propagation algorithm
to SO(3), that would solve boundary values problem in
Pcurve(S2). Then use it for enhancement of spherical photos
including external cost C(γ(s)) = C(n(s), n′(s)) of retina
and for retinal vessel tracking.
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CONCLUSION

The topological behavior in phase space is very different for ξ < 1, ξ = 1 and ξ > 1. The curvature of the sphere affects the range R = {Exp(λ0, t)|t ≤ tcusp(λ0)} of the exponential map
of Pcurve(S2) considerably in comparison to Pcurve(R2). It is remarkable, that in contrast to Pcurve(R2) there exist nonoptimal cuspless sub-Riemannian geodesics (but they typically cross the
equator). We obtained expression for SR-geodesics in Pmec(S2), using parametrization SO(3) 3 R(x, y , θ) = eyA3 e−xA2 eθA1, motivated by analogy to SE(2). We evaluated first cusp time and
studied the range of exponential map. Based on these results, we plan to develop an algorithm, that solves boundary values problem in Pcurve(S2). Then use it for enhancement of spherical
photos of retina including external cost C(γ(s)) = C(n(s), n′(s)) and for retinal vessel tracking.
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