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CUT TIME IN SUB-RIEMANNIAN PROBLEM ON ENGEL GROUP

A. A. Ardentov1 and Yu. L. Sachkov1

Abstract. The left-invariant sub-Riemannian problem on the Engel group is considered. The problem
gives the nilpotent approximation to generic nonholonomic systems in four-dimensional space with two-
dimensional control, for instance to a system which describes motion of mobile robot with a trailer.

The global optimality of extremal trajectories is studied via geometric control theory. The global
diffeomorphic structure of the exponential mapping is described. As a consequence, the cut time is
proved to be equal to the first Maxwell time corresponding to discrete symmetries of the exponential
mapping.
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Introduction

This paper continues the study of the left-invariant sub-Riemannian problem on the Engel group started
in [1, 2]. This problem is the simplest rank 2 sub-Riemannian problem on a 4-dimensional space: it provides a
nilpotent approximation to a generic sub-Riemannian problem of such kind near a generic point.

A sub-Riemannian (SR) structure on a smooth manifold M is a vector distribution

∆ = {∆q ⊂ TqM | q ∈M} ⊂ TM
with a scalar product in ∆:

g = {gq — scalar product in ∆q | q ∈M}.
The subspaces ∆q ⊂ TqM and the scalar product gq : ∆q ×∆q → R depend smoothly on a point q ∈ M . The
dimension of the subspaces ∆q is constant (dim ∆q is called the rank of the distribution ∆).

A Lipschitz curve q : [0, t1] → M is horizontal if q̇(t) ∈ ∆q(t) for almost all t ∈ [0, t1]. The length of a

horizontal curve is l =
t1∫
0

g
(
q̇(t), q̇(t)

)1/2
dt. The sub-Riemannian distance between points q0, q1 ∈ M is the

infimum of lengths of horizontal curves that connect q0 to q1. A horizontal curve q(t), t ∈ [0, t1], is a (length)
minimizer if it has a minimum possible length among all horizontal curves that connect the points q(0) and
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q(t1). Description of minimizers is one of important problems of sub-Riemannian geometry. The most efficient
approach to this problem is given by geometric control theory [3–5], it consists of the following steps:

(1) proof of existence of minimizers,
(2) description of SR geodesics (i.e., curves whose small arcs are minimizers),
(3) selection of minimizers among geodesics.

Step (1) is straightforward. If M is connected and ∆ is bracket generating, i.e., Lieq∆ = TqM, ∀q ∈ M,
then any points q0, q1 ∈M can be connected one to another by a horizontal curve (Rashevsky-Chow theorem).
If additionally the point q1 is sufficiently close to q0, or if the SR distance is complete, or if ∆ and g are
left-invariant on a Lie group M , then q0 can be connected with q1 by a minimizer (Filippov theorem).

Step (2) is performed via application of Pontryagin maximum principle (PMP), which states that any geodesic
(thus any minimizer) is a projection of a trajectory of a certain Hamiltonian system on the cotangent bundle
T ∗M . So the second step reduces to the study of integrability of the Hamiltonian system of PMP and efficient
parameterization of trajectories of this system.

Step (3) is the hardest one. Local optimality of geodesics (i.e., optimality w.r.t. sufficiently close geodesics)
is studied via conjugate points estimates. For the study of global optimality in problems with a big symmetry
group, one can often obtain bounds (or explicit description) of cut time via the study of symmetries and global
structure of the exponential mapping. We suggest the following detailing of Step (3) first applied in [6] and
further developed in [7–16]:

(3.1) Discrete and continuous symmetries of the exponential mapping are found;
(3.2) Maxwell points corresponding to the symmetries are found (i.e., points where several geodesics obtained

one from another by a symmetry meet one another). These points (and their preimage via exponential
mapping) form the Maxwell strata in the image (resp., in the preimage) of the exponential mapping.
Along each geodesic, the first Maxwell time corresponding to the symmetries (i.e., the time when the
geodesic meets a Maxwell strata) is found;

(3.3) One proves that for any geodesic the first conjugate time is greater or equal to the first Maxwell time
corresponding to the symmetries. Here the homotopy invariance of Maslov index (number of conjugate
points on a geodesic) can be applied [17];

(3.4) One considers restriction of the exponential mapping to the subdomains cut out in preimage and image
of this mapping by the Maxwell strata corresponding to symmetries, and proves that this restriction is
a diffeomorphism via Hadamard global diffeomorphism theorem [18];

(3.5) On the basis of the global structure of the exponential mapping thus described, it is often possible to
prove that the cut time along a geodesic (i.e., time when it loses its global optimality) is equal to the
first Maxwell time corresponding to symmetries. Moreover, in this way one proves that for any terminal
point in a subdomain in the image of the exponential mapping, there exists a unique minimizer which
can be computed by inverting the exponential mapping in the subdomain;

(3.6) Finally, for systems with big symmetry group one can construct the full optimal synthesis, and numerical
algorithms and software for computation of optimal trajectories with given boundary conditions.

So far, the approach described has been applied in full just to several problems: SR problem in the flat
Martinet case [6], SR problems on SO (3) and SL (2) with the Killing metric [19], SR problem on SE (2) [11–13],
Euler elastic problem [14–16]. There are partial results on the nilpotent SR problem with the growth vector
(2, 3, 5) [7–10] and SR problem on SH (2) [20,21].

For the SR problem on the Engel group, Step (1), Step (2) and Steps (3.1), (3.2) are performed in [1] while
(3.3) is done in [2]. The aim of this paper is to perform Steps (3.4), (3.5). We recall the results previously
obtained in the next section.

The sub-Riemannian problem on the Engel group is a left-invariant problem on a Lie group. Such problems
receive significant attention in geometric control since they provide very symmetric models which can often
be studied explicitly in great detail. For left-invariant SR problems on Lie groups, one can often describe
optimal synthesis, the structure of spheres, cut and conjugate loci. This information can give insight for general
problems, where such a detailed study is much more complicated.
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Left-invariant SR problems on 3D and 4D Lie groups have recently been fully classified [22, 23]. In the
3-dimensional case, optimal synthesis is known for the Heisenberg group [24], for SO (3) and SL (2) with the
Killing metric [19] and for SE (2) [11–13]. This work continues a detailed study of the simplest 4-dimensional
case.

1. Previously obtained results

In this section we recall results on the SR problem on the Engel group obtained previously in works [1, 2].

1.1. Problem statement

The Engel group is the 4-dimensional Lie group represented by matrices as follows:

M =




1 b c d
0 1 a a2/2
0 0 1 a
0 0 0 1

 | a, b, c, d ∈ R

 .

It is a 4-dimensional nilpotent Lie group, connected and simply connected (see an explanation of the name
”Engel” for this group in [25], Sec. 6.11).

The Lie algebra of the Engel group is the four-dimensional nilpotent Lie algebra L = span(X1, X2, X3, X4)
with the multiplication table

X2X2X1X1

X3X3

X4X4

X3 = [X1, X2],

X4 = [X1, X3],

[X2, X3] = [X1, X4] = [X2, X4] = 0. (1)

Thus it has graduation

L = L1 ⊕ L2 ⊕ L3,

L1 = span(X1, X2), L2 = RX3, L3 = RX4,

[Li, Lj ] = Li+j , Lk = {0} for k ≥ 4,

and the Engel group is a Carnot group [25].
We consider the sub-Riemannian problem on the Engel group M for the left-invariant sub-Riemannian

structure generated by the orthonormal frame X1, X2:

q̇ = u1X1(q) + u2X2(q), q ∈M, (u1, u2) ∈ R2,

q(0) = q0, q(t1) = q1,

l =

∫ t1

0

√
u2

1 + u2
2 dt→ min .
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In appropriate coordinates q = (x, y, z, v) on the Engel group M ∼= R4, the problem is stated as follows:

q̇ =


ẋ
ẏ
ż
v̇

 = u1


1
0
−y/2

0

+ u2


0
1
x/2

(x2 + y2)/2

 , q = (x, y, z, v) ∈M = R4, (u1, u2) ∈ R2, (2)

q(0) = q0 = (x0, y0, z0, v0), q(t1) = q1 = (x1, y1, z1, v1), (3)

l =

∫ t1

0

√
u2

1 + u2
2 dt→ min . (4)

By virtue of the multiplication table (1) for the vector fields of the orthonormal frame

X1 =
∂

∂x
− y

2

∂

∂z
, X2 =

∂

∂y
+
x

2

∂

∂z
+
x2 + y2

2

∂

∂v

and their Lie brackets

X3 = [X1, X2] =
∂

∂z
+ x

∂

∂v
, X4 = [X1, X3] =

∂

∂v
,

system (2) is completely controllable, i.e., any points q0, q1 ∈ R4 can be connected by its trajectory.
Since the problem is invariant under left shifts on the Engel group, we can assume that the initial point is

the identity q0 = (x0, y0, z0, v0) = (0, 0, 0, 0).

1.2. Parameterization of geodesics

Existence of optimal solutions of problem (2)–(4) is implied by Filippov theorem [4]. By the Cauchy-
Schwarz inequality, it follows that sub-Riemannian length minimization problem (4) is equivalent to the action
minimization problem: ∫ t1

0

u2
1 + u2

2

2
dt→ min . (5)

Pontryagin maximum principle [4, 26] was applied to the resulting optimal control problem (2), (3), (5) in [1].
A sub-Riemannian geodesic can be normal or abnormal, or both. For the SR problem on the Engel group,

each abnormal geodesic is simultaneously normal, thus in the sequel we consider only normal geodesics.
Normal geodesics are projections qt = π(λt) via the canonical projection π : T ∗M → M of solutions to the

Hamiltonian system

λ̇ = ~H(λ), λ ∈ T ∗M, (6)

with the Hamiltonian function H = 1
2 (h2

1 +h2
2). Here and below hi(λ) = 〈λ,Xi(q)〉 , λ ∈ T ∗M, i = 1, . . . , 4, are

Hamiltonians that correspond to the left-invariant frame and are linear on fibers of the cotangent bundle T ∗M .
Arclength parameterized geodesics (i.e., with velocity g(q̇t, q̇t) ≡ 1) are projections of extremals λt lying on

the level surface {λ ∈ T ∗M | H(λ) = 1/2}.
Introduce coordinates (θ, c, α) on the level surface {λ ∈ T ∗M | H = 1/2} by the following formulas:

h1 = cos(θ + π/2), h2 = sin(θ + π/2), h3 = c, h4 = α.

On this surface the normal Hamiltonian system (6) takes the following form:

θ̇ = c, ċ = −α sin θ, α̇ = 0, (7)

q̇ = cos θ X1(q) + sin θX2(q), q(0) = q0.
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The family of all normal extremals is parameterized by points of the phase cylinder of pendulum

C =
{
λ ∈ T ∗q0M | H(λ) = 1/2

}
=
{

(θ, c, α) | θ ∈ S1, c, α ∈ R
}
,

and is given by the exponential mapping

Exp: N = C × R+ →M,

Exp(λ, t) = qt = (xt, yt, zt, vt).

The energy integral of pendulum (7) is given by E =
c2

2
−α cos θ. The cylinder C has the following stratification

corresponding to the particular type of trajectories of the pendulum:

C = ∪7
i=1Ci, Ci ∩ Cj = ∅, i 6= j, λ = (θ, c, α),

C1 = {λ ∈ C | α 6= 0, E ∈ (−|α|, |α|)}, (8)

C2 = {λ ∈ C | α 6= 0, E ∈ (|α|,+∞)}, (9)

C3 = {λ ∈ C | α 6= 0, E = |α|, c 6= 0}, (10)

C4 = {λ ∈ C | α 6= 0, E = −|α|}, (11)

C5 = {λ ∈ C | α 6= 0, E = |α|, c = 0}, (12)

C6 = {λ ∈ C | α = 0, c 6= 0}, (13)

C7 = {λ ∈ C | α = c = 0}. (14)

Further, the sets Ci, i = 1, . . . , 5, are divided into subsets determined by the sign of α (see Fig. 1):

C+
i = Ci ∩ {α > 0}, C−i = Ci ∩ {α < 0}, i = 1, . . . , 5.

C4
+C4
+

-Π-Π 00 ΠΠ

C4
+C4
+

C5
+C5
+

C3
+C3
+

C3
+C3
+

C1
+C1
+

C2
+C2
+

C2
+C2
+

Θ

c

00 ΠΠ 2 Π2 Π

C4
-C4
-

C5
-C5
-

C3
-C3
-

C3
-C3
-

C1
-C1
-

C2
-C2
-

C2
-C2
-

Θ

c

Figure 1. Stratification of C for α > 0 and for α < 0

In order to parameterize extremal trajectories, coordinates (ϕ, k, α) in the domains C1 and C2 were introduced
in [1] in the following way.
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In the domain C+
1

k =

√
E + α

2α
=

√
c2

4α
+ sin2 θ

2
∈ (0, 1),

sin
θ

2
= k sn(

√
αϕ), cos

θ

2
= dn(

√
αϕ),

c

2
= k
√
α cn(

√
αϕ), ϕ ∈ [0, 4K(k)].

In the domain C+
2

k =

√
2α

E + α
=

1√
c2

4α + sin2 θ
2

∈ (0, 1),

sin
θ

2
= sgn c sn

√
αϕ

k
, cos

θ

2
= cn

√
αϕ

k
,

c

2
= sgn c

√
α

k
dn

√
αϕ

k
, ϕ ∈ [0, 2kK(k)].

Here and below dn, sn, cn are Jacobi elliptic functions depending on k, K(k) is the complete elliptic integral of
the first kind [27].

In the domains C−1 , C−2 the coordinates ϕ and k are defined as follows:

ϕ(θ, c, α) = ϕ(θ − π, c,−α), k(θ, c, α) = k(θ − π, c,−α).

Immediate differentiation shows that system (7) rectifies in the coordinates (ϕ, k, α):

ϕ̇ = 1, k̇ = 0, α̇ = 0.

In terms of these coordinates, geodesics qt = Exp(λ, t) with λ = (θ, c, α) ∈
⋃3
i=1 Ci and α = 1 are parame-

terized as follows.
If λ ∈ C1, then

xt = 2k(cnϕt − cnϕ),

yt = 2
(

E(ϕt)− E(ϕ)
)
− t,

zt = 2k
(

snϕt dnϕt − snϕdnϕ− yt
2

(cnϕt + cnϕ)
)
,

vt =
y3
t

6
+ 2k2 cn2 ϕyt − 4k2 cnϕ(snϕt dnϕt − snϕdnϕ)

+ 2k2

(
2

3
cnϕt dnϕt snϕt −

2

3
cnϕdnϕ snϕ+

1− k2

3k2
t+

2k2 − 1

3k2

(
E(ϕt)− E(ϕ)

))
. (15)

Here and below E(ϕ) =
∫ ϕ

0
dn2 tdt = E

(
am(ϕ), k

)
is the Jacobi epsilon function and E(u, k) is incomplete

elliptic integral of the second kind depending on Jacobi amplitude u = am(ϕ) and k. The Jacobi amplitude
am(ϕ) is the inverse function of the incomplete elliptic integral of the first kind: F

(
am(ϕ)

)
= ϕ.
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If λ ∈ C2, then

xt =
2 sgn c

k

(
dnψt − dnψ

)
,

yt =
k2 − 2

k2
t+

2

k

(
E(ψt)− E(ψ)

)
,

zt = −xtyt
2
− 2 sgn cdnψ

k
yt + 2 sgn c (cnψt snψt − cnψ snψ),

vt =
4

k

(
1

3
cnψt dnψt snψt −

1

3
cnψ dnψ snψ − 1− k2

3k3
t− k2 − 2

6k2

(
E(ψt)− E(ψ)

))
+
y3
t

6
+

2yt
k2

dn2 ψ − 4

k
dnψ

(
cnψt snψt − cnψ snψ

)
,

ψ =
ϕ

k
, ψt = ψ +

t

k
. (16)

If λ ∈ C3, then

xt = 2 sgn c

(
1

coshϕt
− 1

coshϕ

)
,

yt = 2(tanhϕt − tanhϕ)− t,

zt = −xtyt
2
− 2 sgn c

coshϕ
yt + 2 sgn c

(
tanhϕt
coshϕt

− tanhϕ

coshϕ

)
,

vt =
2

3

(
tanhϕt − tanhϕ+ 2

tanhϕt

cosh2 ϕt
− 2

tanhϕ

cosh2 ϕ

)
+
y3
t

6
+

2yt

cosh2 ϕ
− 4

coshϕ

(
tanhϕt
coshϕt

− tanhϕ

coshϕ

)
. (17)

Parameterization of geodesics for λ ∈
⋃3
i=1 Ci and arbitrary α 6= 0 is obtained from the above parameteriza-

tion for α = 1 via the following symmetries of the Hamiltonian system: dilations

δµ : (θ, c, α, t, x, y, z, v) 7→ (θ, c/µ, α/µ2, µt, µx, µy, µ2z, µ3v), µ > 0,

δµ : (ϕ, k, α) 7→ (µϕ, k, α/µ2),

and reflection

(θ, c, α, t, x, y, z, v) 7→ (θ − π, c,−α, t,−x,−y, z,−v),

(ϕ, k, α) 7→ (ϕ, k,−α).

In the remaining cases λ ∈
⋃7
i=4 Ci geodesics are parameterized by elementary functions as follows.

λ ∈ C4 :

xt = 0, yt = t sgnα, zt = 0, vt =
t3

6
sgnα. (18)

λ ∈ C5 :

xt = 0, yt = −t sgnα, zt = 0, vt = − t
3

6
sgnα. (19)
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λ ∈ C6 :

xt =
cos(ct+ θ)− cos θ

c
, yt =

sin(ct+ θ)− sin θ

c
,

zt =
ct− sin(ct)

2c2
, vt =

3 cos θ − 2ct sin θ − 4 cos(ct+ θ) + cos(2ct+ θ)

4c3
. (20)

λ ∈ C7 :

xt = −t sin θ, yt = t cos θ, zt = 0, vt =
t3

6
cos θ. (21)

Projections of geodesics to the plane (x, y) are Euler elasticae (stationary configurations of planar elastic rod
with fixed endpoints and tangents at endpoints) [14–16,28,29]: inflexional ones for λ ∈ C1, non-inflexional ones
for λ ∈ C2, critical ones for λ ∈ C3, straight lines for λ ∈ C4 ∪ C5 ∪ C7, and circles for λ ∈ C6.

1.3. Symmetries of exponential mapping

A pair of mappings

s : N → N, s : M →M

is called a symmetry of the exponential mapping if it commutes with this mapping:

s ◦ Exp(λ, t) = Exp ◦s(λ, t), (λ, t) ∈ N.

1.4. Dilations

A one-parameter group of symmetries of the exponential mapping is formed by dilations

δµ : (θ, c, α, t) 7→ (θ, c/µ, α/µ2, µt),

δµ : (x, y, z, v) 7→ (µx, µy, µ2z, µ3z), µ > 0. (22)

1.5. Reflections

The following mappings εi : C → C preserve the field of directions of the vertical part of the Hamiltonian

vector field ~Hv = c ∂∂θ − α sin θ ∂∂c ∈ Vec(C):

ε1 : (θ, c, α) 7→ (θ,−c, α), ε2 : (θ, c, α) 7→ (−θ, c, α),

ε3 : (θ, c, α) 7→ (−θ,−c, α), ε4 : (θ, c, α) 7→ (θ + π, c,−α),

ε5 : (θ, c, α) 7→ (θ + π,−c,−α), ε6 : (θ, c, α) 7→ (−θ + π, c,−α),

ε7 : (θ, c, α) 7→ (−θ + π,−c,−α).

More precisely, εi∗ ~Hv = ~Hv for i = 3, 4, 7, and εi∗ ~Hv = − ~Hv for i = 1, 2, 5, 6. The action of reflections εi is
continued to symmetries of the exponential mapping as follows.

The action εi : N → N is defined as

εi(λ, t) =

{(
εi(λ), t

)
, if εi∗

~Hv = ~Hv,(
εi ◦ et ~Hv (λ), t

)
, if εi∗ ~Hv = − ~Hv.
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The action εi : M →M is defined as

εi(q) = εi(x, y, z, v) = qi = (xi, yi, zi, vi), (23)

(x1, y1, z1, v1) = (x, y,−z, v − xz), (24)

(x2, y2, z2, v2) = (−x, y, z, v − xz), (25)

(x3, y3, z3, v3) = (−x, y,−z, v), (26)

(x4, y4, z4, v4) = (−x,−y, z,−v), (27)

(x5, y5, z5, v5) = (−x,−y,−z,−v + xz), (28)

(x6, y6, z6, v6) = (x,−y, z,−v + xz), (29)

(x7, y7, z7, v7) = (x,−y,−z,−v). (30)

Thus defined reflections εi, i = 1, . . . , 7, form a discrete group of symmetries of the exponential mapping
(together with the identity mapping).

1.6. Maxwell points

A point qt of an extremal trajectory qs = Exp(λ, s) is called a Maxwell point if there exists another extremal

trajectory q̃s = Exp(λ̃, s), q̃s 6≡ qs, such that q̃t = qt. The instant t is called a Maxwell time. It is known [10]
that an extremal trajectory cannot be optimal after a Maxwell time.

The main result of paper [1], given by Th. 1.1 below, provides an upper bound of the cut time along extremal
curves

tcut(λ) = sup{t > 0 | Exp(λ, s) is optimal for s ∈ [0, t]}.
Define the following function t1MAX : C → (0,+∞]:

λ ∈ C1 ⇒ t1MAX = min
(
2p1
z(k), 4K(k)

)
/σ, (31)

λ ∈ C2 ⇒ t1MAX = 2kK(k)/σ, (32)

λ ∈ C6 ⇒ t1MAX = 2π/|c|, (33)

λ ∈ C3 ∪ C4 ∪ C5 ∪ C7 ⇒ t1MAX = +∞. (34)

where σ =
√
|α|; K(k) =

∫ π
2

0

dt√
1− k2 sin2 t

; p1
z(k) ∈

(
K(k), 3K(k)

)
is the first positive root of the function

fz(p, k) = dn p sn p+ (p− 2 E(p)) cn p;

Theorem 1.1 ( [1], Th. 3). For any λ ∈ C

tcut(λ) ≤ t1MAX(λ). (35)

Proposition 1.2. The function t1MAX : C → (0,+∞] has the following invariant properties:

(1) t1MAX(λ) depends only on the values of E and |α|,
(2) t1MAX(λ) is an integral of the vector field ~Hv,
(3) t1MAX(λ) is invariant w.r.t. reflections: if λ ∈ C, λi = εi(λ) ∈ C, then t1MAX(λi) = t1MAX(λ),
(4) t1MAX respects the action of dilations: if λ ∈ C, λµ = δµ(λ), then t1MAX(λµ) = µt1MAX(λ).

Proof. (1) We denote by t the union of disjoint sets. Notice first that the decomposition

C = C1 t C2 t C35 t C4 t C6 t C7 (36)
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with C35 = C3∪C5 = {λ ∈ C | α 6= 0, E = |α|} is determined only by the functions E and |α|, see definitions (8)–
(14). Thus it remains to show that restriction of t1MAX to each of the subsets in decomposition (36) depends
only on E and |α|.

If λ ∈ C1, then k =

√
E + |α|

2|α|
, thus k = k(E, |α|), so t1MAX = t1MAX(E, |α|).

The case λ ∈ C2 is similar to the case λ ∈ C1.
If λ ∈ C35 ∪ C4 ∪ C7, then t1MAX = +∞ = t1MAX(E, |α|).

Finally, if λ ∈ C6, then t1MAX =
2π

|c|
=

√
2π√
E

.

(2) Since E and α are integrals of the vector field ~Hv, then t1MAX = t1MAX(E, |α|) is an integral of ~Hv as well.

(3) Let λ ∈ C, εi(λ) = λi ∈ C. Since E(λi) = E(λ), α(λi) = ±α(λ) and t1MAX = t1MAX(E, |α|), then
t1MAX(λi) = t1MAX(λ).

(4) Let λ ∈ C and λµ = δµ(λ), µ > 0. Since we have E(λµ) =
1

µ2
E(λ) and α(λµ) =

1

µ2
α(λ), then

δµ(Ci) = Ci, i = 1, . . . , 7, and k(λµ) = k(λ). Then it follows from the definition of the function t1MAX that
t1MAX(λµ) = µ · t1MAX(λ) for λ ∈ Ci and each i = 1, . . . , 7. �

1.7. Conjugate points

A point qt = Exp(λ, t) is called a conjugate point for q0 if ν = (λ, t) is a critical point of the exponential
mapping and that is why qt is the corresponding critical value:

dν Exp: TνN → TqtM is degenerate.

The instant t is called a conjugate time along the extremal trajectory qs = Exp(λ, s), s ≥ 0.
The first conjugate time along a trajectory Exp(λ, s) is denoted by

t1conj(λ) = min {t > 0 | t is a conjugate time along Exp(λ, s), s ≥ 0} .

The trajectory Exp(λ, s) loses its local optimality at the instant t = t1conj(λ) (see [4]).

The following lower bound on the first conjugate time is the main result of work [2].

Theorem 1.3 ( [2]). For any λ ∈ C

t1conj(λ) ≥ t1MAX(λ). (37)

2. Decompositions in preimage and image of exponential mapping

In this section we describe decomposition (43) in the image, and decomposition (49) in the preimage of the
exponential mapping, which will be proved to be diffeomorphic via the exponential mapping in Th. 3.20.

2.1. Decomposition in M

Let M̂ = M\{q0}, then M = M̂ t {q0}. Further, we denote the subset containing the Maxwell strata MAX1

and MAX2:

M ′ = {q ∈ M̂ | xz = 0}
and its complement

M̃ = {q ∈ M̂ | xz 6= 0},
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then

M̂ = M̃ tM ′. (38)

Denote the connected components of the set M̃ :

M1 = {q ∈M | x < 0, z > 0}, (39)

M2 = {q ∈M | x < 0, z < 0}, (40)

M3 = {q ∈M | x > 0, z < 0}, (41)

M4 = {q ∈M | x > 0, z > 0}, (42)

so that

M̃ =

4⊔
i=1

Mi. (43)

This decomposition agrees with the action of reflections and dilations as described in the following statement.

Proposition 2.1.

(1) Reflections εj ∈ G permute the domains Mi according to Table 1.
(2) Dilations δµ, µ > 0, preserve the domains Mi.

Id, ε6 ε1, ε7 ε2, ε4 ε3, ε5

M1 M2 M4 M3

M2 M1 M3 M4

M3 M4 M2 M1

M4 M3 M1 M2

Table 1. Action of the reflections εj on the domains Mi

Proof. Follows immediately from the definitions of the actions of reflections εj : M → M , see (23)–(30), and
dilations δµ : M →M , see (22). �

2.2. Decomposition in N

Denote the subset in preimage of the exponential mapping that corresponds to all potentially optimal
geodesics:

N̂ = {(λ, t) ∈ N | t ≤ t1MAX(λ)}.
If (λ, t) ∈ N\N̂ , then the geodesic Exp(λ, s), s ∈ [0, t], is non-optimal. We decompose the set N̂ into

subsets corresponding to the subsets of the set M̂ (Subsec. 2.1), the proof of this correspondence will be given
in Subsec. 2.3. Let

N ′ = {(λ, t) ∈ N | t = t1MAX(λ) or ct/2 sin θt/2 = 0},

Ñ = {(λ, t) ∈ N | t < t1MAX(λ), ct/2 sin θt/2 6= 0},

then

N̂ = Ñ tN ′. (44)
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Figure 2. The trace of domains Di in the set {t = 0} for α ≥ 0 and for α < 0

The following sets will play an important role in the description of the global structure of the exponential
mapping:

D1 = {(λ, t) ∈ N | t ∈
(
0, t1MAX(λ)

)
, sin θt/2 > 0, ct/2 > 0}, (45)

D2 = {(λ, t) ∈ N | t ∈
(
0, t1MAX(λ)

)
, sin θt/2 > 0, ct/2 < 0}, (46)

D3 = {(λ, t) ∈ N | t ∈
(
0, t1MAX(λ)

)
, sin θt/2 < 0, ct/2 < 0}, (47)

D4 = {(λ, t) ∈ N | t ∈
(
0, t1MAX(λ)

)
, sin θt/2 < 0, ct/2 > 0}. (48)

We have the obvious decomposition

Ñ =

4⊔
i=1

Di. (49)

The trace of domains Di in the set {(λ, t) ∈ N | t = 0} is shown in Fig. 2.

Proposition 2.2.

(1) Reflections εj ∈ G permute the sets Di according to Table 2.
(2) Dilations δµ, µ > 0, preserve the sets Di.

Id, ε6 ε1, ε7 ε2, ε4 ε3, ε5

D1 D2 D4 D3

D2 D1 D3 D4

D3 D4 D2 D1

D4 D3 D1 D2

Table 2. Action of the reflections εj on the domains Di

Proof. (1) We prove only the equality ε1(D1) = D2, all the rest equalities given in Table 2 are proved similarly.
Let (λ, t) = (θ, c, α, t) ∈ D1 and ε1(λ, t) = (λ1, t) = (θ1, c1, α1, t), we show that (λ1, t) ∈ D2.
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Denote λt/2 = (θt/2, ct/2, α) = e(t/2) ~Hv (λ) and λ1
t/2 = (θ1

t/2, c
1
t/2, α

1) = e(t/2) ~Hv (λ1). Since ε1
∗
~Hv = − ~Hv, then

λ1 = ε1 ◦ et ~Hv (λ), thus

λ1
t/2 = e(t/2) ~Hv ◦ ε1 ◦ et ~Hv (λ) = ε1 ◦ e−(t/2) ~Hv ◦ et ~Hv (λ) = ε1 ◦ e(t/2) ~Hv (λ) = ε1(λt/2).

That is,
(θ1
t/2, c

1
t/2, α

1) = (θt/2,−ct/2, α).

The inclusion (λ, t) ∈ D1 means that

t ∈
(
0, t1MAX(λ)

)
, sin θt/2 > 0, ct/2 > 0,

thus sin θ1
t/2 > 0, c1t/2 < 0. Moreover, since t1MAX(λ1) = t1MAX ◦ ε1(λ) = t1MAX(λ) by Propos. 1.2, then

t ∈
(
0, t1MAX(λ1)

)
. Consequently, (λ1, t) ∈ D2.

We proved that ε1(D1) ⊂ D2. It follows similarly that ε1(D2) ⊂ D1. Since ε1 ◦ ε1 = Id on N , we have
ε1(D1) = D2.

(2) Let (λ, t) = (θ, c, α, t) ∈ N, (λµ, tµ) = δµ(λ, t) = (θ, c/µ, α/µ2, µt). Since t1MAX(λµ) = µt1MAX(λ) by
Propos. 1.2, it is obvious that if (λ, t) ∈ D1, then (λµ, tµ) ∈ D1. Thus δµ(D1) ⊂ D1. Since d1/µ = (δµ)−1, then
δµ(D1) = D1. It follows similarly that δµ(Di) = Di for i = 2, 3, 4. �

2.3. Basic properties of exponential mapping

In this subsection we describe some simple properties on the action of the exponential mapping on the subsets
of N defined in the previous subsection.

First of all, Exp(N̂) ⊃ M̂ since for any point q1 ∈ M̂ there exists an optimal trajectory qs = Exp(λ, s) such

that qt1 = q1, thus t1 ≤ tcut(λ) ≤ t1MAX(λ), i.e., Exp(λ, t1) = q1 with (λ, t1) ∈ N̂ . However, Maxwell points in

M̂ have several preimages in N̂ . Moreover, the mapping Exp |N̂ is degenerate at points (λ, t) where t = t1MAX(λ)
is a conjugate time along the trajectory Exp(λ, s).

In the next two propositions we show that the action of Exp is compatible with decompositions (44), (38),
and (49), (43).

Proposition 2.3. There holds the inclusion

Exp(N ′) ⊂ {q ∈M | xz = 0} = M ′ t {q0}. (50)

Proof. The reflection ε4 and dilations δµ, µ > 0, are symmetries of Exp and preserve the sets N ′,M ′ and {q0}.
Since ε4 : α 7→ −α and δµ : α 7→ α/µ2, we can assume in the proof of inclusion (50) that α ∈ {0, 1}.

Let (λ, t) ∈ N ′ and qt = (xt, yt, zt, vt) = Exp(λ, t), we show that xtzt = 0.

Suppose first that α = 1, then λ ∈
⋃5
i=1 Ci.

Let λ ∈ C1, then we use parameterization of extremals (15). Since (λ, t) ∈ N ′, then ct/2 sin θt/2 = 0 or

t = t1MAX(λ). If ct/2 = 2k cn τ = 0, then cn τ = 0, thus zt = 0 in view of (7.3) [1]. If sin θt/2 = 2k sn τ dn τ = 0,

then xt = 0 in view of (7.2) [1]. Finally, if t = t1MAX(λ), then p = p1
z(k) or p = 2K(k) by (31), thus zt = 0 or

xt = 0 by (7.2) and (7.3) [1].
The case λ ∈ C2 ∪ C3 is considered similarly to the case λ ∈ C1.
If λ ∈ C4 ∪ C5, then xt = 0 by (18), (19).
Now suppose that α = 0, thus λ ∈ C6 ∪ C7.
Let λ ∈ C6, then we use parameterization of extremals (20). The case ct/2 = 0 is impossible. If sin θt/2 = 0,

then t = 2π/|c|, thus xt = 0. If t = t1MAX(λ) = 2π/|c| (33), then xt = 0 as well.
Finally, if λ ∈ C7, then zt = 0 by (20). �

Proposition 2.4. For any i = 1, . . . , 4, we have Exp(Di) ⊂Mi.
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Proof. By virtue of the reflections εi (Propos. 2.1, 2.2), the proof of this proposition reduces to the case i = 1.
So let (λ, t) ∈ D1, we prove that qt = Exp(λ, t) ∈M1.

The reflection ε6 and the dilations δµ, µ > 0, preserve the domains D1 and M1, and act on the parameter α

as ε6 : α 7→ −α, δµ : α 7→ α

µ2
, thus we can assume in this proof that α ∈ {0, 1}.

Since (λ, t) ∈ D1, then sin θt/2 > 0, ct/2 > 0, t ∈
(
0, t1MAX(λ)

)
.

Let α = 1, then λ ∈ C1 ∪ C2 ∪ C3.
Let λ ∈ C1. Then sin θt/2 = 2k sn τ dn τ > 0, ct/2 = 2k cn τ > 0. Since in this case t ∈

(
0, t1MAX(λ)

)
and

t1MAX(λ) = min(2p1
z, 4K), then fz(p, k) > 0 and sn p > 0. Then formulas (7.2), (7.3) [1] imply that xt < 0, zt > 0,

i.e., qt ∈M1.
The cases λ ∈ C2 and λ ∈ C3 are considered similarly to the case λ ∈ C1.

Now let α = 0, then λ ∈ C6. Then xt = −2

c
sin θt/2 sin

ct

2
< 0 and zt =

ct− sin(ct)

2c2
> 0, thus qt ∈M1.

We proved that Exp(D1) ⊂M1. �

Our goal is to prove that the mappings Exp: Di →Mi, i = 1, . . . , 4, are diffeomorphisms, see Th. 3.21. This
is done in Section 3 via the following Hadamard global diffeomorphism theorem.

Theorem 2.5 ( [18]). Let F : X → Y be a smooth mapping between smooth manifolds of equal dimension. Let
the following conditions hold:

(1) X is connected,
(2) Y is connected and simply connected,
(3) F is nondegenerate,
(4) F is proper

(
i.e., F−1(K) ⊂ X is compact for a compact K ⊂ Y

)
.

Then F is a diffeomorphism.

2.4. Topological properties of decompositions in M and N

We prove that hypotheses (1), (2) of Th. 2.5 are verified for the mappings Exp: Di →Mi.

Definition 2.6. Suppose X is a topological space and f1, f2 : X → R. Then f1 ∼ f2 on a sequence {λn} ⊂ X

if lim
n→∞

f1(λn)

f2(λn)
= 1.

Proposition 2.7.

(1) The sets Di ⊂ N, i = 1, . . . , 4, are open and connected.
(2) The sets Mi ⊂M, i = 1, . . . , 4, are open, connected and simply connected.

In the proof of item (1) of this proposition we need the following statement.

Proposition 2.8. The function t1MAX : C → (0,+∞] is continuous on the set C\C4, and is smooth on the set
C0

1 ∪ C2, where C0
1 = {λ ∈ C1 | k 6= k0}.

Remark 2.9. We assume in (0,+∞] the natural basis of topology:

(a, b), (a,+∞], 0 < a < b < +∞.

Proof. Let λn → λ̄ as n → ∞, where λn, λ̄ ∈ C\C4 = (∪3
i=1Ci) ∪ (∪7

i=5Ci). We denote tn = t1MAX(λn) and
t̄ = t1MAX(λ̄), then prove that tn → t̄ as n→ +∞.

1. Let λn ∈ C1, then λ̄ ∈ cl(C1)\C4 = C1 ∪ C3 ∪ C5 ∪ C7.

1.1. Let λ̄ ∈ C1. The function t1MAX|C1
=

min
(
2p1
z(k), 4K(k)

)
σ

is continuous since for k ∈ (0, 1) the function

min
(
p1
z(k), 2K(k)

)
is continuous (see Cor. 3.1 [16]), thus tn → t̄.
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1.2. Let λ̄ ∈ C3 ∪ C5. Then kn = k(λn) → 1, K(kn) → +∞, p1
z(kn) → +∞, σ(λn) → σ̄ > 0. Thus

tn → +∞ = t̄.

1.3. Let λ̄ ∈ C7. Then αn → 0. Since min
(
2p1
z(k), 4K(k)

)
> 2K(k) > π, then tn → +∞ = t̄.

2. Let λn ∈ C2, then λ̄ ∈ cl(C2)\C4 = C2 ∪ C3 ∪ C5 ∪ C6 ∪ C7.

2.1. Let λ̄ ∈ C2. The function t1MAX|C2
=

2K(k)k

σ
is continuous, thus tn → t̄.

2.2. Let λ̄ ∈ C3 ∪ C5. This case is similar to case 1.2.

2.3. Let λ̄ ∈ C6. Then

αn = α(λn)→ ᾱ = 0, cn = c(λn)→ c̄ 6= 0,

En = E(λn)→ c̄2

2
= Ē 6= 0, kn = k(λn) =

√
2|αn|

En + |αn|
∼

2
√
|αn|
|c̄|

→ 0,

tn =
2K(kn)kn√
|αn|

∼ 2K(0) · 2

|c̄|
=

2π

|c̄|
= t̄,

i.e., tn → t̄.

2.4. Let λ̄ ∈ C7. Then αn → 0, cn → 0. Thus En → 0, so
kn√
|αn|

=

√
2

En + |αn|
→ +∞. Consequently,

tn =
2K(kn)kn√
|αn|

→ +∞ = t̄.

3. Let λn ∈ C3, then λ̄ ∈ cl(C3)\C4 = C3 ∪ C5 ∪ C7, and this case is similar to cases 1.2 and 1.3.

4. Let λn ∈ C5, then λ̄ ∈ cl(C5) = C5 ∪ C7, and tn = +∞ = t̄.

5. Let λn ∈ C6, then λ̄ ∈ cl(C6) = C6 ∪ C7.

5.1. Let λ̄ ∈ C6. Since the function t1MAX|C6
=

2π

|c|
is continuous, then tn → t̄.

5.2. Let λ̄ ∈ C7. Then cn → 0, thus tn =
2π

|cn|
→ +∞ = t̄.

The function t1MAX(λ) is smooth on C0
1 since for λ ∈ C1 we have by virtue of (31):

k < k0 ⇒ t1MAX =
2p1
z(k)√
|α|
∈ C∞,

k > k0 ⇒ t1MAX =
4K√
|α|
∈ C∞.

Similarly, t1MAX(λ) is smooth on C2 by virtue of (32). The proof of Propos. 2.8 is complete. �

Remark 2.10. The function t1MAX is discontinuous on C4.

Indeed, let λn ∈ C1 be such that k(λn)→ 0 and α(λn)→ ᾱ 6= 0. Then λn → λ̄ ∈ C4 but

t1MAX(λn)→ 2p1
z(0)√
|ᾱ|

< t1MAX(λ̄) = +∞.

Here p = p1
z(0) is the minimal positive root of the equation fz(p, 0) = sin p− p cos p = 0, thus p ∈ (π, 3π/2).

Now we prove Propos. 2.7.



16 TITLE WILL BE SET BY THE PUBLISHER

Proof. (1) Reflections εi : N → N are diffeomorphisms and permute the sets Di, thus it is sufficient to prove
that the set D1 = {(λ, t) ∈ N | sin θt/2 > 0, ct/2 > 0, t < t1MAX(λ)} is open and connected.

Consider the vector field P = t
2 (c ∂∂θ − α sin θ ∂∂c ) ∈ Vec(N). Denote the flow of this vector field for time 1 as

eP ∈ Diff(N). We have

eP (θ, c, α, t) = eP (λ, t) =
(
e
t
2
~Hv (λ), t

)
= (θt/2, ct/2, α, t),

thus eP (D1) = D̃1, where

D̃1 = {(λ, t) ∈ N | sin θ > 0, c > 0, t < t1MAX(λ, t)}.
By Propos. 2.8, the function

(
t − t1MAX(λ)

)
: N → (0,+∞] is continuous on the set N\N4 ⊃ D̃1, thus

the set D̃1 is open. Moreover, the domain D̃1 is a subgraph of the function t1MAX(λ) on a connected domain

{(θ, c, α) ∈ C | θ ∈ (0, π), c > 0, α ∈ R}, thus D̃1 is connected.

We proved that D̃1 is open and connected, thus D1 = e−P (D̃1) is open and connected as well.

(2) It is obvious from definitions (39)–(42) that the sets Mi, i = 1, . . . 4, are open, connected and simply
connected. �

3. Diffeomorphic properties of exponential mapping

In this section we prove that restriction of the exponential mapping to the subdomains Di,Mi is a diffeo-
morphism.

Lemma 3.1. If Exp : D1 →M1 is proper, then Exp : Di →Mi is proper for i = 2, 3, 4.

Proof. Follows immediately from Propositions 2.1, 2.2. �

Lemma 3.2. The mapping Exp : D1 → M1 is proper iff there exists no sequence {νn} ⊂ D1 = (D1 ∩ N1) ∪
(D1 ∩N2) ∪ (D1 ∩N3) ∪ (D1 ∩N6), such that νn → ν̄ ∈ cl(D1)\D1 and Exp(νn)→ q̄ ∈M1.

Proof. It follows from the definition of a proper mapping that the mapping Exp : D1 → M1 is proper iff there
exists no sequence {νn} ⊂ D1, such that νn → ν̄ ∈ cl(D1)\D1 and Exp(νn)→ q̄ ∈M1.

Moreover, the definition of D1 (45) gives the decomposition

D1 = (D1 ∩N1) ∪ (D1 ∩N2) ∪ (D1 ∩N3) ∪ (D1 ∩N6).

�

Let us introduce the following sets for arbitrary ε ∈ (0, 1):

Sε := {ν ∈ N | θt/2 ∈ [ε, π − ε], ct/2 ∈ [ε, 1/ε], |α| ≤ 1/ε, t ∈ [ε, 1/ε], t1MAX(λ)− t ≥ ε}.

Lemma 3.3. The set Sε is compact for any ε > 0.

Proof. Let {νn} ⊂ Sε be an arbitrary sequence. To prove the lemma, we need to find a subsequence νnm which
tends to ν̄ ∈ Sε as m→∞.

Since α, t are bounded on Sε, we obtain for a subsequence that α→ ᾱ, t→ t̄ as m→∞.
Since θt/2, ct/2 are bounded on Sε, we obtain for a subsequence (θt/2, ct/2) → (a, b). Moreover, we have

(θ, c) = Φ−t/2(θt/2, ct/2)→ Φ−t̄/2(a, b) =: (θ̄, c̄), where Φ is the flow of pendulum (7). Since ν̄ = (θ̄, c̄, ᾱ, t̄) ∈ Sε
by continuity of the functions which define Sε, we see that Sε is compact. �

Lemma 3.4. If K ⊂ D1 is compact, then there exists ε > 0 such that K ⊂ Sε.
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Proof. Since the functions θt/2, ct/2, α, t, (t1MAX − t) are continuous on N , these functions attain maximum
and minimum on K. �

Lemma 3.5. Let {νn} ⊂ D1. Then νn → ν̄ ∈ cl(D1)\D1 iff one of the following conditions holds for {νn}:
(1) θt/2 → 0,
(2) θt/2 → π,
(3) ct/2 → 0,
(4) ct/2 → +∞,
(5) t→ 0,
(6) t1MAX(λ)− t→ 0,
(7) |α| → ∞.

Proof. Necessity. Assume the converse. Suppose for any sequence {νn} ⊂ D1, νn → ν̄ ∈ cl(D1)\D1, that
conditions (1)–(7) do not hold. This means that there exists ε > 0 such that conditions

θt/2 ≥ ε, θt/2 ≤ π − ε, ct/2 ≥ ε, ct/2 ≤ 1/ε, t ≥ ε, t1MAX(λ)− t ≥ ε, |α| ≤ 1/ε

hold for a subsequence. It follows that {νn} ⊂ Sε, which is a compact subset of D1. So ν̄ ∈ Sε ⊂ D1. This
contradiction proves the necessity.

Sufficiency. Assume the converse. Let for any sequence νn ⊂ D1 we have νn → ν̄ ∈ D1. Then there exists
a compact set K ⊃ {νn}, ν̄ ∈ K. This means that there exists ε > 0 such that K ⊂ Sε. This contradiction
proves the lemma. �

Definition 3.6. Suppose X is a topological space and f1, f2 : X → R. Then f1 ≈ f2 on a sequence {νn} ⊂ X

if lim
n→∞

f1(νn)

f2(νn)
∈ R\{0}.

In the next lemmas we use the parametrization of exponential mapping for the case λ ∈ C6, see (20).

Lemma 3.7. If {νn} ⊂ D1 ∩ N6, νn → ν̄ ∈ cl(D1)\D1, and Exp(νn) → q̄ ∈ M1, then c → 0 on the
sequence {νn}.
Proof. Notice that for ν̄ = {x̄, ȳ, z̄, v̄} ∈M1 we have x̄ 6= 0. Consider all possible cases ν̄ ∈ clD1\D1:

1. θt/2 → 0 ⇒ ct

2
+ θ → 0⇒ c→ 0 or x = −

2 sin( ct2 + θ) sin ct
2

c
→ x̄ = 0.

2. θt/2 → π ⇒ ct

2
+ θ → 0⇒ c→ 0 or x→ x̄ = 0.

3. ct/2 → 0 ⇒ c→ 0.

4. ct/2 →∞ ⇒ c→∞⇒ x→ x̄ = 0.

5. t→ 0 ⇒ c→ 0, otherwise x→ x̄ = 0.

6. t→ 2π

|c|
. This means that c→ 0 or x→ x̄ = 0. �

Lemma 3.8. Suppose νn ∈ D1 ∩ N6. If c → 0, then x → 0 or one of the functions x, y, z tends to ∞ on the
sequence {νn}.
Proof. Consider two possible cases:

1. If ct→ 0, then

z ≈ (ct)3

c2
= ct3,

x2 + y2 =
2− 2

(
cos(ct+ θ) cos θ + sin(ct+ θ) sin θ

)
c

=
2
(
1− cos(ct)

)
c

≈ ct2.
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It follows that t→∞, otherwise x2 → 0. Then we have z ≈ (x2 + y2)t. This means that z ≈ t→∞ or x2 → 0.

2. If ct→ c̄ 6= 0 or ct→∞, then ct− sin(ct) > M > 0, thus z →∞. �

In the next lemmas we use the following parametrization of exponential mapping for the case λ ∈ C3 (see (17)):

x = − 8 sgn c σ sinh p sinh τ

α
(

cosh(2p) + cosh(2τ)
) ,

y =
2σ

α

(
2 sinh(2p)

cosh(2p) + cosh(2τ)
− p
)
,

z =
8 sgn c cosh τ(p cosh p− sinh p)

|α|(cosh(2p) + cosh(2τ))
,

v = − 1

3ασ cosh(p− τ) cosh2(p+ τ)

(
6
(

cosh τ − 3 cosh(2p+ τ)
)

sinh p

+ 2p

(
6 cosh(3p+ τ) + p cosh(p+ τ)

(
p
(

cosh(2p) + cosh(2τ)
)
− 6 sinh(2p)

)))
.

Lemma 3.9. If {νn} ⊂ D1 ∩ N3, νn → ν̄ ∈ cl(D1)\D1, and Exp(νn) → q̄ ∈ M1, then σ → 0 or p → ∞ and
t→∞ with σ → σ̄ 6= 0.

Proof. Notice that for ν̄ = {x̄, ȳ, z̄, v̄} ∈M1 we have x̄ 6= 0. Consider all possible cases ν → cl(D1)\D1:

1. θt/2 → 0 ⇒
{

tanh τ → 0
cosh τ → 1

⇒ τ → 0 ⇒ σ → 0, or x→ x̄ = 0, or z →∞ with p→∞.

2. θt/2 → π ⇒

{
tanh τ → 1

1

cosh τ
→ 0

⇒ τ →∞ ⇒
{
p→∞
τ →∞ or σ → 0.

3. ct/2 → 0 ⇒ σ

cosh τ
→ 0 ⇒

[
σ → 0

cosh τ →∞ ⇒
{
p→∞
τ →∞ or σ → 0.

4. ct/2 →∞ ⇒ σ

cosh τ
→∞ ⇒ σ →∞ ⇒ x→ x̄ = 0.

5. t→ 0 ⇒ p

σ
→ 0 ⇒

[
p→ 0
σ →∞ ⇒

[
σ → 0
x→ 0

⇒ σ → 0.

6. t→∞ ⇒ p

σ
→∞ ⇒

[
p→∞
σ → 0

⇒
{
p→∞
τ →∞ or σ → 0.

7. |α| → ∞ ⇒
[
p→∞,
τ →∞, or x→ x̄ = 0 �

Lemma 3.10. Suppose νn ∈ D1 ∩N3. If p→∞, τ →∞, σ → σ̄ 6= 0, then y →∞.

Proof. Since
2 sinh(2p)

cosh(2p) + cosh(2τ)
<∞ for p→∞, then y →∞. �

Lemma 3.11. Suppose νn ∈ D1 ∩N3. If σ → 0, then one of the functions x, y, z, v tends to ∞, otherwise x or
z tends to 0.

Proof. Assume the converse. We have z ≈ cosh τ(p cosh p− sinh p)

σ2
(

cosh(2p) + cosh(2τ)
) ⇒

 p→∞,
p→ 0,
τ →∞.

So the proof is in these

three cases as follows:
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1. p→∞. Then we get y ≈ 1

σ
p→∞.

2. p→ 0. Consider three subcases:

2.1. τ → 0. Here we have x ≈ τp

σ
⇒ σ ≈ τp and y ≈ p

σ
≈ p

τp
=

1

τ
→∞.

2.2. τ →∞. We obtain

x ≈ p

σeτ
⇒ p ≈ σeτ ,

z ≈ p3

σ2eτ
≈ p2

σ
⇒ σ ≈ p2,

y ≈ 1

σ

( p

cosh2 τ
− p
)
≈ p

σ
≈ 1

p
→∞.

2.3. τ → τ̄ <∞, τ̄ 6= 0. It follows that x ≈ p

σ
⇒ p ≈ σ, then z ≈ p3

σ2
≈ σ → 0.

3. τ →∞, p→ p̄ <∞, p̄ 6= 0. We get
sinh(2p)

cosh(2p) + cosh(2τ)
→ 0⇒ y ≈ p̄

σ
→∞. �

Below in the case νn ∈ (D1 ∩N1) ∪ (D1 ∩N2) we use the following notation:

si = sinui, ci = cosui, di =
√

1− k2s2
i , i = 1, 2. (51)

E1 = E(u1, k), F1 = F (u1, k), ∆ = 1− k2s2
1s

2
2. (52)

Lemma 3.12. Suppose νn ∈ (D1 ∩N1) ∪ (D1 ∩N2). If ∆→ 0, then
d1d2

∆
and

c1d1

∆
are bounded from above.

Proof. Let k2 = 1− c23; then ci → 0, i = 1, 2, 3. Introduce spherical coordinates as follows:

c1 = r sinϕ1 cosϕ2, c2 = r sinϕ1 sinϕ2, c3 = r cosϕ1.

Then it follows from r → 0 that:

d2
i = 1− (1− c23)(1− c2i ) = c2i + c23 − c2i c23 ≈ c2i + c23, i = 1, 2,

∆ = 1− (1− c23)(1− c21)(1− c22) ≈ c21 + c22 + c23 = r2.

This implies that

(d1d2

∆

)2

≈ (c21 + c23)(c22 + c23)

r4
= (sin2 ϕ1 cos2 ϕ2 + cos2 ϕ1)(sin2 ϕ1 sin2 ϕ2 + cos2 ϕ1) ≤ 1,(c1d1

∆

)
≈ sin2 ϕ1 cos2 ϕ2(sin2 ϕ1 cos2 ϕ2 + cos2 ϕ1) ≤ 1.

Therefore
d1d2

∆
,
c1d1

∆
are bounded from above. �
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In the next lemmas we use the following parametrization of exponential mapping for the case λ ∈ C1 (see (15)):

x = −4σks1s2d1d2

α∆
,

y = −4σ

α

(
k2s1s

2
2c1d1

∆
+
F1

2
− E1

)
,

z =
4kc2fz
|α|∆

, fz = c1
(
F1 − 2E1

)
+ s1d1,

v =
y3

6
− 2k2(c1c2 + s1s2d1d2)y

|α|∆2
+

4

3ασ

(
F1

(
1− k2

)
− E1

(
1− 2k2

)
− k2s1d1

∆3

(
6s1s2c2d1d2

(
2d2 −∆

)
+ c1

(
1 + 3c22(d2

2 − s2
2)− k4s2

1s
6
2(2d2

1 + s2
1)
)))

.

Lemma 3.13. If {νn} ⊂ D1 ∩ N1 satisfies νn → ν̄ ∈ cl(D1)\D1 and Exp(νn) → q̄ ∈ M1, then ∆ → 0 or
σ → 0.

Proof. Notice that for ν̄ = (x̄, ȳ, z̄, v̄) ∈M1 we have x̄ 6= 0 and z̄ 6= 0. Consider all possible cases νn → ∂D1:

1. θt/2 → 0 ⇒

{
sin

θt/2
2 → 0

cos
θt/2

2 → 1
⇒

{
ks2 → 0,
d2 → 1.

It follows that x ≈ (ks2)s1d1

σ
⇒

[
σ → 0,

x→ x̄ = 0.

2. θt/2 → π ⇒

{
sin

θt/2
2 → 1

cos
θt/2

2 → 0
⇒

{
ks2 → 1,
d2 → 0.

Then x ≈ s1d1d2

σ∆
⇒

[
σ∆→ 0,

x→ x̄ = 0.

3. ct/2 → 0 ⇒ kσc2 → 0 ⇒ z ≈ kc2fz
σ2∆

⇒ σ3∆

fz
→ 0, otherwise z → z̄ = 0. This means that σ3∆→ 0 or

fz →∞. Suppose fz →∞, σ → σ̄ 6= 0, then u1 → π/2 and k → 1. Since kσc2 → 0, then u2 → π/2 ⇒ ∆→ 0.

4. ct/2 →∞ ⇒ kσc2 →∞ ⇒ σ →∞ ⇒ ∆→ 0, otherwise x→ x̄ = 0.

5. t→ 0 ⇒ p

σ
→ 0 ⇒

[
u1 → 0
σ →∞ ⇒ ∆→ 0, otherwise x→ x̄ = 0.

6. t→ t1MAX ⇒
[
fz(u1, k)→ 0 for k ≥ k0

u1 → π for k ≤ k0
⇒
[
σ2∆→ 0, otherwise z → z̄ = 0
σ∆→ 0, otherwise x→ x̄ = 0.

7. |α| → ∞ ⇒ σ →∞ ⇒ ∆→ 0, otherwise x→ x̄ = 0. �

Lemma 3.14. Suppose νn ∈ D1 ∩N1. If ∆→ 0, then x→ 0 or y →∞.

Proof. Consider two possible cases:

1. σ →∞ ⇒ x = −4ks1s2
d1d2

∆

1

σ
→ 0 (see Lemma 3.12).

2. σ → σ̄ < ∞. It follows from Lemma 3.12 that k2s1s
2
2

c1d1

∆
− E1 is bounded from above. Since F1 → ∞,

then y →∞. �

Lemma 3.15. Suppose νn ∈ D1 ∩N1. If σ → 0,∆ → ∆̄ 6= 0, then one of the functions x, y, z, v tends to ∞,
otherwise x or z tends to zero.

Proof. Assume the converse. Then notice that ks1s2d1d2 → 0, otherwise x ≈ 1

σ
→ ∞. The proof consists of

the following six items:

1. d1 → 0. This means that u1 → π/2, k → 1 and u2 → u2 6= π/2. Whence, y ≈ F1/σ →∞.
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2. u1 → 0. Consider four subcases:

2.1. s2k → 0. Here we have

x ≈ s2ku1

σ
⇒ s2ku1 ≈ σ,

F1 ∼ u1, E1 ∼ u1 ⇒ y ≈ 1

σ

(
s1(s2k)2 c1d1

∆
+
F1

2
− E1

)
≈ u1

σ
≈ 1

s2k
→∞.

2.2. d2 → 0. It follows that

x ≈ d2u1

σ
⇒ d2u1 ≈ σ, y ≈ u1

σ
≈ 1

d2
→∞.

2.3. c2 → 0, k → k̄ ∈ (0, 1). We get

x ≈ u1

σ
⇒ u1 ≈ σ, z ≈ c2u

3
1

σ2
≈ c2u1 → 0.

2.4. k → k̄ 6= 0, u2 → u2 ∈ (0, π/2). Hence

x ≈ u1

σ
, z ≈ u3

1

σ2
≈ x2u1 → 0.

3. u1 → π ⇒ F1 → 2K, E1 → 2E. We obtain y ≈ 2E −K
σ

⇒ 2E−K → 0. It follows that v ≈ K

σ3
→∞,

since K → K = K(k̄) > 0.

4. d2 → 0, u1 → u1 ∈ (0, π/2) ⇒ u2 → π/2, k → 1.

x ≈ d2

σ
, y ≈ 1

σ

(
s1 +

F1

2
− E1

)
.

Note that the function sinu1 +
F (u1, 1)

2
− E(u1, 1) vanishes only at the point u1 = 0 since it has positive

derivative
1

2
√

1− sin2 u1

. Therefore y →∞.

5. u2 → 0, s1 → s1 6= 0, d1 → d1 6= 0, k → k̄ 6= 0. We have y ≈ 2E1−F1

σ ⇒ 2E1 − F1 → 0. Hence

z ≈ 1

σ2
→∞.

6. k → 0. We get y ≈ u1

σ
⇒ u1 → 0 (see item 2.1). �
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In the next lemmas we use the following parametrization of exponential mapping for the case λ ∈ C2 (see (16)):

x = −4 sgn c σs1s2c1c2
αk∆

,

y = − 4σ

αk

(
k2s1s

2
2c1d1

∆
+
(

1− k2

2

)
F1 − E1

)
,

z = −4
4 sgn c d2gz
|α|k2∆

, gz =
(
2E1 + (k2 − 2)F1

)
d1 − k2s1c1,

v =
y3

6
+

2y

|α|k2∆2

(
1 + (1 + c21c

2
2)k4s2

1s
2
2 − k2(s2

1 + s2
2 − 2c1c2d1d2s1s2)

)
− 3

4ασk

(
2F1

( 1

k2
− 1
)
− E1

( 2

k2
− 1
)

+
c1s1

∆3

(
2c22d1(1 + d2

1)∆ + 6c1c2d2k
2s1s2(2c22 −∆)

+ d1s
2
2

(
(2− k2)∆2 − 4d2

1d
2
2

)))
.

Lemma 3.16. If {νn} ⊂ D1 ∩ N2 satisfies νn → ν̄ ∈ cl(D1)\D1 and Exp(νn) → q̄ ∈ M1, then ∆ → 0 or
σ

k
→ 0.

Proof. Notice that for ν̄ = (x̄, ȳ, z̄, v̄) ∈M1 we have x̄ 6= 0. Consider all possible cases for ν̄ ∈ cl(D1)\D1:

1. θt/2 → 0 ⇒

{
sin

θt/2
2 → 0

cos
θt/2

2 → 1
⇒

{
su2 → 0,
cu2 → 1.

It follows that
σ∆

k
→ 0, otherwise x→ x̄ = 0.

2. θt/2 → π ⇒

{
sin

θt/2
2 → 1

cos
θt/2

2 → 0
⇒

{
s2 → 1,
c2 → 0.

This means that
σ∆

k
→ 0, otherwise x→ x̄ = 0.

3. ct/2 → 0 ⇒ σ

k
d2 → 0 ⇒ σ

k
→ 0 or c2 → 0. From c2 → 0 we have

σ∆

k
→ 0, otherwise x→ x̄ = 0.

4. ct/2 →∞ ⇒ σ

k
d2 →∞ ⇒ σ

k
→∞ ⇒ ∆→ 0, otherwise x→ x̄ = 0.

5. t→ 0 ⇒ pk

σ
→ 0 ⇒ s1k

σ
→ 0 ⇒ ∆→ 0, otherwise x→ x̄ = 0.

6. t→ t1MAX ⇒ u1 →
π

2
⇒ σ∆

k
→ 0, otherwise x→ x̄ = 0.

7. α→∞ ⇒ σ →∞ ⇒ ∆→ 0, otherwise x→ x̄ = 0. �

Lemma 3.17. Suppose νn ∈ D1 ∩N2. If ∆→ 0, then x→ 0 or y →∞.

Proof. Consider two possible cases:

1. σ →∞ ⇒ x = −4ks1s2
c1c2
∆

1

σ
→ 0 (see Lemma 3.12).

2. σ → σ̄ < ∞. It follows from Lemma 3.12 that
(
k2s1s

2
2

c1d1

∆
− E1

)
is bounded from above. And since

F1 →∞ we have y →∞. �

Lemma 3.18. Suppose νn ∈ D1 ∩ N2. If σ
k → 0,∆ → ∆̄ 6= 0, then one of the functions x, y, z or v tends to

∞, otherwise x or z tends to 0.
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Proof. Assume the converse. Then notice that s1s2c1c2 → 0, otherwise x ≈ k

σ
→∞. The proof consists of five

steps:

1. u1 → 0. Then we obtain

x ≈ u1s1c2
σ/k

⇒ σ

k
≈ u1s2c2.

It follows from Taylor expansion that gz ≈ k2u3
1, then

z ≈ d2k
2u3

1

σ2
≈ d2u1

s2
2c

2
2

=
d2u1

s2
2c

2
2

⇒ s2c2 → 0,

otherwise z → 0.

y ≈ 1

σk

(
k2u1s

2
2 + (1− k2/2)u1 − u1

)
=
u1(s2

2 − 1/2)

σ/k
≈ s2

2 − 1/2

s2c2
→∞.

2. k → 0, u1 → u1 6= 0. Using Taylor expansion we get z ≈ k2

σ2
→∞.

3. u1 →
π

2
, k → k̄ 6= 0. We have y ≈ 1

σ

(k2c1s1d
2
1s

2
2

∆
+ (1− k2/2)F1 − E1

)
. Notice that

d

dk

(
(1− k2/2)F1 − E1

)
=

k

2(1− k2)

∫ π/2

0

k2 cos2 θdθ√
1− k2 sin2 θ

> 0 ⇒ (1− k2/2)F1 − E1 > 0.

Combining the last inequality and
k2c1s1d

2
1s

2
2

∆
→ 0, we obtain y →∞.

4. u2 → 0, u1 → u1 ∈ (0, π/2), k → k̄ 6= 0. Here we have

x ≈ u2

σ
⇒ u2 ≈ σ,

otherwise x→ 0.

z ≈ (2E1 + (k2 − 2)F1)d1 − k2c1s1

σ2
,

y ≈ 1

σ

(
k2s1c1d1s

2
2 + (1− k2/2)F1 − E1

)
.

Since k2s1c1d1s
2
2 → 0, we see that (1 − k2/2)F1 − E1 → 0, otherwise y → ∞. Hence from k2c1s1 ≈ 1 we get

z ≈ 1

σ2
→∞.

5. u2 → π/2, u1 → u1 ∈ (0, π/2), k → k̄ 6= 0. Suppose k̄ 6= 1, then z ≈ d2gz
σ2
→ ∞. This means that k̄ = 1.

Here we have y ≈ 1

σ

(c1s1d1

∆
+F1/2−E1

)
=

1

σ
(s1 +F1/2−E1). Since

d

du1
(s1 +F1/2−E1) =

1

2 cosu1
> 0, it

follows that y →∞. �

Theorem 3.19. The mapping Exp : Di →Mi is proper for i = 1, . . . , 4.
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Proof. Assume the converse. Then it follows from Lemma 3.1 that Exp : D1 →M1 is not proper. By Lemma 3.2,
there exists a sequence νn ∈ D1, such that νn → ν̄ ∈ cl(D1)\D1, Exp(νn)→ q̄ ∈M1. Since νn ∈ D1, we consider
3 cases:

(1) {νn} ⊂ D1 ∩N6 is impossible (see Lemmas 3.7, 3.8),
(2) {νn} ⊂ D1 ∩N3 is impossible (see Lemmas 3.9–3.11),
(3) {νn} ⊂ (D1 ∩N1) ∪ (D1 ∩N2) is impossible (see Lemmas 3.13–3.18).

Since all cases are impossible, we have a contradiction which proves the theorem. �

Theorem 3.20. The mapping Exp : Di →Mi is a diffeomorphism for i = 1, . . . , 4.

Proof. Follows from Th. 2.5, since all hypotheses of this theorem hold by Propos. 2.7, Th. 1.3 and Th. 3.19. �

Corollary 3.21. The mapping Exp : Ñ → M̃ is a diffeomorphism.

4. Cut time

In this section we prove that the cut time coincides with the first Maxwell time corresponding to reflections.

4.1. Cut time and Maxwell time

Theorem 4.1. For any λ ∈ C,

tcut(λ) = t1MAX(λ).

Proof. Take any λ ∈ C and denote t1 = t1MAX(λ). Since tcut(λ) ≤ t1 by Th. 1.1, it remains to prove that
tcut(λ) ≥ t1.

Let us call a pair (λ, t) ∈ N optimal if the geodesic Exp(λ, s) is optimal on the segment s ∈ [0, t]. We have
to show that (λ, t) is optimal for any t ∈ (0, t1).

(1) If λ ∈ C4 ∪C5 ∪C7, then t1 = +∞, and any (λ, t), t ∈ (0, t1), is optimal since (xs, ys) is a straight line.
(2) Let λ ∈ C1 ∪ C2 ∪ C6, thus t1 ∈ (0,+∞).

Since t1 = t1MAX(λ), then ν1 = (λ, t1) ∈ N ′. For λ ∈ C1 ∪ C2 ∪ C6 the function t 7→ sin θt/2ct/2

has isolated zeros, thus there exists t ∈ (0, t1) arbitrarily close to t1 such that ν = (λ, t) ∈ Ñ . Then

q = Exp(ν) ∈ M̃ (Propos. 2.4). Since Exp(N ′) ∩ M̃ = ∅ (Propos. 2.3) and Exp: Ñ → M̃ is a

diffeomorphism (see Corollary 3.21) then Exp−1(q) ∩ N̂ = {ν}. Thus ν = (λ, t) is optimal. Since t can
be chosen arbitrarily close to t1, then any (λ, t), t ∈ (0, t1), is optimal.

(3) Let λ ∈ C3, then t1 = +∞. There exist (λ, t) ∈ Ñ for arbitrarily large t. Then the proof follows the
argument of item (2).

�

Now we collect all properties of the cut time that we previously obtained for the Maxwell time t1MAX.

Corollary 4.2. The function tcut : C → (0,+∞] has the following properties:

(1) Let λ ∈ C and let t1 = tcut(λ). For finite t1, a trajectory Exp(λ, s), s ∈ [0, t], is optimal iff t ∈ [0, t1].
For t1 = +∞, any trajectory Exp(λ, s), s ∈ [0, t], t > 0, is optimal.
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(2) The function tcut has the following explicit representation:

∀λ ∈ C1 tcut(λ) =
p1(k)√
|α|

,

∀λ ∈ C2 tcut(λ) =
2Kk√
|α|

,

∀λ ∈ C6 tcut(λ) =
2π√
|c|
,

∀λ ∈ C3 ∪ C4 ∪ C5 ∪ C7 tcut(λ) = +∞.

(3) The function tcut depends only on E and |α|, is preserved by the flow of ~Hv and by the reflections εi,
and is homogeneous of order one w.r.t. the dilations δµ.

(4) The function tcut is continuous on C\C4 and is smooth on C0
1 ∪ C2, where C0

1 = {λ ∈ C1 | k 6= k0}.

According to Cor. 4.2, the function tcut : C → (0,+∞] is invariant w.r.t. the flow es
~Hv and the reflections εi,

and respects the action of dilations δµ:

tcut ◦ es
~Hv = tcut ◦ εi = tcut,

tcut ◦ δµ = µtcut.

Thus the cut time can be represented (up to a constant positive factor) by a univariate function on the quotient

C/
〈
es
~Hv , εi, δµ

〉
. The quotient C/

〈
es
~Hv , εi

〉
can be represented by the quadrant {(θ, c, α) ∈ C | θ = 0, c ≥

0, α ≥ 0}, thus

C/
〈
es

~Hv , εi, δµ

〉
∼= Γ t P,

where

Γ = {(θ, c, α) ∈ C | θ = 0, c = sinβ, α = cosβ, β ∈ [0, π/2]},
P = {(θ, c, α) ∈ C | θ = 0, c = 0, α = 0}.

The point P corresponds to the subset C7, while the arc Γ corresponds to the rest subsets C\C7 = C1 ∪C2 ∪
C35 ∪ C4 ∪ C6 of decomposition (36).

Thus (up to a constant positive factor) the cut time can be represented on the set C\C7 as a univariate
function tcut(β), β ∈ [0, π/2].

If β = 0, then λ ∈ C4, thus tcut(β) = +∞.

If β ∈ (0, β1), where β1 = arccos(
√

5− 2), then λ ∈ C1, thus

tcut(β) =
2p1(k)√

α
, k =

√
sin2β

4 cosβ
, α = cosβ, p1(k) = min

(
p1
z(k), 2K(k)

)
.

If β = β1, i.e., sin2β = 4 cosβ, then λ ∈ C35, thus tcut(β) = +∞.
If β ∈ (β1, π/2), then λ ∈ C2, thus

tcut(β) =
2Kk√
α
, k =

√
4 cosβ

sin2β
, α = cosβ.

Finally, if β = π/2, then λ ∈ C6, thus tcut(β) = 2π.
The plot of the function tcut(β) is shown in Fig. 3. Notice continuity of tcut(β) everywhere except β = 0,
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0 Β0Β1
Π

2

2 Π

4 Π

6 Π

Figure 3. Plot of the function β 7→ tcut(β)

where tcut(+0) = 2π < +∞ = tcut(0). Also notice smoothness of tcut(β) everywhere except β = 0, β = β1, and

β = β0, where
sin2β0

4 cosβ0
= k2

0, 2E(k0) − K(k0) = 0 (here E(k0) is the complete elliptic integral of the second

kind), corresponds to the figure-of-eight closed Euler elastica. These regularity properties of tcut(λ) = t1MAX(λ)
are reported in Corollary 4.2.

4.2. Cut time and conjugate time

Proposition 4.3. Let λ ∈ C1, t1 = tcut(λ), τ = (ϕ+ t1/2)/
√
|α|. Then t1 = t1conj(λ) iff one of the conditions

hold:

(1) k < k0, sn τ = 0,
(2) k = k0,
(3) k > k0, cn τ = 0.

In particular, if t1 = t1conj(λ), then sn τ cn τ = 0 or k = k0.

Proof. Follows immediately from Lemma 8 [2]. �

Remark 4.4. The equality sn τ = 0 (cn τ = 0) is equivalent to sin θt/2 = 0 (ct1/2 = 0); it means that
elastica (xt, yt), t ∈ [0, t1], is centered at a vertex (resp. inflexion point). The equality k = k0 means that
(xt, yt), t ∈ [0, t1], is the closed figure-of-eight elastica.

Proposition 4.5. Let λ ∈ C2, t1 = tcut(λ), τ = (ϕ+ t1/2)/(k
√
|α|). Then t1 = t1conj(λ) iff sn τ cn τ = 0.

Proof. Follows immediately from Lemma 8 [2]. �

Remark 4.6. The equality sn τ cn τ = 0 is equivalent to sin θt/2 = 0. It means that the corresponding elastica
is centered at vertex.

Proposition 4.7. Let λ ∈ C6, t1 = tcut(λ). Then t1 = t1conj(λ) iff sin θ = 0.
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Proof. Let λ = (θ, c, α) ∈ C6, α = 0, c 6= 0, t1 = tcut(λ), ν = (λ, t1) ∈ N6. Since C6 ⊂ cl(C2), the expression

for Jacobian J =
∂(x, y, z, v)

∂(θ, c, α, t)
for ν ∈ N6 can be obtained by passing to the limit α → 0 in the expression for

Jacobian J |
N2

computed in [2]. By such a limit we get J(ν) =
π3

|c|3
sin2θ. So the instant t1 is a conjugate time

iff sin θ = 0. �

4.3. Optimal trajectories for special boundary conditions

For a generic terminal point q1 ∈ M̃ , there exists a unique optimal trajectory qt = Exp(λ, t), t ∈ [0, t1],

which can be found by solving the equation Exp(λ, t1) = q1, (λ, t1) ∈ Ñ .
In this subsection we discuss special boundary conditions for which optimal trajectories can be given explicitly

or by a more simple equation.

4.3.1. Abnormal variety

Consider the set of points in M filled by abnormal trajectories:

A = {q ∈M | x = z = 0, v = y3/6}.

We have Exp(C4,R+) = Exp(C5,R+) = Exp(C0,π
7 ,R+) = A\{q0}, where

C0,π
7 =

{
λ = (θ, c, α) ∈ C7 | α = c = 0, θ ∈ {0, π}

}
.

Any nonzero point q1 = (0, y1, 0, v1) ∈ A is connected with q0 by a unique optimal trajectory

xt = 0, yt = t sgn y1, zt = 0, vt =
t3

6
sgn y1, t ∈ [0, |y1|].

4.3.2. Straight lines (xt, yt)

The set of points in M filled by trajectories that project to straight lines (xt, yt) is

L = {q ∈M | z = 0, v = (x2 + y2)y/6} ⊃ A.
We have Exp(C7,R+) = L\{q0}. The unique optimal trajectory for q1 ∈ L\{q0} is Exp(λ, t), λ ∈ C7, i.e.,

xt = −t sin θ, yt = t cos θ, zt = 0, vt =
t3

6
cos θ, t ∈ [0, t1],

where t1 > 0 and θ ∈ S1 are found from the equations

x1 = −t1 sin θ, y1 = t1 cos θ.

4.3.3. Fixed points of reflection ε6

The reflection ε6 : M →M has the set of fixed points

S6 = {q ∈M | y = 0, v = xz/2}.

This 2-dimensional manifold is of particular interest since it is the only fixed manifold of reflections

Si = {q ∈M | εi(q) = q}, i = 1, . . . , 7,
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not contained completely in codimension one manifolds S1 = {q ∈ M | z = 0} and S2 = {q ∈ M | x = 0}. By
Lem. 4 [1],

S3 ∪ S4 ∪ S5 ⊂ S2, S7 ⊂ S1.

But S6 6⊂ S1 ∪ S2.
If a point q1 ∈ S6\{q0} is connected with q0 by a trajectory qt = Exp(λ, t), t ∈ [0, t1], qt1 = q1, then the

trajectory q6
t = Exp(λ6, t), t ∈ [0, t1], satisfies the equation q6

t1 = q1.

Moreover, if λ6 6= λ, then the points (λ, t1), (λ6, t1) would belong to the Maxwell set

MAX6 = {(λ, t) ∈ N | λi 6= λ, Exp(λi, t) = Exp(λ, t)},

which might a priori give Maxwell times which are additional to those provided by the sets MAX1,MAX2

studied in [1]. It turns out that, as we show below, the equality λ6 = λ is satisfied for all λ ∈ C with
Exp(λ, t1) ∈ S6, t1 > 0.

Consider the decomposition

S6 =
⊔

i,j∈{0,+,−}

Sij ,

Sij = {q ∈ S6 | sgnx = i, sgn z = j}.

For example, S+− = {q ∈ S6 | x > 0, z < 0}.
Denote Nij = {(λ, t) ∈ N6 | τ = −iπ/2, sgn c = j, t ∈ (0, 2π/|c|)}, i, j ∈ {+,−}, where τ = θ + ct/2.

Lemma 4.8. For any i, j ∈ {+, i}, the mapping Exp: Nij → Sij is a diffeomorphism.

Proof. The reflections ε4 and ε7 permute the sets Nij , Sij , thus it suffices to prove only that the mapping
Exp: N++ → S++ is a diffeomorphism.

If (λ, t) ∈ N++, then

xt =
2 sin p

c
, yt = 0, zt =

2p− sin(2p)

2c2
, vt =

xtzt
2
, (53)

where p = ct/2 ∈ (0, π). Thus Exp(N++) ⊂ S++.
Further, the mapping Φ: (p, c) 7→ (x, z) is a diffeomorphism from (0, π) × R+ to R+ × R+ by Hadamard

global diffeomorphism theorem, thus Exp: N++ → S++ is a diffeomorphism as well. �

Denote N i
0j = {(λ, t) ∈ N6 | τ = iπ/2, sgn c = j, t = 2π/|c|}, i, j ∈ {+,−}.

Lemma 4.9. Each of the mappings Exp : N+
0j → S0j , Exp: N−0j → S0j , j ∈ {+,−}, is a diffeomorphism.

Proof. Follows from the parameterization of trajectories (53) with p = ±π. �

Denote Ni0 = {(λ, t) ∈ N7 | θ = −iπ/2}, i ∈ {+,−}.

Lemma 4.10. The mappings Exp: Ni0 → Si0, i ∈ {+,−}, are diffeomorphisms.

Proof. Follows immediately from the parameterization of extremal trajectories for λ ∈ C7. �

Lemmas 4.8–4.10 yield the following optimal synthesis for the terminal manifold S6.

Corollary 4.11. Let q1 ∈ S6\{q0}.
(1) If q1 ∈ Sij , i, j ∈ {+,−}, then the only optimal trajectory is Exp(λ, t), t ∈ [0, t1], where (λ, t1) ∈ Nij is

determined by the equations

x1 = i
sin p

c
, z1 =

2p− sin(2p)

2c2
, jp ∈ (0, π), jc ∈ (0,+∞).
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(2) If q1 ∈ S0j , j ∈ {+,−}, then there are two optimal trajectories Exp(λ+, t), Exp(λ−, t), t ∈ [0, t1], where
(λ±, t1) ∈ N±0j is determined by the equations

z1 =
jπ

c2
, τ = ±π

2
.

(3) If q1 ∈ Si0, i ∈ {+,−, }, then the only optimal trajectory is Exp(λ, t), t ∈ [0, t1], where (λ, t) ∈ Ni0 is
determined by the equation x1 = it1.

Remark 4.12. If Exp(λ, t1) ∈ S6 for some (λ, t) ∈ N, then ε6(λ) = λ.

Proof. It follows from Lemmas 4.8, 4.9, 4.10 that the inclusion Exp(λ, t1) ∈ S6 is possible only in the following
two cases:

(1) λ ∈ C6, τ = θ + ct/2 = ±π/2,
(2) λ ∈ C7, θ = ±π/2.

In both these cases we have ε6(λ) = λ, since ε6 : (θ, c, α, ) 7→ (π−θt, ct,−α) = (π−θt, c, α) and π−θt = θ. �

5. Conclusion

We get a description of the global structure of the exponential mapping in the left-invariant sub-Riemannian
problem on the Engel group. It was proved that restriction of this mapping to subdomains in the preimage
and image of the exponential mapping cut out by the Maxwell strata corresponding to reflections is a diffeo-
morphism. Thus we reduced the problem to solving a system of algebraic equations. For any terminal point
q1 = (x1, y1, z1, v1) with x1 6= 0 and z1 6= 0 there exists a unique optimal trajectory. Moreover it was proved
that the cut time is equal to the first Maxwell time corresponding to reflections.

The cut locus in the sub-Riemannian problem on the Engel group will be described in a forthcoming article.
We also plan to study sub-Riemannian spheres and their singularities. Developing software for computation of
optimal solutions will allow us to solve the motion planning problem for generic control systems with 4 states
and 2 linear inputs via nilpotent approximation (in particular, for the kinematic model of a car with trailer).
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