
OPTIMAL CONTROL PROBLEMFOR A NONLINEAR DRIFTLESS 5-DIMENSIONALSYSTEM WITH 2 INPUTSAndrei A. Agrahev � Yuri L. Sahkov ��;1� Steklov Mathematial Institute, 8 ul. Gubkina, Mosow 117966,Russia& S.I.S.S.A.{I.S.A.S., 2-4 Via Beirut, Trieste 34014, ItalyFax: +39-040-3787528, E-mail: agrahev�sissa.it�� Program Systems Institute, Pereslavl-Zalessky 152140, Russia& S.I.S.S.A.{I.S.A.S., 2-4 Via Beirut, Trieste 34014, ItalyFax: +39-040-3787528, E-mail: sahkov�sissa.itAbstrat: We study the quasihomogeneous nilpotent approximation of a nonlinear5-dimensional system linear in 2 ontrol parameters and the maximal growth vetor(2,3,5). For suh a system we study optimal ontrol problem with a quadrati ost.In geometry, it orresponds to the at (2,3,5) sub-Riemannian struture.In robotis, it appears as nilpotent approximation to the following systems: (1) apair of bodies rolling one on another without slipping and twisting, (2) a ar with 2o�-hooked trailers.A harateristi feature of the problem is the presene of abnormal minimizers.We study geodesis and the exponential mapping for the optimal ontrol problem.We analyze the onjugate lous in the neighborhood of abnormal minimizers.Copyright  IFAC 2001Keywords: optimal ontrol, nonlinear ontrol systems1. PROBLEM STATEMENTWe study the optimal ontrol problem determinedby the at (2,3,5) sub-Riemannian struture.Let L be the 5-dimensional nilpotent Lie algebrawith the following ommutation rules in somebasis X1; : : : ; X5:[X1; X2℄ = X3; [X1; X3℄ = X4; [X2; X3℄ = X5;adX4 = adX5 = 0;and let M be the onneted, simply onnetedLie group with the Lie algebra L. We onsiderX1; : : : ; X5 as left-invariant vetor �elds on M .1 Work partially supported by Russian Foundation forBasi Researh, Projet No. 000100731

The pair of vetor �elds X1, X2 determines aleft-invariant sub-Riemannian struture with thegrowth vetor (2,3,5) on M :� = span (X1; X2); hXi; Xji = Æij ; i; j = 1; 2;alled the at (2,3,5) sub-Riemannian struture.Suh a struture is unique, up to isomorphism ofLie groups. We are interested in sub-Riemannianlength minimizers for this sub-Riemannian stru-ture, i.e., in solutions to the following optimalontrol problem:_q = u1X1(q) + u2X2(q); (1)q 2M; u1; u2 2 R;q(0) = q0; q(T ) = q1 �xed; (2)l = Z T0 qu21 + u22 dt! min : (3)



Without loss of generality, we take the identityelement of the Lie group M as the initial pointq0.Problem (1){(3) was onsidered by Brokett andDai (1993). 2. MOTIVATIONThe at (2,3,5) sub-Riemannian struture givesa loal nilpotent approximation for an arbitrarysub-Riemannian struture with the growth vetor(2, 3, 5), see Agrahev and Saryhev (1988),Agrahev et al. (1989), Bellaihe (1996), and itis important both from theoretial and appliedpoints of view.The growth vetor (2,3,5) is maximal, thus ageneri rank 2 sub-Riemannian struture on a5-dimensional manifold has the growth vetor(2,3,5) at a generi point.The preeding maximum growth ase (2,3), i.e.,the ontat ase, was already studied in detail:� the at (2,3) ase evolving on the Heisen-berg group was analyzed by Brokett (1981),and Vershik and Gershkovih (1987),� the general (2,3) ase was studied as a per-turbation of the at ase by Agrahev (1996)and El-Alaoui et al. (1996).The next maximum growth (thus generi) ase isthe growth vetor (2,3,5).In robotis, (2,3,5) sub-Riemannian struturesappear as models of the following systems:� a pair of bodies rolling one on another with-out slipping and twisting Li and Canny(1990); Bihi et al. (1995); Agrahev andSahkov (1999); Marigo and Bihi (1999),� a ar with 2 o�-hooked trailers Laumond(1998); Vendittelli et al. (1999).3. MODELWe hoose the following model for the at (2,3,5)sub-Riemannian struture:M = R5x;y;z;v;w;X1 = ��x � y2 ��z � x2 + y22 ��w ;X2 = ��y + x2 ��z + x2 + y22 ��v :4. EXISTENCE OF SOLUTIONSControl system (1) has the full rank and the statespae M is onneted, thus the system is globallyontrollable on M .

Existene of optimal ontrols in the optimal on-trol problem (1){(3) follows from the lassialFilippov's theorem.5. EXTREMALSWe replae the length funtional (3) by ation:J = 12 Z T0 (u21 + u22) dt! min (4)and seek for extremals of the problem (1), (4) viaPontryagin Maximum Priniple.5.1 Normal extremalsIntrodue the linear Hamiltonians orrespondingto the basis �elds:hi(�) = h�;Xii; � 2 T �M; i = 1; : : : ; 5:Normal extremals are trajetories of the Hamilto-nian system _� =!H (�); � 2 T �M; (5)with the normal Hamiltonian H = (h21 + h22)=2.In the oordinates hi on vertial �bers in T �M ,system (5) reads_h1 = �h2h3; (6)_h2 = h1h3; (7)_h3 = h1h4 + h2h5; (8)_h4 = 0; (9)_h5 = 0; (10)_q = h1X1 + h2X2:We onsider geodesis parametrized by ar-length,i.e., restrit to the level surfae fH = 1=2g. Usingthe polar oordinates h1 = os �, h2 = sin �, h4 =� sin�, h5 = �� os�, we redue equations (6){(10) to the mathematial pendulum equation:�� = �� sin(� � �); �; � = onst; (11)whih is known to be integrable in Jaobi elliptifuntions. We �nd expliitly �(t), hi(t), and �nallyq(t) in the model in R5 in terms of elliptifuntions n, sn, n, E.5.2 Abnormal extremalsAbnormal geodesis are trajetories of the ODEs_q = u1X1 + u2X2; u1; u2 = onst;i.e., one-parameter subgroups tangent to the dis-tribution �. The orresponding ontrols u1 =os �, u2 = sin �, � = onst, satisfy the pendulumequation (11), thus abnormal geodesis are notstritly abnormal.



In the model in R5, projetions of the abnormalgeodesis to the plane (x; y) are straight lines,thus abnormal geodesis q(t) are optimal for t 2[0;+1).6. OPTIMALITY OF NORMAL GEODESICSSmall piees of geodesis are optimal, so anygeodesi q(t) has a ut point, i.e., the �rst pointwhere the geodesi fails to be optimal. At utpoints, the global optimality of geodesis is lost.The loal ounterpart of ut points are onjugatepoints, where geodesis lose the loal optimality.Conjugate points are ritial values of the expo-nential mapping:Exp : (�0; t) 2 C0�R+ 7! q(t) = �Æet!H�0 2M;where C0 = fH = 1=2g \ T �q0M and � : T �M !M is the projetion.The set of all �rst onjugate points to the pointq0 along all geodesis is denoted by Conq0 and isalled the onjugate lous.In order to redue dimensions, we use symmetriesof the problem.7. SYMMETRIESIt was known sine the work of Cartan (1910)that in�nitesimal symmetries of the at (2,3,5)distribution � is the 14-dimensional exeptionalsimple Lie algebra g2, see also Sahkov (1998).The Lie algebra of symmetries of the at sub-Riemannian struture is 6-dimensional: it ontains5 \trivial" symmetries given by left translationson the Lie group M , and one rotation X0 on M ,X0(q0) = 0. We have[X0; X1℄ = �X2; [X0; X2℄ = X1;thus the �eld X0 preserves parametrized geodesisstarting from q0:esX0q(t) = q0(t):In the model, we haveX0 = �y ��x + x ��y � w ��v + v ��w :There is also a symmetry Y of the distribution �whih ats as homothety on the sub-Riemannianstruture:[Y;X1℄ = �X1; [Y;X2℄ = �X2;thus preserves nonparametrized geodesis but nottime along them:erY q(t) = q0(t0); t0 = e2rt:In the model,Y = x ��x + y ��y + 2z ��z + 3v ��v + 3w ��w :The symmetries X0 and Y ommute:[X0; Y ℄ = 0:

8. FACTORIZATIONWe use the symmetries X0 and Y to fatorize theexponential mapping and onjugate lous.For the Hamiltonian lifts !h0 and !hY of the �eldsX0 and Y respetively, we have:[!h0; !H ℄ = 0; !h0 H = 0;[!hY ; !H ℄ = �2 !H; !hY H = �2H;[!h0;!hY ℄ = 0:In order to preserve level sets of H , we replae the�eld !hY by Z =!HY +e, where e =P5i=1 hi �� hi isthe Euler vertial �eld on T �M , so that[Z; !H ℄ = � !H; ZH = 0; [Z;!h0℄ = 0:We haveExp(erZes!h 0�0; t) = erY esX0 Exp(�0; ter);thus we an fatorize the domain N = C0 �R+of the exponential mapping and the manifold Mand obtain a ommutative diagramN Exp����! M Id ���� Conq0�1??y ??y�2 ??y�2N 0 Exp0����! M 0 Id ���� Con0q0Here �1 : N ! N 0 = N=eR!h 0eRZ and �2 :M ! M 0 = M=eRX0eRY are projetions andCon0q0 is the set of ritial values of the fatorizedexponential mapping Exp0.The ation of the 2-parameter group of symme-tries eR!h 0eRZ redues values of the parameters:� = 1, � = 0, and equation (11) redues to thestandard pendulum equation:�� = � sin �: (12)After fatorization, the set of geodesis q0(�) isparametrized by the phase portrait of the stan-dard pendulum (12).Abnormal geodesis orrespond to equilibria ofthe pendulum: (�; _�) = (0; 0) and (�; _�) = (�; 0).9. FACTORIZED CONJUGATE LOCUSNEAR THE STABLE EQUILIBRIUMWe study the loal struture of the fatorizedonjugate lous Con0q0 in the neighborhood of thestable equilibrium of the pendulum: (�; _�) = (0; 0).The onjugate time is bounded. Asymptotially,the onjugate lous is a quasihomogeneous surfaeof orders (1, 1, 2), its intersetion with a planetransversal to the axis is an astroid.We present below the graph of the onjugate time(in the domain of Exp0) and the onjugate lousCon0q0 (in the range of Exp0).
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Figure 2: Con0q0 .

Figure 1: The onjugate time.
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