OPTIMAL CONTROL PROBLEM
FOR A NONLINEAR DRIFTLESS 5-DIMENSIONAL
SYSTEM WITH 2 INPUTS
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Abstract: We study the quasihomogeneous nilpotent approximation of a nonlinear
5-dimensional system linear in 2 control parameters and the maximal growth vector
(2,3,5). For such a system we study optimal control problem with a quadratic cost.
In geometry, it corresponds to the flat (2,3,5) sub-Riemannian structure.

In robotics, it appears as nilpotent approximation to the following systems: (1) a
pair of bodies rolling one on another without slipping and twisting, (2) a car with 2

off-hooked trailers.

A characteristic feature of the problem is the presence of abnormal minimizers.
We study geodesics and the exponential mapping for the optimal control problem.
We analyze the conjugate locus in the neighborhood of abnormal minimizers.
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1. PROBLEM STATEMENT

We study the optimal control problem determined
by the flat (2,3,5) sub-Riemannian structure.

Let L be the 5-dimensional nilpotent Lie algebra
with the following commutation rules in some
basis X1,...,X5:

(X1, Xo] = X3, [X1, X5] = Xy, [Xo, X3] = X5,
adX4 = adX5 = 0,
and let M be the connected, simply connected

Lie group with the Lie algebra L. We consider
Xq,..., X5 as left-invariant vector fields on M.
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The pair of vector fields Xy, X determines a
left-invariant sub-Riemannian structure with the
growth vector (2,3,5) on M:

A:Span(X17X2)7 (XMX]> :67:]'7 1,5 =1,2,
called the flat (2,3,5) sub-Riemannian structure.
Such a structure is unique, up to isomorphism of
Lie groups. We are interested in sub-Riemannian
length minimizers for this sub-Riemannian struc-
ture, i.e., in solutions to the following optimal
control problem:

4 =u1X1(q) +u2X2(q), (1)
q € M, wup, us € R,
q(0) = qo, ¢q(T) = q1 fixed, (2)

T
l:/ u? 4+ u3dt — min. (3)
0



Without loss of generality, we take the identity
element of the Lie group M as the initial point
do-

Problem (1)—(3) was considered by Brockett and
Dai (1993).

2. MOTIVATION

The flat (2,3,5) sub-Riemannian structure gives
a local nilpotent approximation for an arbitrary
sub-Riemannian structure with the growth vector
(2, 3, 5), see Agrachev and Sarychev (1988),
Agrachev et al. (1989), Bellaiche (1996), and it
is important both from theoretical and applied
points of view.

The growth vector (2,3,5) is maximal, thus a
generic rank 2 sub-Riemannian structure on a
5-dimensional manifold has the growth vector
(2,3,5) at a generic point.

The preceding maximum growth case (2,3), i.e.,
the contact case, was already studied in detail:

e the flat (2,3) case evolving on the Heisen-
berg group was analyzed by Brockett (1981),
and Vershik and Gershkovich (1987),

e the general (2,3) case was studied as a per-
turbation of the flat case by Agrachev (1996)
and El-Alaoui et al. (1996).

The next maximum growth (thus generic) case is
the growth vector (2,3,5).

In robotics, (2,3,5) sub-Riemannian structures
appear as models of the following systems:

e a pair of bodies rolling one on another with-
out slipping and twisting Li and Canny
(1990); Bicchi et al. (1995); Agrachev and
Sachkov (1999); Marigo and Bicchi (1999),

e a car with 2 off-hooked trailers Laumond
(1998); Vendittelli et al. (1999).

3. MODEL

We choose the following model for the flat (2,3,5)
sub-Riemannian structure:

M = Ri,y,z,v,w’

-0 yo 2+y’ o

Y= 09 202 2 ow’
0 0 24420

X2__+a: ? +y* 0

Oy 5&-1- 2 Ov’

4. EXISTENCE OF SOLUTIONS

Control system (1) has the full rank and the state
space M is connected, thus the system is globally
controllable on M.

Existence of optimal controls in the optimal con-
trol problem (1)-(3) follows from the classical
Filippov’s theorem.

5. EXTREMALS

We replace the length functional (3) by action:

1 T
J:§/0 (u? + u) dt — min (4)

and seek for extremals of the problem (1), (4) via
Pontryagin Maximum Principle.

5.1 Normal extremals
Introduce the linear Hamiltonians corresponding
to the basis fields:

hi(\) =\ X)), NeT*M, i=1,...,5.

Normal extremals are trajectories of the Hamilto-
nian system

A=H(\), XeT*M, (5)

with the normal Hamiltonian H = (h? + h3)/2.
In the coordinates h; on vertical fibers in T*M,
system (5) reads

hi = —hshs, (6)
hy = hyhs, (7)
hs = hihy + hohs, (8)
hy =0, 9)
hs =0, (10)

G =hi X1 + haXo.

We consider geodesics parametrized by arc-length,
i.e., restrict to the level surface {H = 1/2}. Using
the polar coordinates hy = cos@, ho =sinf, hy =
asin B, hs = —acos 8, we reduce equations (6)—
(10) to the mathematical pendulum equation:

§ = —asin(@ — 3), a, B = const, (11)

which is known to be integrable in Jacobi elliptic
functions. We find explicitly 0(t), h;(t), and finally
q(t) in the model in R’ in terms of elliptic
functions cn, sn, cn, E.

5.2 Abnormal extremals

Abnormal geodesics are trajectories of the ODEs

G=u1 X1 +u2Xs, up, us = const,

i.e., one-parameter subgroups tangent to the dis-
tribution A. The corresponding controls u; =
cosf, us = sin#, 6 = const, satisfy the pendulum
equation (11), thus abnormal geodesics are not
strictly abnormal.



In the model in R?, projections of the abnormal
geodesics to the plane (z,y) are straight lines,
thus abnormal geodesics ¢(t) are optimal for ¢ €
[0, +00).

6. OPTIMALITY OF NORMAL GEODESICS

Small pieces of geodesics are optimal, so any
geodesic ¢(t) has a cut point, i.e., the first point
where the geodesic fails to be optimal. At cut
points, the global optimality of geodesics is lost.
The local counterpart of cut points are conjugate
points, where geodesics lose the local optimality.

Conjugate points are critical values of the expo-
nential mapping;:

Exp : (Ao,t) € Co xRy = q(t) = moetf N\ € M,

where Co = {H = 1/2}NTy M and w : T*M —
M is the projection.

The set of all first conjugate points to the point
go along all geodesics is denoted by Congy, and is
called the conjugate locus.

In order to reduce dimensions, we use symmetries
of the problem.

7. SYMMETRIES

It was known since the work of Cartan (1910)
that infinitesimal symmetries of the flat (2,3,5)
distribution A is the 14-dimensional exceptional
simple Lie algebra g», see also Sachkov (1998).
The Lie algebra of symmetries of the flat sub-
Riemannian structure is 6-dimensional: it contains
5 “trivial” symmetries given by left translations
on the Lie group M, and one rotation Xy on M,
Xo(go) = 0. We have

[X07X1] = _X27 [X())XQ] = X17

thus the field X, preserves parametrized geodesics
starting from qo:

e*X0q(t) = ¢'(t).
In the model, we have
0 0 0

+r——w5o—+v

Xo = Yo Oy Ov ow’

There is also a symmetry Y of the distribution A
which acts as homothety on the sub-Riemannian
structure:
YV, X1] = -X1, [, Xo]=-Xy,
thus preserves nonparametrized geodesics but not
time along them:
eYqt) =¢ ), t =€t
In the model,
0 0 0 0 0
Y =z— — +2z2— +3v— + 3w —.
T ox +y8y + “52 + B0 + Y ow

The symmetries Xy and Y commute:
[Xo,Y]=0.

8. FACTORIZATION

We use the symmetries Xy and Y to factorize the
exponential mapping and conjugate locus.

For the Hamiltonian lifts Zo and ZY of the fields
Xp and Y respectively, we have:

- = —
[ho, H] =0, ho H =0,
- = — —

[hy,H] =-2H, hy H=—2H,
- =

[hO)hY]:O

In order to preserve level sets of H, we replace the
— —
field hy by Z =Hy +e, where e = Ef:

1 h’Bth is
the Euler vertical field on T* M, so that
— — —
[Z,H|=—-—H, ZH=0, [Z, ho]=0.
We have
Exp(e"Ze’ho )y, t) = e e*X0 Exp(Ao, te"),

thus we can factorize the domain N = Cy x R4
of the exponential mapping and the manifold A
and obtain a commutative diagram

Exp Id
N > M < Cong,
7r1l lﬂQ lﬂé
Exp’ Id
N' s M' < Cony,
—
Here m N — N' = N/eRhoeRZ and
M — M' = M/eRXoeRY are projections and

Con;0 is the set of critical values of the factorized
exponential mapping Exp’.

The action of the 2-parameter group of symme-
tries eRBhoeRZ reduces values of the parameters:
a =1, =0, and equation (11) reduces to the

standard pendulum equation:
§ = —siné. (12)

After factorization, the set of geodesics ¢'(:) is
parametrized by the phase portrait of the stan-
dard pendulum (12).

Abnormal geodesics correspond to equilibria of
the pendulum: (0,6) = (0,0) and (6,6) = (=, 0).

9. FACTORIZED CONJUGATE LOCUS
NEAR THE STABLE EQUILIBRIUM

We study the local structure of the factorized
conjugate locus Con;0 in the neighborhood of the
stable equilibrium of the pendulum: (6, 8) = (0,0).
The conjugate time is bounded. Asymptotically,
the conjugate locus is a quasihomogeneous surface
of orders (1, 1, 2), its intersection with a plane
transversal to the axis is an astroid.

We present below the graph of the conjugate time
(in the domain of Exp’) and the conjugate locus
Cony, (in the range of Exp').



Figure 1: The conjugate time.

Figure 2: Cony, .
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