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Abstract—We consider the control problem for a system described by ordinary differential
equations with linear controls. We present sufficient conditions for finding an exact solution
of the control problem for a three-dimensional nilpotent system with a two-dimensional linear
control in the form of programmed controls and feedback controls. We consider two examples
of the computation of controls with the use of linear vector fields on the plane.
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1. INTRODUCTION

In the present paper, we find the solution of the control problem for a three-dimensional nilpotent
system with a two-dimensional control and continue the previous research [1, 2]. In [1], we found
formulas for programmed controls and feedback controls for a symmetric model of a nilpotent
system in the class of controls optimal in the sense of the minimum of the functional of the sub-
Riemannian length and in the classes of piecewise trigonometric and piecewise constant controls.
In [2], we constructed a computational algorithm on the basis of the method of nilpotent approxi-
mation. Nilpotent approximations are analogs of linear approximations (see [3–7]) but, unlike the
latter, preserve the controllability property, and the control problem for these systems has an exact
solution in various classes of controls.

In the present paper, we develop a new approach to the solution of the control problem for
a symmetric model of a nilpotent system, which substantially extends the possibilities of the control
for three-dimensional nilpotent systems on the basis of geometric properties of a symmetric system.
This approach provides the possibility to construct controls with given properties, which would be
useful in the case of state space constraints. We present sufficient conditions that permit one to
construct controls with the use of vector fields on the plane. Two algorithms are constructed for
the solution of the control problem for a symmetric system, one of which is considered in detail in
the case of a linear center-type field and is adapted to the case of a linear focus-type field. Linear
fields are specified by four parameters; therefore, by varying these parameters, one can control the
arrangement of trajectories joining edge points.

The controls obtained in the present paper completion the class of controls for the computational
algorithm in [2], since the results obtained for the model system can be used for all nilpotent
approximations. The controls obtained in the present paper permit one to extend the class of
control problems; for example, state space constraints arise in the construction of maps in problems
on three-dimensional manifolds.

2. STATEMENT OF THE PROBLEM

Consider the control system

ż1 = u1, ż2 = u2, ż3 = (u2z1 − u1z2)/2, u = (u1, u2) ∈ R2, z = (z1, z2, z3) ∈ R3, (1)

with the boundary conditions

z(0) = z0, z(T ) = 0, z0 ∈ R3, T > 0. (2)
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2 SACHKOVA

For this system, we pose the following control problem: for a given point z0 ∈ R3, find a time
T > 0 and piecewise continuous controls ui : [0, T ] → R, i = 1, 2, for which the corresponding
trajectory z(t) of system (1) satisfies condition (2).

System (1) is linear with respect to controls, has full rank, and hence is completely controllable
(see [8, p. 73]); i.e., the control problem is solvable for each z0.

The investigation of the control problem (1), (2) is the main aim of the present paper.

3. GEOMETRIC APPROACH TO THE SOLUTION OF THE CONTROL PROBLEM

In this section, we describe an approach to the solution of the control problem (1), (2) on the
basis of geometric properties of trajectories of system (1).

3.1. Theoretical Information

Consider a simple closed piecewise smooth curve Γ on the plane Oz1z2. It is known that the
area of the domain D bounded by the curve Γ is equal (neglecting the sign) to the integral

1
2

∮

Γ

(z1 dz2 − z2 dz1). (3)

The quantity (3) is referred to as the algebraic area of the domain D. If the contour Γ has the
positive sense (i.e., is passed in the counterclockwise direction), then the algebraic area of the do-
main D is equal to the ordinary geometric area of D; and in the case of the negative sense of Γ,
it is equal to the geometric area with the minus sign. If the closed curve Γ has self-intersections,
then its algebraic area is evaluated as the sum of algebraic areas of subdomains bounded by simple
closed curves in which Γ is split: the areas of subdomains passed around in the positive sense are
taken with the plus sign, and those passed around in the negative direction, with the minus sign.
If some of these subdomains are passed around several times, then the algebraic areas of those
domains are accounted in the sum with coefficients equal to the number of passes.

Let γ be a smooth curve on the plane Oz1z2. The endpoints of the curve γ are joined with the
origin O by rectilinear segments. The domain bounded by the resulting piecewise smooth contour Γ
is referred to as a sector. Consider system (1) and an arbitrary initial state z(0) = z0 of the system.
Set z̄0 = (z0

1 , z
0
2), Choose a smooth curve γ issuing from the point P0 = z̄0, γ = {z̄(t)| t ∈ [0, t1]},

z̄(0) = z̄0. Let P = z̄(t) be a current point of the curve γ. Then, by (3), the algebraic area of the
sector OP0P is equal to

SOP0P =
1
2

∫

γ

(z1 dz2 − z2 dz1) =
1
2

t∫

0

(z1ż2 − z2ż1) dt (4)

since the differential form z1 dz2 − z2 dz1 is zero on radius-segments.

3.2. Geometric Properties of Trajectories and Control Problems

Let z̄(t) be a parametric description of some smooth curve γ on the plane {z3 = 0}, z̄(0) = z̄0,
where z̄0 is the projection of the initial state z0 of system (1) onto the plane {z3 = 0}. Set
u(t) = ˙̄z(t); then z̄(t) is the solution of the Cauchy problem for the first two equations in system (1),

ż1 = u1(t), ż2 = u2(t), (5)

with the initial condition
z̄(0) = z̄0. (6)

In this case, the Cauchy problem for the third equation in system (1) acquires the form

ż3 = (z1ż2 − z2ż1)/2, (7)
z3(0) = z0

3 . (8)
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CONTROL SYNTHESIS FOR A THREE-DIMENSIONAL NILPOTENT SYSTEM 3

Let z3(t) be the solution of problem (7), (8). By comparing relations (4) and (7), we obtain

SOP0P =

t∫

0

ż3(t) dt = z3(t)− z3(0) = ∆z3(t)|γ . (9)

Relation (9) clarifies the geometric property of system (1): if z(t) is a solution of the Cauchy
problem for system (1) with z(0) = z0, then the increment z3(t) − z3(0) = ∆z3(t) of the third
coordinate along the projection z̄(t) of the curve z(t) onto the plane Oz1z2 is equal to the algebraic
area of the sector OP0P . From relation (9), we obtain z3(t) = z0

3 + SOP0P , and the trajectory

z(t) = (z̄(t), z0
3 + SOP0P ) (10)

is a feasible trajectory of system (1).
In particular, is the curve γ is the radius segment PO = {%̄(t)| t ∈ [t1, t2]}, P = %̄(t1), then

the curve %̄(t) is the solution of the Cauchy problem (5), (6), and the third equation in system (1)
acquires the form

ż3(t) ≡ 0. (11)
In this case, the trajectory

z(t) = (%̄(t), z0
3) (12)

is feasible for system (1).
Let us apply the geometric properties of the trajectories of system (1) to the solution of the

control problem (1), (2). It follows from (10) and (11) that, to solve the posed problem, it suffices
to choose a smooth curve γ on the plane Oz1z2 passing through the point P0 and containing a point
Pp such that the algebraic area of the sector OP0Pp is equal to −z0

3 . Indeed, for the parameter
value t = tp corresponding to the point Pp, the third coordinate of the trajectory (10) becomes zero.
Then, by moving along the trajectory (12) starting from that time moment, the third coordinate
of the trajectory remains identical zero by (11), and the first two coordinates achieve the origin at
some time moment T = tp + T1. Such a displacement corresponds to controls of the form

ui(t) =
{

żi(t) for t ∈ [0, tp]
%̇i(t) for t ∈ [tp, T ],

i = 1, 2.

The following theorem provides sufficient conditions for the existence of such controls.

4. MAIN RESULT

Theorem 1. Let v̄(z) = (v1(z1, z2), v2(z1, z2)) be a smooth vector field on the plane Oz1z2 sat-
isfying the following conditions.

1. v̄ is a complete field ; i.e., any trajectory z̄(t) = (z1(t), z2(t)) of the autonomous differential
equation

ż1 = v1(z1, z2), ż2 = v2(z1, z2) (13)
can be extended to the entire axis t ∈ (−∞, +∞).

2. det(v̄(z̄), z̄) 6= 0 for all z̄ 6= 0.
3. Both improper integrals

∫ +∞
0

(z1ż2 − z2ż1) dt and
∫ 0

−∞(z1ż2 − z2ż1) dt are divergent.
Then for any initial state z0 ∈ R3, (z0

1)
2 + (z0

2)
2 6= 0, there exists a unique time t = tp ≥ 0 such

that the following programmed controls provide a solution of the control problem (1), (2) :

u1(t) =
{±v1(z̄(t)) for t ∈ [0, tp]
− cosϕp for t ∈ [tp, T ],

u2(t) =
{±v2(z̄(t)) for t ∈ [0, tp]
− sinϕp for t ∈ [tp, T ],

(14)

where ± = sgn(z0
3δ

0
v̄); δ0

v̄ =
∣∣∣∣
v0
1 z0

1

v0
2 z0

2

∣∣∣∣, v0
1 = v1(z̄0), v0

2 = v2(z̄0); z̄(t) is the solution of the Cauchy

problem (13), (6); (ϕp, rp) are the polar coordinates of the point z̄p = z̄(±tp); and T = tp + rp is the
total time of motion.
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Proof. First, let us show that, by using any vector field on the plane satisfying assumptions 1–3
of the theorem, one can construct controls bringing system (1) from the point

z0 ∈ R3, (z0
1)

2 + (z0
2)

2 6= 0, z0
3 6= 0,

into some point of the plane {z3 = 0}. Take an arbitrary fixed field v̄ with this property.
It follows from assumption 2 of the theorem that the origin is the unique singular point of the

field v̄ on the plane. Indeed, if z̄ 6= 0, then v̄(z̄) 6= 0. Moreover, condition 2 implies that the vec-
tor field v̄(z̄) has a nonzero index at the origin; therefore, v̄(0) = 0. Hence it follows that any
trajectory of the field v̄ issuing outside zero does not pass through the origin; therefore, the con-
tinuous function δv̄,z̄(t) = det(v̄(z̄(t)), z̄(t)) = −(z1ż2 − z2ż1)(t) is nonzero for any t ∈ R, where
z̄(t) is the solution of the Cauchy problem (13), (6). Consequently, δv̄,z̄(t) preserves its sign on the
entire numerical axis, and sgn δv̄,z̄(t) = sgn δv̄,z̄(0) = sgn δ0

v̄.
Consider the function Φ(t) = −(1/2)

∫ t

0
δv̄,z̄(t) dt. It follows from the condition sgn Φ̇(t) =

− sgn δ0
v̄ for t > 0, Φ(0) = 0, that the continuous function Φ(t) is strictly monotone and has

constant sign for t > 0. This, together with assumption 3 of the theorem, implies the asymptotics

lim
t→+∞

Φ(t) = ±∞, ± = − sgn δ0
v̄. (15)

Consider the field −v̄(z̄); then the solution of the Cauchy problem ˙̄z = −v̄(z̄) with the initial
condition (6) is given by the function

z̄−(t) = z̄(−t) for any t ∈ R, (16)

where z̄(t) is the solution of the Cauchy problem (13), (6). By taking into account relation (16),
one can show that

δ−v̄,z̄−(t) = det(−v̄(z̄−(t)), z̄−(t)) = −δv̄,z̄(−t), (17)

which implies that sgn δ−v̄,z̄−(t) = sgn δ0
−v̄ = − sgn δ0

v̄.

Consider the function Ψ(t) = −(1/2)
∫ t

0
δ−v̄,z̄−(t) dt. The condition sgn Ψ̇(t) = sgn δ0

v̄ with t > 0
and Ψ(0) = 0 implies that the continuous function Ψ(t) is strictly monotone and has constant sign
for t > 0; it follows from (17) that Ψ(t) = Φ(−t) for t > 0. This, together with assumption 3 of
the theorem, implies the asymptotics

lim
t→+∞

Ψ(t) = ∓∞, ± = − sgn δ0
v̄. (18)

Consider the equation Φ(t) = −z0
3 . It follows from (15) that if Sg = sgn(δ0

v̄z
0
3) = 1, then this

equation has a unique solution t = t+p > 0. If Sg = −1, then from the relations sgn(Φ(t)Ψ(t)) = −1
for t > 0 and from (18), we find that the equation Ψ(t) = −z0

3 has the unique solution t = t−p > 0.
The existence of either t+p or t−p implies that either z+

3 (t)|t+p = z0
3 + Φ(t)|t+p = 0 or z−3 (t)|t−p =

z0
3 + Ψ(t)|t−p = z0

3 + Φ(−t)|t−p = 0. Hence it follows that if we bring system (1) along the trajectory
z(t) = (z̄(t), z+

3 (t)), t ∈ [0, t+p ], then it is brought into the point (z+
1 , z+

2 , 0); either if we bring
the system along the trajectory z(t) = (z̄−(t), z−3 (t)), t ∈ [0, t−p ], then it is brought into the point
(z−1 , z−2 , 0). We denote the switching point by t = t±p . By using the vector field v̄, we have thereby
constructed the trajectory z(t) = (z̄(±t), z±3 (t)), t > 0, ± = Sg of system (1) issuing from a given
initial point z(0) = (z̄0, z0

3) = z0, (z0
1)

2 + (z0
2)

2 6= 0, z0
3 6= 0, and getting on the plane {z3 = 0} into

the point zp = z(t±p ) = (z̄(±t±p ), 0), ± = Sg [see (16)].
Set t±p = tp. Since the radial segments of the plane {z3 = 0} are admissible trajectories of

system (1), it follows that the resulting trajectory can be supplemented by the radius-segment
issuing from the point zp at time t = tp. Thus, we obtain an admissible trajectory of the original
system corresponding to the posed control problem (1), (2). If z0 ∈ R3, (z0

1)
2 + (z0

2)
2 6= 0, z0

3 = 0,
then tp = 0, and the trajectory (12) on the plane {z3 = 0} is the desired trajectory. By a straight-
forward verification, one can show that the program controls (14) bring the original system along
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CONTROL SYNTHESIS FOR A THREE-DIMENSIONAL NILPOTENT SYSTEM 5

one of the two constructed trajectories from the original state lying outside the axis Oz3 into the
origin. The proof of the theorem is complete.

Remark 1. If the total motion time T in the control problem (1), (2) is fixed, then, by
performing reparametrization of the current time t in the trajectory z̄(t), one can obtain controls
providing a solution of the control problem with fixed time T > 0 (see [1]).

Corollary 1. The programmed controls (14) generate the control synthesis in the domain
{(z1, z2, z3) ∈ R3| (z1)2 + (z2)2 6= 0} :

u1(z) =
{
±v1(z) if z3 6= 0, z̄ 6= 0
− cosϕ if z3 = 0,

(19)

u2(z) =
{
±v2(z) if z3 6= 0, z̄ 6= 0
− sinϕ if z3 = 0,

(20)

where ± = sgn(z3 det(v̄(z̄), z̄)).

Proof. Formulas (19) and (20) are obtained from the programmed controls (14) by the substi-
tution of t = 0.

5. ALGORITHMS

The above-proved theorem is constructive. It can be used for stating Algorithm 1 of the con-
struction of controls of the form (14). At the preliminary stage, we choose a smooth field v̄(z̄) on
the plane, solve the Cauchy problem (13), (6), and verify assumptions 1–3 of the theorem.

Algorithm 1.
The input data are z0 ∈ R3 : (z0

1)
2 + (z0

2)
2 6= 0; v̄(z̄) satisfy the assumptions of the theorem.

1. If z0
3 = 0, then the solution of the control problem (), (2) is the programmed control u(t) =

(− cosϕ0,− sinϕ0), t ∈ [0, T ], where (r0, ϕ0) are the polar coordinates of the point z̄0 = (z0
1 , z

0
2),

T = r0, and the operation of the algorithm is terminated.
2. If z0

3 6= 0, then
21 the parameters δ0

v̄ = det(v̄(z̄0), z̄0) and Sg = sgn(δ0
v̄z

0
3) are computed;

22 the switching time tp is found: tp = |τ | is a solution of the equation

±|τ |∫

0

δv̄,z̄(t) dt = 2z0
3 , ± = Sg; (21)

23 the polar coordinates of the switching point are found:

z̄p = z̄(±tp) = (rp, ϕp), ± = Sg; (22)

24 the total motion time is computed as T = tp + rp.
3. The solution of the control problem (1), (2) is given by the programmed control u(t) of the

form (14), and the operation of the algorithm is terminated.
The output data are u(t), t ∈ [0, T ].
By using Algorithm 1, we construct Algorithm 2 of the computation of controls bringing sys-

tem (1) from points of the axis Oz3 into the origin.

Algorithm 2.
The input data z0 : (z0

1)
2 + (z0

2)
2 = 0, z0

3 6= 0; v̄(z̄) satisfies the assumptions of the theorem.
1. Moving system (1) away from the axis Oz3. In the plane {z3 = z0

3}, we choose an arbitrary
direction l̄ = (cosϕ, sinϕ), ϕ ∈ [0, 2π] : with the use of the controls u1(t) = l̄, the system is brought
along a feasible trajectory, that is, the ray {t cosϕ, t sinϕ, z0

3}, t = [0, T1], from the original state

DIFFERENTIAL EQUATIONS Vol. 46 No. 8 2010 (Reg. No. 813, 5.9.2010)
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z0 = (0, 0, z0
3) into the intermediate state z1 = (T1 cosϕ, T1 sinϕ, z0

3), where T1 is an arbitrary
positive number.

2. Motion into the point O. We use Algorithm 1 to which the point z1 is input as the initial
state. The linear change of variables t(s) = s − T1, s ∈ [T1, T + T1], is performed in the resulting
program controls u2(t).

3. The solution of the control problem (1), (2) is the program control

ui(t) =
{

u1
i (t) for t ∈ [0, T1]

u2
i (t) for t ∈ [T1, T + T1], i = 1, 2.

(23)

The output data are u(t), t ∈ [0, T + T1].
The constructed algorithms permit one to bring system (1) from an arbitrary point of the state

space into the origin. In addition, the algorithms permit one to control the configuration of system
trajectories issuing from a given initial point and entering the origin, since an arbitrary field v̄
satisfying the assumptions of the theorem can be fed to the algorithm.

Consider the simplest class of complete smooth vector fields on the plane, that is, linear fields.
We obtain families of solutions of the control problem (1), (2) with the use of Algorithm 1.

6. CONSTRUCTION OF THE CONTROL WITH THE USE
OF A LINEAR CENTER-TYPE FIELD

Consider the linear field v̄ = (v1(z̄), v2(z̄)) of the form v1 = az1 + bz2, v2 = cz1 − az2 satisfying
the conditions

a, b, c ∈ R, a2 + b2 + c2 6= 0, bc < 0, ∆ =

∣∣∣∣∣
a b

c −a

∣∣∣∣∣ > 0. (24)

The field v̄ of the type (24) is complete and has the unique singular point (0, 0) of the type of
center,

det(v̄(z̄), z̄) 6= 0 ∀z̄ 6= 0,

since the quadratic form bz2
2 − cz2

1 + 2az1z2 is definite (by virtue of the condition ∆ > 0).
The solution of the Cauchy problem (13), (6) is given by the ellipsoid

z0
i (t) = z0

i cos(t
√

∆) +
v0

i√
∆

sin(t
√

∆), i = 1, 2, (25)

where v0
1 = az0

1 + bz0
2 and v0

2 = cz0
1 − az0

2 .
By straightforward computations, one can show that

z1ż2 − z2ż1 = −δ0
v̄ = b(z0

2)
2 − c(z0

1)
2 + 2az0

1z
0
2 ≡ const, (26)

which readily implies the divergence of the integrals in assumption 3 of the theorem.
Thus, the linear center-type linear field (24) satisfies all assumptions of the theorem.
Let us apply Algorithm 1 to the solution of the control problem (1), (2).
The input data z0 ∈ R3 : (z0

1)
2 + (z0

2)
2 6= 0, z0

3 6= 0; v̄(z̄) is a field of the type (24).
By taking into account (26), we compute the direction of the pass around the ellipsoid (25)

Sg = ± = sgn(bz0
3). By solving Eq. (21) with the use of relation (26), we obtain tp = 2|z0

3 |/|δ0
v̄|.

By computing the polar coordinates of the point z̄p = z̄(±tp), we find the desired solution, which
is a program control of the form (14) :

u1(t) =
{±(v0

1 cos(t
√

∆)− z0
1

√
∆ sin(t

√
∆)) for t ∈ [0, tp]

− cosϕp for t ∈ [tp, T ],
(27)

u2(t) =
{±(v0

2 cos(t
√

∆)− z0
2

√
∆ sin(t

√
∆)) for t ∈ [0, tp]

− sinϕp for t ∈ [tp, T ],
(28)

(Reg. No. 813, 5.9.2010) DIFFERENTIAL EQUATIONS Vol. 46 No. 8 2010
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Fig. 1. Trajectory of the center type. Fig. 2. Projection of a trajectory of the center type.

The control synthesis in the domain {(z1, z2, z3) ∈ R3| (z1)2 + (z2)2 6= 0} has the form

u1(z) =
{
±v1(z) if z3 6= 0, z̄ 6= 0
− cosϕ if z3 = 0, u2(z) =

{
±v2(z) if z3 6= 0, z̄ 6= 0
− sinϕ if z3 = 0, (29)

where ± = sgn(bz3).
The trajectory that is a solution of the Cauchy problem for system (1) with the initial condition

from (2) is the elliptic spiral z(t) = (z̄(t), z3(t)), where z̄(t) is the ellipsoid (25), and z3(t) =
z0
3 − (1/2)(sgn z0

3)|δ0
v̄|t [see (26)].

As a special example, we choose a field v̄ of the type (24): a = 3, b = 5, c = −3; the initial
position is z0 = (1,−1, 10). Then the result of Algorithm 1 provides the trajectory shown in Fig. 1,
and its projection onto the plane {z3 = 0} is presented in Fig. 2.

7. CONSTRUCTION OF CONTROL WITH THE USE
OF A LINEAR FOCUS-TYPE FIELD

Consider the linear field v̄ = (v1(z̄), v2(z̄)) of the form v1 = az1 + bz2, v2 = cz1 + dz2 satisfying
the conditions

a, b, c, d ∈ R, a2 + b2 + c2 + d2 6= 0, bc < 0, S = a + d > 0, ∆ =

∣∣∣∣∣
a b

c d

∣∣∣∣∣ > S2/4. (30)

The field v̄ of the type (30) is complete and has the unique singular point (0, 0) of the focus
type (the unstable focus if S > 0); det(v̄(z̄), z̄) 6= 0 for all z̄ 6= 0, since the quadratic form
bz2

2 − cz2
1 + (a− d)z1z2 is definite [D = S2 − 4∆ < 0 by virtue of condition (30)].

The solution of the Cauchy problem (13), (6) is given by the unwinding spiral

z1(t) = eSt/2

(
z0
1 cos(t

√
|D|/2) +

(a− d)z0
1 + 2bz0

2√
|D| sin(t

√
|D|/2)

)
,

z2(t) = eSt/2

(
z0
2 cos(t

√
|D|/2)− (a− d)z0

2 − 2cz0
1√

|D| sin(t
√
|D|/2)

)
,

(31)

where D = S2 − 4∆ [see (30)].
By straightforward verifications, one can show that

z1ż2 − z2ż1 = −δv̄,z̄(t) = −eStδ0
v̄, (32)

DIFFERENTIAL EQUATIONS Vol. 46 No. 8 2010 (Reg. No. 813, 5.9.2010)
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where δ0
v̄ = b(z0

2)
2 − c(z0

1)
2 + (a − d)z0

1z
0
2 . Then, by taking into account the inequality S > 0,

we obtain
+∞∫

0

(z1ż2 − ż1z2) dt = −δ0
v̄

+∞∫

0

eSt dt = ±∞, ± = − sgn δ0
v̄, (33)

0∫

−∞

(z1ż2 − ż1z2) dt = −δ0
v̄

0∫

−∞

eSt dt =
−δ0

v̄

S
< ∞. (34)

Thus, a linear field of the type (30) does not satisfy all assumptions of the theorem. It follows
from relation (34) that, to construct sectors of an arbitrary given algebraic area, it is impossible
to use the same trajectory of the field v̄ but passed in the opposite direction; it can be used only
in special cases in which |z0

3 | < |δ0
v̄|/(2S). Therefore, a focus-type focus can be used only in half-

spaces. To perform the control in the whole state of states, one needs two focus-type field with
opposite orientations of trajectories.

Consider two fields of the type (30) : v̄ = (v1, v2), v1 = az1+bz2, v2 = cz1+dz2 and w̄ = (w1, w2),
w1 = az1 − bz2, w2 = −cz1 + dz2. It is important that sgn δ0

v̄ = sgn b = − sgn δ0
w̄. Therefore,

by the theorem, the sign of the expression bz0
3 uniquely specifies the field that can be used for the

control: the field v̄ can be used in the half-space sgn z0
3 = sgn b, and the field w̄, in the half-space

sgn z0
3 = − sgn b.

Let us apply Algorithm 1 to the solution of the control problem (1), (2).
The input data are z0 ∈ R3, (z0

1)
2 + (z0

2)
2 6= 0, z0

3 6= 0; v̄(z̄) is a field of the type (30).
1. Computation of the characteristics Sg = ± = sgn(bz0

3) of the problem.
2. Choice of either the field v̄ or the field w̄ (az1 ± bz2,∓cz1 + dz2).
3. Choice of a trajectory of the Cauchy problem (13), (6) for the corresponding field v̄ or w̄ :

z1(t) = eSt/2

(
z0
1 cos(t

√
|D|/2) +

(a− d)z0
1 ± 2bz0

2√
|D| sin(t

√
|D|/2)

)
,

z2(t) = eSt/2

(
z0
2 cos(t

√
|D|/2)− (a− d)z0

2 ∓ 2cz0
1√

|D| sin(t
√
|D|/2)

)
,

(35)

where D = S2 − 4∆ [see (30)].
4. Computation of the characteristic δ0 = ±(b(z0

2)
2 − c(z0

1)
2) + (a− d)z0

1z
0
2 of the trajectory.

5. Computation of the switching time: by solving Eq. (21) under condition (32) and by taking
into account the relation sgn δ0 = sgn z0

3 , we obtain tp = (1/S) ln(1 + 2Sz0
3/δ0) > 0.

6. Computation of the polar coordinates of the switching point and the total motion time:
z̄p = z̄(tp) = (rp, ϕp) and T = tp + rp.

7. construction of program controls that give the solution of the control problem (1), (2) :

u1(t) =
{

az1(t)± bz2(t) for t ∈ [0, tp]
− cosϕp for t ∈ [tp, T ],

(36)

u2(t) =
{∓cz1(t) + dz2(t) for t ∈ [0, tp]
− sinϕp for t ∈ [tp, T ].

(37)

The output data is the control u(t), t ∈ [0, T ].

Remark 2. The control synthesis in the domain {(z1, z2, z3) ∈ R3| (z1)2 + (z2)2 6= 0} has the
form

u1(z) =
{

az1 + βz2 if z3 6= 0, z̄ 6= 0
− cosϕ if z3 = 0, u2(z) =

{
γz1 + dz1 if z3 6= 0, z̄ 6= 0
− sinϕ if z3 = 0, (38)

where β = (sgn z3)|b|, γ = −(sgn z3)|c|; a, β, γ, and d satisfy condition (30).
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Fig. 3. A trajectory of the focus type. Fig. 4. The projection of a trajectory of the
focus type.

The trajectory of the Cauchy problem for the original system has the form z(t) = (z̄(t), z3(t)),
where z̄(t) is the trajectory (35) and z0

3(t) = −(δ0/2S)(eSt − 1) + z0
3 .

As a special example, we take the field v̄ of the type (30) with a = 3, b = 5, c = −3, and
d = 2.8; the initial position is z0 = (1,−1, 10). Then the result of the operation of Algorithm 1 is
the trajectory shown in Fig. 3, and its projection on the plane {z3 = 0} is represented to Fig. 4.

Note that the resulting algorithms for solving the control problem (1), (2) are implemented in
the Maple software package (see [9]) and have been tested on particular linear fields of the types
of center and focus. Various configurations of trajectories joining the origin with the initial point of
system (1) were obtained.

The geometric approach to the solution of the control problems (1), (2) permits one to solve the
problem for arbitrary boundary conditions with the choice of a curve γ of a given configuration
with regard of state space constraints.
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