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Abstract. The paper is devoted to an approach for image inpainting developed on the
basis of neurogeometry of vision and sub-Riemannian geometry. Inpainting is realized
by completing damaged isophotes (level lines of brightness) by optimal curves for the
left-invariant sub-Riemannian problem on the group of roto translations (motions) of
a plane SE(2). The approach is considered as anthropomorphic inpaintingsince these
curves satisfy the variational principle discovered by neurogeometry of vision. A parallel
algorithm and software to restore monochrome binary or half tone images represented
as series of isophotes were developed. The approach and the algorithm for computation
of completing arcs are presented in detail.

AMS subject classi�cations : 65M10, 78A48

Key words : Image inpainting, sub-Riemannian geometry, neurogeometry of vision, group of roto-
translations of a plane, parallel software.

1. Image inpainting, neurogeometry of vision and sub-Riema nnian geometry

The task of restoring damaged or latent images is one of challenging problems in com-
puter graphics, photo restoration, �lm and painting. A numb er of methods were sug-
gested to solve this problem, many of which are based on advanced mathematical tech-
niques, in particular, on the application of the calculus of variations and optimal con-
trol [ 1–4,23,24,29] .

This paper is based on provisions a new direction of neuroscience — neurogeometry[ 5,
6] , as well as recent results on sub-Riemannian geometry[ 7–9] . On the basis of results
of these studies were developed an algorithm and a set of parallel software to restore
monochrome binary or halftone images represented as seriesof isophotes (level lines of
brightness).
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1.1. Neurogeometry of vision

An important discovery of neurophysiology of the beginning of this century is a ge-
ometric structure corresponding to the primary visual cortex of the human brain. The
primary visual cortex performs a primary (preceding any treatment) perception of visual
information by the human brain. It was established [ 5,6] that in order to store images, the
primary cortex simulates the contact structure f ( x, y, p)g = D � RP1 on the surface of the
retina D � R2. Here, the tangent element p is the slope of the curve y( x) at the point x,
and RP1 is the projective line (the space of all lines in R2 passing through the origin). It
turned out that for effective imaging, for the human brain it is pro�table to keep a contour
not as a set of successive points( x i , yi ), but as a set of strokes( x i , yi , pi ), in the limit — in
the form of a continuous curve ( x( t ), y( t ), p( t )) , p = d y=d x. If part of the curve is dam-
aged or hidden from observation, the missing arc is restoredon the basis of the following
variational principle: the restored arc should have minimu m Euclidean length in the space
of contact elements( x, y, � ), � = arctan p:

Z p
�x2 + �y2 + �� 2 d t ! min . (1.1)

(If the Euclidean length would be computed in the plane ( x, y), then the arc would be triv-
ially and erroneously restored by a straight line segment). The variational principle (1.1)
is taken in this work as a basis of the method of restoring a hidden arc. The described
internal geometry of the visual cortex is one of the main objects of study of neurogeometry
of vision — a direction of neurophysiology which studies the geometric structure of the
human brain simulating the spatial images of the external world.

1.2. Statement of the problem of image reconstruction and me thod of solution

We consider the problem of recovering a monochrome (binary of gray-scale) image,
some fragments of which are corrupted or hidden from observation. The goal is to re-
store the damaged parts of the image in an anthropomorphic (natural for a human being)
way. Mathematically, the problem can be formalized as follows. Given a domain D � R2,
mutually disjoint subdomains

O1, � � � ,ON � D, (1.2)

and a function f : Dn(
S N

i= 1 Oi ) ! [ 0,1] , one should restore the function f in the domains
O1, � � � ,ON . Here D is the domain of the initial image, Oi are subdomains with corrupted
parts of image, and the function f determines the image (brightness for gray-scale image,
and for binary image it is a function, whose level lines coincide with the curves constituting
the image). We propose to restore the image in subdomainsOi by completing isophotes
— level curves of f in these subdomains (in the case of halftone images, the strips be-
tween the reconstructed curves are painted according to thebrightness values on these
curves). The reconstructing curves are calculated via the variational approach (1.1): the
constructed curve ( x( t ), y( t )) should minimize the distance in the space( x, y, � ), where
( x, y) are coordinates in the plane R2 and � ( t ) = arctan p( t ) = arctan( �y( t )=�x( t )) is the
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slope of the tangent to the curve ( x( t ), y( t )) . In this work we describe an algorithm for
solving the corresponding optimal control problem on the basis of papers[ 7–9] . Then we
present parallel software OptimalInpaiting developed for testing our method of image
reconstruction.

Our approach seems successful under the following assumptions:

1. Isophotes of an image can be represented by level lines of asmooth function f : D !
[ 0,1] .

2. The function f has no critical points in the corrupted subdomains O1, � � � ,ON � D.

3. Information on intersection points of level lines of f with boundaries of Oi can be
effectively extracted from the image.

4. During inpainting, the way of pairing isophotes is known.

We believe that under these assumptions the proposed methodcan be successfully used in
combination with other methods of image inpainting. The assumptions may seem rather
restrictive, but some of them can be removed in future work; a discussion of this is given
in Conclusions section at the end of the paper.

2. Reconstruction of isophotes via variational approach

Consider a smooth �at curve AB = f ( x( t ), y( t )) j t 2 [ a, b] g. Suppose that a part of
this curve C D = f ( x( t ), y( t )) j t 2 [ c, d] g, a < c < d < b, is hidden from observation
or damaged. To restore the curveC D, construct the tangent TC to the curve AC at the
point C and the tangent TD at the point D, see Fig. 1. Denote by� c, � d the slope of
the tangents TC, TD. The required curve C D = f ( x( t ), y( t )) j t 2 [ c, d] g should start
at the point C with the slope � c, terminate at the point D with the slope � d, and have
the minimum Euclidean length in the space ( x, y, � ), see(1.1). The boundary conditions
imply a smooth conjugation of the restored curve C D with the known arcs AC and DB of
the original curve. The original and restored curves are shown in Fig. 2. The minimum
condition (1.1) formalizes a natural condition for the new curve C D: in its search, large
deviations are penalized both in the coordinates ( x, y), and in the angle � . Thus, there
is minimized a certain integral compromise between the linear and angular velocities of
the curve. Moreover, one can minimize a more general length functional re�ecting the
different weights of space variables( x, y) and the angle variable � :

Z p
�x2 + �y2 + � 2 �� 2 d t ! min, � > 0, (2.1)

this extension is easily performed by the change of variables

x = � ex, y = � ey, � = e� . (2.2)

The parameter � in (2.1) has dimension of length, and it corresponds to the choice of scale
in the plane ( x, y).

Examples of curves restored via the approach described are presented in Figs. 3 and 4.
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Figure 1: Boundary conditions for restoration

of the arc C D.

Figure 2: Curve AB with original and restored

arcs C D.
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Figure 3: Restored convex isophote. Figure 4: Restored isophote with in�ection

p oint.

3. Sub-Riemannian geometry on the group of motions of a plane

Problem (1.1) is formalized as the following optimal control problem [ 10] :

�x = u1 cos� , �y = u1 sin � , �� = u2, (3.1)

q = ( x, y, � ) 2 M = R2
x,y � S1

� , u = ( u1, u2) 2 R2, (3.2)

q(0) = q0 = ( 0,0,0), q( t1) = q1 = ( x1, y1, � 1), (3.3)

l =

Z t1

0

Æ
u2

1 + u2
2 d t ! min . (3.4)

Notice that the state space of problem(3.1)-(3.4) is R2 � S1, not R2 � RP1 as in Sec-
tion 1. The two problems on R2 � S1, not R2 � RP1 have the same dynamics and cost
functional, but differ one from another by the range of the va riable � . For the problem
on R2 � S1, the angle � is the angle between the tangent vector to the curve( x( t ), y( t ))
and the positive direction of the axis x, thus � 2 S1 = R=(2� Z). And for the problem on
R2 � RP1, the angle � is the angle between the tangent line to the curve( x( t ), y( t )) and
the axis x, thus � 2 RP1 = R=(� Z). Each solution to the problem on R2 � RP1 can be
obtained by the natural projection S1 ! RP1 of solutions of two lifted problems on R2 � S1,



Anthropomorphic Image Inpainting via Variational Approac h 99

for � and � + � . On the other hand, it turns out that solving the problem on R2 � S1 is
easier than onR2 � RP1.

The state space of problem(3.1)-(3.4) is M = R2
x,y � S1

� , and it is naturally identi-
�ed with the group SE (2) of orientation-preserving motions (rototranslations) of a two-
dimensional plane, which is represented by 3� 3 matrices as follows:

SE(2) =

8

<

:

0

B
@

cos� � sin � x
sin � cos� y

0 0 1

1

C
A j � 2 S1 = R=(2� Z), x, y 2 R

9

=

;
.

Then problem (3.1)-(3.4) is obviously reformulated as a left-invariant sub-Riemannian
problem on the Lie group SE(2) [ 10, 11] . Consider a rank 2 nonintegrable left-invariant
sub-Riemannian structure on SE(2), i.e., a rank 2 nonintegrable left-invariant distribution
� on SE(2) with a left-invariant inner product h�, �i on � . One can easily show that such
a structure is unique, up to a constant scalar factor in the inner product. We choose the
following model for such a sub-Riemannian structure:

� q = span(X1(q), X2(q)) , hXi , X j i = � i j , i , j = 1,2, (3.5)

X1(q) = qE13, X2(q) = q(E21 � E12), q 2 SE(2), (3.6)

(where Ei j denotes the 3� 3 matrix with identity entry in row i and column j, and zero
entries elsewhere) and study the corresponding optimal control problem:

�q = u1X1(q) + u2X2(q), q 2 M = SE(2), u = ( u1, u2) 2 R2,

q(0) = q0 = Id, q( t1) = q1,

l =

Z t1

0

Æ
u2

1 + u2
2 d t ! min .

Vector �elds (3.6) are written as differential operators on SE(2) in the following form:

X1 = cos�
@

@x
+ sin �

@

@y
, X2 =

@

@ �
.

The problem can be reformulated in robotics terms as follows. Consider a mobile robot
in the plane that can move forward and backward, and rotate around itself (Reeds-Shepp
car) [ 12] . The state of the robot is described by coordinates( x, y) of its center of mass and
by angle of orientation � . Given an initial and a terminal state of the car, one should � nd
the shortest path from the initial state to the terminal one, when the length of the path is
measured in the space( x, y, � ), see Fig. 5.

Problem (3.1)-(3.4) is important for hypoelliptic diffusion equation on SE (2) [ 13–16,
30–32] .

It was shown in work [ 7] that problem (3.1)-(3.4) has an optimal solution for any
terminal point q1 2 SE(2).

Notice that sub-Riemannian problem(3.1)-(3.4) was also considered in[ 2,14] by using
another parameterization of extremal curves. Although, no study of optimality of extremal
trajectories was performed in that work.
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q0 = ( x0; y0; � 0)
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q1 = ( x1; y1; � 1)

Figure 5: Statement of problem (3.1) - (3.4) .

3.1. Reduction of problem (3.1)-(3.4) to solving systems of equations

In this subsection we describe some results of papers[ 7–9] that allow us to reduce
problem (3.1)-(3.4) to solving systems of equations in elliptic functions.

Via Pontryagin Maximum Principle [ 10, 17] , extremal trajectories in problem (3.1)-
(3.4) are parameterized by points of the phase cylinderC = ( 2S1

 ) � Rc of the pendulum

� = c, �c = � sin  . (3.7)

The family of arc-length parametrized extremal trajectories in problem (3.1)-(3.4) is de-
scribed by the exponential mapping

Exp : N ! M, N = C � R+ ,

Exp(� ) = Exp(� , t ) = q( t ), � = ( � , t ) = (  , c, t ) 2 N.

The equation of pendulum (3.7) has the energy integral E = c2=2 � cos 2 [ � 1,+ 1 ).
Consider the following decomposition of the cylinder C into disjoint invariant sets of the
pendulum:

C =
5G

i= 1

Ci , (3.8)

where

C1 = f � 2 C j E 2 (� 1,1)g,

C2 = f � 2 C j E 2 (1,+ 1 )g,

C3 = f � 2 C j E = 1, c 6= 0g,

C4 = f � 2 C j E = � 1g= f ( , c) 2 C j  = 2� n, c = 0g, n 2 N,

C5 = f � 2 C j E = 1, c = 0g= f ( , c) 2 C j  = � + 2� n, c = 0g.

In work [ 7] were introduced elliptic coordinates (' , k) on the domain C1 [ C2 [ C3

of the cylinder C, where k is a reparametrized energy, and ' is the time of motion of
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the pendulum (3.7). In the elliptic coordinates the �ow of the pendulum (3.7) recti�es:
�' = 1, �k = 0. Using these coordinates we obtained the following parametrization of
extremal trajectories.

If � = ( ' , k) 2 C1, then ' t = ' + t and:

cos� t = cn' cn' t + sn' sn' t ,

sin � t = s1(sn' cn' t � cn ' sn' t ),

� t = s1(am' � am' t ) (mod 2� ),

x t = ( s1=k)[ cn' (dn ' � dn ' t ) + sn' ( t + E(' ) � E(' t ))] ,

yt = ( 1=k)[ sn' (dn ' � dn ' t ) � cn' ( t + E(' ) � E(' t ))] .

In the domain C2, it will be convenient to use the coordinate  = '= k,  t = ' t =k =
 + t=k. If � 2 C2, then:

cos� t = k2 sn sn t + dn  dn  t ,

sin � t = k(sn dn  t � dn  sn t ),

x t = s2k[ dn  (cn � cn t ) + sn ( t=k + E( ) � E( t ))] ,

yt = s2[ k2 sn (cn � cn t ) � dn  ( t=k + E( ) � E( t ))] .

Here and below we use Jacobi's functions am(' , k), cn(' , k), sn(' , k), dn(' , k), E(' , k);
moreover, K(k) is the complete elliptic integral of the �rst kind [ 18] . If � 2 [ 5

i= 3C1, then
extremal trajectories are parameterized by elementary functions [ 7] .

Consider the following decomposition of M = SE(2) = R2
x,y � S1

� depending on values

of the functions R1 = y cos �
2

� x sin �
2

, R2 = x cos �
2

+ y sin �
2

:

eM = f q 2 M j R1(q)R2(q) sin� 6= 0g= t 8
i= 1Mi ,

M0 = f q 2 M j R1(q)R2(q) sin� = 0g,

where each of the setsMi is determined by constant signs of the functions sin� , R1, R2

described in Table 1.

Table 1: De�nition of domains Mi .

Mi M1 M2 M3 M4 M5 M6 M7 M8

sgn(sin � ) - - - - + + + +
sgn(R1) + + - - - - + +
sgn(R2) + - - + + - - +

The preimage of the exponential mapping is the Cartesian product N = C� R+ . In [ 8,9]
was the following global description of the cut time is presented:

tcut(� ) = sup
�

t1 > 0 j qs is optimal for s2 [ 0, t1]
	
, � 2 C,

along extremal trajectories of problem (3.1)-(3.4). In work [ 9] were de�ned the sets

bM = M n fq0g, bN = f (� , t ) 2 N j t � tcut(� )g.



102 A. P. Mashtakov, A. A. Ardentov and Y. L. Sachkov

Since for any q1 2 M an optimal control exists, then the mapping Exp : bN ! bM is sur-
jective; although, it has multiple (Maxwell) points, thus i t is not injective. Further, in
works [ 8,9] were de�ned an open dense subseteN � bN, and its decomposition into disjoint
subsetseN = t 8

i= 1Di , such that the exponential mapping has the following global structure:

Exp : eN ! eM and all Exp : Di ! Mi are diffeomorphisms. (3.9)

4. Algorithm for image inpainting

This section describes the algorithm GlobalSolve of restoring images via the varia-
tional principle (2.1) on the basis of results described in the previous section. The general
structure of the algorithm is presented in Fig. 6. From the top to the bottom, GlobalSolve

consists of the following subalgorithms:

� RestoreDomain restores corrupted isophotes in a subdomainOk, k = 1, N (1.2),
see Subsection 4.4.

� FindRoot numerically evaluates parameters that determine a corrupted isophote
( x( t ), y( t )) from its boundary conditions q1 = ( x1, y1, � 1) (3.3), see Subsection 4.2.

� Solver solves a system of 3 algebraic equations in 3 elliptic functions

Exp(� ) = q1, q1 2 Mi , � 2 Di (4.1)

for its root � 2 Di \ Cj , j 2 f 1,2g, see Subsection 4.1.

� RemoveCusp aims to remove cusps at optimal trajectories( x( t ), y( t )) by appropriate
change of the parameter� (2.1), see Subsection 4.3.

GlobalSol ve

RestoreD omai n

Figure 6: General structure of the algorithm.
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The algorithm GlobalSolve was realized by a parallel software OptimalInpaiting

described below.

4.1. Algorithm Solver for solving system of Eq. (4.1)

Input: q1 2 Mi , initial 2 f true , false g, j 2 f 1,2g, i 2 f 1, � � � , 4g, � 2 Di \ Cj .

Output: � 2 Di \ Cj .

Performed actions: The algorithm searches numerically for an approximate ro ot � 2 Di \ Cj

of system (4.1) with a prescrib ed accuracy " . The variable � is b oth an input parameter (initial

approximation of the ro ot in the case initial = true ) and an output parameter (the ro ot

found).

Constants of the algorithm: maxiteration , maxiterrnd 2 N , " > 0.

Steps of the algorithm:

1. If initial = true , then go to step 3.

2. Initial approximation � is selected randomly in the sub domain Di \ Cj .

3. An iterative algorithm of search for an approximate ro ot of system (4.1) is started from

the initial p oint � . If the numb er of iterations of this algorithm exceeds the value of

maxiteration , then go to step 2. If � =2 Di \ Cj , then go to step 2. If the total numb er

of iterations of the algorithm Solver exceeds maxiterrnd , then the algorithm terminates

(the ro ot was not found).

4. If j Exp(� ) � q1j < " , then the algorithm terminates and returns the value of the ro ot � .

4.2. Algorithm FindRoot for computing an optimal trajectory of (3.1)-(3.4)

Input: q1 2 M , initial 2 f true , false g, j 2 f 1,2g, � 2 Cj .

Output: j 2 f 1,2g, � 2 Cj .

Performed actions: The algorithm �nds numerically a ro ot � of system (4.1) and the numb er

j of the domain Cj such that � 2 Cj . The parameter � (2.2) is set equal to 1. The variables

� and j are b oth input parameters (initial approximation of the ro ot and the numb er of the

domain which contains this ro ot in the case initial = true ) and output parameters (the ro ot

found).

Steps of the algorithm:

1. The numb er i of the domain Mi such that q1 2 Mi is computed by Table 1.

2. If initial = true , then go to step ( j + 2) , i.e., 3 or 4.

3. The algorithm Solver is applied with the parameters q1 , initial , i , j = 1, � . If the ro ot

is found, then the algorithm terminates successfully, otherwise initial := false .

4. The algorithm Solver is applied with the parameters q1 , initial , i , j = 2, � . If the ro ot

is found, then the algorithm terminates successfully, otherwise initial := false and go

to step 3.
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Given a root � = ( � , t1) of system(4.1), the corresponding optimal trajectory of prob-
lem (3.1)-(3.4) is q( t ) = Exp(� , t ), t 2 [ 0, t1] . Although, optimal trajectories of prob-
lem (3.1)-(3.4) may have cusps, which seems not appropriate for isophotes ofimages
being reconstructed. Recall that a curve( x( t ), y( t )) has cusp at a point( x(� ), y(� )) if

( �x2 + �y2)( � ) = 0, lim
t ! � � 0

( �x, �y)
p

�x2 + �y2
( t ) = � lim

t ! � + 0

( �x, �y)
p

�x2 + �y2
( t ).

An example of a solution to problem (3.1)-(3.4) with a cusp is given at Fig. 5.
One can often remove cusps by changing the parameter� (2.2), see Subsection 4.3.

4.3. Algorithm RemoveCusp for removal of cusps on isophotes

Input: q1 = ( x1, y1, � 1) 2 M .

Output: � > 0, j 2 f 1,2g, � 2 Cj .

Performed actions: The algorithm searches for a value of � > 0 such that the optimal

trajectory ( x( t ), y( t )) of the problem (3.1) - (3.3) with the cost functional

l � =

Z t1

0

Æ
u2

1 + � 2 u2
2 d t ! min (4.2)

has no cusps. The new problem (3.1) - (3.3) , (4.2) is reduced to the original problem (3.1) � (3.4)
by the change of co ordinates (2.2) .

Constants of the algorithm: � � = 0.1,

� init = 0.6
� � j � 1 � � j + 0.7 j y1j

j x1+ 0.2j

0.05 +
p

x2
1 + y2

1

+ 0.2.

The constant � was chosen empirically on the basis of results of numerical simulations.

Steps of the algorithm:

1. Initial values of � := � init , initial := false are set.

2. ( x� , y� ) := ( � x1, � y1) .

3. The algorithm FindRoot is applied with the parameters ( x� , y� , � 1) , initial , j , � .

4. If the ro ot � computed by FindRoot corresp onds to a curve ( x( t ), y( t )) without cusps

(i.e., �x2( t ) + �y2( t ) 6= 0), then the algorithm terminates successfully.

5. initial := true , � := � + � � and go to step 2.

Examples of recovered images with and without cusps are given in Figs. 7 and 8. These
images were obtained respectively without and with change of the parameter � .

The diffeomorphic property (3.9) of the mapping Exp is used in this algorithm: close
points in the preimage of the exponential mapping are transformed by Exp to close points
in its image. The same property(3.9) is used below in the algorithm RestoreDomain , see
Subsection 4.4.
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Figure 7: Recovered image with cusps. Figure 8: Recovered image without cusps.

4.4. Algorithm RestoreDomain for computing isophotes in a corrupted
domain

Input: k 2 N .

Output: text �le outputs<k> .

Performed actions: The numb er k corresp onds to the input �le inputs<k> which contains

co ordinates of endp oints q1 of all isophotes for the corrupted domain Ok � D (1.2) . The algorithm

�nds all the parameters for restoring these isophotes and writes them to the �le outputs<k> .

Steps of the algorithm:

1. initial := false .

2. The input data q1 = ( x1, y1, � 1) for the current isophote is taken from the �le inputs<k> .

If the �le is empty, then the algorithm terminates.

3. If initial = true , then � 0 := � + sign (� � � init )� � and FindRoot is applied with

the parameters (� 0 x1, � 0 y1, � 1) , initial , � , j . If the ro ot � computed by FindRoot

corresp onds to a curve without cusps, then the required ro ot is found, go to step 5.

Otherwise � 0 := � init + sign (� init � � )� � and the algorithm FindRoot is applied with

the parameters (� 0 x1, � 0 y1, � 1) , initial , � , j . If the ro ot � computed by FindRoot

corresp onds to a curve without cusps, then the required ro ot is found, go to step 5.

4. The algorithm RemoveCusp is applied with the input q1 .

5. The parameters � , � , j are written to the �le outputs<k> , go to step 2.

Since the calculation of the parameters for the trajectories from different corrupted
domains occurs independently, then it makes sense to evaluate them in parallel. This was
realized in a parallel software for image inpainting described below.
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5. Parallel software OptimalInpaiting for image reconstruction

To test the approach for image inpainting described above, we developed a parallel
software OptimalInpaiting for restoration of corrupted monochrome binary or halftone
images represented as series of isophotes (level lines of brightness). Computation of recov-
ered isophotes is based on the algorithm described in Section 4. The following assumptions
are adopted in development of the software:

1. Analytical data on corrupted image are known to the user.

2. Original image can be represented by a family of level lines of a smooth function
without critical points.

3. Corrupted domains of the image are disks.

These assumptions can be weakened, see discussion in Section 6.

5.1. OptimalInpaiting : Logical structure

The structure of OptimalInpaiting software is shown in Fig. 9. A user works with
the software through an interface. First, the software creates the original image and forms
the corrupted subdomains for the image. After that the corrupted subdomains are applied
to image. The result is a corrupted image in accordance with the parameters chosen by
the user. Then tasks are being created, each of which corresponds to a corrupted isophote

 

Creating 
original image 

 
 

Creating areas of 
damage  

Creating 
corrupted image 

Interface 

Creating 
files with 
tasks 

Separation of tasks into 
"heavy" and "light" 

GlobalSolver program with 
the function of removing of 

cusps 

Restoring Image 

Figure 9: Structure of OptimalInpaiting .
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(level line of brightness) in corrupted subdomains. Parameters of the tasks are calculated
on the basis of information about corrupted subdomains. Tasks are divided into "heavy"
and "light": the task is considered light if the boundary conditions de�ne a straight-line
isophote (up to a user-speci�ed threshold), otherwise the task is considered heavy. Straight
lines are taken as a solution of light tasks. The boundary conditions for heavy tasks are
split into �les corresponding to the corrupted subdomains. Each problem is solved as an
optimal control problem, which was reduced to solving systems of algebraic equations as
was shown above (also see[ 7–9] ). The system of equations is solved numerically using the
algorithm Solver (see Section 4.1). The solution curve corresponding to the parameters
found may have cusps (i.e., be not smooth), see Fig. 7. To eliminate the non-smoothness,
the parameter � is used, see(4.2). The structure of GlobalSolve and the use of the
parameter � is described above in Section 4. The output of the programGlobalSolver

(realization of algorithm GlobalSolve in C language) is an output �le, which lists the
values of the parameters that de�ne the optimal curves for the respective tasks. According
to the obtained values, recovering isophotes are constructed and applied to the corrupted
image. As a result, the output of OptimalInpaiting obtains the restored image.

5.2. Input parameters

User interaction with the application is performed via a graphical interface designed in
language Tcl/ Tk. Fig. 10 shows the screenshot of input form of the interface that speci�es
the parameters required for the application. All input data are logically divided into 4
groups:

1. De�ning the original image:

� F(x,y) — a function that determines the original image as phase portrait of its
level lines,

� Xmin, Xmax, Ymin, Ymax— determine a domain of variables x and y,

� x_pixels , y_pixels — width and height of image in pixels,

� Isophotes — number of level lines of the function F( x, y) on the domain
( x, y) 2 [ Xmin,XMax] � [ YMin,YMax] ,

� Mode— the value is "W" for black and white images and "G" for greyscale
images.

2. De�ning the process of calculating the parameters of curves recovering isophotes
(Nodes, Alpha , EpsXY, EpsTheta, UseAutomaticAlphaRegulation ).

3. De�ning corrupted subdomains ( Rmin, Rmax, DomainsGoal, Attempts ,
RminMeasure).

4. Advanced (Time_quantization ,
Recovered_Isophote_Color_Coefficient , DisplayImages ,Threads).
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Figure 10: Input form.

5.3. Process of executing

When all input parameters are entered, the user should click CreateImage. This
creates a text �le f cutcurves.cpp, in which the problem is written in C ++ language: it
includes de�nition of the function F(x,y) and parameterization of closed curves bounding
the corrupted subdomains. Further work of the application i s illustrated in Fig. 11.

 
1. Compilation of C++ code 

(g++ compiler is used) 
7. Displaying of obtained images 

3. Creating Corrupted image 

2. Creating Original image 6. Creating Restored Image 

4. Creating files with tasks for 
GlobalSolver 

5. Determining parameters of isophotes 
(Global Solver) 

Figure 11: Pro cess of executing OptimalInpaiting .

5.4. Output

As a result, OptimalInpaiting displays 6 windows that contain:

1. the original image (Original),

2. the corrupted image (Corrupted),
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3. the corrupted image with traced boundaries of the corrupted subdomains (Corrupted
Boundary),

4. the restored image (Restored),

5. the restored image with traced boundaries of the corrupted subdomains (Restored
Boundary),

6. statistics collected during execution.

In the case of testing (buttons TestingGeneration and TestingRecovery ), the
plots demonstrating ef�ciency of parallelization are addi tionally displayed (plot of time
and plot of acceleration). Fig. 12 shows a screenshot ofOptimalInpaiting application.

Figure 12: OptimalInpaiting application.

5.5. Technical information

OptimalInpaiting was developed in Linux environment (Alt Linux, kern. 2.6.27 -
hpc-std-alt2) with the compiler gcc-4.4. The Graphical User Interface (GUI) was written
in Tcl/ Tk interpreted language. Tcl/ Tk program is executed with the use of wish inter-
preter. The computational module was written in C++ with the use of tsim, libgomp,
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libgsl, libpng libraries. Images in pgm format are created with the use of Potrace utility.
OptimalInpaiting was installed on cluster blade.botik.ru running under Linux. User in-
teraction with the application occurs via GUI. Connection to the server is implemented on
SSH.

5.6. Formulation and solution of the problem of image restor ation

In the �eld F(x,y) the user should enter a smooth function of two arguments (the level
curves of this function determine the original image). The function F(x,y) is written in
C-style (in accordance with math.h), i.e.,

� the basic arithmetic operations: + , � , � , =,

� x to the power n: pow(x,n),

� trigonometric functions: sin () ,cos() , tan () ,

� inverse trigonometric function: acos() ,asin () ,atan () ,

� exponential and natural logarithm: exp() , log () ,

� hyperbolic functions: cosh() ,sinh () , tanh () .

After entering a correct input, the user can launch the solution process. To do this,
click the button Create Image in the bottom of the Input form. This starts the process of
creating original and corrupted images. The images obtained are displayed on the screen.
To start the recovery process, press buttonRecoveryImage. The problem will be solved
on the number of nodes prescribed by the used in the �eld Nodes(0 means execution in
sequential mode). As a result, the program displays 6 windows, see Fig. 12, which contain
the original image, the corrupted image, the corrupted image with traced boundaries of
the corrupted subdomains, the restored image, the restoredimage with traced boundaries
of the corrupted subdomains, and statistics. Statement of the problem of image recovery is
saved in a �le f cutcurves.cpp. It contains notation of functions that de�ne the contours o f
the corrupted subdomains in the parametric form (parameter t ), the number of corrupted
subdomains, the initial and �nal value of t for each contour, the function F(x,y) (whose
level lines determine the original image), the coef�cient o f smoothing for binary images
and number of discretization steps of t . The images obtained are stored in directorynpict
in two formats (png and pgm). The �le Stat ist ic.t x t contains collected statistics about
process of execution of the application.

5.7. Effectiveness of parallelizing

PC OptimalInpaiting includes parallel computation at 3 stages: creating of origi-
nal image, determining the parameters of isophotes (GlobalSolver), creating of recovered
image. TSim and OMP are used for organization of parallel computation. The application
includes functions for testing effectiveness of parallelizing. To start the testing process
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of creating original and corrupted images with different nu mbers of threads (Threads),
click TestingGeneration . To start testing the module determining the parameters of
isophotes for different numbers of nodes (Nodes), click TestingSolving . To start the
testing process of creating recovered image with differentnumbers of threads (Threads),
click TestingRecovery . Figs. 19 and 20 show examples of testing of effectiveness of
parallelizing.

5.8. OptimalInpaiting : Presentation of some results

In this section we present results of output of OptimalInpaiting software for the
test problem described as follows:

F( x, y) = 1.5( x cosy cosy sin x sin x + y sin y sin y cosx cosx) (5.1)

+ x2 � y2 � x y � x + 2y,

Xmin= � 10, Xmax= 10, Ymin= � 10, Ymax= 10, (5.2)

x_pixels = y_pixels = 2500, Isophotes = 100, (5.3)

Rmin= 0.05, Rmax= 0.4, DomainsGoal= 104, (5.4)

Nodes= 4, Threads = 8, Attempts = 106. (5.5)

Figs. 13-17 present respectively the original, corrupted,and restored images for prob-
lem (5.1)-(5.5) in the halftone version (Mode= G), and Figs. 14-18 present the same in
the binary version (Mode= W). Plots of time and acceleration vs number of threads for
the process of creating of images are shown respectively in Fig. 19 and Fig. 20.

6. Conclusion

This paper describes in detail an approach to monochrome image inpainting via com-
pleting damaged isophotes by sub-Riemannian length minimizers for the left-invariant sub-
Riemannian problem on the group of motions of a plane SE(2). The approach and the
algorithm presented in this work were realized by a set of parallel software. The results of
work of OptimalInpaiting software prove ef�ciency of our approach to inpainting.

The approach to image inpainting chosen in this work is basedon the following as-
sumptions:

1. Isophotes of an image can be represented by level lines of asmooth function f : D !
[ 0,1] .

2. The function f has no critical points in the corrupted subdomains O1, � � � ,ON � D.

3. Information on intersection points of level lines of f with boundaries of Oi can be
effectively extracted from the image.

4. During inpainting, the way of pairing isophotes is known.

5. Corrupted domains of the image are disks.
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Figure 13: Original halftone image. Figure 14: Original binary image.

Figure 15: Corrupted halftone image. Figure 16: Corrupted binary image.

Figure 17: Restored halftone image. Figure 18: Restored binary image.
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Figure 19: Time vs numb er of threads. Figure 20: Acceleration vs numb er of threads.

Assumption 1 is not very restrictive. It is known that the ret ina smoothes images by
making the convolution with a Gaussian function [ 25–27] . It was proved in [ 28] that con-
volution of a function from L2 with a Gaussian is generically aC1 and generically Morse
function, i.e. a smooth function having as critical points only non-degenerate maxima,
minima and saddles. (See also a related work[ 33] .) Thus one can assume that the image
being inpainted is given by a smooth (and generically even Morse) function.

Assumption 2 seems rather restrictive, both for our approach, and for other approaches
to image inpainting.

Assumption 3 seems not very restrictive since information on intersections of (smooth)
level lines with domains with corrupted image can be extracted by modern image process-
ing techniques. Another way to overcome this assumption is the use of a �eld of orienta-
tions instead of isophotes. Such orientation �eld could be obtained in a more robust way
when using SE(2)-convolutions (e.g. with Green's functions of hypo-elliptic PDE's).

The feasible way of pairing of isophotes (see Assumption 4) might be reconstructed on
the basis of the following ideas:

� The isophotes cannot intersect, thus pairings of isophotesadmitting intersections
should be rejected.

� Among the remaining pairings of isophotes, one can choose the optimal one w.r.t.
the total length functional (3.4) for all isophotes.

Assumption 5 can be weakened to allow for convex corrupted domains.
The above extensions of our approach are planned to be implemented in future work.
The domain of image inpainting is a vast and actively developing domain of research

and applications, and we make no attempt to describe it here. There exist approaches
close to that considered in this work. In paper [ 24] , the corrupted image is reconstructed
by the minimal surface for the sub-Riemannian structure (3.5), (3.6) on the rototrans-
lations group SE(2). This approach is obviously different from our approach based on
sub-Riemannian length minimizers. We believe that the both approaches should be de-
veloped, and may be useful for different applications. A similar approach was taken in
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papers[ 1,23] with the use of Euler elastica [ 22] . This approach may be complemented by
an approach similar to that used in this work (complementing corrupted arcs by energy-
minimizing Euler elasticae [ 19–21] .

One more possible extension of this work can be obtained by applying the above results
to incomplete directional �elds that are more robustly obta ined than isophotes.

The authors believe that our approach should be further developed in order to be
applied to natural images, and they are looking for possibleapplications.
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