Symmetries and Maxwell points in the plate-ball problem and other invariant optimal control problems on Lie groups governed by the pendulum

Yuri L. Sachkov

Program Systems Institute Russian Academy of Sciences Pereslavl-Zalessky, Russia

sachkov@sys.botik.ru

Workshop on Nonlinear Control and Singularities Toulon, October 24 – 28, 2010

(ロ) (型) (E) (E) (E) (O)

The plate-ball problem Rolling of sphere on plane without slipping or twisting Given: $A, B \in \mathbb{R}^2$, frames (a_1, a_2, a_3) , (b_1, b_2, b_3) in \mathbb{R}^3 . Find: $\gamma(t) \in \mathbb{R}^2$, $t \in [0, t_1]$, — the shortest curve s.t.: $\gamma(0) = A$, $\gamma(t_1) = B$, by rolling along $\gamma(t)$, orientation of the sphere transfers from (a_1, a_2, a_3) to (b_1, b_2, b_3) .

State and control variables

- Contact point $(x, y) \in \mathbb{R}^2$
- Orientation of sphere $R : a_i \mapsto e_i, i = 1, 2, 3, R \in SO(3)$
- State of the system $Q = (x, y, R) \in \mathbb{R}^2 imes \mathsf{SO}(3) = M$
- Boundary conditions $Q(0) = Q_0$, $Q(t_1) = Q_1$

• Controls
$$u_1 = u/2$$
, $u_2 = v/2$

• Cost functional $I(\gamma) = \int_0^{t_1} \sqrt{\dot{x}^2 + \dot{y}^2} dt = \int_0^{t_1} \sqrt{u_1^2 + u_2^2} dt \rightarrow \min$

Control system

$$\dot{x} = u_1, \qquad \dot{y} = u_2, \qquad (x, y) \in \mathbb{R}^2, \quad (u_1, u_2) \in \mathbb{R}^2,$$
$$\dot{R} = R\Omega, \qquad R \in SO(3), \qquad \Omega = \begin{pmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{pmatrix},$$

$$\omega = \left(egin{array}{c} \omega_1 \ \omega_2 \ \omega_3 \end{array}
ight)$$
 angular velocity vector.

No twisting $\Rightarrow \omega_3 = 0.$ No slipping $\Rightarrow \omega_1 = u_2, \omega_2 = -u_1.$

$$\Omega = \left(egin{array}{ccc} 0 & 0 & -u_1 \ 0 & 0 & -u_2 \ u_1 & u_2 & 0 \end{array}
ight)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

History of the problem

1894 H. Hertz: rolling sphere as a nonholonomic mechanical system.

- 1983 J.M. Hammersley: statement of the plate-ball problem.
- 1986 A.M. Arthur, G.R.Walsh: integrability of Hamiltonian system of PMP in quadratures.

1990 Z. Li, E. Canny: complete controllability of the control system.

1993 V. Jurdjevic:

- projections of extremal curves (x(t), y(t)) Euler elasticae,
- description of qualitative types of extremal trajectories,

- quadratures for evolution of Euler angles along extremal trajectories.

New results

- Parameterization of extremal trajectories
- Continuous and discrete symmetries
- Fixed points of symmetries (Maxwell points)
- Necessary optimality conditions
- Global structure of the exponential mapping
- Asymptotics of extremal trajectories and limit behavior of Maxwell points for sphere rolling along sinusoids of small amplitude (Next talk by Alexey Mashtakov)

(ロ) (型) (E) (E) (E) (O)

Existence of solutions

Left-invariant sub-Riemannian problem:

$$\begin{split} \dot{Q} &= u_1 X_1(Q) + u_2 X_2(Q), & (u_1, u_2) \in \mathbb{R}^2, \\ Q(0) &= Q_0, & Q(t_1) = Q_1, & Q \in M = \mathbb{R}^2 \times \mathrm{SO}(3), \\ I &= \int_0^{t_1} \sqrt{u_1^2 + u_2^2} \, dt \to \min. \end{split}$$

• Complete controllability by Rashevskii-Chow theorem:

$$\begin{aligned} & \operatorname{span}_Q(X_1, X_2, X_3, X_4, X_5) = T_Q M \quad \forall \ Q \in M, \\ & X_3 = [X_1, X_2], \qquad X_4 = [X_1, X_3], \qquad X_5 = [X_2, X_3]. \end{aligned}$$

- Filippov's theorem: $\forall Q_0, Q_1 \in M$ optimal trajectory exists.
- $Q_0 = (0, 0, \mathsf{Id}) \in \mathbb{R}^2 \times \mathsf{SO}(3).$

Pontryagin maximum principle

- Abnormal extremal trajectories: rolling of sphere along straight lines.
- Normal extremals:

$$\dot{\theta} = c, \quad \dot{c} = -r\sin\theta, \quad \dot{\alpha} = \dot{r} = 0,$$

$$\dot{x} = \cos(\theta + \alpha), \quad \dot{y} = \sin(\theta + \alpha),$$

$$\dot{R} = R(\sin(\theta + \alpha)A_1 - \cos(\theta + \alpha)A_2),$$

$$A_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad A_2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix},$$

$$A_3 = [A_1, A_2] = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

$$(1)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

(1) mathematical pendulum,
 (2) Euler elasticae.

Mathematical pendulum $\dot{\theta} = c$, $\dot{c} = -r \sin \theta$

(ロ) (型) (E) (E) (E) (O)

•
$$\lambda = (\theta, c, r) \in C = \{\theta \in S^1, c \in \mathbb{R}, r \ge 0\},\$$

• Energy $E = c^2/2 - r \cos \theta = \text{const} \in [-r, +\infty)$,

• $r = g/L \ge 0$.

Stratificaion of the phase cylinder C of pendulum

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 三目 - のへで

Euler elasticae $\dot{x} = \cos(\theta + \alpha)$, $\dot{y} = \sin(\theta + \alpha)$

 C_1 (oscillations of pendulum): inflectional elasticae

 C_2 (rotations of pendulum): non-inflectional elasticae

<ロ> (四) (四) (三) (三) (三) (三)

Euler elasticae $\dot{x} = \cos(\theta + \alpha)$, $\dot{y} = \sin(\theta + \alpha)$

 C_3 (separatrix motions of penulum): critical elasticae

 C_4 , C_5 , C_7 (equilibria of pendulum): straight lines C_6 (uniform rotation of pendulum under zero gravity): circles

Integration of normal Hamiltonian system of PMP

 $\dot{\theta} = c, \qquad \dot{c} = -r\sin\theta, \qquad \dot{x} = \cos(\theta + \alpha), \qquad \dot{y} = \sin(\theta + \alpha),$ $\dot{R} = R(\sin(\theta + \alpha)A_1 - \cos(\theta + \alpha)A_2).$

• θ_t , c_t , x_t , y_t : Jacobi's functions cn, sn, dn, E,

$$cn(u, k) = cos(am(u, k)), \qquad sn(u, k) = sin(am(u, k)),$$
$$\varphi = am(u, k) \iff u = \int_0^{\varphi} \frac{dt}{\sqrt{1 - k^2 \sin^2 t}} = F(\varphi, k).$$

• $R(t) = e^{(\alpha - \varphi_3^0)A_3} e^{-\varphi_2^0 A_2} e^{\varphi_1(t)A_3} e^{\varphi_2(t)A_2} e^{(\varphi_3(t) - \alpha)A_3}$ $\varphi_i(t)$: Jacobi's functions + elliptic integral of the 3-rd kind

$$\Pi(n, u, k) = \int_0^u \frac{dt}{(1 - n\sin^2 t)\sqrt{1 - k^2 \sin^2 t}}.$$

Parameterization of trajectories of oscillating pendulum and inflectional Euler elasticae

$$\begin{split} &(\varphi, k) - \text{coordinates rectifying the flow of pendulum,} \\ &\varphi_t = \varphi + t, \\ &\sin(\theta_t/2) = k \sin(\sqrt{r}\varphi_t, k), \qquad \cos(\theta_t/2) = dn(\sqrt{r}\varphi_t, k), \\ &c_t = 2k\sqrt{r} \operatorname{cn}(\sqrt{r}\varphi_t, k), \\ &x_t = \bar{x}_t \cos\alpha - \bar{y}_t \sin\alpha, \qquad y_t = \bar{x}_t \sin\alpha + \bar{y}_t \cos\alpha, \\ &\bar{x}_t = (2(\mathsf{E}(\sqrt{r}\varphi_t, k) - \mathsf{E}(\sqrt{r}\varphi, k)) - \sqrt{r}t)/\sqrt{r}, \\ &\bar{y}_t = 2k(\operatorname{cn}(\sqrt{r}\varphi, k) - \operatorname{cn}(\sqrt{r}\varphi_t, k))/\sqrt{r}, \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Parameterization of the matrix of rotation for the case of oscillating pendulum

$$\begin{aligned} \cos\varphi_2(t) &= c_t/\sqrt{M}, \qquad \sin\varphi_2(t) = \pm \sqrt{M - c_t^2}/\sqrt{M}, \\ \cos\varphi_3(t) &= \mp \sin\theta_t/\sqrt{M - c_t^2}, \\ \sin\varphi_3(t) &= \pm (r - \cos\theta_t)/\sqrt{M - c_t^2}, \\ \varphi_1(t) &= \frac{\sqrt{M}}{2}t + \frac{\sqrt{M}(1+r)}{2\sqrt{r}(1-r)}(\Pi(l, \operatorname{am}(\sqrt{r}\varphi_t, k), k) \\ &\quad -\Pi(l, \operatorname{am}(\sqrt{r}\varphi, k), k)), \\ M &= 1 + r^2 + 2E, \qquad l = -\frac{4k^2r}{(1-r)^2}. \end{aligned}$$

Optimality of extremal trajectories

- Short arcs of extremal trajectories Q(s) are optimal
- Cut time along Q(s):

 $t_{\mathsf{cut}} = \sup\{t > 0 \mid Q(s), \ s \in [0, t], \ \text{ is optimal } \}.$

- Maxwell time:
 - $\exists \tilde{Q}(s) \neq Q(s), \quad Q(0) = \tilde{Q}(0) = Q_0,$ $Q(t) = \tilde{Q}(t) \text{ Maxwell point,}$ $t = t_{\text{Max}} \text{ Maxwell time.}$

• Upper bound on cut time: $t_{\mathsf{cut}} \leq t_{\mathsf{Max}}$.

Rotations Φ^{β} , $\beta \in S^1$

$$\begin{aligned} & (\theta, c, r, \alpha) \mapsto (\theta, c, r, \alpha + \beta), \\ & \left(\begin{array}{c} x_s \\ y_s \end{array}\right) \mapsto \left(\begin{array}{c} \cos\beta & -\sin\beta \\ \sin\beta & \cos\beta \end{array}\right) \left(\begin{array}{c} x_s \\ y_s \end{array}\right), \\ & R_s \mapsto e^{\beta A_3} R_s e^{-\beta A_3}. \end{aligned}$$

<□> <圖> < E> < E> E のQ@

Reflections ε^i

$$\begin{split} \varepsilon^1 \colon & (\theta_s, c_s) \mapsto (\theta_{t-s}, -c_{t-s}), \ s \in [0, t] \\ & (x_s, y_s) \mapsto (x_s^1, y_s^1) = (x_{t-s} - x_t, y_{t-s} - y_t) \\ & R_s \mapsto (R_t)^{-1} R_{t-s} \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Reflections ε^i

$$\begin{aligned} \varepsilon^{2} \colon & (\theta_{s}, c_{s}) \mapsto (-\theta_{t-s}, c_{t-s}), \ s \in [0, t] \\ & (x_{s}, y_{s}) \mapsto (x_{s}^{2}, y_{s}^{2}) = (x_{t-s} - x_{t}, y_{t} - y_{t-s}) \\ & R_{s} \mapsto l_{2}(R_{t})^{-1}R_{t-s}l_{2}, \ l_{2} = e^{\pi A_{2}}. \end{aligned}$$

$$\\ \varepsilon^{3} \colon & (\theta_{s}, c_{s}) \mapsto (-\theta_{s}, -c_{s}), \ s \in [0, t] \\ & (x_{s}, y_{s}) \mapsto (x_{s}^{3}, y_{s}^{3}) = (x_{s}, -y_{s}) \\ & R_{s} \mapsto l_{2}R_{s}l_{2}. \end{aligned}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Exponential mapping and its symmetries

- Group of symmetries $G = \langle \Phi^{\beta}, \varepsilon^{1}, \varepsilon^{2}, \varepsilon^{3} \rangle = \{ \Phi^{\beta}, \ \Phi^{\beta} \circ \varepsilon^{i} \mid \beta \in S^{1}, \ i = 1, 2, 3 \}$
- Exponential mapping

$$\begin{aligned} & \mathsf{Exp}(\lambda, s) = Q_s = (x_s, y_s, R_s) \in M = \mathbb{R}^2 \times \mathsf{SO}(3), \\ & \lambda = (\theta, c, \alpha, r) \in C, \qquad s > 0. \end{aligned}$$

Symmetries of exponential mapping

ション ふゆ く は マ く ほ マ く し マ

Maxwell sets corresponding to reflections

- $MAX^i = \{(\lambda, t) \mid \exists \beta \in S^1 : \lambda^{i,\beta} \neq \lambda, Q_t = Q_t^{i,\beta}\},\ i = 1, 2, 3.$
- Necessary optimality conditions:

$$egin{aligned} &(\lambda,t)\in\mathsf{MAX}^i&\Rightarrow&Q_s=\mathsf{Exp}(\lambda,s) ext{ not optimal for }s>t,\ &t_{\mathsf{cut}}(\lambda)\leq t. \end{aligned}$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Representation of rotations in \mathbb{R}^3 by quaternions

•
$$\mathbb{H} = \{ q = q_0 + iq_1 + jq_2 + kq_3 | q_0, \dots, q_3 \in \mathbb{R} \}$$

•
$$S^3 = \{q \in \mathbb{H} | |q|^2 = q_0^2 + q_1^2 + q_2^2 + q_3^2 = 1\}$$

•
$$I = \{q \in \mathbb{H} | \text{Re } q = q_0 = 0\}$$

•
$$q \in S^3 \Rightarrow R_q(a) = qaq^{-1}, \quad a \in I, \quad R_q \in SO(3) \cong SO(I)$$

• lift of the system $\dot{R} = R\Omega$ from SO(3) to S^3 :

$$\begin{cases} \dot{q}_0 = \frac{1}{2}(q_2u_1 - q_1u_2), \\ \dot{q}_1 = \frac{1}{2}(q_3u_1 + q_0u_2), \\ \dot{q}_2 = \frac{1}{2}(-q_0u_1 + q_3u_2), \\ \dot{q}_3 = \frac{1}{2}(-q_1u_1 - q_2u_2), \end{cases} \quad q \in S^3, \quad (u_1, u_2) \in \mathbb{R}^2, \\ q(0) = 1. \end{cases}$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Necessary optimality conditions in terms of MAX¹

Theorem

- Let $Q_s = (x_s, y_s, R_s) = \text{Exp}(\lambda, s), t > 0$ satisfy the conditions: (1) $q_3(t) = 0$,
- (2) elastica {(x_s, y_s) | s ∈ [0, t]} is nondegenerate and not centered at inflection point.

Then $(\lambda, t) \in MAX^1$, thus for any $t_1 > t$ the trajectory Q_s , $s \in [0, t_1]$, is not optimal.

 $q_3(t) = 0 \iff$ axis of rotation $(q_1(t), q_2(t), q_3(t)) \parallel \mathbb{R}^2$

ション ふゆ く は マ く ほ マ く し マ

Necessary optimality conditions in terms of MAX²

Theorem

Let $Q_s = (x_s, y_s, R_s) = \mathsf{Exp}(\lambda, s)$, t > 0 satisfy the conditions:

(1)
$$(xq_1 + yq_2)(t) = 0$$
,

(2) elastica $\{(x_s, y_s) \mid s \in [0, t]\}$ is nondegenerate and not centered at vertex.

Then $(\lambda, t) \in MAX^2$, thus for any $t_1 > t$ the trajectory Q_s , $s \in [0, t_1]$, is not optimal.

$$(xq_1 + yq_2)(t) = 0 \iff (q_1(t), q_2(t), q_3(t)) \perp (x(t), y(t), 0)$$

ション ふゆ く は マ く ほ マ く し マ

Global structure of exponential mapping

• Exp :
$$N \to M$$
,
 $N = C \times \mathbb{R}_+$
 $= \{(\theta, c, \alpha, r, t) \mid \theta \in S^1, c \in \mathbb{R}, \alpha \in S^1, r \ge 0, t > 0\},$
 $M = \mathbb{R}^2 \times SO(3)$

•
$$\forall Q_1 \in M \setminus Q_0 \quad \exists (\lambda, t) \in N \text{ such that } Q_s = \operatorname{Exp}(\lambda, s) \text{ optimal,}$$

 $Q_1 = \operatorname{Exp}(\lambda, t)$
 $t \leq t_{\operatorname{cut}}(\lambda) \leq t_{\operatorname{Max}}^1 = \inf\{s \mid (\lambda, s) \in \operatorname{MAX}^1 \cup \operatorname{MAX}^2\}$
 $(\lambda, t) \in \widehat{N} = \{(\lambda, s) \in N \mid \lambda \in C, \ 0 < s \leq t_{\operatorname{Max}}^1\}$
 $\operatorname{Exp} : \widehat{N} \to M \setminus Q_0 \text{ surjective}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Global structure of exponential mapping

- Decomposition in the preimage of Exp: $\widehat{N} \supset \cup_{i=1}^{4} N_i$, $cl(\cup_{i=1}^{4} N_i) \supset \widehat{N}$, $N_i = \{(\lambda, t) \in D_i \mid 0 < t < t^1_{Max}(\lambda)\}$, $D_i = \{(\lambda, t) \in N \mid \operatorname{sgn} c_{t/2} = \pm 1$, $\operatorname{sgn} \sin \theta_{t/2} = \pm 1\}$.
- Decomposition in the image of Exp: $M \supset M_1 \cup M_2$, $cl(M_1 \cup M_2) = M$, $M_i = \{(x, y, Q) \in M \mid q_3 > 0, \ sgn(xq_1 + yq_2) = \pm 1\}$.

ション ふゆ く は マ く ほ マ く し マ

• Conjecture:

Exp : N_1 , $N_3 \rightarrow M_1$ are diffeomorphisms, Exp : N_2 , $N_4 \rightarrow M_2$ are diffeomorphisms.

Steps required to prove the conjecture

- N_i , M_i connected, open (proved: diffeomorphic to $\mathbb{R}^4 \times S^1$),
- $N_i / \{ \Phi^\beta \mid \beta \in S^1 \}$, $M_i / \{ \Phi^\beta \mid \beta \in S^1 \}$ simply connected (proved : diffeomorphic to \mathbb{R}^4),
- $\operatorname{Exp}(N_1), \operatorname{Exp}(N_3) \subset M_1, \operatorname{Exp}(N_2), \operatorname{Exp}(N_4) \subset M_2$ (proved),
- $\operatorname{Exp}(\partial N_i) \subset \partial M_1 \cup \partial M_2$ (proved),
- Exp : N_1 , $N_3 \rightarrow M_1$, Exp : N_2 , $N_4 \rightarrow M_2$ proper (partially proved),

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Exp|_{Ni} nondegenerate (numerical evidence).

Algorithm for solution to the problem (modulo the conjecture)

• $Q_1 \in M_1 \cup M_2 \quad \Rightarrow \quad \text{optimal trajectory } Q_s = ?$

•
$$Q_1 \in M_1 \Rightarrow$$

 $\exists ! (\lambda_1, t_1) \in N_1$ such that $\operatorname{Exp}(\lambda_1, t_1) = Q_1$,
 $\exists ! (\lambda_3, t_3) \in N_3$ such that $\operatorname{Exp}(\lambda_3, t_3) = Q_1$,
 $t_1 < t_3 \Rightarrow Q_s^1 = \operatorname{Exp}(\lambda_1, s)$ optimal,
 $t_1 > t_3 \Rightarrow Q_s^3 = \operatorname{Exp}(\lambda_3, s)$ optimal,
 $t_1 = t_3 \Rightarrow Q_s^1$, Q_s^3 optimal.

• $Q_1 \in M_2 \quad \Rightarrow \quad \text{similarly for } (\lambda_2, t_2) \in N_2, \ (\lambda_4, t_4) \in N_4.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Results and plans for the plate-ball problem

- parameterization of extremal trajectories,
- symmetries and Maxwell points,
- upper bound on cut time,
- global structure of the exponential mapping,
- software for numerical solution to the plate-ball problem.

(ロ) (型) (E) (E) (E) (O)

The zoo of invariant optimal control problems on Lie groups governed by the pendulum

$$\ddot{\theta} = -r\sin(\theta - \alpha)$$

ション ふゆ く は マ く ほ マ く し マ

- SR problem on the group of motions of a plane
- Euler's elastic problem
- SR problem on the Engel group
- nilpotent SR problem with the growth vector (2,3,5)
- the plate-ball problem

Euler's elastic problem

Given:
$$l > 0$$
, $a_0, a_1 \in \mathbb{R}^2$, $v_0 \in T_{a_0} \mathbb{R}^2$, $v_1 \in T_{a_1} \mathbb{R}^2$, $|v_0| = |v_1| = 1$.
Find: $\gamma(t)$, $t \in [0, t_1]$:
 $\gamma(0) = a_0, \gamma(t_1) = a_1, \dot{\gamma}(0) = v_0, \dot{\gamma}(t_1) = v_1$.
 $|\dot{\gamma}(t)| \equiv 1 \implies t_1 = l$
Elastic energy $J = \frac{1}{2} \int_0^{t_1} k^2 dt \rightarrow \min$, $k(t) - \text{curvature of } \gamma(t)$.

Results for Euler's elastic problem

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Parameterization of extremal trajectories,
- Symmetries, Maxwell strata, Maxwell time,
- Bound of conjugate time,
- Global structure of exponential mapping,
- Software for computation of optimal elasticae.

Global structure of exponential mapping

Figure: $\widetilde{M} = M_+ \cup M_-$

Figure: $\widetilde{N} = \bigcup_{i=1}^{4} L_i$

 Exp_{t_1} : L_1 , $L_3 \to M_+$ diffeo,

$$\mathsf{Exp}_{t_1} : L_2, \ L_4 \to M_- \text{ diffeo}$$

One-parameter family of elasticae with loss of optimality

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

One-parameter family of elasticae with loss of optimality

SR problem on SE(2)

Results for SR problem on SE(2)

- Parameterization of extremal trajectories,
- Symmetries, Maxwell strata, Maxwell time,
- Bound of conjugate time,
- Global structure of exponential mapping,
- Global structure of cut locus and spheres,
- Software for computation of optimal trajectories,

ション ふゆ く は マ く ほ マ く し マ

• Application to reconstruction of images.

Global structure of exponential mapping

Cut locus: global view

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Global structure of sub-Riemannian spheres: $R < \pi$, $R = \pi$, $R > \pi$

Application: Antropomorphic restoration of curves

SAC

Initial family of curves

Restored family of curves

SR problem on the Engel group

- $L = \text{Lie}(X_1, X_2)$: $[X_1, X_2] = X_3$, $[X_1, X_3] = X_4$,
- SR structure on the 4-dim Lie group M: $\Delta = \operatorname{span}(X_1, X_2), \qquad \langle X_i, X_j \rangle = \delta_{ij}, i, j = 1, 2,$
- SR problem:

$$\dot{q} = u_1 X_1(q) + u_2 X_2(q), \qquad q \in M, \quad u = (u_1, u_2) \in \mathbb{R}^2,$$

 $q(0) = q_0, \qquad q(t_1) = q_1,$
 $l = \int_0^{t_1} \sqrt{u_1^2 + u_2^2} \, dt \to \min.$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Results for SR problem on the Engel group

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

- Parameterization of extremal trajectories,
- Symmetries, Maxwell strata, Maxwell time.

Nilpotent (2, 3, 5) SR problem

- $L = \text{Lie}(X_1, X_2)$: $[X_1, X_2] = X_3$, $[X_1, X_3] = X_4$, $[X_2, X_3] = X_5$,
- SR structure on the 5-dim Lie group M: $\Delta = \operatorname{span}(X_1, X_2), \qquad \langle X_i, X_j \rangle = \delta_{ij}, i, j = 1, 2,$
- SR problem:

$$\begin{split} \dot{q} &= u_1 X_1(q) + u_2 X_2(q), \qquad q \in M, \quad u = (u_1, u_2) \in \mathbb{R}^2, \\ q(0) &= q_0, \qquad q(t_1) = q_1, \\ l &= \int_0^{t_1} \sqrt{u_1^2 + u_2^2} \, dt \to \min. \end{split}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Results for nilpotent (2,3,5) SR problem

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- Parameterization of extremal trajectories,
- Symmetries, Maxwell strata, Maxwell time,
- Bound of conjugate time.

Caustic in nilpotent (2,3,5) SR problem

Deciding optimality of extremal trajectories

- 1. Groups of symmetries $G_{pend} \supset G_{ad} \supset G_{Exp} =: G$
- 2. Action of G in preimage and image of Exp. Fixed points
- 3. Maxwell set Max^G . The first Maxwell time t_{Max}^G
- 4. The bound $t_{conj} \ge t_{Max}^{G}$. Conclusion: $t_{cut} \le t_{Max}^{G}$.
- 5. Stratification in the preimage and image of Exp.
- $\begin{array}{ll} 6. & :) \ \#(\text{doms in preimage}) = \#(\text{doms in image}) \ \Rightarrow \ t_{\text{cut}} = t_{\text{Max}}^G \\ & :(\ \#(\text{doms in preimage}) > \#(\text{doms in image}) \\ & \Rightarrow \ t_{\text{cut}} < t_{\text{Max}}^G \ \Rightarrow \ \text{competing trajectories} \end{array}$
- 7. Reduction of optimal control problem to systems of equations with a unique root in each domain.

Comparing "complexity" of the optimal control problems

Problem	growth	dim G	extremals	lines	$MAX^i \cap MAX^j$	<mark>#pre</mark> #im
SE(2)	(2,3)	0	Jacobi's	15	0	1
Euler	(2,3)	0	Jacobi's	20	1	2
Engel	(2,3,4)	1	Jacobi's	25	0	2
Cartan	(2, 3, 5)	2	Jacobi's	35	2	1
S^2 on \mathbb{R}^2	(2,3,5)	1	Jac, Ell(III)	19	∞	2

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Observations and questions

- Why pendulum?
- Any more problems governed by pendulum?
- The case $\#_{pre} > \#_{im}$ (Euler, Engel, S^2 on \mathbb{R}^2):
 - Non-obvious symmetries and Maxwell strata,
 - Violation of Rolle's theorem for SR problems.
- Countable number of analytic strata in SR sphere (S^2 on \mathbb{R}^2)?

ション ふゆ く 山 マ チャット しょうくしゃ

• Deciding optimality: From method to theory?