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Preface

This book presents some facts and methods of the Mathematical Control Theory
treated from the geometric point of view� The book is mainly based on graduate
courses given by the �rst coauthor in the years ��������� at the International
School for Advanced Studies� Trieste� Italy� Mathematical prerequisites are
reduced to standard courses of Analysis and Linear Algebra plus some basic
Real and Functional Analysis� No preliminary knowledge of Control Theory or
Di�erential Geometry is required�
What this book is about	 The classical deterministic physical world is de


scribed by smooth dynamical systems� the future in such a system is com

pletely determined by the initial conditions� Moreover� the near future changes
smoothly with the initial data� If we leave room for �free will in this fatal

istic world� then we come to control systems� We do so by allowing certain
parameters of the dynamical system to change freely at every instant of time�
That is what we routinely do in real life with our body� car� cooker� as well as
with aircraft� technological processes etc� We try to control all these dynamical
systems�
Smooth dynamical systems are governed by di�erential equations� In this

book we deal only with �nite dimensional systems� they are governed by ordi

nary di�erential equations on �nite dimensional smooth manifolds� A control
system for us is thus a family of ordinary di�erential equations� The family
is parametrized by control parameters� All di�erential equations of the family
are de�ned on one and the same manifold which is called the state space of the
control system� We may select any admissible values of the control parameters
�i�e� select any dynamical system from the family� and we are free to change
these values at every time instant� The way of selection� which is a function of
time� is called a control or a control function�
As soon as a control is �xed� the control system turns into a nonautonomous

ordinary di�erential equation� A solution of such an equation is uniquely de

termined by the initial condition and is called an admissible trajectory of the
control system �associated with a given control�� Thus� an admissible trajectory
is a curve in the state space� The initial condition �initial state� is just a starting
point of the trajectory� di�erent controls provide� generally speaking� di�erent
admissible trajectories started from a �xed state� All these trajectories �ll the
attainable �reachable� set of the given initial state�
To characterize the states reachable from a given initial one is the �rst nat


ural problem to study in Control Theory� the Controllability Problem� As soon
as the possibility to reach a certain state is established� we try to do it in the
best way� Namely� we try to steer the initial state to the �nal one as fast as
possible� or try to �nd the shortest admissible trajectory connecting the initial
and the �nal states� or to minimize some other cost� This is the Optimal Control
Problem� These two problems are our leading lights throughout the book�
Why Geometry	 The right
hand side of the ordinary di�erential equation

is a vector �eld and the dynamical system governed by the equation is the �ow
generated by this vector �eld� Hence a control system is a family of vector �elds�
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The features of control systems we study do not change under transformations
induced by smooth transformations of the state space� Moreover� our systems
admit a wide class of reparametrizations of the family of vector �elds� which are
called feedback transformations in Control Theory and gauge transformations in
Geometry and Mathematical Physics� This is a formal reason why the intrinsic
geometric language and geometric methods are relevant to Control Theory�
There is another more fundamental reason� As we mentioned� a dynamical

system is a �ow �a one
parametric group of transformations of the state space�
generated by a vector �eld� An admissible trajectory of the control system
associated to a constant control is a trajectory of the corresponding �ow� Ad

missible trajectories associated with a piecewise constant control are realized
by the composition of elements of the �ows corresponding to the values of the
control function� The arbitrary control case is realized via an approximation by
piecewise constant controls� We see that the structure of admissible trajectories
and attainable sets is intimately related to the group of transformations gen

erated by the dynamical systems involved� In turn� groups of transformations
form the heart of Geometry�
Now� what could be the position of Control techniques and the Control way

of thinking in Geometry and� more generally� in the study of basic structures of
the world around us	 A naive in�nitesimal version of attainable set is the set of
admissible velocities formed by velocities of all admissible trajectories passing
through the given state� It is usual in Control Theory for the dimension of
attainable sets to be essentially greater than the dimension of the sets of admis

sible velocities� In particular� a generic pair of vector �elds on an n
dimensional
manifold provides n
dimensional attainable sets� where n is as big as we want�
In other words� constraints on velocities do not imply state constraints� Such
a situation is traditionally indicated by saying that constraints are �nonholo

nomic� Control theory is a discipline that systematically studies various types
of behavior under nonholonomic constraints and provides adequate methods for
the investigation of variational problems with nonholonomic constraints�
The �rst chapter of the book is of introductory nature� we recall what

smooth manifolds and ordinary di�erential equations on manifolds are� and
de�ne control systems� Chapter � is devoted to an operator calculus that creates
great �exibility in handling of nonlinear control systems� In Chapters � and � we
introduce a simple and extremely popular in applications class of linear systems
and give an e�ective characterization of systems that can be made linear by
a smooth transformation of the state space� Chapters ��� are devoted to the
fundamental Orbit Theorem of Nagano and Sussmann and its applications� The
Orbit Theorem states that any orbit of the group generated by a family of �ows
is an immersed submanifold �the group itself may be huge and wild�� Chapter �
contains general results on the structure of attainable sets starting from a simple
test to guarantee that these sets are full dimensional� In Chapter � we introduce
feedback transformations� give a feedback classi�cation of linear systems� and
e�ectively characterize systems that can be made linear by feedback and state
transformations�
The rest of the book is mainly devoted to the Optimal Control� In Chap
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ter �� we state the optimal control problem� give its geometric interpretation�
and discuss the existence of solutions� Chapter �� contains basic facts on di�er

ential forms and Hamiltonian systems� we need this information to investigate
optimal control problems� Chapter �� is devoted to the intrinsic formulation
and detailed proof of the Pontryagin Maximum Principle� a key result in the
Optimal Control Theory� Chapters ����� contain numerous applications of the
Pontryagin Maximum Principle including a curious property of Hamiltonian
systems with convex Hamiltonians and more or less complete theories of lin

ear time
optimal problems and linear�quadratic problems with �nite horizons�
In Chapter �� we discuss a Hamiltonian version of the theory of �elds of ex

tremals� which is suitable for applications in the Optimal Control� and introduce
the Hamilton�Jacobi equation� Chapters �� and �� are devoted to the moving
frames technique for optimal control problems and to problems on Lie groups�
The de�nition and basic facts on Lie groups are given in Chapter ��� they are
simple corollaries of the general geometric control techniques developed in pre

vious chapters� Chapters �� and �� contain the theory of the Second Variation
with second order necessary and su�cient optimality conditions for regular and
singular extremals� The short Chapter �� presents an instructive reduction pro

cedure� which establishes a connection between singular and regular extremals�
In Chapter �� we introduce and compute �in simplest low dimensional cases�
the curvature� a remarkable feedback invariant of optimal control problems� Fi

nally in Chapter �� we discuss the control of a classical nonholonomic system�
two bodies rolling one on another without slipping or twisting� The Appendix
contains proofs of some results formulated in Chapter ��
This is a very brief overview of the contents of the book� In each chapter

we try to stay at textbook level� i�e� to present just the �rst basic results
with some applications� The topic of practically every chapter has an extensive
development� sometimes rather impressive� In order to study these topics deeper
the reader is referred to research papers�
Geometric Control Theory is a broad subject and many important topics

are not even mentioned in the book� In particular� we do not study the feed

back stabilization problem and the huge theory of control systems with outputs
including fundamental concepts of Observability and Realization� For this and
other material see books on Control listed in the Bibliography�
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Chapter �

Vector �elds and control

systems on smooth

manifolds

��� Smooth manifolds

We give just a brief outline of basic notions related to the smooth manifolds�
For a consistent presentation� see an introductory chapter to any textbook on
analysis on manifolds� e� g� ������
In the sequel� �smooth �manifold� mapping� vector �eld etc�� means C��

De�nition ���� A subset M � Rn is called a smooth k�dimensional submani�
fold of Rn� k � n� if any point x � M has a neighborhood Ox in R

n in which
M is described in one of the following ways�

��� there exists a smooth vector
function

F � Ox � Rn�k� rank
dF

dx

����
q

� n� k

such that

Ox �M � F������

��� there exists a smooth vector
function

f � V� � Rn

from a neighborhood of the origin � � V� � Rk with

f��� � x� rank
d f

d x

����
�

� k

�
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such that
Ox �M � f�V��

and f � V� � Ox �M is a homeomorphism�

��� there exists a smooth vector
function

� � Ox � O� � Rn

onto a neighborhood of the origin � � O� � Rn with

rank
d�

d x

����
x

� n

such that
��Ox �M � � Rk�O��

Exercise ���� Prove that three local descriptions of a smooth submanifold
given in ������� are mutually equivalent�

Remarks� ��� There are two topologically di�erent one
dimensional manifolds�
the line R� and the circle S�� The sphere S� and the torus T� � S� � S� are
two
dimensional manifolds� The torus can be viewed as a sphere with a handle�
Any compact orientable two
dimensional manifold is topologically a sphere with
p handles� p � �� �� �� � � � �
��� Smooth manifolds appear naturally already in the basic analysis� For

example� the circle S� and the torus T� are natural domains of periodic and
doubly periodic functions respectively� On the sphere S�� it is convenient to
consider restriction of homogeneous functions of � variables�

So a smooth submanifold is a subset in Rn which can locally be de�ned by a
regular system of smooth equations and by a smooth regular parametrization�
In spite of the intuitive importance of the image of manifolds as subsets of

a Euclidean space� it is often convenient to consider manifolds independently of
any embedding in Rn� An abstract manifold is de�ned as follows�

De�nition ���� A smooth k�dimensional manifold M is a Hausdor� paracom

pact topological space endowed with a smooth structure� M is covered by a
system of open subsets

M � ��O�

called coordinate neighborhoods� in each of which is de�ned a homeomorphism

�� � O� � Rk

called a local coordinate system such that all compositions

�� 	���� � ���O� �O�� � Rk� ���O� �O�� � Rk

are di�eomorphisms� see �g� ����
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��

��

O�

O�

�� ��
��

�

M R
k

Figure ���� Coordinate system in smooth manifoldM

As a rule� we denote points of a smooth manifold by q� and its coordinate
representation in a local coordinate system by x�

q �M� �� � O�� Rk� x � ��q� � Rk�
For a smooth submanifold in Rn� the abstract De�nition ��� holds� Con


versely� any connected smooth abstract manifold can be considered as a smooth
submanifold in Rn� Before precise formulation of this statement� we give two
de�nitions�

De�nition ���� Let M and N be k
 and l
dimensional smooth manifolds re

spectively� A continuous mapping

f � M � N

is called smooth if it is smooth in coordinates� That is� let M � ��O� and
N � ��V� be coverings of M and N by coordinate neighborhoods and

�� � O� � Rk�  � � V� � Rl

the corresponding coordinate mappings� Then all compositions

 � 	 f 	���� � ���O� � f���V��� � Rk�  ��f�O�� � V�� � Rl

should be smooth�

De�nition ���� A smooth manifold M is called di�eomorphic to a smooth
manifold N if there exists a homeomorphism

f � M � N

such that both f and its inverse f�� are smooth mappings� Such mapping f is
called a di�eomorphism�
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The set of all di�eomorphisms f � M � M of a smooth manifold M is
denoted by Di�M �
A smooth mapping f � M � N is called an embedding of M into N if

f � M � f�M � is a di�eomorphism� A mapping f � M � N is called proper
if f���K� is compact for any compactum K b N �the notation K b N means
that K is a compact subset of N ��

Theorem ��� �Whitney�� Any smooth connected k�dimensional manifold can
be properly embedded into R�k���

Summing up� we may say that a smooth manifold is a space which looks
locally like a linear space but without �xed linear structure� so that all smooth
coordinates are equivalent� The manifolds� not linear spaces� form an adequate
framework for the modern nonlinear analysis�

��� Vector �elds on smooth manifolds

The tangent space to a smooth manifold at a point is a linear approximation of
the manifold in the neighborhood of this point�

De�nition ���� Let M be a smooth k
dimensional submanifold of Rn and x �
M its point� Then the tangent space to M at the point x is a k
dimensional
linear subspace

TxM � Rn

de�ned as follows for cases ������� of De�nition ����

��� TxM � Ker
dF

dx

����
x

�

��� TxM � Im
d f

d x

����
�

�

��� TxM �

�
d�

d x

����
x

���
Rk�

Remark� The tangent space is a coordinate
invariant object since smooth chan

ges of variables lead to linear transformations of the tangent space�

In an abstract way� the tangent space to a manifold at a point is the set of
velocity vectors to all smooth curves in the manifold that start from this point�

De�nition ���� Let ��
� be a smooth curve in a smooth manifoldM starting
from a point q �M �

� � ���� �� �M a smooth mapping� ���� � q�

The tangent vector
d �

d t

����
t��

� !����
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to the curve ��
� at the point q is the equivalence class of all smooth curves in
M starting from q and having the same �
st order Taylor polynomial as ��
��
for any coordinate system in a neighborhood of q�

����

�����

��t�

Figure ���� Tangent vector !����

De�nition ��	� The tangent space to a smooth manifoldM at a point q �M
is the set of all tangent vectors to all smooth curves in M starting at q�

TqM �

�
d �

d t

����
t��

j � � ���� �� �M smooth� ���� � q

�
�

Exercise ���� Let M be a smooth k
dimensional manifold and q � M � Show
that the tangent space TqM has a natural structure of a linear k
dimensional
space�

De�nition ��
� A smooth vector �eld on a smooth manifold M is a smooth
mapping

q �M �� V �q� � TqM

that associates to any point q �M a tangent vector V �q� at this point�

In the sequel we denote by VecM the set of all smooth vector �elds on a
smooth manifoldM �

De�nition ���� A smooth dynamical system� or an ordinary di�erential equa�
tion �ODE �� on a smooth manifoldM is an equation of the form

d q

d t
� V �q�� q �M�

or� equivalently�

!q � V �q�� q �M�

where V �q� is a smooth vector �eld onM � A solution to this system is a smooth
mapping

� � I �M�
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where I � R is an interval� such that
d �

d t
� V ���t�� � t � I�

��t�

V ���t��

Figure ���� Solution to ODE !q � V �q�

De�nition ����� Let � � M � N be a smooth mapping between smooth
manifoldsM and N � The di�erential of � at a point q �M is a linear mapping

Dq� � TqM � T��q�N

de�ned as follows�

Dq�

�
d �

d t

����
t��

�
�

d

d t

����
t��

����t���

where
� � ���� �� � R�M� ���� � q�

is a smooth curve in M starting at q�

Now we apply smooth mappings to vector �elds� Let V � VecM be a vector
�eld on M and

!q � V �q� �����

the corresponding ODE� To �nd the action of a di�eomorphism

� � M � N� � � q �� x � ��q�

on the vector �eld V �q�� take a solution q�t� of ����� and compute the ODE
satis�ed by the image x�t� � ��q�t���

!x�t� �
d

d t
��q�t�� � �Dq�� !q�t� � �Dq��V �q�t�� � �D����x���V ��

���x�t����
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So the required ODE is

!x �
�
D����x��

�
V �����x��� �����

The right
hand side here is the transformed vector �eld on N induced by the
di�eomorphism ��

���V ��x�
def
�

�
D����x��

�
V �����x���

The notation ��q is used� along with Dq�� for di�erential of a mapping �
at a point q�

Remark� In general� a smooth mapping � induces transformation of tangent
vectors� not of vector �elds� In order that D� transform vector �elds to vector
�elds� � should be a di�eomorphism�

��� Smooth di�erential equations and �ows on

manifolds

Theorem ���� Consider a smooth ODE

!q � V �q�� q �M � Rn� �����

on a smooth submanifold M of Rn� For any initial point q� �M � there exists a
unique solution

q�t� q��� t � �a� b�� a � � � b�

of equation ����� with the initial condition

q��� q�� � q��

de�ned on a su�ciently short interval �a� b�� The mapping

�t� q�� �� q�t� q��

is smooth� In particular� the domain �a� b� of the solution q�
� q�� can be chosen
smoothly depending on q��

Proof� We prove the theorem by reduction to its classical analog in Rn�
The statement of the theorem is local� We rectify the submanifoldM in the

neighborhood of the point q��

� � Oq� � Rn� O� � Rn�
��Oq� �M � � Rk�

Consider the restriction � � �jM � Then a curve q�t� inM is a solution to �����
if and only if its image x�t� � ��q�t�� in Rk is a solution to the induced system�

!x � ��V �x�� x � Rk�



� CHAPTER �� VECTOR FIELDS AND CONTROL SYSTEMS

Theorem ���� Let M � Rn be a smooth submanifold and let

!q � V �q�� q � Rn� �����

be a system of ODEs in Rn such that

q �M  V �q� � TqM�

Then for any initial point q� � M � the corresponding solution q�t� q�� to �����
with q��� q�� � q� belongs to M for all su�ciently small jtj�
Proof� Consider the restricted vector �eld�

f � V jM �

By the existence theorem for M � the system

!q � f�q�� q �M�

has a solution q�t� q��� q��� q�� � q�� with

q�t� q�� �M for small jtj� �����

On the other hand� the curve q�t� q�� is a solution of ����� with the same initial
condition� Then inclusion ����� proves the theorem�

De�nition ����� A vector �eld V � VecM is called complete� if for all q� �M
the solution q�t� q�� of the Cauchy problem

!q � V �q�� q��� q�� � q� �����

is de�ned for all t � R�
Example ���� The vector �eld V �x� � x is complete onR� as well as onRnf�g�
���� ��� ���"��� and f�g� but not complete on other submanifolds of R� The
vector �eld V �x� � x� is not complete on any submanifolds of R except f�g�
Proposition ���� Suppose that there exists � � � such that for any q� � M
the solution q�t� q�� to Cauchy problem ����� is de�ned for t � ���� ��� Then the
vector �eld V �q� is complete�

Remark� In this proposition it is required that there exists � � � common for
all initial points q� �M � In general� � may be not bounded away from zero for
all q� �M � E�g�� for the vector �eld V �x� � x� we have �� � as x� ���
Proof� Suppose that the hypothesis of the proposition is true� Then we can
introduce the following family of mappings in M �

P t � M � M� t � ���� ���
P t � q� �� q�t� q���
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P t�q�� is the shift of a point q� � M along the trajectory of the vector �eld
V �q� for time t�
By Theorem ���� all mappings P t are smooth� Moreover� the family fP t j

t � ���� �� g is a smooth family of mappings�
A very important property of this family is that it forms a local one
para


meter group� i�e��

P t�P s�q�� � P s�P t�q�� � P t�s�q�� q �M� t� s� t" s � ���� ���
Indeed� the both curves in M �

t �� P t�P s�q�� and t �� P t�s�q�

satisfy the ODE !q � V �q� with the same initial value P ��P s�q�� � P ��s�q� �
P s�q�� By uniqueness� P t�P s�q�� � P t�s�q�� The equality for P s�P t�q�� is
obtained by switching t and s�
So we have the following local group properties of the mappings P t�

P t 	 P s � P s 	 P t � P t�s� t� s� t" s � ���� ���
P � � Id�

P�t 	 P t � P t 	 P�t � Id� t � ���� ���
P�t �

�
P t

���
� t � ���� ���

In particular� all P t are di�eomorphisms�
Now we extend the mappings P t for all t � R� Any t � R can be represented

as
t �

�

�
K " �� � � � �

�

�
� K � �������� � � � �

We set
P t def

� P � 	 P���� 	 
 
 
 	 P����� 	z 

jKj times

� � � sgn t�

Then the curve
t �� P t�q��� t � R�

is a solution to Cauchy problem ������

De�nition ����� For a complete vector �eld V � VecM � the mapping
t �� P t� t � R�

is called the 	ow generated by V �

Remark� It is useful to imagine a vector �eld V � VecM as a �eld of velocity
vectors of a moving liquid in M � Then the �ow P t takes any particle of the
liquid from a position q � M and transfers it for a time t � R to the position
P t�q� �M �

Simple su�cient conditions for completeness of a vector �eld are given in
terms of compactness�
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Proposition ���� Let K �M be a compact subset� and let V � VecM � Then
there exists �K � � such that for all q� � K the solution q�t� q�� to Cauchy
problem ����� is de�ned for all t � ���K � �K��
Proof� By Theorem ���� domain of the solution q�t� q�� can be chosen contin

uously depending on q�� The diameter of this domain has a positive in�mum
��K for q� in the compact set K�

Corollary ���� If a smooth manifold M is compact� then any vector �eld V �
VecM is complete�

Corollary ���� Suppose that a vector �eld V � VecM has a compact support


supp V
def
� f q �M j V �q� �� � g is compact�

Then V is complete�

Proof� Indeed� by Proposition ���� there exists � � � such that all trajectories
of V starting in suppV are de�ned for t � ���� ��� But V jMnsuppV � �� and
all trajectories of V starting outside of suppV are constant� thus de�ned for all
t � R� By Proposition ���� the vector �eld V is complete�

Remark� If we are interested in the behavior of �trajectories of� a vector �eld
V � VecM in a compact subset K � M � we can suppose that V is complete�
Indeed� take an open neighborhood OK of K with the compact closure OK � We
can �nd a function a � C��M � such that

a�q� �

�
�� q � K�
�� q �M nOK �

Then the vector �eld a�q�V �q� � VecM is complete since it has a compact
support� On the other hand� in K the vector �elds a�q�V �q� and V �q� coincide�
thus have the same trajectories�

��� Control systems

For dynamical systems� the future q�t� q��� t � �� is completely determined by
the present state q� � q��� q��� The law of transformation q� �� q�t� q�� is the
�ow P t� i�e�� dynamics of the system

!q � V �q�� q �M� �����

it is determined by one vector �eld V �q��
In order to be able to a�ect dynamics� to control it� we consider a family of

dynamical systems

!q � Vu�q�� q � M� u � U� �����
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with a family of vector �elds Vu parametrized by a parameter u � U � A system
of the form ����� is called a control system� The variable u is a control parameter �
and the set U is the space of control parameters� A priori we do not impose any
restrictions on U � it is an arbitrary set� although� typically U will be a subset
of a smooth manifold� The variable q is the state� and the manifold M is the
state space of control system ������
In control theory we can change dynamics of control system ����� at any

moment of time by changing values of u � U � For any u � U � the corresponding
vector �eld Vu � VecM generates the �ow� which is denoted by P t

u�
A typical problem of control theory is to �nd the set of points that can be

reached from an initial point q� � M by choosing various values of u � U and
switching from one value to another time to time �for dynamical system ������
this reachable set is just the semitrajectory q�t� q�� � P t�q��� t � ��� Suppose
that we start from a point q� � M and use the following control strategy for
control system ������ �rst we choose some control parameter u� � U � then we
switch to another control parameter u� � U � Which points inM can be reached
with such control strategy	 With the control parameter u�� we can reach points
of the form

fP t�
u�
�q�� j t� � � g�

and the whole set of reachable points has the form

fP t�
u�
	 P t�

u�
�q�� j t�� t� � � g�

a piece of a �
dimensional surface�

P
t�
u�

P
t�
u�

x�

A natural next question is� what points can be reached from q� by any kind
of control strategies	
Before studying this question� consider a particular control system that gives

a simpli�ed model of a car�

Example ���� We suppose that the state of a car is determined by the position
of its center of mass x � �x�� x�� � R� and orientation angle 	 � S� relative to
the positive direction of the axis x�� Thus the state space of our system is a
nontrivial �
dimensional manifold� a solid torus

M � f q � �x� 	� j x � R�� 	 � S� g � R�� S��
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Suppose that two kinds of motion are possible� we can drive the car forward
and backwards with some �xed linear velocity u� � R� and we can turn the car
around its center of mass with some �xed angular velocity u� � R� We can
combine these two kinds of motion in an admissible way�
The dynamical system that describes the linear motion with a velocity u� �

R has the form ��
!x� � u� cos 	�
!x� � u� sin 	�
!	 � ��

�����

Rotation with an angular velocity u� � R is described as��
!x� � ��
!x� � ��
!	 � u��

������

The control parameter u � �u�� u�� can take any values in the given subset
U � R�� If we write ODEs ����� and ������ in the vector form�

!q � u�V��q�� !q � u�V��q��

where

V��q� �

�� cos 	
sin 	
�

�A � V��q� �

�� �
�
�

�A � ������

then our model reads

!q � Vu�q� � u�V��q� " u�V��q�� q �M� u � U�

This model can be rewritten in the complex form�

z � x� " ix� � C �
!z � u�e

i��
!	 � u��

�u�� u�� � U� �z� 	� � C � S��

Remark� Control system ����� is often written in another form�

!q � f�q� u�� q �M� u � U�

We prefer the notation Vu�q�� which stresses that for a �xed u � U � Vu is a
single object # a vector �eld on M �

Now we return to the study of the points reachable by trajectories of a
control system from an initial point�
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De�nition ����� The attainable set �or reachable set� of control system �����
with piecewise
constant controls from a point q� �M for a time t � � is de�ned
as follows�

Aq��t� � fP �k
uk 	 � � � 	 P ��

u� �q�� j �i � ��
kX
i��

�i � t� ui � U� k � N g�

The attainable set from q� for arbitrary nonnegative time of motion has the
form

Aq� �
�
t��
Aq��t��

For simplicity� consider �rst the smallest nontrivial space of control param

eters consisting of two indices�

U � f�� �g
�even this simple case shows essential features of the reachability problem��
Then the attainable set for arbitrary nonnegative times has the form�

Aq� � fP �k
� 	 P �k��

� 	 � � � 	 P ��
� 	 P ��

� �q�� j �i � �� k � N g�
This expression suggests that the attainable set Aq� depends heavily upon com

mutator properties of the �ows P t

� and P
s
� �

Consider �rst the trivial commutative case� i�e�� suppose that the �ows com

mute�

P t
� 	 P s

� � P s
� 	 P t

� �t� s � R�
Then the attainable set can be evaluated precisely� since

P �k
� 	 P �k��

� 	 � � � 	 P ��
� 	 P ��

� � P �k�������
� 	 P �k���������

� �

then
Aq� � fP s

� 	 P t
��q�� j t� s � � g�

So in the commutative case the attainable set by two control parameters is a
piece of a smooth two
dimensional surface� possibly with singularities� It is easy
to see that if the number of control parameters is k � � and the corresponding
�ows P t�

� � � � � � P
tk
k commute� then Aq� is� in general� a piece of a k
dimensional

manifold� and� in particular� dimAq� � k�
But this commutative case is exceptional and occurs almost never in real

control systems�

Example ���� In the model of a car considered above the control dynamics is
de�ned by two vector �elds ������ on the �
dimensional manifoldM � R�

x�S�� �
It is obvious that from any initial con�guration q� � �x�� 	�� �M we can drive
the car to any terminal con�guration q� � �x�� 	�� � M by alternating linear
motions and rotations �both with �xed velocities�� see �g� ����
So any point in the �
dimensional manifoldM can be reached by means of

� vector �elds V�� V�� This is due to noncommutativity of these �elds �i�e�� of
their �ows��
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x�

��

q�
x�

��

q�

Figure ���� Initial and �nal con�gurations of the car

q�

q�

PV�
t�

P
V�
t�

PV�
t�

Figure ���� Steering the car from q� to q�

Given an arbitrary pair of vector �elds V�� V� � VecM � how can one recog

nize their commuting properties without �nding the �ows P t

�� P
s
� explicitly� i�e��

without integration of the ODEs !q � V��q�� !q � V��q� 	
If the �ows P t

�� P
s
� commute� then the curve

��s� t� � P�t� 	 P s
� 	 P t

��q� � P s
� �q�� t� s � R� ������

does not depend on t� It is natural to suggest that a lower
order term in the
Taylor expansion of ������ at t � s � � is responsible for commuting properties
of �ows of the vector �elds V�� V� at the point q� The �rst
order derivatives


 �


 t

����
s�t��

� ��

 �


 s

����
s�t��

� V��q�

are obviously useless� as well as the pure second
order derivatives


��


t�

����
s�t��

� ��

��


s�

����
s�t��

�




 s

����
s��

V��P
s
� �q���

The required derivative should be the mixed second
order one


��


t
s

����
s�t��

�

It turns out that this derivative is a tangent vector to M � It is called the Lie
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bracket of the vector �elds V�� V� and is denoted by �V�� V���q��

�V�� V���q�
def
�


�


t
s

����
t�s��

P�t� 	 P s
� 	 P t

��q� � TqM� ������

The vector �eld �V�� V�� � VecM determines commuting properties of V� and
V� �it is often called commutator of vector �elds V�� V���
An e�ective formula for computing Lie bracket of vector �elds in local coor


dinates is given in the following statement�

Proposition ���� Let V�� V� be vector �elds on Rn� Then

�V�� V���x� �
d V�
d q

V��x� � d V�
d x

V��x�� ������

The proof is left to the reader as an exercise�
Another way to de�ne Lie bracket of vector �elds V�� V� is to consider the

path
��t� � P�t� 	 P�t� 	 P t

� 	 P t
��q��

see �g� ����

Exercise ���� Show that in local coordinates

��t� � x" �V�� V���x�t
� " o�t��� t� ��

i�e�� �V�� V���x� is the velocity vector of the C� curve ��
p
t�� In particular� this

proves that �V�� V���x� is indeed a tangent vector to M �

�V�� V���x� � TxM�

x

P t

�

P t

�

P�t

�

P�t

�

��t�

�V�� V���x�

Figure ���� Lie bracket of vector �elds V�� V�

In the next chapter we will develop an e�cient algebraic way to do similar
calculations without any coordinates�
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In the commutative case� the set of reachable points does not depend on the
number of switches of a control strategy used� In the general noncommutative
case� on the contrary� the greater number of switches� the more points can be
reached�
Suppose that we can move along vector �elds �V� and �V�� Then� in�nites


imally� we can move in the new direction ��V�� V��� which is in general linearly
independent of the initial ones �V�� �V�� Using the same switching control
strategy with the vector �elds �V� and ��V�� V��� we add one more in�nitesimal
direction of motion ��V�� �V�� V���� Analogously� we can obtain ��V�� �V�� V����
Iterating this procedure with the new vector �elds obtained at previous steps�
we can have a Lie bracket of arbitrarily high order as an in�nitesimal direction
of motion with a su�ciently large number of switches�

Example ���� Compute the Lie bracket of the vector �elds

V��q� �

�� cos 	
sin 	
�

�A � V��q� �

�� �
�
�

�A � q �

�� x�
x�
	

�A � R�
�x��x�� � S��

appearing in the model of a car� Recall that the �eld V� generates the forward
motion� and V� the counterclockwise rotation of the car� By ������� we have

�V�� V���q� �
d V�
d q

V��q� � d V�
d q

V��q� � �
�� � � � sin 	
� � cos 	
� � �

�A�� �
�
�

�A
�

�� sin 	
� cos 	
�

�A �

The vector �eld �V�� V�� generates the motion of the car in the direction perpen

dicular to orientation of the car� This is a typical maneuver in parking a car�
the sequence of � motions with the same small amplitude of the form

motion forward� rotation counterclockwise � motion backward�
� rotation clockwise

results in motion to the right �in the main term��

We show this explicitly by computing the Lie bracket �V�� V�� as in Exam

ple ����

P�t� 	 P�t� 	 P t
� 	 P t

�

�� x�
x�
	

�A �

�� x� " t�cos 	 � cos�	 " t��
x� " t�sin 	 � sin�	 " t��

	

�A
�

�� x�
x�
	

�A " t�

�� sin 	
� cos 	
�

�A" o�t��� t� ��
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and we have once more

�V�� V���q� �

�� sin 	
� cos 	
�

�A � ������

Of course� we can also compute this Lie bracket by de�nition as in �������

P�t� 	 P s
� 	 P t

�

�� x�
x�
	

�A �

�� x� " t�cos 	 � cos�	 " s��
x� " t�sin 	 � sin�	 " s��

	 " s

�A
�

�� x�
x�
	

�A" s

�� �
�
�

�A" ts

�� sin 	
� cos 	
�

�A " O�t� " s��	��� t� s� ��

and the Lie bracket ������ follows�
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Chapter �

Elements of Chronological

Calculus

We introduce an operator calculus that will allow us to work with nonlinear
systems and �ows as with linear ones� at least at the formal level� The idea
is to replace a nonlinear object� a smooth manifold M � by a linear� although
in�nite
dimensional one� the commutative algebra of smooth functions on M
�for details� see ����� ������ For basic de�nitions and facts of functional analysis
used in this chapter� one can consult e�g� ������

��� Points	 di�eomorphisms	 and vector �elds

In this section we identify points� di�eomorphisms� and vector �elds on the
manifoldM with functionals and operators on the algebra C��M � of all smooth
real
valued functions on M �
Addition� multiplication� and product with constants are de�ned in the al


gebra C��M �� as usual� pointwise� if a� b � C��M �� q �M � � � R� then

�a" b��q� � a�q� " b�q��

�a 
 b��q� � a�q� 
 b�q��
�� 
 a��q� � � 
 a�q��

Any point q �M de�nes a linear functional

bq � C��M �� R� bqa � a�q�� a � C��M ��

The functionals bq are homomorphisms of the algebras C��M � and R�
bq�a " b� � bqa " bqb� a� b � C��M ��bq�a 
 b� � �bqa� 
 �bqb�� a� b � C��M ��bq�� 
 a� � � 
 bqa� � � R� a � C��M ��

��
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So to any point q � M � there corresponds a nontrivial homomorphism of alge

bras bq � C��M �� R� It turns out that there exists an inverse correspondence�
Proposition ���� Let � � C��M � � R be a nontrivial homomorphism of
algebras� Then there exists a point q �M such that � � bq�
We prove this proposition in the Appendix�

Remark� Not only the manifoldM can be reconstructed as a set from the algebra
C��M �� One can recover topology on M from the weak topology in the space
of functionals on C��M ��

lim
n�� qn � q if and only if lim

n�� bqna � bqa �a � C��M ��

Moreover� the smooth structure on M is also recovered from C��M �� actually�
�by de�nition� a real function on the set fbq j q �Mg is smooth if and only if
it has a form bq �� bqa for some a � C��M ��

Any di�eomorphism P � M � M de�nes an automorphism of the algebra
C��M ��

bP � C��M �� C��M �� bP � Aut�C��M ���
� bPa��q� � a�P �q��� q �M� a � C��M ��

i�e�� bP acts as a change of variables in a function a� Conversely� any automor

phism of C��M � has such a form�

Proposition ���� Any automorphism A � C��M � � C��M � has a form ofbP for some P � Di�M �

Proof� Let A � Aut�C��M ��� Take any point q �M � Then the composition

bq 	A � C��M �� R

is a nonzero homomorphismof algebras� thus it has the form bq� for some q� �M �
We denote q� � P �q� and obtain

bq 	A ��P �q� � bq 	 bP �q �M�

i�e��
A � bP�

and P is the required di�eomorphism�

Now we characterize tangent vectors to M as functionals on C��M �� Tan

gent vectors to M are velocity vectors to curves in M � and points of M are
identi�ed with linear functionals on C��M �� thus we should obtain linear func

tionals on C��M �� but not homomorphisms intoR� To understand� which func

tionals on C��M � correspond to tangent vectors to M � take a smooth curve
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q�t� of points in M � Then the corresponding curve of functionals bq�t� � dq�t� on
C��M � satis�es the multiplicative rule

bq�t��a 
 b� � bq�t�a 
 bq�t�b� a� b � C��M ��

We di�erentiate this equality at t � � and obtain that the velocity vector to the
curve of functionals

�
def
�

d bq
d t

����
t��

� � � C��M �� R�

satis�es the Leibniz rule�

��ab� � ��a�b�q���� " a�q������b��

Consequently� to each tangent vector v � TqM we should put into corre

spondence a linear functional

� � C��M �� R

such that

��ab� � ��a�b�q� " a�q���b�� a� b � C��M �� �����

But there is a linear functional � � bv naturally related to any tangent vector
v � TqM � the directional derivative along v�

bva � d

d t

����
t��

a�q�t��� q��� � q� !q��� � v�

and such functional satis�es Leibniz rule ������
Now we show that this rule characterizes exactly directional derivatives�

Proposition ���� Let � � C��M � � R be a linear functional that satis�es
Leibniz rule ����� for some point q � M � Then � � bv for some tangent vector
v � TqM �

Proof� Notice �rst of all that any functional � that meets Leibniz rule ����� is
local� i�e�� it depends only on values of functions in an arbitrarily small neigh

borhood Oq of the point q�

$ajOq
� ajOq

 �$a � �a� a� $a � C��M ��

Indeed� take a cut function b � C��M � such that bjMnOq
� � and b�q� � ��

Then �$a� a�b � $a� a� thus

��$a� a� � ���$a � a�b� � ��$a� a� b�q� " �$a � a��q� �b � ��

So the statement of the proposition is local� and we prove it in coordinates�
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Let �x�� � � � � xn� be local coordinates on M centered at the point q� We have
to prove that there exist ��� � � � � �n � R such that

� �
nX
i��

�i




 xi

����
�

�

First of all�

���� � ��� 
 �� � ���� 
 � " � 
 ���� � ������
thus ���� � �� By linearity� ��const� � ��
In order to �nd the action of � on an arbitrary smooth function� we expand

it by the Hadamard Lemma�

a�x� � a��� "
nX
i��

Z �

�


 a


 xi
�tx�xi dt � a��� "

nX
i��

bi�x�xi�

where

bi�x� �

Z �

�


 a


 xi
�tx� dt

are smooth functions� Now

�a �
nX
i��

��bixi� �
nX
i��

���bi�xi��� " bi�����xi�� �
nX
i��

�i

 a


 xi
����

where we denote �i � �xi and make use of the equality bi��� �

 a


 xi
����

So tangent vectors v � TqM can be identi�ed with directional derivativesbv � C��M �� R� i�e�� linear functionals that meet Leibniz rule ������
Now we characterize vector �elds on M � A smooth vector �eld on M is a

family of tangent vectors vq � TqM � q �M � such that for any a � C��M � the
mapping q �� vqa� q �M � is a smooth function on M �
To a smooth vector �eld V � VecM there corresponds a linear operatorbV � C��M �� C��M �

that satis�es the Leibniz rulebV �ab� � �bV a�b" a�bV b�� a� b � C��M ��

the directional derivative �Lie derivative� along V �
A linear operator on an algebra meeting the Leibniz rule is called a derivation

of the algebra� so the Lie derivative bV is a derivation of the algebra C��M �� We
show that the correspondence between smooth vector �elds on M and deriva

tions of the algebra C��M � is invertible�

Proposition ���� Any derivation of the algebra C��M � is the directional de�
rivative along some smooth vector �eld on M �
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Proof� Let D � C��M � � C��M � be a derivation� Take any point q � M �
We show that the linear functional

dq
def
� bq 	D � C��M �� R

is a directional derivative at the point q� i�e�� satis�es Leibniz rule ������

dq�ab� � bq�D�ab�� � bq��Da�b " a�Db�� � bq�Da�b�q� " a�q�bq�Db� �
�dqa�b�q� " a�q��dqb�� a� b � C��M ��

So we can identify points q � M � di�eomorphisms P � Di�M � and vector
�elds V � VecM with nontrivial homomorphisms bq � C��M � � R� auto

morphisms bP � C��M � � C��M �� and derivations bV � C��M � � C��M �
respectively�
For example� we can write a point P �q� in the operator notation as bq 	 bP �

Moreover� in the sequel we omit hats and write q 	 P � This does not cause
ambiguity� if q is to the right of P � then q is a point� P a di�eomorphism� and
P �q� is the value of the di�eomorphismP at the point q� And if q is to the left of
P � then q is a homomorphism� P an automorphism� and q 	P a homomorphism
of C��M �� Similarly� V �q� � TqM is the value of the vector �eld V at the point
q� and q 	 V � C��M �� R is the directional derivative along the vector V �q��

��� Seminorms and C��M�
topology

We introduce seminorms and topology on the space C��M ��
By Whitney�s Theorem� a smooth manifold M can be properly embedded

into a Euclidean space RN for su�ciently large N � Denote by hi� i � �� � � � � N �
the smooth vector �eld on M that is the orthogonal projection from RN to M
of the constant basis vector �eld 	

	 xi
� Vec�RN�� So we have N vector �elds

h�� � � � � hN � VecM that span the tangent space TqM at each point q �M �
We de�ne the family of seminorms k 
 ks�K on the space C��M � in the

following way�

kaks�K � sup fjhil 	 
 
 
 	 hi�a�q�j j q � K� � � i�� � � � � il � N� � � l � sg �
a � C��M �� s � �� K bM�

This family of seminorms de�nes a topology on C��M �� A local base of this
topology is given by the subsets�

a � C��M � j kakn�Kn
�
�

n

�
� n � N�

where Kn� n � N� is a chained system of compacta that cover M �

Kn � Kn���

��
n��

Kn � M�
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This topology on C��M � does not depend on embedding of M into RN�
It is called the topology of uniform convergence of all derivatives on compacta�
or just C��M ��topology � This topology turns C��M � into a Fr%echet space
�a complete� metrizable� locally convex topological vector space��
A sequence of functions ak � C��M � converges to a � C��M � as k�� if

and only if
lim
k��

kak � aks�K � � � s � �� K bM�

For vector �elds V � VecM � we de�ne the seminorms
kV ks�K � sup fkV aks�K j kaks���K � �g � s � �� K bM� �����

One can prove that any vector �eld V � VecM has �nite seminorms kV ks�K�
and that there holds an estimate of the action of a di�eomorphism P � Di�M
on a function a � C��M ��

kPaks�K � Cs�Pkaks�P �K�� s � �� K bM� �����

Thus vector �elds and di�eomorphisms are linear continuous operators on the
topological vector space C��M ��

��� Families of functionals and operators

In the sequel we will often consider one
parameter families of points� di�eo

morphisms� and vector �elds that satisfy various regularity properties �e�g� dif

ferentiability or absolute continuity� with respect to the parameter� Since we
treat points as functionals� and di�eomorphisms and vector �elds as operators
on C��M �� we can introduce regularity properties for them in the weak sense�
via the corresponding properties for one
parameter families of functions

t �� at� at � C��M �� t � R�
So we start from de�nitions for families of functions�

Continuity and di�erentiability of a family of functions at w�r�t� parameter
t are de�ned in a standard way since C��M � is a topological vector space� A
family at is calledmeasurable w�r�t� t if the real function t �� at�q� is measurable
for any q �M � A measurable family at is called locally integrable ifZ t�

t�

katks�K dt �� � s � �� K bM� t�� t� � R�

A family at is called absolutely continuous w�r�t� t if

at � at� "

Z t

t�

b� d�

for some locally integrable family of functions bt� A family at is called Lips�
chitzian w�r�t� t if

kat � a�ks�K � Cs�Kjt� � j �s � �� K bM� t� � � R�



���� FAMILIES OF FUNCTIONALS AND OPERATORS ��

and locally bounded w�r�t� t if

katks�K � Cs�K�I� � s � �� K bM� I b R� t � I�

where Cs�K and Cs�K�I are some constants depending on s� K� and I�
Now we can de�ne regularity properties of families of functionals and oper


ators on C��M �� A family of linear functionals or linear operators on C��M �

t �� At� t � R�
has some regularity property �i�e�� is continuous� di�erentiable� measurable� lo�
cally integrable� absolutely continuous� Lipschitzian� locally bounded w�r�t� t� if
the family

t �� Ata� t � R�
has the same property for any a � C��M ��
A locally bounded w�r�t� t family of vector �elds

t �� Vt� Vt � VecM� t � R�
is called a nonautonomous vector �eld � or simply a vector �eld � on M � An
absolutely continuous w�r�t� t family of di�eomorphisms

t �� P t� P t � Di�M� t � R�
is called a 	ow on M � So� for a nonautonomous vector �eld Vt� the family of
functions t �� Vta is locally integrable for any a � C��M �� Similarly� for a �ow
P t� the family of functions �P ta��q� � a�P t�q�� is absolutely continuous w�r�t� t
for any a � C��M ��
Integrals of measurable locally integrable families� and derivatives of di�er


entiable families are also de�ned in the weak sense�Z t�

t�

At dt � a ��
Z t�

t�

�Ata� dt� a � C��M ��

d

d t
At � a �� d

d t
�Ata�� a � C��M ��

One can show that if At and Bt are continuous families of operators on
C��M � which are di�erentiable at t�� then the family At 	 Bt is continuous�
moreover� di�erentiable at t�� and satis�es the Leibniz rule�

d

d t

����
t�

�At 	Bt� �

�
d

d t

����
t�

At

�
	Bt� " At� 	

�
d

d t

����
t�

Bt

�
�

see the proof in the Appendix�
If families At and Bt of operators are absolutely continuous� then the com


position At	Bt is absolutely continuous as well� the same is true for composition
of functionals with operators� For an absolute continuous family of functions at�
the family Atat is also absolutely continuous� and the Leibniz rule holds for it
as well�
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��� Chronological exponential

In this section we consider a nonautonomous ordinary di�erential equation of
the form

!q � Vt�q�� q��� � q�� �����

where Vt is a nonautonomous vector �eld onM � and study the �ow determined

by this �eld� We denote by !q the derivative
d q

d t
� so equation ����� reads in the

expanded form as
d q�t�

d t
� Vt�q�t���

����� ODEs with discontinuous right�hand side

To obtain local solutions to the Cauchy problem ����� on a manifold M � we
reduce it to a Cauchy problem in a Euclidean space� For details about nonau

tonomous di�erential equations in Rn with right
hand side discontinuous in t�
see e�g� ������
Choose local coordinates x � �x�� � � � � xn� in a neighborhood Oq� of the

point q��

� � Oq� �M � Ox� � Rn� � � q �� x�

��q�� � x��

In these coordinates� the �eld Vt reads

���Vt� �x� � eVt�x� � nX
i��

vi�t� x�




 xi
� x � Ox� � t � R� �����

and problem ����� takes the form

!x � eVt�x�� x��� � x�� x � Ox� � Rn� �����

Since the nonautonomous vector �eld Vt � VecM is locally bounded� the
components vi�t� x�� i � �� � � � � n� of its coordinate representation ����� are�

��� measurable and locally bounded w�r�t� t for any �xed x � Ox� �

��� smooth w�r�t� x for any �xed t � R�
��� di�erentiable in x with locally bounded partial derivatives�����
 vi
 x

�t� x�

���� � CI�K � t � I b R� x � K b Ox� � i � �� � � � � n�

By the classical Carath%eodory Theorem �see e�g� ����� the Cauchy problem �����
has a unique solution� i�e�� a vector
function x�t� x��� Lipschitzian w�r�t� t and
smooth w�r�t� x�� and such that�
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��� ODE ����� is satis�ed for almost all t�

��� initial condition holds� x��� x�� � x��

Then the pull
back of this solution from Rn to M

q�t� q�� � �
���x�t� x����

is a solution to problem ����� inM � The mapping q�t� q�� is Lipschitzian w�r�t� t
and smooth w�r�t� q�� it satis�es almost everywhere the ODE and the initial
condition in ������
For any q� � M � the solution q�t� q�� to the Cauchy problem ����� can be

continued to a maximal interval t � Jq� � Rcontaining the origin and depending
on q��
We will assume that the solutions q�t� q�� are de�ned for all q� �M and all

t � R� i�e�� Jq� � R for any q� �M � Then the nonautonomous �eld Vt is called
complete� This holds� e�g�� when all the �elds Vt� t � R� vanish outside of a
common compactum in M �in this case we say that the nonautonomous vector
�eld Vt has a compact support��

����� De�nition of the right chronological exponential

Equation ����� rewritten as a linear equation for Lipschitzian w�r�t� t families
of functionals on C��M ��

!q�t� � q�t� 	 Vt� q��� � q�� �����

is satis�ed for the family of functionals

q�t� q�� � C
��M �� R� q� �M� t � R

constructed in the previous subsection� We prove later that this Cauchy problem
has no other solutions �see Proposition ����� Thus the �ow de�ned as

P t � q� �� q�t� q�� �����

is a unique solution of the operator Cauchy problem

!P t � P t 	 Vt� P � � Id� �����

�where Id is the identity operator� in the class of Lipschitzian �ows on M � The
�ow P t determined in ����� is called the right chronological exponential of the
�eld Vt and is denoted as

P t �
��
exp

Z t

�

V� d��

Now we develop an asymptotic series for the chronological exponential� which
justi�es such a notation�
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����� Formal series expansion

We rewrite di�erential equation in ����� as an integral one�

q�t� � q� "

Z t

�

q�� � 	 V� d� ������

then substitute this expression for q�t� into the right
hand side

� q� "

Z t

�

�
q� "

Z ��

�

q���� 	 V�� d��
�
	 V�� d��

� q� 	
�
Id"

Z t

�

V� dt

�
"

ZZ
��������t

q���� 	 V�� 	 V�� d�� d���

repeat this procedure iteratively� and obtain the decomposition�

q�t� � q� 	

�B�Id" Z t

�
V� d� "

ZZ

��t�

V�� 	 V�� d�� d�� " � � �"

Z

 
 


Z

n�t�

V�n 	 
 
 
 	 V�� d�n � � � d��

�CA"
Z

 
 


Z

n���t�

q��n��� 	 V�n�� 	 
 
 
 	 V�� d�n�� � � � d��� ������

Here
&n�t� � f���� � � � � �n� � Rn j � � �n � 
 
 
 � �� � tg

is the n
dimensional simplex� Purely formally passing in ������ to the limit
n��� we obtain a formal series for the solution q�t� to problem ������

q� 	

�B�Id" �X
n��

Z

 
 


Z

n�t�

V�n 	 
 
 
 	 V�� d�n � � � d��

�CA �

thus for the solution P t to problem ������

Id"
�X
n��

Z

 
 


Z

n�t�

V�n 	 
 
 
 	 V�� d�n � � � d��� ������

Exercise ���� We obtained the previous series expansion under the condition
t � �� although the chronological exponential is de�ned for all values of t� Show
that the �ow

��
exp

R t
�
V� d� admits for t � � the series expansion

Id"
�X
n��

Z

 
 


Z

n��t�

��V�n � 	 
 
 
 	 ��V�� � d�n � � � d���
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This series is similar to ������� so in the sequel we restrict ourselves by the study
of the case t � ��

����� Estimates and convergence of the series

Unfortunately� these series never converge on C��M � in the weak sense �if
Vt �� ��� there always exists a smooth function on M � on which they diverge�
Although� one can show that series ������ gives an asymptotic expansion for the

chronological exponential P t �
��
exp

R t
� V� d� � There holds the following bound

of the remainder term� denote the m
th partial sum of series ������ as

Sm�t� � Id"
m��X
n��

Z

 
 


Z

n�t�

V�n 	 
 
 
 	 V�� d�n � � � d���

then for any a � C��M �� s � �� K bM����� ��
exp

Z t

�

V� d� � Sm�t�

�
a

����
s�K

� CeC
R
t

� kV�ks�K� d� �
m�

�Z t

�

kV�ks�m���K� d�

�m

kaks�m�K� ������

� O�tm�� t� ��

where K� b M is some compactum containing K� We prove estimate ������ in
the Appendix� It follows from estimate ������ that����� ��

exp

Z t

�

�V� d� � S�m�t�

�
a

����
s�K

� O��m�� �� ��

where S�m�t� is the m
th partial sum of series ������ for the �eld �Vt�
Thus we have an asymptotic series expansion�

��
exp

Z t

�

V� d� � Id"
�X
n��

Z

 
 


Z

n�t�

V�n 	 
 
 
 	 V�� d�n � � � d��� ������

In the sequel we will use terms of the zeroth� �rst� and second orders of the
series obtained�

��
exp

Z t

�

V� d� � Id"
Z t

�

V� d� "

ZZ
��������t

V�� 	 V�� d�� d�� " 
 
 
 �

We prove that the asymptotic series converges to the chronological exponen

tial on any normed subspace L � C��M � where Vt is well
de�ned and bounded�

VtL � L� kVtk � sup fkVtak j a � L� kak � �g ��� ������
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We apply operator series ������ to any a � L and bound terms of the series
obtained�

a"
�X
n��

Z

 
 


Z

n�t�

V�n 	 
 
 
 	 V�� a d�n � � � d��� ������

We have �������
Z

 
 


Z

n�t�

V�n 	 
 
 
 	 V�� a d�n � � � d��

�������
�

Z

 
 


Z
���n�			����t

kV�nk 
 
 
 
 
 kV��k d�n � � � d�� 
 kak

by symmetry w�r�t� permutations of indices  � f�� � � � � ng � f�� � � � � ng

�

Z

 
 


Z
�����n��			�������t

kV�nk 
 
 
 
 
 kV��k d�n � � � d�� 
 kak

passing to the integral over cube

�
�

n�

Z t

�

� � �

Z t

�

kV�nk 
 
 
 
 
 kV��k d�n � � � d�� 
 kak

�
�

n�

�Z t

�
kV�k d�

�n


 kak�

So series ������ is majorized by the exponential series� thus the operator se

ries ������ converges on L�
Series ������ can be di�erentiated termwise� thus it satis�es the same ODE

as the function P ta�
!at � Vtat� a� � a�

Consequently�

P ta � a"
�X
n��

Z

 
 


Z

n�t�

V�n 	 
 
 
 	 V�� a d�n � � � d���

So in the case ������ the asymptotic series converges to the chronological expo

nential and there holds the bound

kP tak � e
R
t

� kV�kd�kak� a � L�

Moreover� one can show that the bound and convergence hold not only for
locally bounded� but also for integrable on ��� t� vector �elds�Z t

�

kV�k d� ���
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Notice that conditions ������ are satis�ed for any �nite
dimensional Vt

invariant subspace L � C��M �� In particular� this is the case when M � Rn�
L is the space of linear vector �elds� and Vt is a linear vector �eld on Rn�
If M � Vt� and a are real analytic� then series ������ converges for su�ciently

small t� see the proof in �����

����� Left chronological exponential

Consider the inverse operator Qt � �P t�
��
to the right chronological exponential

P t �
��
exp

R t
� V� d� � We �nd an ODE for the �ow Qt by di�erentiation of the

identity
P t 	Qt � Id �

Leibniz rule yields
!P t 	Qt " P t 	 !Qt � ��

thus� in view of ODE ����� for the �ow P t�

P t 	 Vt 	Qt " P t 	 !Qt � ��

We multiply this equality by Qt from the left and obtain

Vt 	Qt " !Qt � ��

That is� the �ow Qt is a solution of the Cauchy problem

d

d t
Qt � �Vt 	Qt� Q� � Id� ������

which is dual to the Cauchy problem ����� for P t� The �ow Qt is called the left
chronological exponential and is denoted as

Qt �

�
exp

Z t

�

��V� � d��

We �nd an asymptotic expansion for the left chronological exponential in the
same way as for the right one� by successive substitutions into the right
hand
side�

Qt � Id"

Z t

�
��V� � 	Q� d�

� Id"

Z t

�

��V� � d� "
ZZ


��t�

��V�� � 	 ��V�� � 	Q�� d�� d�� � 
 
 


� Id"
m��X
n��

Z

 
 


Z

n�t�

��V�� � 	 
 
 
 	 ��V�n � d�n � � � d��

"

Z

 
 


Z

m�t�

��V�� � 	 
 
 
 	 ��V�m � 	Q�m d�m � � � d���
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For the left chronological exponential holds an estimate of the remainder term
as ������ for the right one� and the series obtained is asymptotic�


�
exp

Z t

�
��V� � d� � Id"

�X
n��

Z

 
 


Z

n�t�

��V�� � 	 
 
 
 	 ��V�n � d�n � � � d���

Remarks� ��� Notice that the reverse arrow in the left chronological exponential

�
exp corresponds to the reverse order of the operators ��V�� � 	 
 
 
 	 ��V�n ��
�n � � � �� ���
��� The right and left chronological exponentials satisfy the corresponding

di�erential equations�

d

d t

��
exp

Z t

�

V� d� �
��
exp

Z t

�

V� d� 	 Vt�

d

d t


�
exp

Z t

�

��V� � d� � �Vt 	 
�
exp

Z t

�

��V� � d��

The directions of arrows correlate with the direction of appearance of operators
Vt� �Vt in the right
hand side of these ODEs�
��� If the initial value is prescribed at a moment of time t� �� �� then the

lower limit of integrals in the chronological exponentials is t��
��� There holds the following obvious rule for composition of �ows�

��
exp

Z t�

t�

V� d� 	 ��
exp

Z t�

t�

V� d� �
��
exp

Z t�

t�

V� d��

Exercise ���� Prove that

��
exp

Z t�

t�

V� d� �

�
��
exp

Z t�

t�

V� d�

���
�


�
exp

Z t�

t�

��V� � d�� ������

����	 Uniqueness for functional and operator ODEs

We saw that equation ����� for Lipschitzian families of functionals has a solution

q�t� � q�	 ��
exp

R t
�
V� d� � We can prove now that this equation has no other

solutions�

Proposition ���� Let Vt be a complete nonautonomous vector �eld on M �
Then Cauchy problem ����� has a unique solution in the class of Lipschitzian
families of functionals on C��M ��

Proof� Let a Lipschitzian family of functionals qt be a solution to problem ������
Then

d

d t

�
qt 	 �P t���

�
�

d

d t

�
qt 	Qt

�
� qt 	 Vt 	Qt � qt 	 Vt 	Qt � ��
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thus qt 	Qt � const� But Q� � Id� consequently� qt 	Qt � q�� hence

qt � q� 	 P t � q� 	 ��
exp

Z t

�
V� d�

is a unique solution of Cauchy problem ������

Similarly� the both operator equations !P t � P t 	Vt and !Qt � �Vt 	Qt have
no other solutions in addition to the chronological exponentials�

����
 Autonomous vector �elds

For an autonomous vector �eld

Vt � V � VecM�

the �ow generated by a complete �eld is called the exponential and is denoted
as etV � The asymptotic series for the exponential takes the form

etV �
�X
n��

tn

n�
V n � Id"tV "

t�

�
V 	 V " 
 
 
 �

i�e� it is the standard exponential series�
The exponential of an autonomous vector �eld satis�es the ODEs

d

d t
etV � etV 	 V � V 	 etV � etV

��
t��

� Id �

We apply the asymptotic series for exponential to �nd the Lie bracket of
autonomous vector �elds V�W � VecM � We compute the �rst nonconstant
term in the asymptotic expansion at t � � of the curve�

q�t� � q 	 etV 	 etW 	 e�tV 	 e�tW

� q 	
�
Id"tV "

t�

�
V � " 
 
 


�
	
�
Id"tW "

t�

�
W � " 
 
 


�
	
�
Id�tV " t�

�
V � " 
 
 


�
	
�
Id�tW "

t�

�
W � " 
 
 


�
� q 	

�
Id"t�V "W � "

t�

�
�V � " �V 	W "W �� " 
 
 


�
	
�
Id�t�V "W � "

t�

�
�V � " �V 	W "W �� " 
 
 


�
� q 	 �Id"t��V 	W �W 	 V � " 
 
 
 � �

So the Lie bracket of the vector �elds as operators �directional derivatives� in
C��M � is

�V�W � � V 	W �W 	 V�
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This proves the formula in local coordinates� if

V �
nX
i��

ai




 xi
� W �

nX
i��

bi




 xi
� ai� bi � C��M ��

then

�V�W � �
nX

i�j��

�
aj


 bi

 xj

� bj

 ai

 xj

�




 xi
�
dW

dx
V � d V

d x
W�

Similarly�

q 	 etV 	 esW 	 e�tV � q 	 �Id"tV " 
 
 
 � 	 �Id"sW " 
 
 
 � 	 �Id�tV " 
 
 
 �
� q 	 �Id"sW " ts�V�W � " 
 
 
 ��

and

q 	 �V�W � � 
�


s
t

����
s�t��

q 	 etV 	 esW 	 e�tV �

��� Action of di�eomorphisms on vector �elds

We have already found counterparts to points� di�eomorphisms� and vector
�elds among functionals and operators on C��M �� Now we consider action of
di�eomorphisms on vector �elds�
Take a tangent vector v � TqM and a di�eomorphism P � Di�M � The

tangent vector P�v � TP �q�M is the velocity vector of the image of a curve
starting from q with the velocity vector v� We claim that

P�v � v 	 P� v � TqM� P � Di�M� ������

as functionals on C��M �� Take a curve

q�t� �M� q��� � q�
d

d t

����
t��

q�t� � v�

then

P�v a �
d

d t

����
t��

a�P �q�t��� �

�
d

d t

����
t��

q�t�

�
	 Pa

� v 	 Pa� a � C��M ��

Now we �nd expression for P�V � V � VecM � as a derivation of C��M �� We
have

q 	 P 	 P�V � P �q� 	 P�V � �P�V � �P �q�� � P��V �q�� � V �q� 	 P
� q 	 V 	 P� q �M�

thus
P 	 P�V � V 	 P�
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i�e��
P�V � P�� 	 V 	 P� P � Di�M� V � VecM�

So di�eomorphisms act on vector �elds as similarities� In particular� di�eomor

phisms preserve compositions�

P��V 	W � � P�� 	 �V 	W � 	P � �P�� 	V 	P � 	 �P�� 	W 	P � � P�V 	P�W�

thus Lie brackets of vector �elds�

P��V�W � � P��V 	W �W 	 V � � P�V 	 P�W � P�W 	 P�V � �P�V� P�W ��
If B � C��M �� C��M � is an automorphism� then the standard algebraic

notation for the corresponding similarity is AdB�

�AdB�V
def
� B 	 V 	B���

That is�
P� � AdP��� P � Di�M�

Now we �nd an in�nitesimal version of the operator Ad� Let P t be a �ow
on M �

P � � Id�
d

d t

����
t��

P t � V � VecM�

Then
d

d t

����
t��

�
P t

���
� �V�

so

d

d t

����
t��

�AdP t�W �
d

d t

����
t��

�P t 	W 	 �P t���� � V 	W �W 	 V
� �V�W �� W � VecM�

Denote

adV � ad

�
d

d t

����
t��

P t

�
def
�

d

d t

����
t��

AdP t�

then
�adV �W � �V�W �� W � VecM�

Di�erentiation of the equality

AdP t �X�Y � � �AdP tX�AdP t Y � X�Y � VecM�

at t � � gives Jacobi identity for Lie bracket of vector �elds�

�adV ��X�Y � � ��adV �X�Y � " �X� �adV �Y ��

which may also be written as

�V� �X�Y �� � ��V�X�� Y � " �X� �V� Y ��� V�X� Y � VecM�
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or� in a symmetric way

�X� �Y� Z�� " �Y� �Z�X�� " �Z� �X�Y �� � �� X� Y� Z � VecM� ������

The set VecM is a vector space with an additional operation # Lie bracket�
which has the properties�

��� bilinearity�

��X " �Y� Z� � ��X�Z� " ��Y� Z��

�X��Y " �Z� � ��X�Y � " ��X�Z�� X� Y� Z � VecM� �� � � R�

��� skew
symmetry�

�X�Y � � ��Y�X�� X� Y � VecM�

��� Jacobi identity �������

In other words� the set VecM of all smooth vector �elds on a smooth manifold
M forms a Lie algebra�

Consider the �ow P t �
��
exp

Z t

�

V� d� of a nonautonomous vector �eld Vt�

We �nd an ODE for the family of operators AdP t � �P t���� on the Lie algebra
VecM �

d

d t
�AdP t�X �

d

d t

�
P t 	X 	 �P t���

�
� P t 	 Vt 	X 	 �P t��� � P t 	X 	 Vt 	 �P t���

� �AdP t��Vt� X� � �AdP
t� adVtX� X � VecM�

Thus the family of operators AdP t satis�es the ODE

d

d t
AdP t � �AdP t� 	 adVt ������

with the initial condition

AdP � � Id � ������

So the family AdP t is an invertible solution for the Cauchy problem

!At � At 	 adVt� A� � Id

for operators At � VecM � VecM � We can apply the same argument as for
the analogous problem ����� for �ows to derive the asymptotic expansion

AdP t � Id"
Z t

�

adV� d� " 
 
 


"

Z

 
 


Z

n�t�

adV�n 	 
 
 
 	 adV�� d�n � � � d�� " 
 
 
 ������
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then prove uniqueness of the solution� and justify the following notation�

��
exp

Z t

�

adV� d�
def
� AdP t � Ad

�
��
exp

Z t

�

V� d�

�
�

Similar identities for the left chronological exponential are


�
exp

Z t

�

ad��V� � d� def
� Ad

�

�
exp

Z t

�

��V� � d�
�

� Id"
�X
n��

Z

 
 


Z

n�t�

�� adV��� 	 
 
 
 	 �� ad V�n� d�n � � � d���

For the asymptotic series ������� there holds an estimate of the remainder
term similar to estimate ������ for the �ow P t� Denote the partial sum

Tm � Id"
m��X
n��

Z

 
 


Z

n�t�

adV�n 	 
 
 
 	 adV�� d�n � � � d���

then for any X � VecM � s � �� K bM�����Ad ��
exp

Z t

�

V� d� � Tm

�
X

����
s�K

� C�e
C�
R
t

� kV�ks���K� d� �
m�

�Z t

�

kV�ks�m�K� d�

�m

kXks�m�K� ������

� O�tm�� t� ��

where K � bM is some compactum containing K�
For autonomous vector �elds� we denote

et adV
def
� Ad etV �

thus the family of operators etad V � VecM � VecM is the unique solution to
the problem

!At � At 	 adV� A� � Id�

which admits the asymptotic expansion

etadV � Id"t adV " t�

�
ad� V " 
 
 
 �

Exercise ���� Let P � Di�M � and let Vt be a nonautonomous vector �eld
on M � Prove that

P	 ��
exp

Z t

�

V� d� 	 P�� � ��
exp

Z t

�

AdP V� d�� ������
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��� Commutation of �ows

Let Vt � VecM be a nonautonomous vector �eld and P t �
��
exp

R t
�
V� d� the

corresponding �ow� We are interested in the question� under what conditions
the �ow P t preserves a vector �eld W � VecM �

P t�W � W �t�

or� which is equivalent�
�P t���� W � W �t�

Proposition ����

P t
�W � W �t � �Vt�W � � � �t�

Proof� We have

d

d t
�Pt�

��
� W �

d

d t
AdP tW �

�
d

d t

��
exp

Z t

�

adV� d�

�
W

�

�
��
exp

Z t

�

adV� d� 	 adV�
�
W �

�
��
exp

Z t

�

adV� d�

�
�Vt�W �

� �P t���� �Vt�W ��

thus �P t���� W � W if and only if �Vt�W � � ��
In general� �ows do not commute� neither for nonautonomous vector �elds

Vt� Wt�

��
exp

Z t�

�

V� d� 	 ��
exp

Z t�

�

W� d� �� ��
exp

Z t�

�

W� d� 	 ��
exp

Z t�

�

V� d��

nor for autonomous vector �elds V � W �

et�V 	 et�W �� et�W 	 et�V �

In the autonomous case� commutativity of �ows is equivalent to commutativity
of vector �elds�

et�V 	 et�W � et�W 	 et�V � t�� t� � R� � �V�W � � ��

We already showed that commutativity of vector �elds is necessary for commu

tativity of �ows� Let us prove that it is su�cient� Indeed��

Ad et�V
�
W � et� adVW � W�

Taking into account equality ������� we obtain

et�V 	 et�W 	 e�t�V � et��Ad e
t�V �W � et�W �



��	� VARIATIONS FORMULA ��

�� Variations formula

Consider an ODE of the form

!q � Vt�q� "Wt�q�� ������

We think of Vt as an initial vector �eld and Wt as its perturbation� Our aim
is to �nd a formula for the �ow Qt of the new �eld Vt "Wt as a perturbation
of the �ow P t �

��
exp

R t
� V� d� of the initial �eld Vt� In other words� we wish to

have a decomposition of the form

Qt �
��
exp

Z t

�

�V� "W� � d� � Ct 	 P t�

We proceed as in the method of variation of parameters� we substitute the
previous expression to ODE �������

d

d t
Qt � Qt 	 �Vt "Wt�

� !Ct 	 P t " Ct 	 P t 	 Vt
� !Ct 	 P t " Qt 	 Vt�

cancel the common term Qt 	 Vt�

Qt 	Wt � !Ct 	 P t�

and write down the ODE for the unknown �ow Ct�

!Ct � Qt 	Wt 	
�
P t

���
� Ct 	 P t 	Wt 	

�
P t

���
� Ct 	

�
AdP t

�
Wt

� Ct 	
�
��
exp

Z t

�
adV� d�

�
Wt�

C� � Id �

This operator Cauchy problem is of the form ������ thus it has a unique solution�

Ct �
��
exp

Z t

�

�
��
exp

Z �

�
adV� d	

�
W� d��

Hence we obtain the required decomposition of the perturbed �ow�

��
exp

Z t

�

�V� "W� � d� �
��
exp

Z t

�

�
��
exp

Z �

�

adV� d	

�
W� d� 	 ��

exp

Z t

�

V� d��

������
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This equality is called the variations formula� It can be written as follows�

��
exp

Z t

�

�V� "W� � d� �
��
exp

Z t

�

�AdP � �W� d� 	 P t�

So the perturbed �ow is a composition of the initial �ow P t with the �ow of the
perturbation Wt twisted by P t�
Now we obtain another form of the variations formula� with the �ow P t to

the left of the twisted �ow� We have

��
exp

Z t

�

�V� "W� � d� �
��
exp

Z t

�

�AdP � �W� d� 	 P t

� P t 	 �P t
��� 	 ��

exp

Z t

�
�AdP � �W� d� 	 P t

� P t	 ��
exp

Z t

�

�
Ad

�
P t

��� 	AdP �
�
W� d�

� P t	 ��
exp

Z t

�

�
Ad

��
P t

��� 	 P �
��

W� d��

Since �
P t

��� 	 P � �
��
exp

Z �

t

V� d	�

we obtain

��
exp

Z t

�

�V� "W� � d� � P t	 ��
exp

Z t

�

�
��
exp

Z �

t

adV� d	

�
W� d�

�
��
exp

Z t

�

V� d�	 ��
exp

Z t

�

�
��
exp

Z �

t

adV� d	

�
W� d��

������

For autonomous vector �elds V�W � VecM � the variations formulas �������
������ take the form�

et�V�W � �
��
exp

Z t

�

e� adVW d� 	 etV � etV 	 ��
exp

Z t

�

e���t� adVW d�� ������

In particular� for t � � we have

eV�W �
��
exp

Z �

�

e� adVW d� 	 eV �

��� Derivative of �ow with respect to parameter

Let Vt�s� be a nonautonomous vector �eld depending smoothly on a real pa

rameter s� We study dependence of the �ow of Vt�s� on the parameter s�
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We write

��
exp

Z t

�
V� �s " �� d� �

��
exp

Z t

�
�V� �s� " �V� �s� ��� d� ������

with the perturbation �V� �s� �� � V� �s " �� � V� �s�� By the variations for

mula ������� the previous �ow is equal to

��
exp

Z t

�

�
��
exp

Z �

�
adV��s� d	

�
�V� �s� �� d� 	

��
exp

Z t

�
V� �s� d��

Now we expand in ��

�V� �s� �� � �




 s
V� �s� " O����� �� ��

W� �s� ��
def
�

�
��
exp

Z �

�

adV��s� d	

�
�V� �s� ��

� �

�
��
exp

Z �

�

adV��s� d	

�




 s
V� �s� "O����� �� ��

thus

��
exp

Z t

�

W� �s� �� d� � Id"

Z t

�

W� �s� �� d� " O����

� Id"�

Z t

�

�
��
exp

Z �

�
adV��s� d	

�




 s
V� �s� d� "O�����

Finally�

��
exp

Z t

�

V� �s " �� d� �
��
exp

Z t

�

Ws�� ��� d� 	 ��
exp

Z t

�

V� �s� d�

�
��
exp

Z t

�

V� �s� d�

" �

Z t

�

�
��
exp

Z �

�

adV��s� d	

�




 s
V� �s� d� 	 ��

exp

Z t

�

V� �s� d� "O�����

that is�





 s

��
exp

Z t

�
V� �s� d�

�

Z t

�

�
��
exp

Z �

�

adV��s� d	

�




 s
V� �s� d� 	 ��

exp

Z t

�

V� �s� d�� ������

Similarly� we obtain from the variations formula ������ the equality





 s

��
exp

Z t

�

V� �s� d�

�
��
exp

Z t

�

V� �s� d� 	
Z t

�

�
��
exp

Z �

t

adV��s� d	

�




 s
V� �s� d�� ������
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For an autonomous vector �eld depending on a parameter V �s�� formula
������ takes the form





 s
etV �s� �

Z t

�
e� adV �s� 
 V


 s
d� 	 etV �s��

and at t � ��





 s
eV �s� �

Z �

�

e� adV �s� 
 V


 s
d� 	 eV �s�� ������

Proposition ��	� Assume that�Z t

�
V� d�� Vt

�
� � �t� ������

Then
��
exp

Z t

�

V� d� � e
R
t

� V� d� �t�

That is� we state that under the commutativity assumption ������� the

chronological exponential
��
exp

R t
� V� d� coincides with the �ow Qt � e

R
t

� V� d�

de�ned as follows�

Qt � Qt
��


 Qt
s


 s
�

Z t

�
V� d� 	Qt

s� Qt
� � Id �

Proof� We show that the exponential in the right
hand side satis�es the same
ODE as the chronological exponential in the left
hand side� By ������� we have

d

d t
e
R
t

� V� d� �

Z �

�

e� ad
R
t

� V� d� Vt d� 	 e
R
t

� V� d� �

In view of equality �������

e� ad
R
t

� V� d� Vt � Vt�

thus

d

d t
e
R
t

� V� d� � Vt 	 e
R
t

� V� d� �

By equality ������� we can permute operators in the right
hand side�

d

d t
e
R
t

� V� d� � e
R
t

� V� d� 	 Vt�

Notice the initial condition

e
R
t

� V� d�
���
t��

� Id �
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Now the statement follows since the Cauchy problem for �ows

!At � At 	 Vt� A� � Id

has a unique solution�

At � e
R
t

�
V� d� �

��
exp

Z t

�

V� d��
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Chapter �

Linear systems

In this chapter we consider the simplest class of control systems # linear systems

!x � Ax" c"
mX
i��

uibi� x � Rn� u � �u�� � � � � um� � Rm� �����

where A is a constant real n� n matrix and c� b�� � � � � bm are constant vectors
in Rn�

��� Cauchy�s formula for linear systems

Let u�t� � �u��t�� � � � � um�t�� be locally integrable functions� Then the solution
of ����� corresponding to this control and satisfying the initial condition

x��� x�� � x�

is given by Cauchy�s formula�

x�t� x�� � etA

�
x� "

Z t

�

e��A
�

mX
i��

ui�� �bi " c d�

��
� t � R�

Here we use the standard notation for the matrix exponential�

etA � Id"tA "
t�

��
A� " 
 
 
" tn

n�
An " 
 
 
 �

Cauchy�s formula is veri�ed by di�erentiation� In view of uniqueness� it gives
the solution to the Cauchy problem�
Linear system ����� is a particular case of a control�a�ne system�

!x � x 	
�
f� "

mX
i��

uifi

�
� �����

��
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in order to obtain ����� from ������ one should just take

f��x� � Ax" c� fi�x� � bi� i � �� � � � �m� �����

Let us show that Cauchy�s formula is actually a special case of the general
variations formula�

Proposition ���� Cauchy�s formula specializes the variations formula for lin�
ear systems�

Proof� We restrict ourselves with the case c � ��
The variations formula for system ����� takes the form

��
exp

Z t

�

�
f� "

mX
i��

ui�� �fi

�
d�

�
��
exp

Z t

�

��
��
exp

Z �

�

ad f� d	

�
	

mX
i��

ui�� �fi

�
d�	 ��

exp

Z t

�

f� d�

�
��
exp

Z t

�

�
mX
i��

ui�� �e
� ad f�fi

�
d� 	 etf� � �����

We assume that c � �� i�e�� f��x� � Ax� Then

x 	 etf� � etAx� �����

Further� since �ad f��fi � �f�� fi� � �Ax� b� � �Ab then

e� ad f�fi � fi " � �ad f��fi "
��

��
�ad f��

�fi " 
 
 
" �n

n�
�ad f��

nfi " 
 
 


� bi � �Abi "
��

��
��A��bi " 
 
 
" �n

n�
��A�nbi " 
 
 


� e��Abi�

In order to compute the left �ow in ������ recall that the curve

x�	 ��
exp

Z t

�

�
mX
i��

ui�� �e
� ad f�fi

�
d� � x�	 ��

exp

Z t

�

�
mX
i��

ui�� �e
��Abi

�
d�

�����

is the solution to the Cauchy problem

!x�t� �
mX
i��

ui�t�e
�tAbi� x��� � x��

thus ����� is equal to

x�t� � x� "

Z t

�

�
e��A

mX
i��

ui�� �bi

�
d��
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Taking into account ������ we obtain Cauchy�s formula�

x�t� � x�	 ��
exp

Z t

�

�
f� "

mX
i��

ui�� �fi

�
d�

�

�
x� "

Z t

�

�
e��A

mX
i��

ui�� �bi

�
d�

�
	 etf�

� etA

�
x� "

Z t

�

�
e��A

mX
i��

ui�� �bi

�
d�

�
�

Notice that in the general case �c �� �� Cauchy�s formula can be written as
follows�

x�t� x�� � etAx� " etA
Z t

�

e��A
mX
i��

ui�� �bi d� " etA
Z t

�

e��Ac d�

� etAx� " etA
Z t

�
e��A

mX
i��

ui�� �bi d� "
etA � Id

A
c� �����

where
etA � Id

A
c � tc"

t�

��
Ac"

t	

��
A�c" 
 
 
" tn

n�
An��c " 
 
 
 �

��� Controllability of linear systems

Cauchy�s formula ����� yields that the mapping

u �� x�t� u� x���

which sends a locally integrable control u � u�
� to the endpoint of the cor

responding trajectory� is a�ne� Thus the attainable set Ax��t� of linear sys

tem ����� for a �xed time t � � is an a�ne subspace in Rn�

De�nition ���� A control system on a state space M is called completely con�
trollable for time t � � if

Ax��t� �M �x� �M�

This de�nition means that for any pair of points x�� x� �M exists an admis

sible control u�
� such that the corresponding solution x�
� u� x�� of the control
system steers x� to x� in t units of time�

x��� u� x�� � x�� x�t� u� x�� � x��
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The study of complete controllability of linear systems is facilitated by the
following observation� The a�ne mapping

u �� etAx� "
etA � Id

A
c " etA

Z t

�

e��A
mX
i��

ui�� �bi d�

is surjective if and only if its linear part

u �� etA
Z t

�

e��A
mX
i��

ui�� �bi d� �����

is onto� Moreover� ����� is surjective i� the following mapping is�

u ��
Z t

�

e��A
mX
i��

ui�� �bi d�� �����

Theorem ���� The linear system ����� is completely controllable for a time
t � � if and only if

spanfAjbi j j � �� � � � � n� �� i � �� � � � �mg � Rn� ������

Proof� Necessity� Assume� by contradiction� that condition ������ is violated�
Then there exists a covector p � Rn�� p �� �� such that

pAjbi � �� j � �� � � � � n� �� i � �� � � � �m� ������

By the Cayley
Hamilton theorem�

An �
n��X
j��

�jA
j

for some real numbers ��� � � � � �n��� thus

Ak �
n��X
j��

�kjA
j

for any k � N and some �kj � R� Now we obtain from �������

pAkbi �
n��X
j��

�kj pA
jbi � �� k � �� �� � � � � i � �� � � � �m�

That is why
pe��Abi � �� i � �� � � � �m�

and �nally

p

Z t

�

e��A
mX
i��

ui�� �bi d� �

Z t

�

mX
i��

ui�� �pe
��Abi d� � ��
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i�e�� mapping ����� is not surjective� The contradiction proves necessity�

Su�ciency� By contradiction� suppose that mapping ����� is not surjective�
Then there exists a covector p � Rn�� p �� �� such that

p

Z t

�

mX
i��

ui�� �e
��Abi d� � � �u�
� � �u��
�� � � � � um�
��� ������

Choose a control of the form�

u�� � � ��� � � � � �� vs�� �� �� � � � � ���

where the only nonzero i
th component is

vs�� � �

�
�� � � � � s�
�� � � s�

Then equality ������ gives

p

Z s

�

e��Abi d� � �� s � R� i � �� � � � �m�

thus
pe�sAbi � �� s � R� i � �� � � � �m�

We di�erentiate this equality repeatedly at s � � and obtain

pAkbi � �� k � �� �� � � � � i � �� � � � �m�

a contradiction with ������� Su�ciency follows�

So if a linear system is completely controllable for a time t � �� then it
is completely controllable for any other positive time as well� In this case the
linear system is called controllable�
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Chapter �

State linearizability of

nonlinear systems

The aim of this chapter is to characterize nonlinear systems

!q � f��q� "
mX
i��

uifi�q�� u � �u�� � � � � um� � Rm� q � M �����

that are equivalent� locally or globally� to controllable linear systems� That is�
we seek conditions on vector �elds f�� f�� � � � � fm that guarantee existence of a
di�eomorphism �global � � M � Rn or local � � Oq� �M � O� � Rn� which
transforms nonlinear system ����� into a controllable linear one ������

��� Local linearizability

We start with the local problem� A natural language for conditions of local
linearizability is provided by Lie brackets� which are invariant under di�eomor

phisms�

���V�W � � ���V���W �� V�W � VecM�

The controllability condition ������ can easily be rewritten in terms of Lie
brackets� since

��A�jbi � �ad f��jfi � �f�� �� � � �f�� 	z 

j times

� fi� � � � ��

for vector �elds ������ then the controllability test for linear systems ������ reads

spanfx� 	 �adf��jfi j j � �� � � � � n� �� i � �� � � � �mg � Tx�R
n�

Further� one can see that the following equality is satis�ed for linear vector
�elds ������

��ad f��
j�fi� � �ad f��

j�fi� � � ���A�j�bi� � ��A�j�bi� � � ��
� � j�� j�� � � i�� i� � m�

��
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It turns out that the two conditions found above give a precise local charac

terization of controllable linear systems�

Theorem ���� Let M be a smooth n�dimensional manifold� and let f�� f�� � � � �
fm � VecM � There exists a di�eomorphism

� � Oq� � O�

of a neighborhood Oq� � M of a point q� � M to a neighborhood O� � Rn of
the origin � � Rn such that

���f���x� � Ax" c� x � O��

���fi��x� � bi� x � O�� i � �� � � � �m�

for some n � n matrix A and c� b�� � � � � bm � Rn that satisfy the controllability
condition ������ if and only if the following conditions hold


spanfq� 	 �ad f��jfi j j � �� � � � � n� �� i � �� � � � �mg � Tq�M� �����

q 	 ��ad f��j�fi� � �adf��j�fi� � � ��
q � Oq� � � � j�� j� � n� � � i�� i� � m� �����

Remark� In other words� the di�eomorphism � from the theorem transforms a
nonlinear system ����� to a linear one ������

Before proving the theorem� we consider the following proposition� which we
will need later�

Lemma ���� Let M be a smooth n�dimensional manifold� and let Y�� � � � � Yk �
VecM � There exists a di�eomorphism

� � O� � Oq�

of a neighborhood O� � Rn to a neighborhood Oq� �M � q� �M � such that

��

�




 xi

�
� Yi� i � �� � � � � k�

if and only if the vector �elds Y�� � � � � Yk commute


�Yi� Yj� � �� i� j � �� � � � � k�

and are linearly independent


dimspan�q� 	 Y�� � � � � q� 	 Yk� � k�

Proof� Necessity is obvious since Lie bracket and linear independence are in

variant with respect to di�eomorphisms�

Su�ciency� Choose Yk��� � � � � Yn � VecM that complete Y�� � � � � Yk to a
basis�

span�q 	 Y�� � � � � q 	 Yn� � TqM� q � Oq� �
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The mapping
��s�� � � � � sn� � q� 	 esnYn 	 
 
 
 	 es�Y�

is de�ned on a su�ciently small neighborhood of the origin in Rn� We have

��

�




 si

����
s��

�
def
�





 si

����
s��

��s� �




 �

����
���

q� 	 e�Yi � q� 	 Yi�

Hence ��js�� is surjective and � is a di�eomorphism of a neighborhood of � in
Rn and a neighborhood of q� in M � according to the implicit function theorem�
Now we prove that � recti�es the vector �elds Y�� � � � � Yk� First of all� notice

that since these vector �elds commute� then their �ows also commute� thus

eskYk 	 
 
 
 	 es�Y� � e
P

k
i�� siYi

and
��s�� � � � � sn� � q� 	 esnYn 	 
 
 
 	 esk��Yk�� 	 e

Pk
i�� siYi �

Then for i � �� � � � � k

��

�




 si

�����
��s�

�




 �

����
���

��s�� � � � � si " �� � � � � sn�

�




 �

����
���

q� 	 esnYn 	 
 
 
 	 esk��Yk�� 	 e
P

k
j�� sjYj 	 e�Yi

� q� 	 esnYn 	 
 
 
 	 esk��Yk�� 	 e
Pk

j�� sjYj 	 



 �

����
���

e�Yi

� ��s� 	 Yi�

Now we can prove Theorem ��� on local equivalence of nonlinear systems
with linear ones�

Proof� Necessity is obvious since Lie brackets are invariant with respect to dif

feomorphisms� and for controllable linear systems conditions ������ ����� hold�

Su�ciency� Select a basis of the space Tq�M among vectors of the form
q� 	 �ad f��jfi�

Y� � �ad f��
j�fi� � � � �� � � � � n� � � j� � n� �� � � i� � m�

span�q� 	 Y�� � � � � q� 	 Yn� � Tq�M�

By Lemma ���� there exists a rectifying di�eomorphism�

� � Oq� � O�� ��Y� �




 x�
� � � �� � � � � n�

We show that � is the required di�eomorphism�



�� CHAPTER �� STATE LINEARIZABILITY

��� First we check that the vector �elds ��fi� i � �� � � � �m� are constant� That
is� we show that in the decomposition

��fi �
nX

���

�i��x�




 x�
� i � �� � � � �m�

the functions �i��x� are constant� We have

�




 x�
���fi� �

nX
���


 �i�

 xj





 x�
� �����

on the other hand

�




 x�
���fi� � ���Y����fi� � ���Y�� fi� � ����ad f��j�fi� � fi� � � �����

by hypothesis ������ Now we compare ����� and ����� and obtain


 �i�

 xj





 x�
� �  �i� � const� i � �� � � �m� � � �� � � � � n�

i�e�� ��fi� i � �� � � � �m� are constant vector �elds bi� i � �� � � � �m�

��� Now we show that the vector �eld ��f� is linear� We prove that in the
decomposition

��f� �
nX
i��

�i�x�




 xi

all functions �i�x�� i � �� � � � � n� are linear� Indeed�

nX
���


��i

x�
x�





 xi
� �





 x�
� �





 x�
���f���

� ���Y�� ���Y� ���f��� � ���Y�� �Y�� f���

� ����adf��j�fi� � ��ad f��
j�fi� � f���

� �����ad f��j�fi� � �f�� �adf��j�fi� ��
� �����ad f��j�fi� � �adf��j���fi� �
� �� �� � � �� � � � � n�

by hypothesis ������ Thus


��i

x�
x�





 xi
� �� i� �� � � �� � � � � n�

i�e�� ��f� is a linear vector �eld Ax" c�
For the linear system !x � Ax " c "

Pm
i�� uibi� hypothesis ����� implies the

controllability condition �������
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��� Global linearizability

Now we prove the following statement on global equivalence�

Theorem ���� Let M be a smooth connected n�dimensional manifold� and let
f�� f�� � � � � fm � VecM � There exists a di�eomorphism

� � M �Tk�Rn�k

of M to the product of a k�dimensional torus Tk with Rn�k for some k � n
such that

���f���x� � Ax" c� x � Tk�Rn�k�
���fi��x� � bi� x �Tk�Rn�k� i � �� � � � �m�

for some n� n matrix A with zero �rst k rows


Aei � �� i � �� � � � � k� �����

and c� b�� � � � � bm � Rn that satisfy the controllability condition ������ if and only
if the following conditions hold


�ad f��
jfi� j � �� �� � � � � n� �� i � �� � � � �m�

are complete vector �elds� �����

spanfq 	 �ad f��jfi j j � �� � � � � n� �� i � �� � � � �mg � TqM� �����

q 	 ��adf��j�fi� � �ad f��j�fi� � � ��
q �M� � � j�� j� � n� � � i�� i� � m� �����

Remarks� ��� If M is additionally supposed simply connected� then it is di�eo

morphic to Rn� i�e�� k � ��
��� If� on the contrary� M is compact� i�e�� di�eomorphic to Tn and m � n�

then there are no globally linearizable controllable systems onM � Indeed� then
A � �� and the controllability condition ������ is violated�

Proof� Su�ciency� Fix a point q� � M and �nd a basis in Tq�M of vectors of
the form

Y� � �ad f��
j�fi� � � � �� � � � � n�

span�q� 	 Y�� � � � � q� 	 Yn� � Tq�M�

��� First we show that the vector �elds Y�� � � � � Yn are linearly independent
everywhere in M � The set

O � fq �M j span�q 	 Y�� � � � � q 	 Yn� � TqMg
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is obviously open� We show that it is closed� In this set we have a decomposition

q 	 �ad f��jfi � q 	
nX

���

aij�Y�� q � O� j � �� � � � � n� �� i � �� � � � �m�

������

for some functions aij� � C��O�� We prove that actually all aij� are constant�
We have

� � �Y��
nX

���

aij�Y��

by Leibniz rule �X� aY � � �Xa�Y " a�X�Y �

�
nX

���

aij� �Y�� Y�� "
nX

���

�Y�a
ij
� �Y�

�
nX

���

�Y�a
ij
� �Y�� � � �� � � � � n� j � �� � � � � n� �� i � �� � � � �m�

thus

Y�a
ij
� � �  aij�

��
O
� const�

� � �� � � � � n� j � �� � � � � n� �� i � �� � � � �m�

That is why equality ������ holds in the closure O� Thus the vector �elds
Y�� � � � � Yn are linearly independent in O �if this is not the case� then the whole
family �ad f��

jfi� j � �� � � � � n � �� i � �� � � � �m� is not linearly independent
in O�� Hence the set O is closed� Since it is simultaneously open and M is
connected�

O �M�

i�e�� the vector �elds Y�� � � � � Yn are linearly independent in M �

��� We de�ne the �inverse  of the required di�eomorphism as follows�

 �x�� � � � � xn� � q� 	 ex�Y� 	 
 
 
 	 exnYn

since the vector �elds Y� commute

� q� 	 e
Pn

��� x�Y�� x � �x�� � � � � xn� � Rn�
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��� We show that the �obviously smooth� mapping  � Rn�M is regular� i�e��
its di�erential is surjective� Indeed�


 


 x�
�x� �

d

d �

����
���

 �x�� � � � � x� " �� � � � � xn�

�
d

d �

����
���

q� 	 e
Pn

��� x�Y���Y�

� q� 	 e
Pn

��� x�Y� 	 Y�
�  �x� 	 Y�� � � �� � � � � n�

thus
 �x�Rn� � T��x�M�

The mapping  is regular� thus a local di�eomorphism� In particular�  �Rn� is
open�

��� We prove that  �Rn� is closed� Take any point q �  �Rn�� Since the vector
�elds Y�� � � � � Yn are linearly independent� the image of the mapping

�y�� � � � � yn� �� q 	 e
P

n
��� y�Y� � y � �y�� � � � � yn� � Rn�

contains a neighborhood of the point q� Thus there exists y � Rn such that
q 	 e

P
n
��� y�Y� �  �Rn��

i�e��
q 	 e

P
n
��� y�Y� � q� 	 e

P
n
��� x�Y�

for some x � �x�� � � � � xn� � Rn� Then
q � q� 	 e

Pn
��� x�Y� 	 e�

Pn
��� y�Y� � q� 	 e

Pn
����x��y��Y�

�  �x � y��

In other words� q �  �Rn��
That is why the set  �Rn� is closed� Since it is open and M is connected�

 �Rn� �M�

��� It is easy to see that the preimage

 ���q�� � fx � Rn j  �x� � q�g
is a subgroup of the Abelian group Rn� Indeed� let

 �x� � q� 	 e
Pn

��� x�Y� �  �y� � q� 	 e
Pn

��� y�Y� � q��

then

 �x" y� � q� 	 e
P

n
����x��y��Y� � q� 	 e

P
n
��� x�Y� 	 e

P
n
��� y�Y� � q��
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Analogously� if
 �x� � q� 	 e

Pn
��� x�Y� � q��

then
 ��x� � q� 	 e�

Pn
��� x�Y� � q��

Finally�
 ��� � q��

��� Moreover� G� �  ���q�� is a discrete subgroup of Rn� i�e�� there are no
nonzero elements of  ���q�� in some neighborhood of the origin in Rn� since  
is a local di�eomorphism�

��� The mapping  is well
de�ned on the quotient Rn�G�� Indeed� let y � G��
Then

 �x" y� � q� 	 e
Pn

����x��y��Y� � q� 	 e
Pn

��� y�Y� 	 e
Pn

��� x�Y�

� q� 	 e
P

n
��� x�Y� �  �x��

So the mapping

 � Rn�G� �M ������

is well
de�ned�

��� The mapping ������ is one
to
one� if

 �x� �  �y�� x� y � Rn�
then

q� 	 e
P

n
��� x�Y� � q� 	 e

P
n
��� y�Y� �

thus
q� 	 e

Pn
����x��y��Y� � q��

i�e�� x� y � G��

��� That is why mapping ������ is a di�eomorphism� By Lemma ��� �see below��
the discrete subgroup G� of R

n is a lattice�

G� �

�
kX
i��

niei j ni �Z
�
�

thus the quotient is a cylinder�

Rn�G� � T
k�Rn�k�

Hence we constructed a di�eomorphism

� �  �� � M �Tk�Rn�k�
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Equalities ����� and ����� follow exactly as in Theorem ����
The vector �eld ��f� � Ax " c is well
de�ned on the quotient Tk �Rn�k�

that is why equalities ����� hold� The su�ciency follows�

Necessity� For a linear system on a cylinder Tk � Rn�k� conditions �����
and ����� obviously hold� If a linear system is controllable on the cylinder�
then it is also controllable on Rn� thus the controllability condition ����� is also
satis�ed�

Now we prove the following general statement used in the preceding argu

ment�

Lemma ���� Let ' be a discrete subgroup in Rn� Then it is a lattice� i�e�� there
exist linearly independent vectors e�� � � � � ek � Rn such that

' �

�
kX
i��

niei j ni �Z
�
�

Proof� We prove by induction on dimension n of the ambient group Rn�

��� Let n � �� Since the subgroup ' � R is discrete� it contains an element
e� �� � closest to the origin � � R� By the group property� all multiples �e� �
e� � 
 
 
 � e� � �ne�� n � �� �� �� � � �� are also in '� We prove that ' contains
no other elements�
By contradiction� assume that there is an element x � ' such that ne� �

x � �n " ��e�� n � Z� Then the element y � x � ne� � ' is in the interval
��� e�� � R� So y �� � is closer to the origin than e�� a contradiction� Thus
' �Ze� � fne� j n �Zg� q�e�d�
��� We prove the inductive step� let the statement of the lemma be proved for
some n� � � N� we prove it for n�
Choose an element e� � '� e� �� �� closest to the origin � � Rn� Denote by l

the line Re�� and by '� the latticeZe� � '� We suppose that ' �� '� �otherwise
everything is proved��
Now we show that there is an element e� � ' n '� closest to l�

dist�e�� l� � minfdist�x� l� j x � ' n lg� ������

Take any segment I � �ne�� �n " ��e�� � l� and denote by � � Rn � l the
orthogonal projection fromRn to l along the orthogonal complement to l in Rn�
Since the segment I is compact and the subgroup ' is discrete� the n
dimensional
strip ����I� contains an element e� � ' n l closest to I�

dist�e�� I� � minfdist�x� I� j x � �' n l� � ����I�g�
Then the element e� is the required one� it satis�es equality ������ since any
element that satis�es ������ can be translated to the strip ����I� by elements
of the lattice '��
That is why a su�ciently small neighborhood of l is free of elements of 'n'��

Thus the quotient group '�'� is a discrete subgroup in Rn�l � Rn��� By the
inductive hypothesis� '�'� is a lattice� hence ' is also a lattice�
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Chapter �

The Orbit Theorem and its

applications

��� Formulation of the Orbit Theorem

Let F � VecM be any set of smooth vector �elds� In order to simplify notation�
we assume that all �elds from F are complete� Actually� all further de�nitions
and results have clear generalizations to the case of noncomplete �elds� we leave
them to the reader�
We return to the study of attainable sets� we study the structure of the

attainable sets of F by piecewise constant controls

Aq� � fq� 	 et�f� 	 
 
 
 	 etkfk j ti � �� fi � F � k � Ng� q� �M�

But �rst we consider a larger set # the orbit of the family F through a
point�

Oq� � fq� 	 et�f� 	 
 
 
 	 etkfk j ti � R� fi � F � k � Ng� q� �M�

In an orbit Oq� � one is allowed to move along vector �elds fi both forward and
backwards� while in an attainable set Aq� only the forward motion is possible�
Although� if the family F is symmetric F � �F �i�e�� f � F  �f � F��

then attainable sets coincide with orbits� Oq� � Aq� � q� �M �
In general� orbits have more simple structure that attainable sets� It is

described in the following fundamental proposition�

Theorem ��� �Orbit Theorem� Nagano�Sussmann�� Let F � VecM and
q� �M � Then


��� Oq� is a connected immersed submanifold of M �

��� TqOq� � spanfq 	 �AdP �f j P � P� f � Fg� q � Oq� �

��
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Here we denote by P the group of di�eomorphisms of M generated by �ows
in F �

P � fet�f� 	 
 
 
 	 etkfk j ti � R� fi � F � k � Ng � Di�M�

We de�ne and discuss the notion of immersed manifold in the next section�

��� Immersed submanifolds

De�nition ���� A subset W of a smooth n
dimensional manifold is called an
immersed k�dimensional submanifold of M � k � n� if there exists a one
to
one
immersion

� � N �M� Ker ��x � � � x � N

of a k
dimensional smooth manifold N such that

W � ��N ��

Remark� An immersed submanifoldW of M can also be de�ned as a manifold
contained in M such that the inclusion mapping

i � W �M� i � q �� q�

is an immersion�

Su�ciently small neighborhoods Ox in an immersed submanifold W of M
are submanifolds of M � but the whole W is not necessarily a submanifold of M
in the sense of De�nition ���� In general� the topology of W can be stronger
than the topology induced on W by the topology of M �

Example ���� Let � � R � R� be a one
to
one immersion of the line into
the plane such that limt�����t� � ����� Then W � ��R� is an immersed
one
dimensional submanifold of R�� see �g� ���� The topology of W inherited
from R is stronger than the topology induced by R�� The intervals ����� ���
� � � small enough� are open in the �rst topology� but not open in the second
one�

����

W

Figure ���� Immersed manifold
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The notion of immersed submanifold appears inevitably in the description
of orbits of families of vector �elds� Already the orbit of one vector �eld �i�e��
its trajectory� is an immersed submanifold� but may fail to be a submanifold in
the sense of De�nition ����

Example ���� Oscillator with � degrees of freedom is described by the equa

tions�

(x" ��x � �� x � R�
(y " ��y � �� y � R�

In the complex variables

z � x� i !x��� w � y � i !y��

these equations read

!z � i�z� z � C �
!w � i�w� w � C � �����

and their solutions have the form

z�t� � ei�tz����

w�t� � ei�tw����

Any solution �z�t�� w�t�� to equations ����� belongs to an invariant torus

T� � f�z� w� � C � j jzj � const� jwj � constg�
Any such torus is parametrized by arguments of z� w modulo ��� thus it is a
group� T� � R�����Z���
We introduce a new parameter � � �t� then trajectories �z� w� become

images of the line f��� ������ � j � � Rg under the immersion
��� ������ � �� �� " ��Z� ������ " ��Z� � R�����Z���

thus immersed submanifolds of the torus�
If the ratio ��� is irrational� then trajectories are everywhere dense in the

torus� they form the irrational winding of the torus� In this case� trajectories�
i�e�� orbits of a vector �eld� are not submanifolds� but just immersed submani

folds�

Remark� Immersed submanifolds inherit many local properties of submanifolds�
In particular� the tangent space to an immersed submanifold W � Im� � M �
� an immersion� is given by

T��x�W � Im��x�

Further� it is easy to prove the following property of a vector �eld V � VecM �
V �q� � TqW � q �W  q 	 etV �W � q �W�

for all t close enough to ��
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��� Corollaries of the Orbit Theorem

Before proving the Orbit Theorem� we obtain several its corollaries�
Let Oq� be an orbit of a family F � VecM �
First of all� if f � F � then f�q� � TqOq� for all q � Oq� � Indeed� the

trajectory q 	 etf belongs to the orbit Oq� � thus its velocity vector f�q� is in the
tangent space TqOq� �
Further� if f�� f� � F � then �f�� f���q� � TqOq� for all q � Oq� � This follows

since the vector �f�� f���q� is tangent to the trajectory

t �� q 	 etf� 	 etf� 	 e�tf� 	 e�tf� � Oq� �

Given three vector �elds f�� f�� f	 � F � we have �f�� �f�� f	���q� � TqOq� �
q � Oq� � Indeed� it follows that �f�� f	��q� � TqOq� � q � Oq� � then all trajectories
of the �eld �f�� f	� starting in the immersed submanifold Oq� do not leave it�
Then we repeat the argument of the previous items�
We can go on and consider Lie brackets of arbitrarily high order

�f�� �� � � �fk��� fk� � � � ���q�

as tangent vectors to Oq� if fi � F � These considerations can be summarized
in terms of the Lie algebra of vector �elds generated by F �

LieF � spanf�f�� �� � � �fk��� fk� � � � �� j fi � F � k � Ng � VecM�

and its evaluation at a point q �M �

Lieq F � fq 	 V j V � LieFg � TqM�

We obtain the following statement�

Corollary ����

Lieq F � TqOq� �����

for all q � Oq� �

Remark� We show soon that in many important cases inclusion ����� turns into
equality� In the general case� we have the following estimate�

dimLieq F � dimOq� � q � Oq� �

Another important corollary of the Orbit Theorem is the following proposi

tion often used in control theory�

Theorem ��� �Rashevsky�Chow�� Let M be a connected smooth manifold�
and let F � VecM � If the family F is completely nonholonomic


Lieq F � TqM � q �M� �����

then

Oq� �M � q� �M� �����
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De�nition ���� A family F � VecM that satis�es property ����� is called
completely nonholonomic or bracket�generating �

Now we prove Theorem ����

Proof� By Corollary ���� equality ����� means that any orbit Oq� is an open set
in M �
Further� consider the following equivalence relation in M �

q� � q� � q� � Oq� � q�� q� �M� �����

The manifold M is the union of �naturally disjoint� equivalence classes� Each
class is an open subset of M and M is connected� Hence there is only one
nonempty class� That is� M is a single orbit Oq� �

For symmetric families attainable sets coincide with orbits� thus we have the
following statement�

Corollary ���� A symmetric bracket�generating family on a connected mani�
fold is completely controllable�

��� Proof of the Orbit Theorem

Introduce the notation�

�AdP�F def
� f�AdP �f j P � P� f � Fg � VecM�

Consider the following subspace of TqM �

)q
def
� spanfq 	 �AdP�Fg�

This space is a candidate for the tangent space TqOq� �

Lemma ���� dim)q � dim)q� for all q � Oq� � q� � M �

Proof� If q � Oq� � then q � q� 	Q for some di�eomorphism Q � P�
Take an arbitrary element q� 	 �AdP �f in )q� � P � P� f � F � Then

Q��q� 	 �AdP �f� � q� 	 �AdP �f 	Q � q� 	 P 	 f 	 P�� 	Q
� �q� 	Q� 	 �Q�� 	 P 	 f 	 P�� 	Q�
� q 	Ad�Q�� 	 P �f � )q

since Q�� 	 P � P�
We have Q�)q� � )q� thus dim)q� � dim)q� But q� and q can be switched�

that is why dim)q � dim)q� � Finally� dim)q � dim)q� �
Now we prove the Orbit Theorem�
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Proof� The manifold M is divided into disjoint equivalence classes of rela

tion ����� # orbits Oq � We introduce a new �strong topology on M in which
all orbits are connected components�
For any point q � M � denote m � dim)q and pick elements V�� � � � � Vm �

�AdP�F such that

span�V��q�� � � � � Vm�q�� � )q� �����

Introduce a mapping�

Gq � �t�� � � � � tm� �� q 	 et�V� 	 
 
 
 	 etmVm � ti � R�

We have

 Gq


 ti

����
�

� Vi�q��

thus in a su�ciently small neighborhood O� of the origin � � Rm the vectors

 Gq


 t�
� � � � �


 Gq


 tm
are linearly independent� i�e�� GqjO�

is an immersion�

The sets of the form Gq�O��� q �M � are candidates for elements of a topol

ogy base on M � We prove several properties of these sets�

��� Since the mappings Gq are regular� the sets Gq�O�� are m
dimensional
submanifolds of M � may be� for smaller neighborhoods O��

��� We show that Gq�O�� � Oq� Any element of the basis ����� has the form
Vi � �AdPi�fi� Pi � P� fi � F � Then

etVi � et�AdPi�fi � etPi�fi�P
��
i � Pi 	 etfi 	 P��i � P�

thus
Gq�t� � q 	 etVi � Oq � t � O��

��� We show that G�t�TtRm� � )G�t�� t � O�� Since rank G�tjO�
� m and

dim )G�t�
��
O�
� m� it remains to prove that

	 Gq

	 ti

���
t
� )Gq�t� for t � O�� We

have





 ti
Gq�t� �





 ti
q 	 et�V� 	 
 
 
 	 etmVm

� q 	 et�V� 	 
 
 
 	 etiVi 	 Vi 	 eti��Vi�� 	 
 
 
 	 etmVm
� q 	 et�V� 	 
 
 
 	 etiVi 	 eti��Vi�� 	 
 
 
 	 etmVm

	 e�tmVm 	 
 
 
 	 e�ti��Vi�� 	 Vi 	 eti��Vi�� 	 
 
 
 	 etmVm

�introduce the notation Q � eti��Vi�� 	 
 
 
 	 etmVm � P�

� Gq�t� 	Q�� 	 Vi 	Q � Gq�t� 	AdQ��Vi � )Gq�t��
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��� We prove that sets of the form Gq�O��� q �M � form a topology base in M �

It is enough to prove that any nonempty intersection Gq�O���G�q� eO�� contains

a subset of the form Gq� bO��� i�e�� this intersection has the form as at the left
�gure� not at the right one�

Gq�O��

G�q� eO��

Let a point *q belong to Gq�O��� Then dim)q � dim)q � m� Consider the
mapping

Gq � �t�� � � � � tm� �� *q 	 et� bV� 	 
 
 
 	 etm bVm �
span�*q 	 bV�� � � � � *q 	 bVm� � )q�

It is enough to prove that for small enough �t�� � � � � tm�

Gq�t�� � � � � tm� � Gq�O���

then we can replace Gq�O�� by G�q� eO��� We do this step by step� Consider the

curve t� �� bq 	 et� bV� � By property ��� above� bV��q�� � )q� for q� � Gq�O�� and
su�ciently close to bq� Since Gq�O�� is a submanifold ofM and )q � TqGq�O���

the curve bq 	 et� bV� belongs to Gq�O�� for su�ciently small jt�j� We repeat this
argument and show that

�bq 	 et� bV�� 	 et� bV� � Gq�O��

for small jt�j� jt�j� We continue this procedure and obtain the inclusion

�bq 	 et� bV� 	 
 
 
 	 etm�� bVm�� � 	 etm bVm � Gq�O��

for �t�� � � � � tm� su�ciently close to � � Rm�
Property ��� follows� and the sets Gq�O��� q �M � form a topology base on

M � We denote by MF the topological space obtained� i�e�� the set M endowed
with the �strong topology just introduced�

��� We show that for any q� �M � the orbit Oq� is connected� open� and closed
in the �strong topology�
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Connectedness� all mappings t �� q 	 etf � f � F � are continuous in the
�strong topology� thus any point q � Oq� can be connected with q� by a path
continuous in MF �
Openness� for any q � Oq� � a set of the formGq�O�� � Oq� is a neighborhood

of the point q in MF �
Closedness� any orbit is a complement to a union of open sets �orbits�� thus

it is closed�
So each orbit Oq� is a connected component of the topological space M

F �

��� A smooth structure on each orbit Oq� is de�ned by choosing Gq�O�� to
be coordinate neighborhoods and G��q coordinate mappings� Since GqjO�

are
immersions� then each orbit Oq� is an immersed submanifold ofM � Notice that
dimension of these submanifolds may vary for di�erent q��

��� By property ��� above� TqOq� � )q� q � Oq� �
The Orbit Theorem is proved�

The Orbit Theorem provides a description of the tangent space of an orbit�

TqOq� � span�q 	 �AdP�F��

Such a description is rather implicit since the structure of the group P is quite
complex� However� we already obtained the lower estimate

Lieq F � span�q 	 �AdP�F� �����

from the Orbit Theorem� Notice that this inclusion can easily be proved directly�
We make use of the asymptotic expansion of the �eld Ad etf bf � etad f bf � Take
an arbitrary element adf� 	 
 
 
 	 ad fk bf � LieF � fi� bf � F � We have Ad�et�f� 	

 
 
 	 etkfk � bf � �AdP�F � thus

q 	 
k


t� 
 
 

tk

����
�

Ad�et�f� 	 
 
 
 	 etkfk� bf
� q 	 
k


t� 
 
 

tk

����
�

�et� ad f� 	 
 
 
 	 etk ad fk� bf
� q 	 ad f� 	 
 
 
 	 ad fk bf � span�q 	 �AdP�F��

Now we consider a situation where inclusion ����� is strict�

Example ���� Let M � R�� F �
�

	
	 x� � a�x

�� 	
	 x�

�
� where the function a �

C��R�� a �� �� has a compact support�
It is easy to see that the orbit Ox through any point x � R� is the whole

plane R�� Indeed� the family F � ��F� is completely controllable in the plane�
Given an initial point x� � �x��� x

�
�� and a terminal point x� � �x

�
�� x

�
��� we can

steer x� to x�� �rst we go from x� by a �eld � 	
	 x�

to a point �$x�� x��� with

a�$x�� �� �� then we go by a �eld �a�$x�� 	
	 x�

to a point �$x�� x���� and �nally we

reach �x��� x
�
�� along � 	

	 x�
� see �g� ����
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x�

x�

x�

x�

�x�

�
�

�x�

�
�

�x�

�a��x��
�

�x�

Figure ���� Complete controllability of the family F

On the other hand� we have

dimLie�x��x���F� �
�
�� x� �� supp a�
�� a�x�� �� ��

That is� x 	 �AdP�F � TxR
� �� LiexF if x� �� supp a�

Although� such example is essentially non
analytic� In the analytic case�
inclusion ����� turns into equality� We prove this statement in the next section�

��� Analytic case

The set VecM is not just a Lie algebra �i�e�� a vector space close under the
operation of Lie bracket�� but also a module over C��M �� any vector �eld
V � VecM can be multiplied by a function a � C��M �� and the resulting vector
�eld aV � VecM � If vector �elds are considered as derivations of C��M �� then
the product of a function a and a vector �eld V is the vector �eld

�aV �b � a 
 �V b�� b � C��M ��

In local coordinates� each component of V at a point q � M is multiplied by a�q��

Exercise ���� Let X�Y � VecM � a � C��M �� P � Di�M � Prove the equali

ties�

�adX��aY � � �Xa�Y " a�adX�Y�

�AdP ��aX� � �Pa� AdP X�

A submodule V � VecM is called �nitely generated over C��M � if it has a
�nite global basis of vector �elds�

� V�� � � � � Vk � VecM such that V �
�

kX
i��

aiVi j ai � C��M �

�
�
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Lemma ���� Let V � VecM be a �nitely generated submodule over C��M ��
Assume that

�adX�V � f�adX�V j V � Vg � V
for a vector �eld X � VecM � Then�

Ad etX
�V � V�

Proof� Let V�� � � � � Vk be a basis of V� By the hypothesis of the lemma�

�X�Vi� �
kX

j��

aijVj �����

for some functions aij � C��M �� We have to prove that the vector �elds

Vi�t� � �Ad e
tX�Vi � etadXVi� t � R�

can be expressed as linear combinations of the �elds Vi with coe�cients from
C��M ��
We de�ne an ODE for Vi�t��

!Vi�t� � etadX �X�Vi� � etadX
kX

j��

aijVj

�
kX

j��

�
etXaij

�
Vj�t��

For a �xed q �M � de�ne the k � k matrix�

A�t� � �aij�t��� aij�t� � etXaij� i� j � �� � � � � k�

Then we have a linear system of ODEs�

!Vi�t� �
kX

j��

aij�t�Vj�t�� �����

Find a fundamental matrix ' of this system�

!' � A�t�'� '��� � Id �

Since A�t� smoothly depends on q� then ' depends smoothly on q as well�

'�t� � ��ij�t��� �ij�t� � C��M �� i� j � �� � � � � k� t � R�
Now solutions of the linear system ����� can be written as follows�

Vi�t� �
kX
j��

�ij�t�Vj����

But Vi��� � Vi are the generators of the module� and the required decomposition
of Vi�t� along the generators is obtained�
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A submodule V � VecM is called locally �nitely generated over C��M � if
any point q � M has a neighborhood O � M in which the restriction FjO is
�nitely generated over C��O�� i�e�� has a basis of vector �elds�

Theorem ���� Let F � VecM � Suppose that the module LieF is locally �nitely
generated over C��M �� Then

TqOq� � Lieq F � q � Oq� ������

for any orbit Oq� � q� �M � of the family F �

We prove this theorem later� but now obtain from it the following conse

quence�

Corollary ���� If M and F are real analytic� then equality ������ holds�

Proof� In the analytic case� LieF is locally �nitely generated� Indeed� any
module generated by analytic vector �elds is locally �nitely generated� This is
N(otherian property of the ring of germs of analytic functions�

Now we prove Theorem ����

Proof� By the Orbit Theorem�

TqOq� � span
n
q 	Ad �et�f� 	 
 
 
 	 etkfk� bf j fi� bf � F � tk � R� k � No �

������

By de�nition of the Lie algebra LieF �

�ad f� LieF � LieF � f � F �

Apply Lemma ��� for the locally �nitely generated C��M �
module V � LieF �
We obtain �

Ad etf
�
LieF � LieF � f � F �

That is why

Ad
�
et�f� 	 
 
 
 	 etkfk� bf � Ad et�f� 	 
 
 
 	Ad etkfk bf � LieF

for any fi� bf � F � tk � R� In view of equality �������
TqOq� � Lieq F �

But the reverse inclusion ����� was already obtained� Thus TqOq� � Lieq F �
Another proof of the theorem can be obtained via local convergence of the

exponential series in the analytic case�
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��� Frobenius Theorem

We apply the Orbit Theorem to obtain the classical Frobenius Theorem as a
corollary�

De�nition ���� A distribution & � TM on a smooth manifoldM is a family of
linear subspaces &q � TqM smoothly depending on a point q �M � Dimension
of the subspaces &q� q �M � is assumed constant�

Geometrically� at each point q � M there is attached a space &q � TqM �
i�e�� we have a �eld of tangent subspaces on M �

De�nition ���� A distribution & on a manifold M is called integrable if for
any point q �M there exists an immersed submanifold Nq � M � q � Nq � such
that

Tq�Nq � &q� � q� � Nq�

The submanifoldNq is called an integral manifold of the distribution & through
the point q�

In other words� integrability of a distribution & � TM means that through
any point q � M we can draw a submanifold Nq whose tangent spaces are
elements of the distribution &�

Remark� If dim&q � �� then & is integrable by Theorem ��� on existence and
uniqueness of solutions of ODEs� Indeed� in a neighborhood of any point inM �
we can �nd a base of the distribution &� i�e�� a vector �eld V � VecM such
that &q � span�V �q��� q � M � Then trajectories of the ODE !q � V �q� are
one
dimensional submanifolds with tangent spaces &q�

But in the general case �dim&q � ��� a distribution & may be nonintegrable�
Indeed� consider the family of vector �elds tangent to &�

& � fV � VecM j V �q� � &q � q �Mg�

Assume that the distribution & is integrable� Any vector �eld from the family&
is tangent to integral manifoldsNq � thus the orbit Oq of the family & restricted
to a small enough neighborhood of q is contained in the integral manifold Nq �
Moreover� since dimOq � dim&q � dimNq� then locallyOq � Nq� we can go in
Nq in any direction along vector �elds of the family &� By the Orbit Theorem�
TqOq � Lieq&� that is why

Lieq& � &q�

This means that

�V�� V�� � & � V�� V� � &� ������

Let dim&q � k� In a neighborhood Oq� of a point q� � M we can �nd a base
of the distribution &�

&q � span�f��q�� � � � � fk�q�� � q � Oq� �
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Then inclusion ������ reads as Frobenius condition�

�fi� fj� �
kX
l��

clijfl� clij � C��Oq��� ������

We have shown that integrability of a distribution implies Frobenius condition
for its base�
Conversely� if condition ������ holds in a neighborhood of any point q� �M �

then Lie�&� � &� Thus Lie�&� is a locally �nitely generated module over
C��M �� By Theorem ����

TqOq� � Lieq &� q � Oq� �

So
TqOq� � &q� q � Oq� �

i�e�� the orbit Oq� is an integral manifold of & through q�� We proved the
following proposition�

Theorem ��� �Frobenius�� A distribution & � TM is integrable if and only
if Frobenius condition ������ holds for any base of & in a neighborhood of any
point q� �M �

Remarks� ��� In view of the Leibniz rule

�f� ag� � �fa�g " a�f� g�� f� g � VecM� a � C��M ��

Frobenius condition is independent on the choice of a base f�� � � � � fk� if it holds
in one base� then it also holds in any other base�

��� One can also consider smooth distributions & with non
constant dim&q�
Such a distribution is de�ned as a locally �nitely generated over C��M � sub

module of VecM � For such distributions Frobenius condition implies integra

bility� but dimension of integrable manifolds becomes� in general� di�erent� al

though it stays constant along orbits of &� This is a generalization of phase
portraits of vector �elds� Although� notice once more that in general distribu

tions with dim&q � � are nonintegrable�

�� State equivalence of control systems

In this section we consider one more application of the Orbit Theorem # to the
problem of equivalence of control systems �or families of vector �elds��
Let U be an arbitrary index set� Consider two families of vector �elds on

smooth manifoldsM and N parametrized by the same set U �

fU � ffu j u � Ug � VecM�

gU � fgu j u � Ug � VecN�
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Take any pair of points x� � M � y� � N � and assume that the families fU � gU
are bracket
generating�

Liex� fU � Tx�M� Liey� gU � Ty�N�

De�nition ���� Families fU and gU are called locally state equivalent if there
exists a di�eomorphism of neighborhoods

� � Ox� � M � Oy� � N�

� � x� �� y��

that transforms one family to another�

��fu � gu � u � U�

Notation� �fU � x�� � �gU � y���
Remark� Here we consider only smooth transformations of state x �� y� while
the controls u do not change� That is why this kind of equivalence is called
state equivalence� We already studied state equivalence of nonlinear and linear
systems� both local and global� see Chapter ��

Now� we �rst try to �nd necessary conditions for local equivalence of systems
fU and gU � Assume that

�fU � x�� � �gU � y���
By invariance of Lie bracket� we get

���fu�� fu� � � ���fu� ���fu� � � �gu� � gu��� u�� u� � U�

i�e�� relations between Lie brackets of vector �elds of the equivalent families fU
and gU must be preserved� We collect all relations between these Lie brackets
at one point� de�ne the systems of tangent vectors

�u����uk � �fu� � �� � � � fuk � � � � ��x�� � Tx�M�

�u����uk � �gu�� �� � � � guk� � � � ��y�� � Ty�N�

Then we have

��jx� �u����uk � �u����uk � u�� � � � � uk � U� k � N�
Now we can state a necessary condition for local equivalence of families fU

and gU in terms of the linear isomorphism

��jx� � A � Tx�M � Ty�N�

If �fU � x�� � �gU � y��� then there exists a linear isomorphism
A � Tx�M � Ty�N

that maps the con�guration of vectors f�u����ukg to the con�guration f�u����ukg�
It turns out that in the analytic case this condition is su�cient� I�e�� in the
analytic case the combinations of partial derivatives of vector �elds fu� u � U �
that enter f�u����ukg� form a complete system of state invariants of a family fU �
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Theorem ���� Let fU and gU be real analytic and bracket�generating families
of vector �elds on real analytic manifolds M and N respectively� Let x� � M �
y� � N � Then �fU � x�� � �gU � y�� if and only if there exists a linear isomorphism

A � Tx�M � Ty�N

such that

Af�u����ukg � f�u����ukg � u�� � � � � uk � U� k � N� ������

Remark� If in additionM � N are simply connected and all the �elds fu� gu are
complete� then we have the global equivalence�

Before proving Theorem ���� we reformulate condition ������ and provide a
method to check it�
Let a family fU be bracket
generating�

spanf�u����uk j u�� � � � � uk � U� k � Ng� Tx�M�

We can choose a basis�

span����� � � � � � ���n� � Tx�M� +�i � �u�i� � � � � uki�� i � �� � � � � n� ������

and express all vectors in the con�guration � through the base vectors�

�u����uk �
nX
i��

ciu����uk���i � ������

If there exists a linear isomorphism A � Tx�M � Ty�N with ������� then the
vectors

���i� i � �� � � � � n�

should form a basis of Ty�N �

span����� � � � � � ���n� � Ty�N� ������

and all vectors of the con�guration � should be expressed through the base
vectors with the same coe�cients as the con�guration �� see �������

�u����uk �
nX
i��

ciu����uk���i� ������

It is easy to see the converse implication� if we can choose bases in Tx�M
and Ty�N from the con�gurations � and � as in ������ and ������ such that
decompositions ������ and ������ with the same coe�cients ciu����uk hold� then
there exists a linear isomorphism A with ������� Indeed� we de�ne then the
isomorphism on the bases�

A � ���i �� ����� i � �� � � � � n�
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We can obtain one more reformulation via the following agreement� Con

�gurations f�u����ukg and f�u����ukg are called equivalent if the sets of rela

tions K�fU � and K�gU � between elements of these con�gurations coincide�
K�fU � � K�gU �� We denote here by K�fU � the set of all systems of coe�

cients such that the corresponding linear combinations vanish�

K�fU � �

�
�bu����uk� j

X
u����uk

bu����uk�u����uk � �

�
�

Then Theorem ��� can be expressed in the following form�

Nagano Principle� All local information about bracket�generating families of
analytic vector �elds is contained in Lie brackets�

Notice� although� that the con�guration �u����uk and the system of rela

tions K�fU � are� in general� immense and cannot be easily characterized� Thus
Nagano Principle cannot usually be applied directly to describe properties of
control systems� but it is an important guiding principle�
Now we prove Theorem ����

Proof� Necessity was already shown� We prove su�ciency by reduction to the
Orbit Theorem� For this we construct an auxiliary system on the Cartesian
product

M � N � f�x� y� j x �M� y � Ng�
For vector �elds f � VecM � g � VecN � de�ne their direct product f � g �
Vec�M � N � as the derivation

�f � g�aj�x�y� � �fa�y�
��
x
" �ga�x�

��
y
� a � C��M � N �� ������

where the families of functions a�y � C��M �� a�x � C��N � are de�ned as follows�

a�y � x �� a�x� y�� a�x � y �� a�x� y�� x �M� y � N�

So projection of f � g to M is f � and projection to N is g� Finally� we de�ne
the direct product of systems fU and gU as

fU � gU � ffu � gu j u � Ug � Vec�M �N ��

We suppose that there exists a linear isomorphism A � Tx�M � Ty�N that
maps the con�guration � to � as in ������� and construct the local equivalence
�fU � x�� � �gU � y���
In view of de�nition ������� Lie bracket in the family fU � gU is computed

as
�fu� � gu�� fu� � gu�� � �fu� � fu� �� �gu�� gu��� u�� u� � U�

thus

�fu� � gu� � �� � � � fuk � guk� � � � ��x�� y��

� �fu�� �� � � � fuk� � � � ��x��� �gu�� �� � � � guk� � � � ��y��
� �u����uk � �u����uk � �u����uk �A�u����uk � u�� � � � � uk � U� k � N�
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That is why
dimLie�x��y���fU � gU � � n�

where n � dimM � By the analytic version of the Orbit Theorem �Corollary ����
for the family fU �gU � Vec�M �N �� the orbit O of fU �gU through the point
�x�� y�� is an n
dimensional immersed submanifold �thus� locally a submanifold�
of M �N � The tangent space of the orbit is

T�x��y��O � span��u����uk � A�u����uk�

� spanfv � Av j v � Tx�g � T�x��y��M � N � Tx�M � Ty�N�

i�e�� the graph of the linear isomorphism A� Consider the canonical projections
onto the factors�

�� � M � N �M� ���x� y� � x�

�� � M � N � N� ���x� y� � y�

The restrictions ��jO� ��jO are local di�eomorphisms since the di�erentials

���j�x��y�� � �v�Av� �� v� v � Tx�M�

���j�x��y�� � �v�Av� �� Av� v � Tx�M�

are one
to
one�
Now � � �� 	 ���jO��� is a local di�eomorphism from M to N with the

graph O� and

�� � ��� 	 ���jO���� � fu �� gu� u � U�

Consequently� �fU � x�� � �gU � y���
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Chapter �

Rotations of the rigid body

In this chapter we consider rotations of a rigid body around a �xed point� That
is� we study motions of a body in the three
dimensional space such that�

� distances between all points in the body remain �xed �rigidity�� and
� there is a point in the body that stays immovable during motion ��xed
point��

We consider both free motions �in the absence of external forces� and controlled
motions �when external forces are applied in order to bring the body to a desired
state��
Such system is a very simpli�ed model of a satellite in the space rotating

around its center of mass�
For details about ODEs describing rotations of the rigid body� see ������

��� State space

The state of the rigid body is determined by its position and velocity�
We �x an orthonormal frame attached to the body at the �xed point �the

moving frame�� and an orthonormal frame attached to the ambient space at the
�xed point of the body �the �xed frame�� see �g� ���� The set of positions of the
rigid body is the set of all orthonormal frames in the three
dimensional space
with positive orientation� This set can be identi�ed with SO���� the group of
linear orthogonal orientation
preserving transformations of R	� or� equivalently�
with the group of �� � orthogonal unimodular matrices�

SO��� � fQ � R	� R	 j �Qx�Qy� � �x� y�� detQ � �g
� fQ � R	� R	 j QQ� � Id� detQ � �g�

The mapping Q � R	� R	 transforms the coordinate representation of a point
in the moving frame to the coordinate representation of this point in the �xed
frame�

��
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Figure ���� Fixed and moving frames

Remark� We denote above the standard inner product in R	 by � 
 � 
 �� If a pair
of vectors x� y � R	 have coordinates x � �x�� x�� x	�� y � �y�� y�� y	� in some
orthonormal frame� then �x� y� � x�y� " x�y� " x	y	�

Notice that the set of positions of the rigid body SO��� is not a linear space�
but a nontrivial smooth manifold�
Now we describe velocities of the rigid body� Let Qt � SO��� be position

of the body at a moment of time t� Since the operators Qt � R
	 � R	 are

orthogonal� then

�Qtx�Qty� � �x� y�� x� y � R	� t � R�
We di�erentiate this equality w�r�t� t and obtain

� !Qtx�Qty� " �Qtx� !Qty� � �� �����

The matrix
,t � Q��t !Qt

is called the body angular velocity � Since

!Qt � Qt,t�

then equality ����� reads

�Qt,tx�Qty� " �Qtx�Qt,ty� � ��

whence by orthogonality

�,tx� y� " �x�,ty� � ��

i�e��
,�t � �,t�

the matrix ,t is antisymmetric� So velocities of the rigid body have the form

!Qt � Qt,t� ,�t � �,t�
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In other words� we found the tangent space

TQ SO��� � fQ, j ,� � �,g� Q � SO����
The space of antisymmetric �� � matrices is denoted by so���� it is the tangent
space to SO��� at the identity�

so��� � f, � R	� R	 j ,� � �,g � TId SO����

The space so��� is the Lie algebra of the Lie group SO����
To each antisymmetric matrix , � so���� we associate a vector � � R	�

, � �� , �

�� � ��	 ��
�	 � ���
��� �� �

�A � � �

�� ��
��
�	

�A � �����

Then the action of the operator , on a vector x � R	 can be represented via
the cross product in R	�

,x � � � x� x � R	�

Let x be a point in the rigid body� Then its position in the ambient space R	 is
Qtx� Further� velocity of this point is

!Qtx � Qt,tx � Qt��t � x��

�t is the vector of angular velocity of the point x in the moving frame� if we �x
the moving frame Qt at one moment of time t� then the instantaneous velocity
of the point x at the moment of time t in the moving frame is Q��t !Qtx � ,tx �
�t � x� i�e�� the point x rotates around the line through �t with the angular
velocity k�tk�
Introduce the following scalar product of matrices , � �,ij� � so����

h,��,�i � ��
�
tr�,�,�� �

�

�

	X
i�j��

,�
ij,

�
ij �

X
i
j

,�
ij,

�
ij�

This product is compatible with identi�cation of �� � antisymmetric matrices
and �
dimensional vectors ������

h,��,�i � ���� ����
,i � �i� ,i � so���� �i � R	� i � �� ��

Moreover� this product is invariant in the following sense�

h�AdQ�,�� �AdQ�,�i � h,��,�i� Q � SO���� ,�� ,� � so���� �����

i�e�� AdQ � so���� so��� is an orthogonal transformation w�r�t� h 
 � 
 i� Indeed�
tr��AdQ�,��AdQ�,�� � tr�Q,�Q��Q,�Q��� � tr�Q,�,�Q��� � tr�,�,��
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by invariance of trace�
Now we derive the in�nitesimal version of invariance ������ Take an arbitrary

, � so��� and consider a smooth curve Qt � SO��� that starts from identity
with the velocity ,�

!Q� � ,� Q� � Id �

Then
d

d t

����
�

AdQt � ad,�

and di�erentiation of ����� w�r�t� t at t � � yields the equality�

h�ad,�,��,�i" h,�� �ad,�,�i � �� ,� ,�� ,� � so���� �����

i�e�� ad, � so���� so��� is antisymmetric w�r�t� h 
 � 
 i�
The vector �� � �� � R	 corresponds to the matrix �,��,�� � so��� via

isomorphism ������ thus equality ����� can be rewritten in terms of cross product�

�� � ��� ��� " ���� � � ��� � �� �� ��� �� � R	�

��� Euler equations

We derive equations of motion of the rigid body from the least action principle�
Let the distribution of mass in the rigid body have density ��x�� where

� � R	� R� is an integrable nonnegative function with compact support� Let
Qt � SO��� be position and ,t � so��� angular velocity of the body so that

!Qt � Qt,t� �����

Take a point x in the body� Then position of this point in the ambient space is
Qtx� and velocity of this point is !Qtx� Distribution of the kinetic energy in the
body has density �

���x��
!Qtx� !Qtx�� thus the total kinetic energy of the body at

a moment of time t is

j�,t� �
�

�

Z
R�

��x��Qt,tx�Qt,tx� dx �
�

�

Z
R�

��x��,tx�,tx� dx�

i�e�� a quadratic form j � j�,t� on the space so���� The corresponding bilinear
form can be written asZ

R�

��x��,�x�,�x� dx � hA,��,�i� ,�� ,� � so���

for some linear symmetric positive de�nite operator

A � so���� so���� A � A� � ��

called inertia tensor of the rigid body� Finally� the functional of action has the
form

J�,�� �

Z t�

�

j�,t� dt �
�

�

Z t�

�

hA,t�,ti dt�
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where � and t� are the initial and terminal moments of motion�
Let Q� and Qt� be the initial and terminal positions of the moving body�

By the least action principle� the motion Qt� t � ��� t��� of the body should be
an extremal of the following problem�

J�,��� min�
!Qt � Qt,t� Q�� Qt� �xed�

�����

We �nd these extremals�
Let ,t be angular velocity along the reference trajectory Qt� then

Q��� 	Qt� �
��
exp

Z t�

�

,t dt�

Consider an arbitrary small perturbation of the angular velocity�

,t " �Ut "O����� �� ��

In order that such perturbation was admissible� the starting point and endpoint
of the corresponding trajectory should not depend on ��

Q��� 	Qt� �
��
exp

Z t�

�

�
,t " �Ut " O����

�
dt�

thus

� �




 �

����
���

Q��� 	Qt� �




 �

����
���

��
exp

Z t�

�

�
,t " �Ut "O����

�
dt� �����

By formula ������ of derivative of a �ow w�r�t� parameter� the right
 hand side
above is equal to Z t�

�

Ad

�
��
exp

Z t

�

,� d�

�
Ut dt	 ��

exp

Z t�

�

,t dt

�

Z t�

�

Ad
�
Q��� 	Qt

�
Ut dt 	Q��� 	Qt�

� Q���

Z t�

�

AdQtUt dt 	Qt� �

Taking into account ������ we obtainZ t�

�

AdQtUt dt � ��

Denote

Vt �

Z t

�

AdQ�U� d�� �����
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then admissibility condition of a variation Ut takes the form

V� � Vt� � �� �����

Now we �nd extremals of problem ������

� �




 �

����
���

J�,��� �

Z t�

�

hA,t� Uti dt

by �����

�

Z t�

�

h�AdQt�A,t� �AdQt�Uti dt

by �����

�

Z t�

�

h�AdQt�A,t� !Vti dt

integrating by parts with the admissibility condition �����

� �
Z t�

�

�
d

d t
�AdQt�A,t� Vt

�
dt�

So the previous integral vanishes for any admissible operator Vt� thus

d

d t
�AdQt�A,t � �� t � ��� t���

Hence
AdQt��,t� A,t� " A !,t� � �� t � ��� t���

that is why

A !,t � �A,t�,t�� t � ��� t��� ������

Introduce the operator
Mt � A,t�

called kinetic momentum of the body� and denote

B � A���

We combine equations ������� ����� and come to Euler equations of rotations of
a free rigid body� �

!Mt � �Mt� BMt�� Mt � so����
!Qt � QtBMt� Qt � SO����
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Remark� The presented way to derive Euler equations can be applied to the
curves on the group SO�n� of orthogonal orientation
preserving n� n matrices
with an arbitrary n � �� Then we come to equations of rotations of a generalized
n
dimensional rigid body�

Now we rewrite Euler equations via isomorphism ����� of so��� andR	� which
is essentially �
dimensional and does not generalize to higher dimensions� Recall
that for an antisymmetric matrix

M �

�� � ��	 ��
�	 � ���
��� �� �

�A � so����

the corresponding vector � � R	 is

� �

�� ��
��
�	

�A � M � ��

Now Euler equations read as follows��
!�t � �t � ��t� �t � R	�
!Qt � Qt

b��t� Qt � SO����

where � � R	 � R	 and b� � R	 � so��� are the operators corresponding to
B � so���� so��� via the isomorphism so���� R	 ������

Eigenvectors of the symmetric positive de�nite operator � � R	 � R	 are
called principal axes of inertia of the rigid body� In the sequel we assume that
the rigid body is asymmetric� i�e�� the operator � has � distinct eigenvalues
��� ��� �	� We order the eigenvalues of ��

�� � �� � �	�

and choose an orthonormal frame e�� e�� e	 of the corresponding eigenvectors�
i�e�� principal axes of inertia� In the basis e�� e�� e	� the operator � is diagonal�

�

�� ��
��
�	

�A �

�� ����
����
�	�	

�A �

and the equation !�t � �t � ��t reads as follows�����
!�� � ��	 � ������	�

!�� � ��� � �	����	�

!�	 � ��� � ��������

������
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��� Phase portrait

Now we describe the phase portrait of the �rst of Euler equations�

!�t � �t � ��t� �t � R	� ������

This equation has two integrals� energy

��t� �t� � const

and moment of momentum

��t� ��t� � const �

Indeed�

d

d t
��t� �t� � ���t � ��t� �t� � �����t� �t � �t� � ��

d

d t
��t� ��t� � ��t � ��t� ��t� " ��t� ���t � ��t�� � ���t � ��t� ��t�

� ����t� ��t � ��t� � �

by the invariance property ����� and symmetry of ��
So all trajectories �t of equation ������ satisfy the restrictions�

��� " ��� " ��	 � const�

���
�
� " ���

�
� " �	�

�
	 � const�

������

i�e�� belong to intersection of spheres with ellipsoids� Moreover� since ODE ������
is homogeneous� we draw its trajectories on one sphere # the unit sphere

��� " ��� " ��	 � �� ������

and all other trajectories are obtained by homotheties�
First of all� intersections of the unit sphere with the principal axes of inertia�

i�e�� the points
�e�� �e�� �e	

are equilibria� and there are no other equilibria� see equations �������
Further� the equilibria �e�� �e	 corresponding to the maximal and minimal

eigenvalues ��� �	 are stable� more precisely� they are centers� and the equilibria
�e� corresponding to �� are unstable # saddles� This is obvious from the
geometry of intersections of the unit sphere with ellipsoids

���
�
� " ���

�
� " �	�

�
	 � C�

Indeed� for C � �	 the ellipsoids are inside the sphere and do not intersect
it� For C � �	� the ellipsoid touches the unit sphere from inside at the points
�e	� Further� for C � �	 and close to �	� the ellipsoids intersect the unit
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sphere by � closed curves surrounding e	 and �e	 respectively� The behavior
of intersections is similar in the neighborhood of C � ��� If C � ��� then the
ellipsoids are big enough and do not intersect the unit sphere� for C � ��� the
small semiaxis of the ellipsoid becomes equal to radius of the sphere� so the
ellipsoid touches the sphere from outside at �e�� and for C � �� and close to
�� the intersection consists of � closed curves surrounding �e�� If C � ��� then
the ellipsoid touches the sphere at the endpoints of the medium semiaxes �e��
and in the neighborhood of each point e�� �e�� the intersection consists of four
separatrix branches tending to this point� Equations for the separatrices are
derived from the system�

��� " ��� " ��	 � ��

���
�
� " ���

�
� " �	�

�
	 � ���

We multiply the �rst equation by �� and subtract it from the second equation�

��� � ����
�
� � ��� � �	��

�
	 � ��

Thus the separatrices belong to intersection of the unit sphere with two planes

)�
def
� f���� ��� �	� � R	 j

p
�� � �� �� � �

p
�� � �	 �	g�

thus they are arcs of great circles�

e�

e�

e�

Figure ���� Phase portrait of system ������

It turns out that separatrices and equilibria are the only trajectories be

longing to a �
dimensional plane� Moreover� all other trajectories satisfy the
following condition�

� �� )�� � �� Rei  � � !� � (� �� �� ������
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i�e�� the vectors �� !�� and (� are linearly independent� Indeed� take any trajectory
�t on the unit sphere� All trajectories homothetic to the chosen one form a cone
of the form

C���� " ��� " ��	� � ���
�
� " ���

�
� " �	�

�
	� �	 � C � ��� ������

But a quadratic cone in R	 is either degenerate or elliptic� The conditions
� �� )�� � �� Rei mean that C �� �i� i � �� �� �� i�e�� cone ������ is elliptic�
Now inequality ������ follows from the next two facts� First� �� !� �� �� i�e�� the
trajectory �t is not tangent to the generator of the cone� Second� the section of
an elliptic cone by a plane not containing the generator of the cone is an ellipse
# a strongly convex curve�
In view of ODE ������� the convexity condition ������ for the cone generated

by the trajectory is rewritten as follows�

� �� )�� � �� Rei � � ��� ��� � ��� � ��� � �� " � � ��� � ���� �� ��
������

The planar separatrix curves in the phase portrait are regular curves on the
sphere� hence

� � )�� � �� Re� � � !� �� ��
or� by ODE �������

� � )�� � �� Re� � � ��� ��� �� �� ������

��� Controlled rigid body� orbits

Assume that we can control rotations of the rigid body by applying a torque
along a line that is �xed in the body� We can change the direction of torque to
the opposite one in any moment of time�
Then the control system for the angular velocity is written as

!�t � �t � ��t � l� �t � R	� ������

and the whole control system for the controlled rigid body is�
!�t � �t � ��t � l� �t � R	�
!Qt � Qt

b��t� Qt � SO���� ������

where l �� � is a �xed vector along the chosen line�
Now we describe orbits and attainable sets of the �
dimensional control sys


tem ������� But before that we study orbits of the �
dimensional system �������

	���� Orbits of the ��dimensional system

System ������ is analytic� thus dimension of the orbit through a point � � R	

coincides with dimension of the space

Lie���� �� � l� � Lie���� ��� l��
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Denote the vector �elds�

f��� � �� ��� g��� � l�

and compute several Lie brackets�

�g� f ���� �
d f

d �
g��� � d g

d �
f��� � l � ��" �� �l�

�g� �g� f ����� � l � �l " l � �l � �l � �l�

�

�
��g� �g� f ��� �g� f ����� � l � ��l � �l� " �l � �l� � �l�

We apply ������ with l � � and obtain that three constant vector �elds g� �g� f ��
��g� �g� f ��� �g� f �� are linearly independent�

g��� � �
�
�g� f ���� � �

�
��g� �g� f ��� �g� f �����

� l � l � �l � ��l � �l� � �l " l � ��l � �l�� �� �

if l �� )�� l �� Rei�
We obtain the following statement for generic disposition of the vector l�

Case �� l �� )�� l �� Rei�
Proposition ���� Assume that l �� )�� l �� Rei� Then Lie��f� g� � R	 for any
� � R	� System ������ has one ��dimensional orbit� R	�

Now consider special dispositions of the vector l�

Case �� Let l � )�� l �� Re�� Since the plane )� is invariant for the free
body ������ and l � )�� then the plane )� is also invariant for the controlled
body ������� i�e�� the orbit through any point of )� is contained in )�� On the
other hand� implication ������ yields

l � �l � �l� �� ��

But the vectors l � g��� and l � �l � �
� �g� �g� f ����� form a basis of the plane

)�� thus )� is in the orbit through any point � � )�� Consequently� the plane
)� is an orbit of ������� If an initial point �� �� )�� then the trajectory �t
of ������ through �� is not �at� thus

��t � ��t� � l � �l � �l� �� ��

So the orbit through �� is �
dimensional� We proved the following statement�

Proposition ���� Assume that l � )� n Re�� Then system ������ has one
��dimensional orbit� the plane )�� and two ��dimensional orbits� connected
components of R	 n)��
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The case l � )� n Re� is completely analogous� and there holds a similar
proposition with )� replaced by )��

Case �� Now let l � Re� n f�g� i�e�� l � ce�� c �� �� First of all� the line Re� is
an orbit� Indeed� if � � Re�� then f��� � �� and g��� � l is also tangent to the
line Re��
To �nd other orbits� we construct an integral of the control system ������

from two integrals ������ of the free body� Since g��� � l � ce�� we seek for a
linear combination of the integrals in ������ that does not depend on ��� We
multiply the �rst integral by ��� subtract from it the second integral and obtain
an integral for the controlled rigid body�

��� � ����
�
� " ��� � �	��

�
	 � C� ������

Since �� � �� � �	� this is an elliptic cylinder in R	�
So each orbit of ������ is contained in a cylinder ������� On the other hand�

the orbit through any point �� � R	 n Re� must be at least �
dimensional�
Indeed� if �� �� Re� � Re	� then the free body has trajectories not tangent to
the �eld g� and if �� � Re� or Re	� this can be achieved by a small translation
of �� along the �eld g� Thus all orbits outside of the line Re� are elliptic
cylinders �������

Proposition ���� Let l � Re� n f�g� Then all orbits of system ������ have the
form ������
 there is one ��dimensional orbit � the line Re� �C � ��� and an
in�nite number of ��dimensional orbits � elliptic cylinders ������ with C � ��

e�

e�

e�

Figure ���� Orbits in the case l � Re� n f�g

The case l � Re	 n f�g is completely analogous to the previous one�
Proposition ���� Let l � Re	nf�g� Then system ������ has one ��dimensional
orbit � the line Re	� and an in�nite number of ��dimensional orbits � elliptic
cylinders

��� � �	��
�
� " ��� � �	��

�
� � C� C � ��
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Case �� Finally� consider the last case� let l � Re� n f�g� As above� we obtain
an integral of control system �������

��� � ����
�
� � ��� � �	��

�
	 � C� ������

If C �� �� this equation determines a hyperbolic cylinder� By an argument
similar to that used in Case �� we obtain the following description of orbits�

Proposition ���� Let l � Re� n f�g� Then there is one ��dimensional orbit �
the line Re�� and an in�nite number of ��dimensional orbits of the following
form


��� connected components of hyperbolic cylinders ������ for C �� �

��� half�planes � connected components of the set �)� �)�� nRe��

e�

e�

e�

Figure ���� Orbits in the case l � Re� n f�g

So we considered all possible dispositions of the vector l � R	 n f�g� and
in all cases described orbits of the �
dimensional system ������� Now we study
orbits of the full �
dimensional system �������

	���� Orbits of the 	�dimensional system

The vector �elds in the right
hand side of the �
dimensional system ������ are

f�Q��� �

�
Qb��
�� ��

�
� g�Q��� �

�
�
l

�
� �Q��� � SO��� �R	�

Notice the commutation rule for vector �elds of the form that appear in our
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problem�

fi�Q��� �

�
Qb�wi���
vi���

�
� Vec�SO��� �R	��

�f�� f���Q��� �

�BBB�
Q�b�w�� b�w��so�	� "Qb� �


 w�


 �
v� � 
 w�


 �
v�

�

 v�

 �

v� � 
 v�

 �

v�

�CCCA �

We compute �rst the same Lie brackets as in the �
dimensional case�

�g� f � �

�
Qb�l

l � �� " �� �l

�
�

�

�
�g� �g� f �� �

�
�

l � �l

�
�

�

�
��g� �g� f ��� �g� f �� �

�
�

l � ��l � �l� " �l � �l� � �l

�
�

Further� for any vector �eld X � Vec�SO����R	� of the form

X �

�
�
x

�
� x # a constant vector �eld on R	� ������

we have

�X� f � �

�
Qb�x
�

�
� ������

To study the orbit of the �
dimensional system ������ through a point
�Q��� � SO��� � R	� we follow the di�erent cases for the �
dimensional sys

tem ������ in Subsec� ������

Case �� l �� )�� l �� Rei� We can choose � linearly independent vector �elds
in Lie�f� g� of the form �������

X� � g� X� �
�

�
�g� �g� f ��� X	 �

�

�
��g� �g� f �� �g� f ���

By the commutation rule ������� we have � linearly independent vectors in
Lie�Q����f� g��

X� �X� �X	 � �X�� f � � �X�� f � � �X	� f � �� ��
Thus the orbit through �Q��� is �
dimensional�

Case �� l � )� nRe��
Case ���� � �� )�� First of all� Lie�f� g� contains � linearly independent

vector �elds of the form �������

X� � g� X� �
�

�
�g� �g� f ���
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Since the trajectory of the free body in R	 through � is not �at� we can assume
that the vector v � �� �� is linearly independent of l and l� �l� Now our aim
is to show that Lie�f� g� contains � vector �elds of the form

Y� �

�
QM�

v�

�
� Y� �

�
QM�

v�

�
� M� �M� �� �� ������

where the vector �elds v� and v� vanish at the point �� If this is the case� then
Lie�Q����f� g� contains � linearly independent vectors�

X��Q���� X��Q���� f�Q����

Y��Q��� �

�
QM�

�

�
� Y��Q��� �

�
QM�

�

�
�

�Y�� Y���Q��� �

�
Q�M��M��

�

�
�

and the orbit through the point �Q��� is �
dimensional�
Now we construct � vector �elds of the form ������ in Lie�f� g�� Taking

appropriate linear combinations with the �elds X�� X�� we project the second
component of the �elds �g� f � and �

� �f� �g� �g� f �� to the line Rv� thus we obtain
the vector �elds �

Qb�l
k�v

�
�

�
Qb��l � �l�

k�v

�
� Lie�f� g�� ������

If both k� and k� vanish at �� these vector �elds can be taken as Y�� Y� in �������
And if k� or k� does not vanish at �� we construct such vector �elds Y�� Y� taking
appropriate linear combinations of �elds ������ and f with the �elds g� �g� �g� f ���
So in Case ��� the orbit is �
dimensional�
Case ���� � � )�� There are � linearly independent vectors in Lie�Q����f� g��

X� � g� X� �
�

�
�g� �g� f ��� �X�� f �� �X�� f �� ��X�� f �� �X�� f ���

Since the orbit in R	 is �
dimensional� the orbit in SO����R	 is �
dimensional�
Case �� l � Re� n f�g�
Case ���� � �� Re�� The argument is similar to that of Case ���� We can

assume that the vectors l and v � � � �� are linearly independent� The orbit
in R	 is �
dimensional and the vectors l� v span the tangent space to this orbit�
thus we can �nd vector �elds in Lie�f� g� of the form�

Y� � �g� f �� C�g � C�f �

�
Qb�l "C	Qb��

�

�
�

Y� � �Y�� f � �

�
Q�b�l� b��� " C�Qb��

�

�
for some real functions Ci� i � �� � � � � �� Then we have � linearly independent
vectors in Lie�Q����f� g��

g� f� Y�� Y�� �Y�� Y���
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So the orbit of the �
dimensional system ������ is �
dimensional �it cannot have
dimension � since the �
dimensional system ������ has a �
dimensional orbit��

Case ���� � � Re�� The vectors

f�Q��� �

�
Qb��
�

�
� �g� f ��Q��� �

�
Qb�l
�

�
�

are linearly dependent� thus dimLie�Q����f� g� � dim span�f� g�j�Q��� � �� So
the orbit is �
dimensional�
The cases l � Rei n f�g� i � �� �� are similar to Case ��
We completed the study of orbits of the controlled rigid body ������ and

now summarize it�

Proposition ���� Let �Q��� be a point in SO��� � R	� If the orbit O of the
��dimensional system ������ through the point � is �� or ��dimensional� then the
orbit of the ��dimensional system ������ through the point �Q��� is SO����O�
i�e�� respectively �� or ��dimensional� If dimO � �� then the ��dimensional
system has a ��dimensional orbit�

We will describe attainable sets of this system in Section ��� after acquiring
some general facts on attainable sets�



Chapter �

Control of con�gurations

In this chapter we apply the Orbit Theorem to systems which can be controlled
by the change of their con�guration� i�e�� of relative position of parts of the
systems� A falling cat exhibits a well
known example of such a control� If a
cat is left free over ground �e�g� if it falls from a tree or is thrown down by a
child�� then the cat starts to rotate its tail and bend its body� and �nally falls
to the ground exactly on its paws� regardless of its initial orientation over the
ground� Such a behavior cannot be demonstrated by a mechanical system less
skillful in turning and bending its parts �e�g� a dog or just a rigid body�� so the
crucial point in the falling cat phenomenon seems to be control by the change of
con�guration� We present a simple model of systems controlled in such a way�
and study orbits in several simplest examples�

�� Model

A system of mass points� i�e�� a mass distribution in Rn� is described by a
nonnegative measure � in Rn� We restrict ourselves by measures with com

pact support� For example� a system of points x�� � � � � xk � Rn with masses
��� � � � � �k � � is modeled by the atomic measure � �

Pk
i�� �i�xi � where �xi

is the Dirac function concentrated at xi� One can consider points xi free or
restricted by constraints in Rn� More generally� mass can be distributed along
segments or surfaces of various dimensions� So the state space M of a system
to be considered is a reasonable class of measures in Rn�
A controller is supposed to sit in the construction and change its con�gu


ration� The system is conservative� i�e�� impulse and angular momentum are
conserved� Our goal is to study orbits of systems subject to such constraints�
Mathematically� conservation laws of a system come from N(other theorem

due to symmetries of the system� Kinetic energy of our system is

L �
�

�

Z
j !xj� d�� �����

��
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in particular� for an atomic measure � �
Pk

i�� �i�xi �

L �
�

�

kX
i��

�ij !xij��

By N(other theorem �see e�g� ������� if the �ow of a vector �eld V � VecRn
preserves a Lagrangian L� then the system has an integral of the form


 L


 !x
V �x� � const �

In our case� Lagrangian ����� is invariant w�r�t� isometries of the Euclidean
space� i�e�� translations and rotations in Rn�
Translations in Rn are generated by constant vector �elds�

V �x� � a � Rn�

and our system is subject to the conservation lawsZ
h !x� ai d� � const � a � Rn�

That is� Z
!x d� � const�

i�e�� the center of mass of the system moves with a constant velocity �the total
impulse is preserved�� We choose the inertial frame of reference in which the
center of mass is �xed� Z

!x d� � ��

For an atomic measure � �
Pk

i�� �i�xi � this equality takes the form

kX
i��

�ixi � const�

which is reduced by a change of coordinates in Rn to

kX
i��

�ixi � ��

Now we pass to rotations in Rn� Let a vector �eld

V �x� � Ax� x � Rn�

preserve the Euclidean structure in Rn� i�e�� its �ow

etV �x� � etAx
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preserve the scalar product�

hetAx� etAyi � hx� yi� x� y � Rn�

Di�erentiation of this equality at t � � yields

hAx� yi " hx�Ayi � �� x� y � Rn�

i�e�� the matrix A is skew
symmetric�

A� � �A�

Conversely� if the previous equality holds� then�
etA

��
� etA

�

� e�tA �
�
etA

���
�

i�e�� the matrix etA is orthogonal� We proved that the �ow etA preserves the Eu

clidean structure in Rn if and only if A� � �A� Similarly to the �
dimensional
case considered in Sec� ���� the group of orientation
preserving linear orthog

onal transformations of the Euclidean space Rn is denoted by SO�n�� and the
corresponding Lie algebra of skew
symmetric transformations in Rn is denoted
by so�n�� In these notations�

etA � SO�n�� A � so�n��

Return to derivation of conservation laws for our system of mass points�
The Lagrangian L � �

�

R j !xj� d� is invariant w�r�t� rotations in Rn� so N(other
theorem gives integrals of the form


 L


 !x
V �x� �

Z
h !x�Axi d� � const� A � so�n��

For an atomic measure � �
Pk

i�� �i�xi � we obtain

kX
i��

�ih !xi� Axii � const� A � so�n�� �����

and we restrict ourselves by the simplest case where the constant in the right

hand side is just zero�
Summing up� we have the following conservation laws for a system of points

x�� � � � � xk � Rn with masses ��� � � � � �k�
kX
i��

�ixi � �� �����

kX
i��

�ih !xi� Axii � �� A � so�n�� �����
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The state space is a subset

M � Rn� 
 
 
 �Rn� 	z 

k

�

and admissible paths are piecewise smooth curves in M that satisfy constraints
������ ������ The �rst equality ����� determines a submanifold in M � in fact�
this equality can obviously be resolved w�r�t� any variable xi� and one can get
rid of this constraint by decreasing dimension of M � The second equality �����
is a linear constraint for velocities !xi� it determines a distribution on M � So the
admissibility conditions ������ ����� de�ne a linear in control� thus symmetric�
control system onM � Notice that a more general condition ����� determines an
�a�ne distribution� and control system ������ ����� is control
a�ne� thus� in
general� not symmetric�
We consider only the symmetric case ������ ������ Then orbits coincide with

attainable sets� We compute orbits in the following simple situations�

��� Two free points� k � ��

��� Three free points� k � ��

��� A broken line with � links in R��

�� Two free points

We have k � �� and the �rst admissibility condition ����� reads

��x� " ��x� � �� x�� x� � Rn�
We eliminate the second point�

x� � x� x� � ���
��
x�

and exclude collisions of the points�

x �� ��
So the state space of the system is

M � Rn n f�g�
The second admissibility condition �����

��h !x�� Ax�i " ��h !x�� Ax�i � �� A � so�n��
is rewritten as �

�� " ������
� h !x�Axi � �� A � so�n��

i�e��

h !x�Axi � �� A � so�n�� �����

This equation can easily be analyzed via the following proposition�
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Exercise 	��� If A � so�n�� then hAx� xi � � for all x � Rn� Moreover� for
any vector x � Rn n f�g� the space fAx j A � so�n�g coincides with the whole
orthogonal complement x� � fy � Rn j hy� xi � �g�
So restriction ����� means that

!x � x � ��
i�e�� velocity of an admissible curve is proportional to the state vector� The
distribution determined by this condition is one
dimensional� thus integrable�
So admissible curves have the form

x�t� � ��t�x���� ��t� � ��

The orbit and admissible set through any point x � Rn n f�g is the ray
Ox � R�x � f�x j � � �g�

The points x�� x� can move only along a �xed line in Rn� and orientation of
the system cannot be changed� In order to have a more sophisticated behavior�
one should consider more complex systems�

�� Three free points

Now k � �� and we eliminate the third point via the �rst admissibility condi

tion ������

x � ��x�� y � ��x��

x	 � � �

�	
�x" y��

In order to exclude the singular con�gurations where the points x�� x�� x	 are
collinear� we assume that the vectors x� y are linearly independent� So the state
space is

M � f�x� y� � Rn�Rn j x� y �� �g�
Introduce the notation

�i �
�

�i
� i � �� �� ��

Then the second admissibility condition ����� takes the form�

h !x�A���� " �	�x " �	y�i " h !y�A���� " �	�y " �	x�i � �� A � so�n��
It turns out then that admissible velocities !x� !y should belong to the plane
span�x� y�� This follows by contradiction from the following proposition�

Lemma 	��� Let vectors v� w� �� � � Rn satisfy the conditions

v � w �� �� span�v� w� �� �� �� span�v� w��
Then there exists A � so�n� such that

hAv� �i " hAw� �i �� ��
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Proof� First of all� we may assume that

hv� wi � �� �����

Indeed� choose a vector bw � span�v� w� such that hv� bwi � �� Then w � bw" �v
and

hAv� �i " hAw� �i � hAv� � " ��i" hA bw� �i�
thus we can replace w by bw�
Second� we can renormalize vectors v� w and assume that

jvj � jwj � �� �����

Now let � �� span�v� w�� we can assume this since the hypotheses of the
lemma are symmetric w�r�t� �� �� Then

� � �v " �w " l

for some vector
l � span�v� w��

Choose an operator A � so�n� such that
Aw � ��

A � span�v� l�� span�v� l� is invertible�

Then
hAv� �i " hAw� �i � hAv� li �� ��

i�e�� the operator A is the required one�

This lemma means that for any pair of initial points �x� y� �M � all admis

sible curves xt and yt are contained in the plane span�x� y� � Rn� So we can
reduce our system to such a plane and thus assume that x� y � R��
Thus we obtain the following system�

h !x�A���� " �	�x" �	y�i " h !y�A���� " �	�y " �	x�i � �� A � so���� �����

�x� y� �M � f�v� w� � R��R� j v �w �� �g�
Consequently�

A � const 

�

� �
�� �

�
�

i�e�� equality ����� de�nes one linear equation on velocities� thus a rank � dis

tribution on a �
dimensional manifoldM � Using Exercise ���� it is easy to see
that this distribution is spanned by the following � linear vector �elds�

V� � ���� " �	�x" �	y�




 x
�

�
��� " �	�x" �	y

�

�
� B�

�
x
y

�
�

V� � ���� " �	�y " �	x�




 y
�

�
�

�	x" ��� " �	�y

�
� B�

�
x
y

�
�

V	 � x




 x
" y





 y
�

�
x
y

�
� Id

�
x
y

�
�
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where

B� �

�
�� " �	 �	
� �

�
� B� �

�
� �
�	 �� " �	

�
� Id �

�
� �
� �

�
�

In order to simplify notations� we write here �
dimensional vectors as �
dimen

sional columns� e�g��

V� �

�
��� " �	�x" �	y

�

�
�

�BB�
��� " �	�x� " �	y�
��� " �	�x� " �	y�

�
�

�CCA �

where

x �

�
x�
x�

�
� y �

�
y�
y�

�
�

The rank � distribution in question can have only orbits of dimensions � or
�� In order to �nd out� which of these possibilities are realized� compute the Lie
bracket�

�V�� V�� � �B�� B��

�
x
y

�
�

�B�� B�� � �	

�
�	 �� " �	

���� " �	� ��	
�
�

It is easy to check that

V� � V� � V	 � �V�� V�� �� � � B� �B� � Id��B�� B�� �� ��
We write �� � matrices as vectors in the standard basis of the space gl�����

� �
� �

�
�

�
� �
� �

�
�

�
� �
� �

�
�

�
� �
� �

�
�

then

det�Id� B�� B�� �B�� B��� �

��������
� �� " �	 � �	
� �	 � �� " �	
� � �	 ���� " �	�
� � �� " �	 ��	

��������
� ��	����� " ���	 " ���	� � ��

Consequently� the �elds V�� V�� V	� �V�� V�� are linearly independent everywhere
on M � i�e�� the control system has only �
dimensional orbits� So the orbits
coincide with connected components of the state space� The manifold M is
decomposed into � connected components corresponding to positive or negative
orientation of the frame �x� y��

M �M� �M��
M� � f�x� y� � R��R� j det�x� y� � �g�
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So the system on M has � orbits� thus � attainable sets� M� and M�� Given
any pair of linearly independent vectors �x� y� � R� � R�� we can reach any
other nonsingular con�guration �$x� $y� � R��R� with $x� $y � span�x� y� and the
frame �$x� $y� oriented in the same way as �x� y��
Returning to the initial problem for � points x�� x�� x	 � Rn� the �
dimensi


onal linear plane of the triangle �x�� x�� x	� should be preserved� as well as ori

entation and center of mass of the triangle� Except this� the triangle �x�� x�� x	�
can be rotated� deformed or dilated as we wish�
Con�gurations of � points that de�ne distinct �
dimensional planes �or de


�ne distinct orientations in the same �
dimensional plane� are not mutually
reachable� attainable sets from these con�gurations do not intersect one with
another� Although� if two con�gurations de�ne �
dimensional planes having a
common line� then intersection of closures of attainable sets from these con�g

urations is nonempty� it consists of collinear triples lying in the common line�
Theoretically� one can imagine a motion that steers one con�guration into an

other� �rst the � points are made collinear in the initial �
dimensional plane�
and then this collinear con�guration is steered to the �nal one in the terminal
�
dimensional plane�

�� Broken line

Consider a system of � mass points placed at vertices of a broken line of �
segments in a �
dimensional plane� We study the most symmetric case� where
all masses are equal to � and lengths of all segments are also equal to ��
The holonomic constraints for the points

x�� x�� x�� x	 � R� � C

have the form

	X
j��

xj � �� jxj � xj��j � �� j � �� �� �� �����

Thus

xj � xj�� � ei�j � 	j � S�� j � �� �� ��

Position of the system is determined by the �
tuple of angles �	�� 	�� 		�� so the
state space is the �
dimensional torus�

M � S� � S� � S� � T	 � f�	�� 	�� 		� j 	j � S�� j � �� �� �g�

The nonholonomic constraints on velocities reduce to the equality

	X
j��

hixj � !xji � ��
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In order to express this equality in terms of the coordinates 	j � denote �rst

yj � xj � xj��� j � �� �� ��

Taking into account the condition
P	

j�� xj � �� we obtain�

x� � ��y�
�
� y�
�
� y	
�
�

x� �
y�
�
� y�
�
� y	
�
�

x� �
y�
�
"
y�
�
� y	
�
�

x	 �
y�
�
"
y�
�
"
�y	
�
�

Now compute the di�erential form�

� �
	X

j��

hixj � dxji � hi ������y� " �����y� " �����y	� � dy�i

" hi ������y� " y� " �����y	� � dy�i
" hi ������y� " �����y� " �����y	� � dy	i �

Since hiyj � dyki � hei�j � ei�kd	ki � cos�	j � 	k�d	k� we have

� � ������ " ����� cos�	� � 	�� " ����� cos�		 � 	��� d	�

" ������ cos�	� � 	�� " � " ����� cos�		 � 	��� d	�

" ������ cos�	� � 		� " ����� cos�	� � 		� " ����d		�

Consequently� the system under consideration is the rank � distribution & �
Ker � on the �
dimensional manifold M � T	� The orbits can be �
 or �

dimensional� To distinguish these cases� we can proceed as before� �nd a vector
�eld basis and compute Lie brackets� But now we study integrability of & in a
dual way� via techniques of di�erential forms�
Assume that the distribution & has a �
dimensional integral manifold N �

M � Then

�jN � ��
consequently�

� � d ��jN � � �d��jN �

thus

� � d�qj
q
� d�qjKer�q � q � N�

In terms of exterior product of di�erential forms�

�� � d��q � �� q � N�
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We compute the di�erential and exterior product�

d� � sin�	� � 	��d	� � d	� " sin�		 � 	��d	� � d		 " �
�
sin�		 � 	��d	� � 		�

� � d� � �

�
�sin�	� � 	�� " sin�		 � 	���d	� � d	� � d		�

Thus � � d� � � if and only if

sin�	� � 	�� " sin�		 � 	�� � ��

i�e��

		 � 	� ������

or

�	� � 	�� " �		 � 	�� � �� ������

Con�gurations ������ and ������ are hard to control� if neither of these equalities
is satis�ed� then � � d� �� �� i�e�� the system has �
dimensional orbits through
such points� If we choose basis vector �elds X�� X� of the distribution &� then
already the �rst bracket �X�� X�� is linearly independent of X�� X� at points
where both equalities ������� ������ are violated�
Now it remains to study integrability of & at points of surfaces ������� �������

Here �X�� X���q� � &q� but we may obtain nonintegrability of & via brackets of
higher order�
Consider �rst the two
dimensional surface

P � f		 � 	�g�

If the orbit through a point q � P is two
dimensional� then the distribution &
should be tangent to P in the neighborhood of q� But it is easy to see that &
is everywhere transversal to P � e�g��

TqP � 



 	�

����
q

�� &q� q � P�

So the system has �
dimensional orbits through any point of P �
In the same way one can see that the orbits through points of the second

surface ������ are �
dimensional as well�
The state space M is connected� thus there is the only orbit �and attainable

set� # the whole manifoldM � The system is completely controllable�
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Attainable sets

In this chapter we study general properties of attainable sets� We consider
families of vector �elds F on a smooth manifoldM that satisfy the property

Lieq F � TqM � q �M� �����

In this case the system F is called bracket�generating � or full�rank � By the ana

lytic version of the Orbit Theorem �Corollary ����� orbits of a bracket
generating
system are open subsets of the state space M �
If a family F � VecM is not bracket
generating� and M and F are real

analytic� we can pass from F to a bracket
generating family FjO � where O is
an orbit of F � Thus in the analytic case requirement ����� is not restrictive in
essence�

��� Attainable sets of full
rank systems

For bracket
generating systems both orbits and attainable sets are full
dimen

sional� Moreover� there holds the following important statement�

Theorem 
�� �Krener�� If F � VecM is a bracket�generating system� then
Aq� � intAq� for any q� �M �

Remark� In particular� attainable sets for arbitrary time have nonempty inte

rior�

intAq� �� ��
Attainable sets may be�

� open sets� �g� ����
� manifolds with smooth boundary� �g� ����
� manifolds with boundary having singularities �corner or cuspidal points��
�g� ���� ����

���
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M

Aq�

q�

M

Aq�

q�

Figure ���� Orbit an open set Figure ���� Orbit a manifold
with smooth boundary

M

Aq�

q�
M

Aq�

q�

Figure ���� Orbit a manifold
with nonsmooth boundary

Figure ���� Orbit a manifold
with nonsmooth boundary
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One can easily construct control systems �e�g� in the plane� that realize these
possibilities�
On the other hand� Krener�s theorem prohibits an attainable set Aq� of a

bracket
generating family to be�

� a lower
dimensional subset of M � �g� ����
� a set where boundary points are isolated from interior points� �g� ����

M M

Figure ���� Subset of non
full
dimension

Figure ���� Subset with isolated
boundary points

Now we prove Krener�s theorem�

Proof� Fix an arbitrary point q� �M and take a point q� � Aq� � We show that

q� � intAq� � �����

��� There exists a vector �eld f� � F such that f��q�� �� �� otherwise Lieq��F� �
� and dimM � �� The curve

s� �� q� 	 es�f� � s� � ��� ��� �����

is a �
dimensional submanifold of M for small enough � � ��
If dimM � �� then q� 	 es�f� � intAq� for su�ciently small s� � �� and

inclusion ����� follows�

��� Assume that dimM � �� Then arbitrarily close to q� we can �nd a point q�
on curve ����� and a �eld f� � F such that the vector f��q�� is not tangent to
curve ������

q� � q� 	 et��f� � t�� su�ciently small�

�q� 	 f�� � �q� 	 f�� �� ��

otherwise dimLieq F � � for q on curve ����� with small s�� Then the mapping

�s�� s�� �� q� 	 es�f� 	 es�f� � s� � �� s� � �� �����
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is an immersion in a small neighborhood of the origin in R�
s��s� � thus its image

is a �
dimensional submanifold of M �
If dimM � �� inclusion ����� is proved�

��� Assume that dimM � �� We can �nd a vector f	�q�� f	 � F � not tangent to
surface ����� su�ciently close to q�� there exist t��� t�� � � and f	 � F such that

the vector �eld f	 is not tangent to surface ����� at a point q� � q� 	 et��f� 	 et��f� �
Otherwise the family F is not bracket
generating�
The mapping

�s�� s�� s	� �� q� 	 es�f� 	 es�f� 	 es�f� � si � ��

is an immersion in a small neighborhood of the origin in R	
s��s��s�

� thus its image
is a smooth �
dimensional submanifold of M �
If dimM � �� inclusion ����� follows� Otherwise we continue this procedure�

��� For dimM � n� inductively� we �nd a point

�t�n��� t
�
n��� � � � � t

n��
n��� � Rn��� tin�� � �

and �elds f�� � � � � fn � F such that such that the mapping

�s�� � � � � sn� �� qn�� 	 es�f� 	 
 
 
 	 esnfn � si � ��

qn�� � q� 	 et�n��f� 	 et�n��f� 	 
 
 
 	 etn��n��fn�� �

is an immersion� The image of this immersion is an n
dimensional submanifold
of M � thus an open set� This open set is contained in Aq� and can be chosen
as close to the point q� as we wish� Inclusion ����� is proved� and the theorem
follows�

We obtain the following proposition from Krener�s theorem�

Corollary 
��� Let F � VecM be a bracket�generating system� If Aq��F� � M
for some q� �M � then Aq� �F� � M �

Proof� Take an arbitrary point q �M � We show that q � Aq� �F��
Consider the system

�F � f�V j V � Fg � VecM�

This system is bracket
generating� thus by Theorem ���

Aq��F� � intAq��F� �q �M�

Take any point bq � intAq��F� and a neighborhood of this point Obq � Aq��F��
Since Aq��F� is dense in M � then

Aq� �F� �Obq �� ��




��� COMPATIBLE VECTOR FIELDS AND RELAXATIONS ���

That is why Aq� �F� �Aq��F� �� �� i�e�� there exists a point
q� � Aq� �F� �Aq��F��

In other words� the point q� can be represented as follows�

q� � q� 	 et�f� 	 
 
 
 	 etkfk � fi � F � ti � ��
q� � q 	 e�s�g� 	 
 
 
 	 e�slgl � gi � F � si � ��

We multiply both decompositions from the right by eslgl 	 
 
 
 	 es�g� and obtain
q � q� 	 et�f� 	 
 
 
 	 etkfk 	 eslgl 	 
 
 
 	 es�g� � Aq��F��

q�e�d�

The sense of the previous proposition is that in the study of controllability�
we can replace the attainable set of a bracket
generating system by its closure�
In the following section we show how one can add new vector �elds to a system
without change of the closure of its attainable set�

��� Compatible vector �elds and relaxations

De�nition 
��� A vector �eld f � VecM is called compatible with a system
F � VecM if

Aq�F � f� � Aq�F� �q �M�

Easy compatibility condition is given by the following statement�

Proposition 
��� Let F � VecM � For any vector �elds f�� f� � F � and any
functions a�� a� � C��M �� a�� a� � �� the vector �eld a�f�" a�f� is compatible
with F �
In view of Corollary ���� the following proposition holds�

Corollary 
��� If F � VecM is a bracket�generating system such that the
positive convex cone generated by F

cone�F� �
�

kX
i��

aifi j fi � F � ai � C��M �� ai � �� k � N
�
� VecM

is symmetric� then F is completely controllable�

Proposition ��� is a corollary of the following general and strong statement�

Theorem 
��� Let X� � Y� � � � ��� t��� be nonautonomous vector �elds with a
common compact support� Let � � ��� � � � be a measurable function� Then
there exists a sequence of nonautonomous vector �elds Zn

� � fX� � Y�g� i�e��
Zn
� � X� or Y� for any � and n� such that the 	ow

��
exp

Z t

�

Zn
� d� � ��

exp

Z t

�

���� �X� " ��� ��� ��Y� � d�� n���
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uniformly w�r�t� �t� q� � ��� t�� �M and uniformly with all derivatives w�r�t�
q �M �

Now Proposition ��� follows� in the case a��x� " a��x� � � it is a corollary
of Theorem ���� for the case a��x�� a��x� � � we generalize by multiplication of
control parameters by arbitrary positive function �this does not change attain

able set for all nonnegative times�� and the case a��x�� a��x� � � is obtained by
passage to limit�

X�

Y�

Z
n

�

Figure ���� Approximation of �ow� Th� ���

Theorem ��� follows from the next two lemmas�

Lemma 
��� Under conditions of Theorem ���� there exists a sequence of non�
autonomous vector �elds Zn

� � fX� � Y�g such thatZ t

�

Zn
� d� �

Z t

�

���� �X� " ��� ��� ��Y� � d�

uniformly w�r�t� �t� q� � ��� t�� �M and uniformly with all derivatives w�r�t�
q �M �

Proof� Fix an arbitrary positive integer n� We can choose a covering of the
segment ��� t�� by subsets

N�
i��

Ei � ��� t��

such that

�i � �� � � � � N �Xi� Yi � VecM s�t� kX� �Xikn�K � �

n
� kY� �Yikn�K � �

n
�

where K is the compact support of X� � Y� � Indeed� the �elds X� � Y� are
bounded in the norm k 
 kn���K � thus they form a precompact set in the topology
induced by k 
 kn�K �
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Then divide Ei into n subsets of equal measure�

Ei �
n�
j��

Eij� jEijj � �

n
jEij� i� j � �� � � � � n�

In each Eij pick a subset Fij so that

Fij � Eij� jFijj �
Z
Eij

��� � d��

Finally� de�ne the following vector �eld�

Zn
� �

�
X� � � � Fij�
Y� � � � Eij nFij�

Then the sequence of vector �elds Zn
� is the required one�

Now we prove the second part of Theorem ����

Lemma 
��� Let Zn
� � n � �� �� � � � � and Z� � � � ��� t��� be nonautonomous

vector �elds on M � bounded w�r�t� � � and let these vector �elds have a compact
support� If Z t

�

Zn
� d� �

Z t

�

Z� d�� n���

then
��
exp

Z t

�

Zn
� d� � ��

exp

Z t

�

Z� d�� n���

the both convergences being uniform w�r�t� �t� q� � ��� t���M and uniform with
all derivatives w�r�t� q �M �

Proof� ��� First we prove the statement for the case Z� � �� Denote the �ow

Pn
t �

��
exp

Z t

�

Zn
� d��

Then

Pn
t � Id"

Z t

�

Pn
� 	 Zn

� d�

integrating by parts

� Id"Pn
t 	

Z t

�

Zn
� d� �

Z t

�

�
Pn
� 	 Zn

� 	
Z �

�

Z�
� d	

�
d��

Since

Z t

�
Zn
� d� � �� the last two terms above tend to zero� thus

Pn
t � Id�
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and the statement of the lemma in the case Z� � � is proved�

��� Now we consider the general case� Decompose vector �elds in the sequence
as follows�

Zn
� � Z� " V n

� �

Z t

�

V n
� d� � �� n���

Denote Pn
t �

��
exp

Z t

�

V n
� d� � From the variations formula� we have

��
exp

Z t

�

Zn
� d� �

��
exp

Z t

�

�V n
� " Z� � d� �

��
exp

Z t

�

AdPn
� Z� d� 	 Pn

t �

Since Pn
t � Id by part ��� of this proof and thus Ad Pn

t � Id� we obtain the
required convergence�

��
exp

Z t

�

Zn
� d� �

��
exp

Z t

�

Z� d��

So we proved Theorem ��� and thus Proposition ����

Remark� If the �elds X� � Y� are piecewise continuous w�r�t� � � then the approx

imating �elds Zn

� in Theorem ��� can be chosen piecewise constant�

��� Poisson stability

De�nition 
��� Let f � VecM be a complete vector �eld� A point q � M is
called Poisson stable for f if for any t � � and any neighborhood Oq of q there

exists a point q� � Oq and a time t� � t such that q� 	 et�f � Oq�

In other words� all trajectories cannot leave a neighborhood of a Poisson sta

ble point forever� some of them must return to this neighborhood for arbitrarily
large times�

Remark� If a trajectory q 	 etf is periodic� then q is Poisson stable for f �
De�nition 
��� A complete vector �eld f � VecM is Poisson stable if all
points of M are Poisson stable for f �

The condition of Poisson stability seems to be rather restrictive� but never

theless there are surprisingly many Poisson stable vector �elds in applications�
see Poincar%e�s theorem below�
But �rst we prove a consequence of Poisson stability for controllability�

Proposition 
��� Let F � VecM be a bracket�generating system� If a vector
�eld f � F is Poisson stable� then the �eld �f is compatible with F �
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Proof� Choose an arbitrary point q� �M and a moment of time t � �� To prove
the statement� we should approximate the point q� 	 e�tf by reachable points�
Since F is bracket
generating� we can choose an open set W � intAq��F�

arbitrarily close to q�� Then the set W 	 e�tf is close enough to q� 	 e�tf �
By Poisson stability� there exists t� � t such that

� �� �
W 	 e�tf � 	 et�f �W 	 e�tf �W 	 e�t��t�f �W 	 e�tf �

But W 	 e�t��t�f � Aq� �F�� thus
Aq� �F� �W 	 e�tf �� ��

So in any neighborhood of q�	e�tf there are points of the attainable set Aq� �F��
i�e�� q� 	 e�tf � Aq� �F��
Theorem 
�� �Poincar�e�� Let M be a smooth manifold with a volume form
Vol� Let a vector �eld f � VecM be complete and its 	ow etf preserve volume�
Let W �M � W � intW � be a subset of �nite volume� invariant for f 


Vol�W � ��� W 	 etf � W �t � ��
Then all points of W are Poisson stable for f �

Proof� Take any point q �W and any its neighborhood O �M of �nite volume�
The set V � W �O contains an open nonempty subset intW �O� thus Vol�V � �
�� In order to prove the theorem� we show that

V 	 et�f � V �� � for some large t��

Fix any t � �� Then all sets

V 	 entf � n � �� �� �� � � � �

have the same positive volume� thus they cannot be disjoint� Indeed� if

V 	 entf � V 	 emtf � � �n� m � �� �� �� � � � �

then Vol�W � � � since all these sets are contained in W � Consequently� there
exist nonnegative integers n � m such that

V 	 entf � V 	 emtf �� ��
We multiply this inequality by e�mtf from the right and obtain

V 	 e�n�m�tf � V �� ��
Thus the point q is Poisson stable for f � Since q �W is arbitrary� the theorem
follows�

A vector �eld that preserves volume is called conservative�
Recall that a vector �eld on Rn � f�x�� � � � � xn�g is conservative� i�e�� pre


serves the standard volume Vol�V � �
R
V
dx� � � � dxn i� it is divergence
free�

divx f �
nX
i��


 fi

 xi

� �� f �
nX
i��

fi




 xi
�
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��� Controlled rigid body� attainable sets

We apply preceding general results on controllability to the control system that
governs rotations of the rigid body� see ��������

!Q
!�

�
� f�Q��� � g�Q���� �Q��� � SO����R	� �����

f �

�
Qb��
�� ��

�
� g �

�
�
l

�
�

By Proposition ���� the vector �eld f � �
� �f " g� " �

� �f � g� is compatible with
system ������ We show now that this �eld is Poisson stable on SO����R	�
Consider �rst the vector �eld f�Q��� on the larger space R�

Q�R	
�� where R

�
Q

is the space of all ��� matrices� Since div�Q��� f � �� the �eld f is conservative
on R�

Q�R	
��

Further� since the �rst component of the �eld f is linear in Q� it has the
following left
invariant property in Q�

etf
�

Q
�

�
�

�
Qt

�t

�
 etf

�
PQ
�

�
�

�
PQt

�t

�
� �����

Q� Qt� P � R�
Q� �� �t � R	

��

In view of this property� the �eld f has compact invariant sets in R�
Q �R	

� of
the form

W � �SO���K� � f ��� �� � C g� K b R�
Q� K � intK� C � ��

so that W � intW � By Poincar%e�s theorem� the �eld f is Poisson stable on all
such sets W � thus on R�

Q � R	
�� In view of the invariance property ������ the

�eld f is Poisson stable on SO����R	�
Since f is compatible with ������ then �f is also compatible� The vector

�elds �g � �f � g�� f are compatible with ����� as well� So all vector �elds of
the symmetric system

span�f� g� � faf " bg j a� b � C�g
are compatible with the initial system� Thus closures of attainable sets of the
initial system ����� and the extended system span�f� g� coincide one with an

other�
Let the initial system be bracket
generating� Then the symmetric system

span�f� g� is bracket
generating as well� thus completely controllable� Hence the
initial system ����� is completely controllable in the bracket
generating case�
In the non
bracket
generating cases� the structure of attainable sets is more

complicated� If l is a principal axis of inertia� then the orbits of system �����
coincide with attainable sets� If l � )� n Re�� they do not coincide� This
is easy to see from the phase portrait of the vector �eld f��� � � � �� in
the plane )�� the line Re� consists of equilibria of f � and in the half
planes
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)� nRe� trajectories of f are semicircles centered at the origin� The �eld f is
not Poisson stable in the planes )�� The case l � )� n Re� di�ers from the
bracket
generating case since the vector �eld f preserves volume in R	� but not
in )��
A detailed analysis of the controllability problem in the non
bracket
genera


ting cases was performed in �����
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Chapter 


Feedback and state

equivalence of control

systems

��� Feedback equivalence

Consider control systems of the form

!q � f�q� u�� q �M� u � U� �����

We suppose that not only M � but also U is a smooth manifold� For the right

hand side� we suppose that for all �xed u � U � f�q� u� is a smooth vector �eld
on M � and� moreover� the mapping

�u� q� �� f�q� u�

is smooth� Admissible controls are measurable locally bounded mappings

t �� u�t� � U

�for simplicity� one can consider piecewise continuous controls�� If such a control
u�t� is substituted to control system ������ one obtains a nonautonomous ODE

!q � f�q� u�t��� �����

with the right
hand side smooth in q and measurable� locally bounded in t�
For such ODEs� there holds a standard theorem on existence and uniqueness of
solutions� at least local� Solutions q�
� to ODEs ����� are Lipschitzian curves
in M �see Subsection �������
In Section ��� we already considered state transformations of control systems�

i�e�� di�eomorphisms of M � State transformations map trajectories of control

���
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systems to trajectories� with the same control� Now we introduce a new class
of feedback transformations� which also map trajectories to trajectories� but
possibly with a new control�
Denote the space of new control parameters by bU � We assume that it is a

smooth manifold�

De�nition ���� Let � � M � bU � U be a smooth mapping� A transformation
of the form

f�q� u� �� f�q� ��q� bu��� q �M� u � U� bu � bU�
is called a feedback transformation�

Remark� A feedback transformation reparametrizes control u in a way depend

ing on q�
It is easy to see that any admissible trajectory q�
� of the system !q �

f�q� ��q� bu�� corresponding to a control bu�
� is also admissible for the system
!q � f�q� u� with the control u�
� � ��q�
�� bu�
��� but� in general� not vice versa�
In order to consider feedback equivalence� we consider invertible feedback

transformations with bU � U� �jqU � Di� U�
Such mappings � � M � U � U generate feedback transformations

f�q� u� �� f�q� ��q� u���

The corresponding control systems

!q � f�q� u� and !q � f�q� ��q� u��

are called feedback equivalent �
Our aim is to simplify control systems with state and feedback transforma


tions�

Remark� In mathematical physics� feedback transformations are often called
gauge transformations�

Consider control
a�ne systems

!q � f�q� "
kX
i��

uigi�q�� u � �u�� � � � � uk� � Rk� q �M� �����

To such systems� it is natural to apply control
a�ne feedback transformations�

� � ���� � � � � �k� � M �Rk� Rk�

�i�q� u� � ci�q� "
kX
j��

dij�q�uj � i � �� � � � � k� �����

Our aim is to characterize control
a�ne systems ����� which are locally equi

valent to linear controllable systems w�r�t� state and feedback transforma

tions ����� and to classify them w�r�t� this class of transformations�
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��� Linear systems

First we consider linear controllable systems

!x � Ax"
kX
i��

uibi� x � Rn� u � �u�� � � � � uk� � Rk� �����

where A is an n� n matrix and bi� i � �� � � � � k� are vectors in Rn� We assume
that the vectors b�� � � � � bk are linearly independent�

dimspan�b�� � � � � bk� � k�

If this is not the case� we eliminate some bi�s� We �nd normal forms of linear
systems w�r�t� linear state and feedback transformations�
To linear systems ����� we apply feedback transformations which have the

form ����� and� moreover� preserve the linear structure�

ci�x� � hci� xi� ci � Rn�� i � �� � � � � k�
dij�x� � dij � R� i� j � �� � � � � k�

�����

Denote by D � span�b�� � � � � bk�� span�b�� � � � � bk� the linear operator with the
matrix �dij� in the base b�� � � � � bk� Linear feedback transformations ������ �����
map the vector �elds in the right
hand side of the linear system ����� as follows�

�Ax� b�� � � � � bk� ��
�
Ax"

kX
i��

hci� xibi� Db�� � � � � Dbk
�
� �����

Such mapping should be invertible� so we assume that the operator D �or�
equivalently� its matrix �dij�� is invertible�
Linear state transformations act on linear systems as follows�

�Ax� b�� � � � � bk� ��
�
CAC��x�Cb�� � � � � Cbk

�
� �����

where C � Rn� Rn is an invertible linear operator� State equivalence of linear
systems means that these systems have the same coordinate representation in
suitably chosen bases in the state space Rn�

����� Linear systems with scalar control

Consider a simple model linear control system # scalar high
order control�

x�n� "
n��X
i��

�ix
�i� � u� u � R� x � R� �����

where ��� � � � � �n�� � R� We rewrite this system in the standard form in the
variables xi � x�i���� i � �� � � � � n���������

!x� � x��


 
 

!xn�� � xn�

!xn � �
Pn��

i�� �ixi�� " u�

u � R� x � �x�� � � � � xn� � Rn� ������
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It is easy to see that if we take �Pn��
i�� �ixi�� " u as a new control� i�e�� apply

the feedback transformation ������ ����� with

k � �� c � ����� � � � ���n���� d � ��

then system ������ maps into the system��������
!x� � x��


 
 

!xn�� � xn�

!xn � u�

u � R� x � �x�� � � � � xn� � Rn� ������

which is written in the scalar form as

x�n� � u� u � R� x � R� ������

So system ������ is feedback equivalent to system �������
It turns out that the simple systems ������ and ������ are normal forms of

linear controllable systems with scalar control under state transformations and
state
feedback transformations respectively�

Proposition ���� Any linear controllable system with scalar control

!x � Ax" ub� u � R� x � Rn� ������

span�b� Ab� � � � � An��b� � Rn� ������

is state equivalent to a system of the form ������� thus state�feedback equivalent
to system �������

Proof� We �nd a basis e�� � � � � en in Rn in which system ������ is written in the
form ������� Coordinates y�� � � � � yn of a point x � Rn in a basis e�� � � � � en are
found from the decomposition

x �
nX
i��

yiei�

In view of the desired form ������� the vector b should have coordinates b �
��� � � � � �� ���� thus the n
th basis vector is uniquely determined�

en � b�

Now we �nd the rest basis vectors e�� � � � � en��� We can rewrite our linear
system ������ as follows�

!x � Ax mod Rb�

then we obtain in coordinates�

!x �
nX
i��

!yiei �
nX
i��

yiAei mod Rb�
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thus
n��X
i��

!yiei �
n��X
i��

yi��Aei�� mod Rb�

The required di�erential equations�

!yi � yi��� i � �� � � � � n� ��

are ful�lled in a basis e�� � � � � en if and only if the following equalities hold�

Aei�� � ei " �ib� i � �� � � � � n� �� ������

Ae� � ��b ������

for some numbers ��� � � � � �n�� � R�
So it remains to show that we can �nd basis vectors e�� � � � � en�� which

satisfy equalities ������� ������� We rewrite equality ������ in the form

ei � Aei�� � �ib� i � �� � � � � n� �� ������

and obtain recursively�

en � b�
en�� � Ab� �n��b�
en�� � A�b� �n��Ab� �n��b�

 
 

e� � An��b� �n��An��b� 
 
 
 � ��b�

������

So equality ������ yields

Ae� � Anb� �n��An��b� 
 
 
 � ��Ab � ��b�

The equality

Anb �
n��X
i��

�iA
ib ������

is satis�ed for a unique n
tuple ���� � � � � �n��� since the vectors b� Ab� � � � � An��b
form a basis of Rn �in fact� �i are coe�cients of the characteristic polynomial
of A��
With these numbers �i� the vectors e�� � � � � en given by ������ form the re


quired basis� Indeed� equalities ������� ������ hold by construction� The vectors
e�� � � � � en are linearly independent by the controllability condition �������

Remark� The basis e�� � � � � en constructed in the previous proof is unique� thus
the state transformation that maps a controllable linear system with scalar
control ������ to the normal form ������ is also unique�
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����� Linear systems with vector control

Now consider general controllable linear systems�

!x � Ax"
kX
i��

uibi� x � Rn� u � �u�� � � � � uk� � Rk� ������

spanfAjbi j j � �� � � � � n� �� i � �� � � � � kg � Rn� ������

Recall that we assume vectors b�� � � � � bk linearly independent�
In the case k � �� all controllable linear systems in Rn are state
feedback

equivalent to the normal form ������� thus there are no state
feedback invariants
in a given dimension n� If k � �� this is not the case� and we start from
description of state
feedback invariants�

Kronecker indices

Consider the following subspaces in Rn�

Dm � spanfAjbi j j � �� � � � �m � �� i � �� � � � � kg� m � �� � � � � n� ������

Invertible linear state transformations ����� preserve dimension of these sub

spaces� thus the numbers

dimDm� m � �� � � � � n�

are state invariants�
Now we show that invertible linear feedback transformations ����� preserve

the spaces Dm� Any such transformation can be decomposed into two feedback
transformations of the form�

�Ax� b�� � � � � bk� �� �Ax"
kX
i��

hci� xibi� b�� � � � � bk�� ������

�Ax� b�� � � � � bk� �� �Ax�Db�� � � � � Dbk�� ������

Transformations ������� i�e�� changes of bi� obviously preserve the spaces D
m�

Consider transformations ������� Denote the new matrix�

bAx � Ax"
kX
i��

hci� xibi�

We have� bAjx � Ajx mod Dj � j � �� � � � � n� ��
But Dm�� � Dm � m � �� � � � � n� thus feedback transformations ������ preserve
the spaces Dm� m � �� � � � � n�
So the spaces Dm� m � �� � � � � n� are invariant under feedback transforma


tions� and their dimensions are state
feedback invariants�
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Now we express the numbers dimDm� m � �� � � � � n� through other integers
# Kronecker indices� Construct the following n� k matrix whose elements are
n
dimensional vectors� �BBB�

b� 
 
 
 bk
Ab� 
 
 
 Abk
���

���
���

An��b� 
 
 
 An��bk

�CCCA � ������

Replace each vector Ajbi� j � �� � � � � n � �� i � �� � � � � k� in this matrix by a
sign� cross � or circle 	� by the following rule� We go in matrix ������ by rows�
i�e�� order its elements as follows�

b�� � � � � bk� Ab�� � � � � Abk� � � � � A
n��b�� � � � � An��bk� ������

A vector Ajbi in matrix ������ is replaced by � if it is linearly independent of
the previous vectors in chain ������� otherwise it is replaced by 	� After this
procedure we obtain a matrix of the form�

- �

�BBBBB�
� � � � 
 
 
 �
� 	 � � 
 
 
 	
� 	 	 � 
 
 
 	
���

���
���

���
���

���
	 	 	 � 
 
 
 	

�CCCCCA �

Notice that there are some restrictions on appearance of crosses and circles in
matrix -� The total number of crosses in this matrix is n �by the controllability
condition �������� and the �rst row is �lled only with crosses �since b�� � � � � bk
are linearly independent�� Further� if a column of - contains a circle� then all
elements below it are circles as well� Indeed� if a vector Ajbi in ������ is replaced
by circle in -� then

Ajbi � spanfAjb j � � ig" spanfA�b j � � j� � � �� � � � � kg�
Then the similar inclusions hold for all vectors Aj��bi� � � � � A

n��bi� i�e�� below
circles are only circles� So each column in the matrix - consists of a column of
crosses over a column of circles �the column of circles can be absent��
Denote by n� the height of the highest column of crosses in the matrix -� by

n� the height of the next highest column of crosses� � � � � and by nk the height
of the lowest column of crosses in -� The positive integers obtained�

n� � n� � 
 
 
 � nk

are called Kronecker indices of the linear control system ������� Since the total
number of crosses in matrix - is equal to dimension of the state space� then

kX
i��

ni � n�
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Moreover� by the construction� we have

span�b�� Ab�� � � � � A
n���b�� � � � � bk� Abk� � � � � Ank��bk� � Rn� ������

Now we show that Kronecker indices ni are expressed through the numbers
dimDi� We have�

dimD� � k � number of crosses in the �rst row of -�

dimD� � number of crosses in the �rst � rows of -�


 
 

dimDi � number of crosses in the �rst i rows of -�

so that

&�i�
def
� dimDi � dimDi�� � number of crosses in the i
th row of -�

Permute columns in matrix -� so that the �rst column become the highest one�
the second column becomes the next highest one� etc� We obtain an n�k
matrix
in the �block
triangular form� This matrix rotated at the angle ��� gives the
subgraph of the function & � f�� � � � � ng � f�� � � � � kg� It is easy to see that the
values of the Kronecker indices is equal to the points of jumps of the function
&� and the number of Kronecker indices for each value is equal to the height of
the corresponding jump of &�
So Kronecker indices are expressed through dimDi� i � �� � � � � k� thus are

state
feedback invariants�

Brunovsky normal form

Now we �nd normal forms of linear systems under state and state
feedback
transformations� In particular� we show that Kronecker indices form a complete
set of state
feedback invariants of linear systems�

Theorem ���� Any controllable linear system ������� ������ with k control pa�
rameters is state equivalent to a system of the form��������������

!y�� � y���

� � �

!y�n��� � y�n� �

!y�n� � �
X

��j�k
��i�nj��

��ijy
j
i�� " u��

� � � � �

��������������

!yk� � yk� �

� � �

!yknk�� � yknk �

!yknk � �
X

��j�k
��i�nj��

�kijy
j
i�� " uk�

������

where

x �
X

��i�k
��j�ni

yije
i
j� ������
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and state�feedback equivalent to a system of the form����
y
�n��
� � u��


 
 

y
�nk�
k � uk�

������

where ni� i � �� � � � � k� are Kronecker indices of system �������

System ������ is called the Brunovsky normal form of the linear system �������
We prove Theorem ����

Proof� We show �rst that any linear controllable system ������ can be written�
in a suitable basis in Rn�

e��� � � � � e
�
n� � � � � � � e

k
�� � � � � e

k
nk ������

in the canonical form �������
We proceed exactly as in the scalar
input case �Subsection ������� The re


quired canonical form ������ determines uniquely the last basis vectors in all k
groups�

e�n� � b�� � � � � e
k
nk � bk� ������

Denote the space B � span�b�� � � � � bk�� Then our system

!x � Ax mod B

reads in coordinates as follows�

!x �
X

��i�k
��j�ni

!yije
i
j �

X
��i�k
��j�ni

yijAe
i
j mod B�

In view of the required equations

!yij � yij��� � � i � k� � � j � ni�

we have X
��i�k
��j
ni

yij��e
i
j �

X
��i�k
��j�ni

yijAe
i
j mod B�

or� equivalently� X
��i�k
��j�ni

yije
i
j�� �

X
��i�k
��j�ni

yijAe
i
j mod B�

So the following relations should hold for the required basis vectors�

Aeij � eij�� mod B� � � i � k� � � j � ni� ������

Aei� � � mod B� � � i � k� ������
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We resolve equations ������ recursively starting from ������� for all i � �� � � � � k�

eini � bi�

eini�� � Abi �
kX

��

�i�ni��b �

eini�� � A�bi �
kX

��

�i�ni��Ab �
kX

��

�i�ni��b �

� � �

ei� � Ani��bi �
kX

��

�i�ni��A
ni��b � 
 
 
 �

kX
��

�i��b �

while ������ yields

Aei� �
kX

��

�i��b

for some constants �i�j� � � i � k� � � j � ni� � � � � k� We obtain the
equation

Anibi �
kX

��

�i�ni��A
ni��b " 
 
 
"

kX
��

�i��b �

which has a unique solution in �i�j in view of �������
So we proved that there exists a unique linear state transformation that

maps a linear controllable system ������ to the canonical form �������
Choosing new controls

�
X

��j�k
��i�nj��

�lijy
j
i�� " ul� l � �� � � � � k�

we see that each of the k subsystems in ������ is feedback equivalent to a system
of the form ������� or� equivalently� ������� Thus the whole system ������ is
state
feedback equivalent to the Brunovsky normal form �������

��� State
feedback linearizability

Consider a nonlinear control
a�ne system�

!q � f�q� "
kX

j��

ujgj�q�� u � �u�� � � � � uk� � Rk� q �M� ������

We are interested� when such a system is locally state
feedback equivalent to a
controllable linear system�
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De�nition ���� System ������ is called locally state�feedback equivalent to a
linear system ������ in a neighborhood of a point q� �M � if there exist a state
transformation # a di�eomorphism

� � Oq� � bO � Rn
from a neighborhood Oq� of q� in M onto an open subset bO � Rn� and a
feedback transformation

� � Oq� �Rk� Rk�

��q� u� �

�� a��q�

 
 

ak�q�

�A"D�q�u� ������

with an invertible and smooth in q matrix

D�q� � �dij�q��� i� j � �� � � � � k�

such that the state
feedback transformation ��� �� maps system ������ restricted

to Oq� to a linear system ������ restricted to bO�
We can generalize the construction of the subspaces Dm ������ for the case

of nonlinear systems ������� consider the families of subspaces

Dm
q � spanf�adf�jgi�q� j j � �� � � � �m� �� i � �� � � � � kg � TqM�

Notice that� in general� dimDm
q �� const� thus Dm is not a distribution�

Observe that for controllable linear systems ������� the following properties
hold for the familyDm

x � Dm� x � Rn�
�� dimDm

x � const�

�� Dn
x � TxR

n�

�� the distributionsDm� m � �� � � � � n� are integrable �since they are spanned
by the constant vector �elds Ajbi��

Before formulating conditions for state
feedback linearizability of nonlinear
systems� which are given in terms of the families Dm

q � we prove the following
property of these families�

Lemma ���� If the families Dm� m � �� � � � � n� are involutive� then they are
feedback�invariant�

Proof� Notice �rst that feedback transformations ������ can be decomposed into
transformations of the two kinds�

�f� g�� � � � � gk� �� �f " ajgj� g�� � � � � gk�� ������

�f� g�� � � � � gk� �� �f�Dg�� � � � � Dgk�� ������
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where D�q� � �dij�q��� i� j � �� � � � � k� is invertible and smooth w�r�t� q� We
prove the lemma by induction on m�
Let m � �� The family

D� � spanfgi j i � �� � � � � kg

is obviously preserved by the both transformations ������ and �������
Induction step� we assume that the statement is proved for m�� and prove

it for m� The family

Dm � f�f�X� j X � Dm��g"Dm��

is preserved by transformation ������� Consider transformation ������� We have

�f " ajgj� X� � �f�X�� �X� ajgj� � �f�X�� �Xaj �gj � aj�X� gj��

Further�

X � Dm��  �f�X� � Dm�

�Xaj�gj � D� � Dm�

X � Dm��� gj � D� � Dm��  �X� gj� � Dm�� � Dm�

thus
�f " ajgj � X� � Dm � X � Dm���

So Dm is preserved by feedback transformation �������

Theorem ���� System ������ is locally state�feedback equivalent to a control�
lable linear system ������ if and only if


��� dimDm
q � m � �� � � � � n� does not depend on q� i�e�� Dm are distributions�

��� Dn
q � TqM �

��� the distributions Dm� m � �� � � � � n� are involutive�

Conditions ������� are necessary for local state
feedback linearizability� see
discussion before Lemma ����
We prove su�ciency in Theorem ��� below only in the case of scalar control

parameter� For k � � we have the system

!q � f�q� " ug�q�� u � R� q �M� ������

and the corresponding families of subspaces

Dm
q � spanf�adf�ig�q� j i � �� �� � � � �m� �g� m � �� � � � � n� q �M�

In this case it happens that involutivity ofDn�� implies involutivity of Dm with
smaller m�
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Theorem ���� System ������ is locally state�feedback equivalent to a control�
lable linear system ������ if and only if


��� Dn
q � TqM �

��� the distribution Dn�� is involutive�

First we prove the following proposition of general interest� integral mani

folds of integrable distributions can be smoothly parametrized�

Lemma ���� Let & � spanfX�� � � � � Xkg be an integrable distribution on a
smooth n�dimensional manifold M � dim&q � k� Then for any point q� � M
there exist a neighborhood q� � Oq� �M and a smooth vector�function

� � Oq� � Rn�k

such that


��� rank��q � n� k� q � Oq� � and

��� ����y� is an integral manifold of & for any y � ��Oq� �� or� equivalently�

���� ker��q � &q� q � Oq� �

Proof� Complete the vector �elds X�� � � � � Xk to a basis�

spanfY�� � � � � Yn�k� X�� � � � � Xkg � VecOq� �

for a su�ciently small neighborhood q� � Oq� �M � Consider the mapping

� � �t� s� �� q� 	 et�Y� 	 
 
 
 	 etn�kYn�k 	 es�X� 	 
 
 
 	 eskXk �

t � �t�� � � � � tn�k� � Rn�k� s � �s�� � � � � sk� � Rk�

We have


 �


 ti

����
�

� Yi� i � �� � � � � n� k�


 �


 si

����
�

� Xi� i � �� � � � � k�

thus � is a local di�eomorphism in a neighborhood of � � Rn�
Further� for �xed t � t�� the set

f��t�� s� j s � Rkg
is an integral manifold of &�
Finally� locally� by the implicit function theorem� there exists a well
de�ned

smooth mapping
� � ��t� s� �� t�

It is the required vector
function�
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Now we prove Theorem ����

Proof� Necessity is already known since for linear controllable systems both
conditions ���� ��� hold� see discussion before Lemma ����
To prove su�ciency� we construct coordinates in which our system ������ is

simpli�ed� and then apply a feedback transformation which maps this system
to the normal form �������
Since the distribution Dn�� is integrable� then by Lemma ��� there exists a

smooth function
�� � Oq� � R

such that

dq�� �� �� hdq��� Dn��
q i � �� q � Oq� � ������

De�ne the following functions in the neighborhood Oq� �

�� � f�� � hd��� fi�
�	 � f�� � f����


 
 

�n � f�n�� � fn����

�iterated directional derivatives along the vector �eld f��
We claim that the functions ��� � � � � �n �which will be the coordinates that

simplify ������� have the following property�

�ad f�jg�l �

�
�� j " l � n�
��ad f�n��g�� �� �� j " l � n�

������

First of all� notice that b � �ad f�n��g��
��
Oq�

�� �� Indeed� we have

Dn��
q � spanfg�q�� � � � � �ad f�n��g�q�g�

TqM � spanfg�q�� � � � � �adf�n��g�q�g � spanfDn��
q � �adf�n��g�q�g�

thus the equality �ad f�n��g���q� � � is incompatible with properties �������
Now we prove ������ by induction on l� If l � �� there is nothing to prove�
Assume that equality ������ is proved for l � � and prove it for l� We have

�ad f�jg�l �
�
�ad f�jg 	 f��l��

�
�
�ad f�jg 	 f � f 	 �ad f�jg " f 	 �ad f�jg��l��

�
���f� �ad f�jg� " f 	 �ad f�jg��l��

�
���ad f�j��g " f 	 �ad f�jg��l���

If j"l � n� then j"l�� � n� and �ad f�jg�l�� � � by the induction assumption�
Thus

�ad f�jg�l � ��ad f�j��g�l�� for j " l � n�
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and equality ������ for l follows from this equality for l � ��
So equality ������ is proved for all l� Since the vectors g�q�� � � � � �ad f�n��g�q�

span the tangent space TqM for q � Oq� � the mapping

� �

�� ��

 
 

�n

�A � Oq� � Rn

is a local di�eomorphism� the di�erentials dq��� � � � � dq�n form a basis of T �qM
dual to g�q�� � � � � �ad f�n��g�q� � TqM �
Take � as a coordinate mapping� then coordinates of a point q �M are

xl � �l�q�� l � �� � � � � n�

Now we write our system !q � f�q�"ug�q� in these coordinates� we di�erentiate
xl with respect to this system�

d

d t
xl �

d

d t
�l�q�t�� � �f " ug��l � f�l " ug�l�

If l � n� then g�l � � by equality ������� thus

d

d t
xl � f�l � �l�� � xl��� l � �� � � � � n� ��

And if l � n� then

d

d t
xn � f�n " ug�n � f�n � ub� b � g�n �� ��

So in coordinates x�� � � � � xn our system ������ takes the form��������
!x� � x��


 
 

!xn�� � xn�

!xn � f�n � ub�

Now consider the feedback transformation

u ��  f�n � u

b
�

After this transformation the n
th component of our system reads

!xn � f�n �
�
 f�n � u

b

�
b � f�n � f�n " u � u�

i�e�� the whole system takes the required form �������
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Optimal control problem

���� Problem statement

Consider a control system of the form

!q � fu�q�� q �M� u � U � Rm� ������

Here M is� as usual� a smooth manifold� and U an arbitrary subset of Rm� For
the right
hand side of the control system� we suppose that�

q �� fu�q� is a smooth vector �eld on M for any �xed u � U� ������

�q� u� �� fu�q� is a continuous mapping for q �M � u � U � ������

and moreover� in any local coordinates on M

�q� u� �� 
 fu

 q

�q� is a continuous mapping for q �M � u � U � ������

Admissible controls are measurable locally bounded mappings

u � t �� u�t� � U�

Substitute such a control u � u�t� for control parameter into system ������� then
we obtain a nonautonomous ODE !q � fu�q�� By the classical Carath%eodory�s
Theorem� for any point q� �M � the Cauchy problem

!q � fu�q�� q��� � q�� ������

has a unique solution� see Subsec� ������ We will often �x the initial point q�
and then denote the corresponding solution to problem ������ as qu�t��
In order to compare admissible controls one with another on a segment ��� t���

introduce a cost functional �

J�u� �

Z t�

�

��qu�t�� u�t�� dt ������

���
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with an integrand
� � M � U � R

satisfying the same regularity assumptions as the right
hand side f � see �������
�������
Take any pair of points q�� q� �M � We consider the following optimal control

problem�

Problem� Minimize the functional J among all admissible controls u � u�t��
t � ��� t��� for which the corresponding solution qu�t� of Cauchy problem ������
satis�es the boundary condition

qu�t�� � q�� ������

This problem can also be written as follows�

!q � fu�q�� q �M� u � U � Rm� ������

q��� � q�� q�t�� � q�� ������

J�u� �

Z t�

�

��q�t�� u�t�� dt� min � �������

We study two types of problems� with �xed terminal time t� and free t�� A
solution u of this problem is called an optimal control � and the corresponding
curve qu�t� is an optimal trajectory �
So optimal control problem is the minimization problem for J�u� with con


straints on u given by control system and the �xed endpoints conditions �������
������� These constraints cannot usually be resolved with respect to u� thus
solving optimal control problems requires special techniques�

���� Reduction to study of attainable sets

Fix an initial point q� � M � Attainable set of control system ������ for time
t � � from q� with measurable locally bounded controls is de�ned as follows�

Aq� �t� � fqu�t� j u � L����� t�� U �g �
Similarly� one can consider the attainable sets for time not greater than t�

At
q� �

�
����t

Aq� �� �

and for arbitrary nonnegative time�

Aq� �
�

���
�
Aq� �� ��

It turns out that optimal control problems on the state space M can be
essentially reduced to the study of attainable sets of some auxiliary control
systems on the extended state spacecM � R�M � fbq � �y� q� j y � R� q �Mg�
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Namely� consider the following extended control system on cM �
d bq
d t
� bfu�bq�� bq � cM� u � U� �������

with the right
hand side

bfu�bq� � �
��q� u�
fu�q�

�
� q �M� u � U�

where � is the integrand of the cost functional J � see ������� Denote by bqu�t�
the solution of the extended system ������� with the initial conditions

bqu��� � �
y���
q���

�
�

�
�
q�

�
�

Proposition ����� Let q�u�t�� t � ��� t��� be an optimal trajectory in the prob�
lem �������������� with the �xed terminal time t�� Then the corresponding
trajectory bq�u�t� of the extended system ������� comes to the boundary of the
attainable set of this system


bq�u�t�� � 
 bA���q���t��� �������

Proof� Solutions bqu�t� of the extended system are expressed through solutions
qu�t� of the original system ������ as

bqu�t� � �
Jt�u�
qu�t�

�
�

where

Jt�u� �

Z t

�

��qu�� �� u�� �� d��

Thus attainable sets of the extended system ������� from the point ��� q�� have
the form bA���q���t� � f�Jt�u�� qu�t�� j u � L����� t�� U �g �
The set bA���q���t�� should not intersect the rayn

�y� q�� � cM j y � Jt��$u�
o
�

see �g� �����
Indeed� suppose that there exists a point

�y� q�� � bA���q���t��� y � Jt��$u��

Then the trajectory of the extended system bqu�t� that steers ��� q�� to �y� q���
bqu��� � �

�
q�

�
� bqu�t�� � �

y
q�

�
�
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q� q�

q

y�

y

�y�� q��

�

bA���q���t��

bq�u�t�

Figure ����� Optimal trajectory q�u�t�

gives a trajectory qu�t�� qu��� � q�� qu�t�� � q�� with a smaller value of the cost
functional�

Jt��u� � y � Jt��$u��

a contradiction with optimality of the trajectory q�u�t�� The required inclu

sion ������� follows�

So optimal trajectories �more precisely� their lift to the extended state spacecM � must come to the boundary of the attainable set bA���q���t��� In order to

�nd optimal trajectories� we �nd those coming to the boundary of bA���q���t���
and then select optimal among them� The �rst step is much more important
than the second one� so solving optimal control problems essentially reduces to
the study of dynamics of boundary of attainable sets�

���� Compactness of attainable sets

Due to the reduction of optimal control problems to the study of attainable sets�
existence of optimal solutions to these problems is reduced to compactness of
attainable sets�
For control system ������� su�cient conditions for compactness of the at


tainable sets Aq� �t� for time t and At
q� for time not greater than t are given in

the following proposition�

Theorem ���� �Filippov�� Let the space of control parameters U b Rm be
compact� Let there exist a compact K b M such that fu�q� � � for q �� K�
u � U � Moreover� let the velocity sets

fU �q� � ffu�q� j u � Ug � TqM� q �M�
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be convex� Then the attainable sets Aq��t� and At
q� are compact for all q� �M �

t � ��

Remark� The condition of convexity of the velocity sets fU �q� is natural in view
of Theorem ���� the �ow of the ODE

!q � ��t�fu��q� " ��� ��t��fu��q�� � � ��t� � ��
can be approximated by �ows of the systems of the form

!q � fv�q�� where v�t� � fu��t�� u��t�g�
Now we give a sketch of the proof of Theorem �����

Proof� Notice �rst of all that all nonautonomous vector �elds fu�q� with admis

sible controls u have a common compact support� thus are complete� Further�
under hypotheses of the theorem� velocities fu�q�� q �M � u � U � are uniformly
bounded� thus all trajectories q�t� of control system ������ starting at q� are
Lipschitzian with the same Lipschitz constant� Thus the set of admissible tra

jectories is precompact in the topology of uniform convergence� �We can embed
the manifoldM into a Euclidean space RN� then the space of continuous curves
q�t� becomes endowed with the uniform topology of continuous mappings from
��� t�� to RN�� For any sequence qn�t� of admissible trajectories�

!qn�t� � fun�qn�t��� � � t � t�� qn��� � q��

there exists a uniformly converging subsequence� we denote it again by qn�t��

qn�
�� q�
� in C��� t�� as n���

Now we show that q�t� is an admissible trajectory of control system �������
Fix a su�ciently small � � �� Then in local coordinates

�

�
�qn�t" ��� qn�t�� �

�

�

Z t��

t

fun�qn�� �� d�

� conv
�

���t�t���
fU �qn�� �� � conv

�
q�Oq�t��c��

fU �q��

where c is the doubled Lipschitz constant of admissible trajectories� Then we
pass to the limit n�� and obtain

�

�
�q�t " �� � q�t�� � conv

�
q�Oq�t��c��

fU �q��

Now let �� �� If t is a point of di�erentiability of q�t�� then

!q�t� � fU �q�

since fU �q� is convex�
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In order to show that q�t� is an admissible trajectory of control system �������
we should �nd a measurable selection u�t� � U that generates q�t�� We do this
via the lexicographic order on the set U � f�u�� � � � � um�g � Rm�
The set

Vt � fv � U j !q�t� � fv�q�t��g
is a compact subset of U � thus of Rm� There exists a vector vmin�t� � Vt
minimal in the sense of lexicographic order� To �nd vmin�t�� we minimize the
�rst coordinate on Vt�

vmin
� � minf v� j v � �v�� � � � � vm� � Vt g�

then minimize the second coordinate on the compact set found at the �rst step�

vmin
� � minf v� j v � �vmin

� � v�� � � � � vm� � Vt g�

etc��

vmin
m � minf vm j v � �vmin

� � � � � � vmin
m��� vm� � Vt g�

The control vmin�t� � �vmin
� �t�� � � � � vmin

m �t�� is measurable� thus q�t� is an ad

missible trajectory of system ������ generated by this control�
The proof of compactness of the attainable set Aq��t� is complete� Com


pactness of At
q� is proved by a slightly modi�ed argument�

Remark� In Filippov�s theorem� the hypothesis of common compact support
of the vector �elds in the right
hand side is essential to ensure the uniform
boundedness of velocities and completeness of vector �elds� On a manifold�
su�cient conditions for completeness of a vector �eld cannot be given in terms of
boundedness of the vector �eld and its derivatives� a constant vector �eld is not
complete on a bounded domain in Rn� Nevertheless� one can prove compactness
of attainable sets for many systems without the assumption of common compact
support� If for such a system we have a priori bounds on solutions� then we can
multiply its right
hand side by a cut
o� function� and obtain a system with
vector �elds having compact support� We can apply Filippov�s theorem to the
new system� Since trajectories of the initial and new systems coincide in a
domain of interest for us� we obtain a conclusion on compactness of attainable
sets for the initial system�

For control systems on M � Rn� there exist well
known su�cient conditions
for completeness of vector �elds� if the right
hand side grows at in�nity not
faster than a linear �eld� i�e��

jfu�x�j � C�� " jxj�� x � Rn� u � U� �������

for some constant C� then the nonautonomous vector �elds fu�x� are complete
�here jxj �p

x�� " 
 
 
" x�n is the norm of a point x � �x�� � � � � xn� � Rn��
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These conditions provide an a priori bound for solutions� any solution x�t�
of the control system

!x � fu�x�� x � Rn� u � U� �������

with the right
hand side satisfying ������� admits the bound

jx�t�j � e�Ct �jx���j" �� � t � ��

So Filippov�s theorem plus the previous remark imply the following su�cient
condition for compactness of attainable sets for systems in Rn�

Corollary ����� Let system ������� have a compact space of control parameters
U b Rm and convex velocity sets fU �x�� x � Rn� Suppose moreover that the
right�hand side of the system satis�es a bound of the form �������� Then the
attainable sets Ax��t� and At

x�
are compact for all x� � Rn� t � ��

���� Time
optimal problem

Given a pair of points q� �M and q� � Aq� � the time�optimal problem consists
in minimizing the time of motion from q� to q� via admissible controls of control
system �������

min
u
ft� j qu�t�� � q�g� �������

That is� we consider the optimal control problem described in Sec� ���� with
the integrand ��q� u� � � and free terminal time t��
Reduction of optimal control problems to the study of attainable sets and

Filippov�s Theorem yield the following existence result�

Corollary ����� Under the hypotheses of Theorem ����� time�optimal prob�
lem ������� ������� has a solution for any points q� �M � q� � Aq� �

���� Relaxations

Consider a control system of the form ������ with a compact set of control
parameters U � There is a standard procedure called relaxation of control sys

tem ������� which extends the velocity set fU �q� of this system to its convex
hull conv fU �q��

Recall that the convex hull conv S of a subset S of a linear space is the
minimal convex set that contains S� A constructive description of convex hull
is given by the following classical proposition� any point in the convex hull of a
set S in the n
dimensional linear space is contained in the convex hull of some
n" � points in S�
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Lemma ���� �Carath�eodory�� For any subset S � Rn� its convex hull has
the form

conv S �

�
nX
i��

�ixi j xi � S� �i � ��
nX
i��

�i � �

�
�

For the proof of this lemma� one can consult e�g� ������
Relaxation of control system ������ is constructed as follows� Let n � dimM

be dimension of the state space� The set of control parameters of the relaxed
system is

V � &n � U � 
 
 
 � U� 	z 

n�� times

�

where

&n �

�
���� � � � � �n� j �i � ��

nX
i��

�i � �

�
� Rn��

is the standard n
dimensional simplex� So the control parameter of the new
system has the form

v � ��� u�� � � � � un� � V� � � ���� � � � � �n� � &n� ui � U�

If U is compact� then V is compact as well�
The relaxed system is

!q � gv�q� �
nX
i��

�ifui �q�� v � ��� u�� � � � � un� � V� q � M� �������

By Carath%eodory�s lemma� the velocity set gV �q� of system ������� is convex�
moreover�

gV �q� � conv fU �q��

If all vector �elds in the right
hand side of ������� have a common compact
support� we obtain by Filippov�s theorem that attainable sets for the relaxed
system are compact� By Theorem ���� any trajectory of relaxed system �������
can be uniformly approximated by families of trajectories of initial system �������
Thus attainable sets of the relaxed system coincide with closure of attainable
sets of the initial system�
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Elements of Exterior

Calculus and Symplectic

Geometry

In order to state necessary conditions of optimality for optimal control problems
on smooth manifolds # Pontryagin Maximum Principle� see Chapter �� # we
make use of some standard technique of Symplectic Geometry� In this chapter
we develop such a technique� Before this we recall some basic facts on calculus
of exterior di�erential forms on manifolds� The exposition in this chapter is
rather explanatory than systematic� it is not a substitute to a regular textbook�
For a detailed treatment of the subject� see e�g� ������ ������ ������

���� Di�erential �
forms

������ Linear forms

Let E be a real vector space of �nite dimension n� The set of linear forms on
E� i�e�� of linear mappings � � E � R� has a natural structure of a vector space
called the dual space to E and denoted by E�� If vectors e�� � � � � en form a
basis of E� then the corresponding dual basis of E� is formed by the covectors
e��� � � � � e�n such that

he�i � eji � �ij � i� j � �� � � �n

�we use the angle brackets to denote the value of a linear form � � E� on a
vector v � E� h�� vi � ��v��� So the dual space has the same dimension as the
initial one�

dimE� � n � dimE�

���
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������ Cotangent bundle

Let M be a smooth manifold and TqM its tangent space at a point q �M � The
space of linear forms on TqM � i�e�� the dual space �TqM �

�
to TqM � is called the

cotangent space to M at q and is denoted as T �qM � The disjoint union of all
cotangent spaces is called the cotangent bundle of M �

T �M def
�

�
q�M

T �qM�

The set T �M has a natural structure of a smooth manifold of dimension �n�
where n � dimM � Local coordinates on T �M are constructed from local coor

dinates on M �
Let O �M be a coordinate neighborhood and let

� � O� Rn� ��q� � �x��q�� � � � � xn�q���

be a local coordinate system� Di�erentials of the coordinate functions

dxijq � T �qM� i � �� � � � � n� q � O�

form a basis in the cotangent space T �qM � The dual basis in the tangent
space TqM is formed by the vectors





 xi

����
q

� TqM� i � �� � � � � n� q � O��
dxi�





 xj

�
� �ij� i� j � �� � � � � n�

Any linear form � � T �qM can be decomposed via the basis forms�

� �
nX
i��

�i dxi�

So any covector � � T �M is characterized by n coordinates �x�� � � � � xn� of the
point q �M where � is attached� and by n coordinates ���� � � � � �n� of the linear
form � in the basis dx�� � � � � dxn� Mappings of the form

� �� ���� � � � � �n� x�� � � � � xn�

de�ne local coordinates on the cotangent bundle� Consequently� T �M is an
�n
dimensional manifold� Coordinates of the form ��� x� are called canonical
coordinates on T �M �
If F � M � N is a smooth mapping between smooth manifolds� then the

di�erential
F� � TqM � TF �q�N

has the adjoint mapping

F � def
� �F��� � T �F �q�N � T �qM
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de�ned as follows�

F �� � � 	 F�� � � T �F �q�N�
hF ��� vi � h�� F�vi� v � TqM�

A vector v � TqM is pushed forward by the di�erential F� to the vector F�v �
TF �q�N � while a covector � � T �F �q�N is pulled back to the covector F �� �
T �qM � So a smooth mapping F � M � N between manifolds induces a smooth
mapping F � � T �N � T �M between their cotangent bundles�

������ Di�erential ��forms

A di�erential ��form on M is a smooth mapping

q �� �q � T �qM� q �M�

i�e� a family � � f�qg of linear forms on the tangent spaces TqM smoothly
depending on the point q � M � The set of all di�erential �
forms on M has a
natural structure of an in�nite
dimensional vector space denoted as .�M �
Like linear forms on a vector space are dual objects to vectors of the space�

di�erential forms on a manifold are dual objects to smooth curves in the man

ifold� The pairing operation is the integral of a di�erential �
form � � .�M
along a smooth oriented curve � � �t�� t���M � de�ned as follows�Z



�
def
�

Z t�

t�

h��t�� !��t�i dt�

The integral of a �
form along a curve does not change under orientation

preserving smooth reparametrizations of the curve and changes its sign under
change of orientation�

���� Di�erential k
forms

A di�erential k
form on M is an object to integrate over k
dimensional surfaces
in M � In�nitesimally� a k
dimensional surface is presented by its tangent space�
i�e�� a k
dimensional subspace in TqM � We thus need a dual object to the set
of k
dimensional subspaces in the linear space� Fix a linear space E� A k

dimensional subspace is de�ned by its basis v�� � � � � vk � E� The dual objects
should be mappings

�v�� � � � � vk� �� ��v�� � � � � vk� � R

such that ��v�� � � � � vk� depend only on the linear hull spanfv�� � � � � vkg and the
oriented volume of the k
dimensional parallelepiped generated by v�� � � � � vk�
Moreover� the dependence on the volume should be linear� Recall that the ra

tio of volumes of the parallelepipeds generated by vectors wi �

Pk
j���ijvj �
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i � �� � � � � k� and the vectors v�� � � � � vk� equals det��ij�ki�j��� and that determi

nant of a k � k matrix is a multilinear skew
symmetric form of the columns of
the matrix� This is why the following de�nition of the �dual objects is quite
natural�

������ Exterior k�forms

Let E be a �nite
dimensional real vector space� dimE � n� and let k � N� An
exterior k�form on E is a mapping

� � E � 
 
 
 �E� 	z 

k times

� R�

which is multilinear�

��v�� � � � � ��v
�
i " ��v

�
i � � � � � vk�

� ����v�� � � � � v
�
i � � � � � vk� " ����v�� � � � � v

�
i � � � � � vk�� ��� �� � R�

and skew
symmetric�

��v�� � � � � vi� � � � � vj� � � � � vk� � ���v�� � � � � vj� � � � � vi� � � � � vk�� i� j � �� � � � � k�

The set of all exterior k
forms on E is denoted by .kE� By the skew
symmetry�
any exterior form of order k � n is zero� thus .kE � f�g for k � n�
Exterior forms can be multiplied by real numbers� and exterior forms of the

same order k can be added one with another� so each .kE is a vector space� We
construct a basis of .kE after we consider another operation between exterior
forms # the exterior product� The exterior product of two forms �� � .k�E�
�� � .k�E is an exterior form �� � �� of order k� " k��
Given linear �
forms ��� �� � .�E� we have a natural �tensor� product for

them�
�� ! �� � �v�� v�� �� ���v�����v��� v�� v� � E�

The result is a bilinear but not a skew
symmetric form� The exterior product is
the anti
symmetrization of the tensor one�

�� � �� � �v�� v�� �� ���v�����v��� ���v�����v��� v�� v� � E�

Similarly� the tensor and exterior products of forms �� � .k�E and �� � .k�E
are the following forms of order k� " k��

�� ! �� � �v�� � � � � vk��k�� �� ���v�� � � � � vk�����vk���� � � � � vk��k� ��

�� � �� � �v�� � � � � vk��k�� ��
�

k�� k��

X
�

�����������v����� � � � � v��k������v��k����� � � � � v��k��k���� ������

where the sum is taken over all permutations  of order k� " k� and ��� is
parity of a permutation � The factor �

k�� k��
normalizes the sum in ������ since
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it contains k�� k�� identically equal terms� e�g�� if permutations  do not mix
the �rst k� and the last k� arguments� then all terms of the form

�����������v����� � � � � v��k������v��k����� � � � � v��k��k���

are equal to

���v�� � � � � vk�����vk���� � � � � vk��k� ��

This guarantees the associative property of the exterior product�

�� � ��� � �	� � ��� � ��� � �	� �i � .kiE�

Further� the exterior product is skew
commutative�

�� � �� � ����k�k��� � ��� �i � .kiE�

Let e�� � � � � en be a basis of the space E and e��� � � � � e�n the corresponding
dual basis of E�� If � � k � n� then the following

�
n
k

�
elements form a basis of

the space .kE�

e�i� � � � �� e�ik � � � i� � i� � 
 
 
 � ik � n�

The equalities

�e�i� � � � �� e�ik��ei� � � � � � eik� � ��
�e�i� � � � �� e�ik��ej� � � � � � ejk� � �� if �i�� � � � � ik� �� �j�� � � � � jk�

for � � i� � i� � 
 
 
 � ik � n imply that any k
form � � .kE has a unique
decomposition of the form

� �
X

��i�
i�
			
ik�n
�i����ike

�
i�
� � � �� e�ik

with
�i����ik � ��ei� � � � � � eik��

Exercise ����� Show that for any �
forms ��� � � ��p � .�E and any vectors
v�� � � � � vp � E there holds the equality

��� � � � �� �p��v�� � � � � vp� � det �h�i� vji�pi�j�� � ������

Notice that the space of n
forms of an n
dimensional space E is one
dimen

sional� Any nonzero n
form on E is a volume form� For example� the value of
the standard volume form e�� � � � �� e�n on an n
tuple of vectors �v�� � � � � vn� is

�e�� � � � �� e�n��v�� � � � � vn� � det �he�i � vji�ni�j�� �

the oriented volume of the parallelepiped generated by the vectors v�� � � � � vn�
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������ Di�erential k�forms

A di�erential k�form on M is a mapping

� � q �� �q � .kTqM� q �M�

smooth w�r�t� q � M � The set of all di�erential k
forms on M is denoted by
.kM � It is natural to consider smooth functions on M as �
forms� so .�M �
C��M ��
In local coordinates �x�� � � � � xn� on a domainO �M � any di�erential k
form

� � .kM can be uniquely decomposed as follows�

�x �
X

i�
			
ik
ai����ik�x�dxi� � � � �� dxik� x � O� ai����ik � C��O�� ������

Any smooth mapping
F � M � N

induces a mapping of di�erential forms

bF � .kN � .kM

in the following way� given a di�erential k
form � � .kN � the k
form bF� �
.kM is de�ned as

� bF��q�v�� � � � � vk� � �F �q��F�v�� � � � � F�vk�� q �M� vi � TqM�

For �
forms� pull
back is a substitution of variables�

bFa�q� � a 	 F �q�� a � C��M �� q �M�

The pull
back bF is linear w�r�t� forms and preserves the exterior product�
bF ��� � ��� � bF�� � bF���

Exercise ����� Prove the composition law for pull
back of di�erential forms�

�F� 	 F� � bF� 	 bF�� ������

where F� � M� �M� and F� � M� �M	 are smooth mappings�

Now we can de�ne the integral of a k
form over an oriented k
dimensional
surface� Let ) � Rk be a k
dimensional open oriented domain and

� � )� ��)� �M

a di�eomorphism� Then the integral of a k
form � � .kM over the k
dimensi

onal oriented surface ��)� is de�ned as follows�Z

����

�
def
�

Z
�

b���
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it remains only to de�ne the integral over ) in the right
hand side� Sinceb�� � .kRk is a k
form on Rk� it is expressed via the standard volume form
dx� � � � �� dxk � .kRk�

�b���x � a�x� dx� � 
 
 
 � dxk� x � )�

We set Z
�

b�� def
�

Z
�

a�x� dx� � � � dxk�

a usual multiple integral�
The integral

R
���� � is de�ned correctly with respect to orientation
preser


ving reparametrizations of the surface ��)�� Although� if a parametrization
changes orientation� then the integral changes sign�
The notion of integral is extended to arbitrary submanifolds as follows� Let

N �M be a k
dimensional submanifold and let � � .kM � Consider a covering
of N by coordinate neighborhoods Oi �M �

N �
�
i

�N �Oi��

Take a partition of unity subordinated to this covering�

�i � C��M �� supp�i � Oi� � � �i � ��X
i

�i � ��

Then Z
N

�
def
�

X
i

Z
N�Oi

�i��

The integral thus de�ned does not depend upon the choice of partition of unity�

Remark� Another possible approach to de�nition of integral of a di�erential
form over a submanifold is based upon triangulation of the submanifold�

���� Exterior di�erential

Exterior di�erential of a function �i�e�� a �
form� is a �
form� if a � C��M � �
.�M � then its di�erential

dqa � T �qM

is the functional �directional derivative�

hdqa� vi � va� v � TqM� ������

so

da � .�M�
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By the Newton
Leibniz formula� if � �M is a smooth oriented curve starting
at a point q� �M and terminating at q� �M � thenZ



da � a�q�� � a�q���

The right
hand side can be considered as the integral of the function a over the
oriented boundary of the curve� 
� � q� � q�� thusZ



da �

Z
	

a� ������

In the exposition above� Newton
Leibniz formula ������ comes as a consequence
of de�nition ������ of di�erential of a function� But one can go the reverse way�
if we postulate Newton
Leibniz formula ������ for any smooth curve � �M and
pass to the limit q� � q�� we necessarily obtain de�nition ������ of di�erential
of a function�
Such approach can be realized for higher order di�erential forms as well� Let

� � .kM � We de�ne the exterior di�erential

d� � .k��M

as the di�erential �k " ��
form for which Stokes formula holds�Z
N

d� �

Z
	N

� ������

for �k"��
dimensional submanifolds with boundary N �M �for simplicity� one
can take here N equal to a di�eomorphic image of a �k " ��
dimensional poly

tope�� The boundary 
N is oriented by a frame of tangent vectors e�� � � � ek �
Tq�
N � in such a way that the frame en� e�� � � � � ek � TqN de�ne a positive
orientation of N � where en is the outward normal vector to N at q�
The existence of a form d� that satis�es Stokes formula ������ comes from

the fact that the mappingN �� R
	N � is additive w�r�t� domain� ifN � N��N��

N� �N� � 
N� � 
N�� thenZ
	N

� �

Z
	N�

� "

Z
	N�

�

�notice that orientation of the boundaries is coordinated� 
N� and 
N� have
mutually opposite orientations at points of their intersection�� Thus the integralR
	N

� is a kind of measure w�r�t� N � and one can recover �d��q passing to limit
in ������ as the submanifold N contracts to a point q�
We recall some basic properties of exterior di�erential� First of all� it is

obvious from the Stokes formula that d � .kM � .k��M is a linear operator�
Further� if F � M � N is a di�eomorphism� then

d bF� � bFd�� � � .kN� ������
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Indeed� if W �M � thenZ
F �W �

� �

Z
W

bF�� � � .kN�

thus Z
W

d bF� �

Z
	W

bF� � Z
F �	W �

� �

Z
	F �W �

� �

Z
F �W �

d�

�

Z
W

bFd��
and equality ������ follows�
Another basic property of exterior di�erential is given by the equality

d 	 d � ��
which follows since 
�
N � � � for any submanifold with boundary N �M �
Exterior di�erential is an antiderivation�

d��� � ��� � �d��� � �� " ����k��� � d��� �i � .kiM�

this equality is dual to the formula of boundary 
�N� �N���
In local coordinates exterior di�erential is computed as follows� if

� �
X

i�
			
ik
ai����ikdxi� � � � �� dxik � ai����ik � C��

then
d� �

X
i�
			
ik

�dai����ik� � dxi� � � � �� dxik�

this formula is forced by above properties of di�erential forms�

���� Lie derivative of di�erential forms

The �in�nitesimal version of the pull
back bP of a di�erential form by a �ow P
is given by the following operation�

Lie derivative of a di�erential form � � .kM along a vector �eld f � VecM
is the di�erential form Lf� � .kM de�ned as follows�

Lf�
def
�

d

d �

����
���

ce�f�� ������

Since cetf ��� � ��� � cetf�� � cetf���
Lie derivative Lf is a derivation of the algebra of di�erential forms�

Lf ��� � ��� � �Lf��� � �� " �� � Lf���
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Further� we have cetf 	 d � d 	 cetf �
thus

Lf 	 d � d 	 Lf �
For �
forms� Lie derivative is just the directional derivative�

Lfa � fa� a � C��M ��

since cetfa � etf a

is a substitution of variables�
Now we obtain a useful formula for the action of Lie derivative on di�erential

forms of an arbitrary order�
Consider� along with exterior di�erential

d � .kM � .k��M

the interior product of a di�erential form � with a vector �eld f � VecM �

if � .
kM � .k��M�

�if���v�� � � � � vk���
def
� ��f� v�� � � � � vk���� � � .kM� vi � TqM�

which acts as substitution of f for the �rst argument of �� By de�nition� for
�
order forms

ifa � �� a � .�M�

Interior product is an antiderivation� as well as the exterior di�erential�

if ��� � ��� � �if��� � �� " ����k��� � if��� �i � .kiM�

Now we prove that Lie derivative of a di�erential form of an arbitrary order
can be computed by the following formula�

Lf � d 	 if " if 	 d �������

called Cartan�s formula� for short �L � di " id � Notice �rst of all that the
right
hand side in ������� has the required order�

d 	 if " if 	 d � .kM � .kM�

Further� d 	 if " if 	 d is a derivation as it is obtained from two antiderivations�
Moreover� this derivation commutes with di�erential�

d 	 �d 	 if " if 	 d� � d 	 if 	 d�
�d 	 if " if 	 d� 	 d � d 	 if 	 d�
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Now we check formula ������� on �
forms� if a � .�M � then
�d 	 if �a � ��
�if 	 d�a � hda� fi � fa � Lfa�

So equality ������� holds for �
forms� The properties of the mappings Lf and
d 	 if " if 	 d established and the coordinate representation ������ reduce the
general case of k
forms to the case of �
forms� Formula ������� is proved�
The di�erential de�nition ������ of Lie derivative can be integrated� i�e��

there holds the following equality on .kM ��
��
exp

Z t

�

f� d�

� d
�
��
exp

Z t

�

Lf� d�� �������

in the following sense� Denote the �ow

P t�
t� �

��
exp

Z t�

t�

f� d��

The family of operators on di�erential forms

cP t
� � .

kM � .kM

is a unique solution of the Cauchy problem

d

d t
cP t
� �

cP t
� 	 Lft � cP t

�

���
t��

� Id� �������

compare with Cauchy problems for the �ow P t
� ����� and for the family of

operators AdP t
� ������� ������� and this solution is denoted as

��
exp

Z t

�

Lf� d�
def
�

�
��
exp

Z t

�

f� d�

� d
�

In order to verify the ODE in �������� we prove �rst the following equality
for operators on forms�

d

d �

����
���

�P t��
t � � Lft�� � � .kM� �������

This equality is straightforward for �
order forms�

d

d �

����
���

�P t��
t a �

d

d �

����
���

P t��
t a � fta � Lfta� a � C��M ��

Further� the both operators d
d �

��
���
�P t��
t and Lft commute with d and satisfy

the Leibniz rule w�r�t� product of a function with a di�erential form� Then
equality ������� follows for forms of arbitrary order� as in the proof of Cartan�s
formula�
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Now we easily verify the ODE in ��������

d

d t
cP t
� �

d

d �

����
���

�P t��
� �

d

d �

����
���

�P t
� 	 P t��

t

by the composition rule ������

�
d

d �

����
���

cP t
� 	�P t��

t � cP t
� 	

d

d �

����
���

�P t��
t

�cP t
� 	 Lft �

Exercise ����� Prove uniqueness for Cauchy problem ��������

For an autonomous vector �eld f � VecM � equality ������� takes the form

cetf � etLf �

Notice that the Lie derivatives of di�erential forms Lf and vector �elds
�� ad f� are in a certain sense dual one to another� see equality ������� below�
That is� the function

h��Xi � q �� h�q � X�q�i� q �M�

de�nes a pairing of .�M and VecM over C��M �� Then the equality

h bP��Xi � P h��AdP��Xi� P � Di�M� X � VecM� � � .�M�

has an in�nitesimal version of the form

hLY ��Xi � Y h��Xi � h�� �adY �Xi� X� Y � VecM� � � .�M� �������

Taking into account Cartan�s formula� we immediately obtain the following
important equality�

d��Y�X� � Y h��Xi �Xh�� Y i � h�� �Y�X�i� X� Y � VecM� � � .�M�
�������

���� Elements of Symplectic Geometry

We have already seen that the cotangent bundle T �M � �q�MT �qM of an n

dimensional manifold M is a �n
dimensional manifold� Any local coordinates
x � �x�� � � � � xn� on M determine canonical local coordinates on T �M of the
form ��� x� � ���� � � � � �n� x�� � � � � xn� in which any covector � � T �q�M has the
decomposition � �

Pn
i�� �i dxijq� �
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������ Liouville form and symplectic form

The �tautological� ��form �or Liouville ��form� on the cotangent bundle

s � .��T �M �
is de�ned as follows� Let � � T �M be a point in the cotangent bundle and
w � T��T �M � a tangent vector to T �M at �� Denote by � the canonical
projection from T �M to M �

� � T �M �M�

� � � �� q� � � T �qM�

Di�erential of � is a linear mapping

�� � T��T �M �� TqM� q � �����

The tautological �
form s at the point � acts on the tangent vector w in the
following way�

hs�� wi def
� h�� ��wi�

That is� we project the vector w � T��T �M � to the vector ��w � TqM � and
then act by the covector � � T �qM � So

s�
def
� � 	 ���

The title �tautological is explained by the coordinate representation of the
form s� In canonical coordinates ��� x� on T �M � we have�

� �
nX
i��

�idxi� �������

w �
nX
i��

�i




 �i
" �i





 xi
�

The projection written in canonical coordinates

� � ��� x� �� x

is a linear mapping� its di�erential acts as follows�

��

�




 �i

�
� �� i � �� � � � � n�

��

�




 xi

�
�





 xi
� i � �� � � � � n�

Thus

��w �
nX
i��

�i




 xi
�
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consequently�

hs�� wi � h�� ��wi �
nX
i��

�i�i�

But �i � hdxi� wi� so the form s has in coordinates ��� x� exactly the same
expression

s� �
nX
i��

�idxi �������

as the covector �� see �������� Although� de�nition of the form s does not
depend on any coordinates�

Remark� In mechanics� the tautological form s is denoted as p dq�

Consider the exterior di�erential of the �
form s�


def
� ds�

The di�erential �
form  � .��T �M � is called the canonical symplectic structure
on T �M � In canonical coordinates� we obtain from ��������

 �
nX
i��

d�i � dxi� �������

This expression shows that the form  is nondegenerate� i�e�� the bilinear skew

symmetric form

� � T��T
�M �� T��T

�M �� R
has no kernel�

�w� 
� � �  w � �� w � T��T
�M ��

In the following basis in the tangent space T��T �M �





 x�
�




 ��
� � � � �





 xn
�




 �n
�

the form � has the block matrix�BBBBB�
� �
�� �

� � �

� �
�� �

�CCCCCA �

The form  is closed�
d � �

since it is exact�  � ds� and d 	 d � ��
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Remarks� ��� A closed nondegenerate exterior di�erential �
formon a �n
dimen

sional manifold is called a symplectic structure� A manifold with a symplectic
structure is called a symplectic manifold � The cotangent bundle T �M with the
canonical symplectic structure  is the most important example of a symplectic
manifold�
��� In mechanics� the �
form  is known as the form dp � dq�

������ Hamiltonian vector �elds

Due to the symplectic structure  � .��T �M �� we can develop the Hamiltonian
formalism on T �M � A Hamiltonian is an arbitrary smooth function on the
cotangent bundle�

h � C��T �M ��

To any Hamiltonian h� we associate the Hamiltonian vector �eld

�h � Vec�T �M �
by the rule�

��
��h� � d�h� � � T �M� �������

In terms of the interior product iv��
� 
� � ��v� 
�� the Hamiltonian vector �eld
is a vector �eld �h that satis�es

i�h � �dh�
Since the symplectic form  is nondegenerate� the mapping

w �� ��
� w�
is a linear isomorphism

T��T
�M �� T �� �T

�M ��

thus the Hamiltonian vector �eld �h in ������� exists and is uniquely determined
by the Hamiltonian function h�
In canonical coordinates ��� x� on T �M we have

dh �
nX
i��

�

 h


 �i
d�i "


 h


 xi
dxi

�
�

then in view of �������

�h �
nX
i��

�

 h


 �i





 xi
� 
 h


 xi





 �i

�
� �������

So the Hamiltonian system of ODEs corresponding to h

!� � �h���� � � T �M�
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reads in canonical coordinates as follows�����
!xi �


 h


 �i
� i � �� � � � � n�

!�i � � 
 h


 xi
� i � �� � � � � n�

The Hamiltonian function can depend on a parameter� ht� t � R� Then the
nonautonomous Hamiltonian vector �eld �ht� t � R is de�ned in the same way
as in the autonomous case�
The �ow of a Hamiltonian system preserves the symplectic form �

Proposition ����� Let �ht be a nonautonomous Hamiltonian vector �eld on
T �M � Then �

��
exp

Z t

�

�h� d�

� d
 � �

Proof� In view of equality �������� we have�
��
exp

Z t

�

�h� d�

� d
�
��
exp

Z t

�

L�h� d��

thus the statement of this proposition can be rewritten as

L�ht � ��

But this Lie derivative is easily computed by Cartan�s formula�

L�ht � i�ht 	 d�	z

��

" d 	 i�ht�	z

��dht

� �d 	 dht � ��

Moreover� there holds a local converse statement� if a �ow preserves � then
it is locally Hamiltonian� Indeed��

��
exp

Z t

�

f� d�

� d
 �  � Lft � ��

further
Lft � ift 	 d�	z


��

"d 	 ift�

thus
Lft � � � d 	 ift � ��

If the form ift is closed� then it is locally exact �Poincar%e�s Lemma�� i�e�� there

exists a Hamiltonian ht such that locally ft � �ht�
Essentially� only Hamiltonian �ows preserve  �globally� �multi
valued Ha


miltonians can appear�� If a manifoldM is simply connected� then there holds
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a global statement� a �ow on T �M is Hamiltonian if and only if it preserves the
symplectic structure�

The Poisson bracket of Hamiltonians a� b � C��T �M � is a Hamiltonian

fa� bg � C��T �M �

de�ned in one of the following equivalent ways�

fa� bg � �ab � hdb��ai � ��a��b� � ���b��a� � ��ba�

It is obvious that Poisson bracket is bilinear and skew
symmetric�

fa� bg � �fb� ag�

In canonical coordinates ��� x� on T �M �

fa� bg �
nX
i��

�

 a


 �i


 b


 xi
� 
 a


 xi


 b


 �i

�
� �������

Leibniz rule for Poisson bracket easily follows from de�nition�

fa� bcg � fa� bgc" bfa� cg

�here bc is the usual pointwise product of functions b and c��
Symplectomorphismsof cotangent bundle preserve Hamiltonianvector �elds�

the action of a symplectomorphism P � Di��T �M �� bP � � on a Hamiltonian

vector �eld �h reduces to the action of P on the Hamiltonian function as substi

tution of variables�

AdP �h �
��
Ph �

This follows from the chain


�
X�AdP �h

�
� bP �

X�AdP �h
�
� P

�
AdP��X��h

�
� P hdh�AdP��Xi � X�Ph�� X � Vec�T �M ��

In particular� a Hamiltonian �ow transforms a Hamiltonian vector �eld into a
Hamiltonian vector �eld�

AdP t�bt �
��
P tbt� P t �

��
exp

Z t

�

�a� d�� �������

In�nitesimally� this equality implies Jacobi identity for Poisson bracket�

Proposition �����

fa� fb� cgg" fb� fc� agg" fc� fa� bgg � �� a� b� c � C��T �M �� �������
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Proof� Any symplectomorphism P � Di��T �M �� bP � � preserves Poisson
brackets�

Pfb� cg� P
�
�b��c

�
� bP �

AdP �b�AdP �c
�
� 

���
Pb�

��
Pc

�
� fPb� Pcg�

Taking P � et�a and di�erentiating at t � �� we come to Jacobi identity�

fa� fb� cgg� ffa� bg� cg" fb� fa� cgg�

So the space of all HamiltoniansC��T �M � forms a Lie algebra with Poisson
bracket as a product� The correspondence

a �� �a� a � C��T �M �� �������

is a homomorphism from the Lie algebra of Hamiltonians to the Lie algebra of
Hamiltonian vector �elds on M � This follows from the next statement�

Corollary �����
��
fa� bg� ��a��b� for any Hamiltonians a� b � C��T �M ��

Proof� Jacobi identity can be rewritten as

ffa� bg� cg� fa� fb� cgg� fb� fa� cgg�
i�e��

��
fa� bg c � �a 	�b c ��b 	 �a c � ��a��b� c� c � C��T �M ��

It is easy to see from the coordinate representation ������� that the kernel of
the mapping a �� �a consists of constant functions� i�e�� this is isomorphism up
to constants� On the other hand� this homomorphism is far from being onto all
vector �elds on T �M � Indeed� a general vector �eld on T �M is locally de�ned by
arbitrary �n smooth real functions of �n variables� while a Hamiltonian vector
�eld is determined by just one real function of �n variables� a Hamiltonian�

Theorem ���� �N�other�� A function a � C��T �M � is an integral of a Hamil�
tonian system of ODEs

!� � �h���� � � T �M� �������

i�e��

et
�ha � a t � R�

if and only if it Poisson�commutes with the Hamiltonian


fa� hg � ��

Proof� et
�ha � a� � � �ha � fh� ag�
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Corollary ����� et
�hh � h� i�e�� any Hamiltonian h � C��T �M � is an integral

of the corresponding Hamiltonian system ��������

Further� Jacobi identity for Poisson brackets implies that the set of integrals
of the Hamiltonian system ������� forms a Lie algebra with respect to Poisson
brackets�

Corollary ����� fh� ag � fh� bg � � fh� fa� bgg� ��
Remark� The Hamiltonian formalism developed generalizes for arbitrary sym

plectic manifolds�

Now we introduce a construction that works only on T �M � Given a vector
�eld X � VecM � we de�ne a Hamiltonian function

X� � C��T �M ��

which is linear on �bers T �qM � as follows�

X���� � h��X�q�i� � � T �M� q � �����

In canonical coordinates ��� x� on T �M we have�

X �
nX
i��

ai�x�




 xi
�

X� �
nX
i��

�iai�x�� �������

This coordinate representation implies that

fX�� Y �g � �X�Y ��� X� Y � VecM�

i�e�� Poisson brackets of Hamiltonians linear on �bers in T �M contain usual Lie
brackets of vector �elds on M �

The Hamiltonian vector �eld
��
X�� Vec�T �M � corresponding to the Hamil


tonian function X� is called the Hamiltonian lift of the vector �eld X � VecM �
It is easy to see from the coordinate representations �������� ������� that

��

���
X�

�
� X�

Now we pass to nonautonomous vector �elds� Let Xt be a nonautonomous
vector �eld and

P��t �
��
exp

Z t

�

X� d	

the corresponding �ow on M � The �ow P � P��t acts on M �

P � M �M� P � q� �� q��
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its di�erential pushes tangent vectors forward�

P� � Tq�M � Tq�M�

and the dual mapping P � pulls covectors back�

P � � T �q�M � T �q�M�

Thus we have a �ow on covectors �i�e�� on points of the cotangent bundle��

P ���t � T
�M � T �M�

Let Vt be the nonautonomous vector �eld on T �M that generates the �ow P ���t�

Vt �
d

d �

����
���

P �t�t���

Then
d

d t
P ���t �

d

d �

����
���

P ���t�� �
d

d �

����
���

P �t�t�� 	 P ���t � Vt 	 P ���t�
so the �ow P ���t is a solution to the Cauchy problem

d

d t
P ���t � Vt 	 P ���t� P ���� � Id�

i�e�� it is the left chronological exponential�

P ���t �

�
exp

Z t

�

V� d	�

It turns out that the nonautonomous �eld Vt is simply related with the
Hamiltonian vector �eld corresponding to the HamiltonianX�

t �

Vt � �
��
X�
t � �������

Indeed� the �ow P ���t preserves the tautological form s� thus

LVts � ��

By Cartan�s formula�
iVt � �dhs� Vti�

i�e�� the �eld Vt is Hamiltonian�

Vt �
��
hs� Vti �

But ��Vt � �Xt� consequently�

hs� Vti � �X�
t �

and equality ������� follows� Taking into account relation ������ between the
left and right chronological exponentials� we obtain

P ���t �

�
exp

Z t

�

�
��
X�
� d	 �

��
exp

Z �

t

��
X�
� d	�

We proved the following statement�
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Proposition ����� Let Xt be a complete nonautonomous vector �eld on M �
Then �

��
exp

Z t

�

X� d	

��
�
��
exp

Z �

t

��
X�
� d	�

In particular� for autonomous vector �elds X � VecM ��
etX

��
� e�t

��

X�

�

������ Lagrangian subspaces

A linear space - endowed with a bilinear skew
symmetric nondegenerate form 
is called a symplectic space� For example� - � T��T �M � with the canonical
symplectic form  � � is a symplectic space�
Any subspace L of a symplectic space - has the skew
orthogonal complement

L� � fx � - j �x� L� � �g�

A subspace L � - is called isotropic if

L � L��

Since the symplectic form  is nondegenerate� then

dimL� � codimL�

In particular� if a subspace L is isotropic� then dimL � �
� dim-� Isotropic

subspaces of maximal dimension�

L � L�� dimL �
�

�
dim- � L � L��

are called Lagrangian subspaces�
For example� in canonical coordinates �p� q� on -� the vertical subspace

fq � �g and the horizontal subspace fp � �g are Lagrangian�
There exists a standard way to construct a Lagrangian subspace that con


tains any given isotropic subspace� Let ' � - be an isotropic subspace and
. � - a Lagrangian subspace� Then the subspace

.�
def
� . � '� " ' � �. " '� � '� �������

is Lagrangian �check��� It is clear that

.� � '�

In particular� any line in - is contained in some Lagrangian subspace�
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Chapter ��

Pontryagin Maximum

Principle

In this chapter we prove the fundamental necessary condition of optimality for
optimal control problems # Pontryagin Maximum Principle �PMP�� In order
to obtain a coordinate
free formulation of PMP on manifolds� we apply the
technique of Symplectic Geometry developed in the previous chapter� The �rst
classical version of PMP was obtained for optimal control problems in Rn by
L� S� Pontryagin and his collaborators �����

���� Geometric statement of PMP and discus


sion

Consider the optimal control problem stated in Sec� ���� for a control system

!q � fu�q�� q �M� u � U � Rm� ������

with the initial condition

q��� � q�� ������

De�ne the following family of Hamiltonians�

hu��� � h�� fu�q�i� � � T �qM� q �M� u � U�

In terms of the previous section�

hu��� � f�u����

Fix an arbitrary instant t� � ��
In Sec� ���� we reduced the optimal control problem to the study of bound


ary of attainable sets� Now we give a necessary optimality condition in this
geometric setting�

���
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Theorem ���� �PMP�� Let $u�t�� t � ��� t��� be an admissible control and
$q�t� � q�u�t� the corresponding solution of Cauchy problem ������� ������� If

$q�t�� � 
Aq� �t���

then there exists a Lipschitzian curve in the cotangent bundle

�t � T ��q�t�M� � � t � t��

such that

�t �� �� ������

!�t � �h�u�t���t�� ������

h�u�t���t� � max
u�U

hu��t� ������

for almost all t � ��� t���
If u�t� is an admissible control and �t a Lipschitzian curve in T

�M such that
conditions ������������� hold� then the pair �u�t�� �t� is said to satisfy PMP� In
this case the curve �t is called an extremal � and its projection $q�t� � ���t� is
called an extremal trajectory �

Remark� If a pair �$u�t�� �t� satis�es PMP� then

h�u�t���t� � const� t � ��� t��� ������

Indeed� since the admissible control $u�t� is bounded� we can take maximum

in ������ over the compact f$u�t� j t � ��� t��g � eU � Further� the function
���� � max

u�eU
hu���

is Lipschitzian w�r�t� � � T �M � We show that this function has zero derivative�
For any admissible control u�t��

���t� � hu�����t�� ���� � � hu������ ��

thus
���t�� ���� �

t� �
� hu�����t� � hu������ �

t� �
� t � ��

Consequently�
d

d t

����
t��

���t� � fhu���� hu���g � �

if � is a di�erentiability point of ���t�� Similarly�

���t�� ���� �

t� �
� hu�����t� � hu������ �

t� �
� t � ��

thus
d

d t

����
t��

���t� � ��
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So
d

d t
���t� � ��

and identity ������ follows�

The Hamiltonian system of PMP

!�t � �hu�t���t� ������

is an extension of the initial control system ������ to the cotangent bundle�
Indeed� in canonical coordinates � � ��� x� � T �M � the Hamiltonian system
yields

!x �

 hu�t�


 �
� fu�t��x��

That is� solutions �t to ������ are Hamiltonian lifts of solutions q�t� to �������

���t� � qu�t��

Before proving Pontryagin Maximum Principle� we discuss its statement�
First we give a heuristic explanation of the way the covector curve �t appears

naturally in the study of trajectories coming to boundary of the attainable set�
Let

q� � $q�t�� � 
Aq� �t��� ������

The idea is to take a normal covector to the attainable set Aq��t�� near q�� more
precisely # a normal covector to a kind of a convex tangent cone to Aq� �t��
at q�� By virtue of inclusion ������� this convex cone is proper�
Thus it has a hyperplane of support� i�e�� a linear hyperplane in Tq�M bound


ing a half
space that contains the cone� Further� the hyperplane of support is a
kernel of a normal covector �t� � T �q�M � �t� �� �� see �g ����� The covector �t�
is an analog of Lagrange multipliers�
In order to construct the whole curve �t� t � ��� t��� consider the �ow gener


ated by the control $u�
��

Pt�t� �
��
exp

Z t�

t

f�u��� d�� t � ��� t���

It is easy to see that

Pt�t��Aq� �t�� � Aq� �t��� t � ��� t���

Indeed� if a point q � Aq� �t� is reachable from q� by a control u�� �� � � ��� t��
then the point Pt�t��q� is reachable from q� by the control

v�� � �

�
u�� �� � � ��� t��
$u�� �� � � �t� t���
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Aq�
�t��

�t�

q�

q�

Figure ����� Hyperplane of support and normal covector to
attainable set Aq� �t�� at the point q�

Further� the di�eomorphism Pt�t� � M �M satis�es the condition

Pt�t��$q�t�� � $q�t�� � q�� t � ��� t���
Thus if $q�t� � intAq� �t�� then q� � intAq� �t��� By contradiction� inclusion ������
implies that

$q�t� � 
Aq� �t�� t � ��� t���
The tangent cone to Aq� �t� at the point $q�t� � Pt��t�q�� has the normal covector
�t � P �t�t���t��� By Proposition ����� the curve �t� t � ��� t��� is a trajectory of
the Hamiltonian vector �eld �h�u�t�� i�e�� of the Hamiltonian system of PMP�
One can easily get the maximality condition of PMP as well� The tangent

cone to Aq� �t�� at q� should contain the in�nitesimal attainable set from the
point q��

fU �q��� f�u�t���q���

i�e�� the set of vectors obtained by variations of the control $u near t�� Thus the
covector �t� should determine a hyperplane of support to this set�

h�t� � fu � f�u�t��i � �� u � U�

In other words�

hu��t�� � h�t� � fui � h�t� � f�u�t��i � h�u�t����t��� u � U�

Translating the covector �t� by the �ow P �t�t�� we arrive at the maximality
condition of PMP�

hu��t� � h�u�t���t�� u � U� t � ��� t���
The following statement shows the power of PMP�
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Proposition ����� Assume that the maximized Hamiltonian of PMP

H��� � max
u�U

hu���� � � T �M�

is de�ned and C��smooth on T �M n f� � �g�
If a pair �$u�t�� �t�� t � ��� t��� satis�es PMP� then

!�t � �H��t�� t � ��� t��� ������

Conversely� if a Lipschitzian curve �t �� � is a solution to the Hamiltonian
system ������� then one can choose an admissible control $u�t�� t � ��� t��� such
that the pair �$u�t�� �t� satis�es PMP�

That is� in the favorable case when the maximized Hamiltonian H is C�

smooth� PMP reduces the problem to the study of solutions to just one Hamil

tonian system ������� From the point of view of dimension� this reduction
is the best one we can expect� Indeed� for a full
dimensional attainable set
�dimAq��t�� � n� we have dim
Aq� �t�� � n � �� i�e�� we need an �n � ��

parameter family of curves to describe the boundary 
Aq� �t��� On the other
hand� the family of solutions to Hamiltonian system ������ with the initial con

dition ����� � q� is n
dimensional� Taking into account that the Hamiltonian
H is homogeneous�

H�c�� � cH���� c � ��

thus

et
�H �c��� � cet

�H����� � 	 et �H �c��� � � 	 et �H �����
we obtain the required �n� ��
dimensional family of curves�
Now we prove Proposition �����

Proof� We show that if an admissible control $u�t� satis�es the maximality con

dition ������� then

�h�u�t���t� � �H��t�� t � ��� t��� �������

By de�nition of the maximized Hamiltonian H�

H��� � h�u�t���� � � � � T �M� t � ��� t���

On the other hand� by the maximality condition of PMP ������� along the
extremal �t this inequality turns into equality�

H��t� � h�u�t���t� � �� t � ��� t���

That is why
d�tH � d�th�u�t�� t � ��� t���
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But a Hamiltonian vector �eld is obtained from di�erential of the Hamiltonian
by a standard linear transformation� thus equality ������� follows�
Conversely� let �t �� � be a trajectory of the Hamiltonian system !�t �

�H��t�� In the same way as in the proof of Filippov�s theorem� one can choose
an admissible control $u�t� that realizes maximum along �t�

H��t� � h�u�t���t� � max
u�U

hu��t��

As we have shown above� then there holds equality �������� So the pair �$u�t�� �t�
satis�es PMP�

���� Proof of PMP

We start from two auxiliary propositions�
Denote the positive orthant in Rm as

Rm� � f�x�� � � � � xm� � Rm j xi � �� i � �� � � � �mg�

Lemma ����� Let a vector�function F � Rm� Rn be Lipschitzian� F ��� � ��
and di�erentiable at �


� F �� �
dF

dx

����
�

�

Assume that

F ���R
m
�� � R

n�

Then for any neighborhood of the origin O� � Rm

� � intF �O� �Rm���

Remarks� ��� The statement of this lemma holds if the orthant Rm� is replaced
by an arbitrary convex cone C � Rm� In this case the proof given below works
without any changes�
��� For a smooth vector
function F � the statement this lemma follows from

the implicit function theorem�

Proof� Choose points y�� � � � � yn � Rn that generate an n
dimensional simplex
centered at the origin�

�

n" �

nX
i��

yi � ��

Since the mapping F �� � Rm� � Rn is surjective and the positive orthant Rm�
is convex� it is easy to show that restriction to the interior F ��jintRm� is also

surjective�

� vi � intRm� such that F ��vi � yi� i � �� � � � � n�
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The points y�� � � � � yn are a�nely independent in Rn� thus their preimages
v�� � � � � vn are also a�nely independent in Rm� The mean

v �
�

n" �

nX
i��

vi

belongs to intRm� and satis�es the equality

F ��v � ��

Further� the subspace

W � spanfvi � v j i � �� � � � � ng � Rm

is n
dimensional� Since v � intRm�� we can �nd an n
dimensional ball B� � W
of a su�ciently small radius � centered at the origin such that

v "B� � intRm��

Since F ���vi�v� � F ��vi� then F ��W � Rn� i�e�� the linear mapping F �� � W � Rn
is invertible�
Consider the following family of mappings�

G� � B� � Rn� � � ��� ����
G��w� �

�

�
F ���v " w��� � � ��

G��w� � F ��w�

By the hypotheses of the proposition�

F �x� � F ��x" o�x�� x � Rm� x� ��

thus

G��w� � F ��w " o���� �� �� w � B�� �������

Since the mapping F is Lipschitzian� all mappings G� are Lipschitzian with
a common constant� Thus the family G� is equicontinuous� Equality �������
means that

G� � G�� �� ��

pointwise� thus uniformly�
So the continuous mapping G� 	 G��� � G��B��� Rn is uniformly close to

the identity mapping� hence the di�erence Id�G� 	 G��� is uniformly close to
the zero mapping� For any $x � Rn su�ciently close to the origin� the continuous
mapping

Id�G� 	G��� " $x
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transforms the set G��B�� into itself� By Brower�s �xed point theorem� this
mapping has a �xed point x � G��B���

x� G� 	G��� �x� " $x � x�

i�e��

G� 	G��� �x� � $x�

It follows that intG� 	 G��� �B�� � �� consequently� intF ��B�� � � for small
� � ��

Now we start to compute a convex approximation of the attainable set
Aq� �t�� at the point q� � $q�t��� Take any admissible control u�t� and express
the endpoint of a trajectory via Variations Formula �������

qu�t�� � q�	 ��
exp

Z t�

�
fu��� d� � q�	 ��

exp

Z t�

�
f�u��� " �fu��� � f�u���� d�

� q�	 ��
exp

Z t�

�

f�u��� d�	 ��
exp

Z t�

�

�
P t�
�

�
� �fu��� � f�u���� d�

� q�	 ��
exp

Z t�

�

�
P t�
�

�
� �fu��� � f�u���� d��

Introduce the following vector �eld depending on two parameters�

g��u �
�
P t�
�

�
� �fu � f�u����� � � ��� t��� u � U� �������

We showed that

qu�t�� � q�	 ��
exp

Z t�

�

g��u��� d�� �������

Notice that

g���u��� � �� � � ��� t���
Lemma ����� Let T � ��� t�� be the set of Lebesgue points of the control $u�
��
If

Tq�M � conefg��u�q�� j � � T � u � Ug�
then

q� � intAq��t���

Remark� The set conefg��u�q�� j � � T � u � Ug � Tq�M is a local convex
approximation of the attainable set Aq� �t�� at the point q��

Recall that a point � � ��� t�� is called a Lebesgue point of a function u �
L���� t�� if

lim
t��

�

jt� � j
Z t

�

ju�	�� u�� �j d	 � ��
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At Lebesgue points of u� the integral

Z t

�

u�	� d	 is di�erentiable and

d

d t

�Z t

�

u�	� d	

�
� u�t��

The set of Lebesgue points has the full measure in the domain ��� t��� For details
on this subject� see e�g� ������
Now we prove Lemma �����

Proof� We can choose vectors

g�i�ui�q�� � Tq�M� �i � T � ui � U� i � �� � � � � k�

that generate the whole tangent space as a positive convex cone�

cone fg�i�ui�q�� j i � �� � � � � kg � Tq�M�

moreover� we can choose points �i distinct� �i �� �j � i �� j� Indeed� if �i � �j for
some i �� j� we can �nd a su�ciently close Lebesgue point � �j �� �j such that the
di�erence g� �

j
�uj �q��� g�j�uj �q�� is as small as we wish� This is possible since for

any � � T and any � � �
�

jt� � j measft
� � ��� t� j ju�t�� � u�� �j � �g � � as t� ��

We suppose that �� � �� � 
 
 
 � �k�
We de�ne a family of variations of controls that follow the control $u�
� ev


erywhere except neighborhoods of �i� and follow ui near �i �such variations are
called needle�like��
More precisely� for any s � �s�� � � � � sk� � Rk� consider a control of the form

us�t� �

�
ui� t � ��i� �i " si��
$u�t�� t �� �ki����i� �i " si��

�������

For small s� the segments ��i� �i" si� do not overlap since �i �� �j � i �� j� In view
of formula �������� the endpoint of the trajectory corresponding to the control
constructed is expressed as follows�

qus�t�� � q�	 ��
exp

Z t�

�

fus�t� dt

� q�	 ��
exp

Z ���s�

��

gt�u� dt 	 ��
exp

Z ���s�

��

gt�u� dt 	 
 
 


	 ��
exp

Z �k�sk

�k

gt�uk dt�

The mapping
F � s � �s�� � � � � sk� �� qus�t��
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is Lipschitzian� di�erentiable at s � �� and


 F


 si

����
s��

� g�i�ui�q���

By Lemma �����
F ��� � q� � intF �O� �Rk��

for any neighborhood O� � Rk� But the curve qus�t�� t � ��� t��� is an admissible
trajectory for small s � Rk�� thus F �O��Rk�� � Aq� �t�� and q� � intAq��t���

Now we can prove the geometric statement of Pontryagin Maximum Princi

ple� Theorem �����

Proof� Let the endpoint of the reference trajectory

q� � $q�t�� � 
Aq� �t���

By Lemma ����� the origin � � Tq�M belongs to the boundary of the convex
set conefgt�u�q�� j t � T � u � Ug� so this set has a hyperplane of support at the
origin�

� �t� � T �q�M� �t� �� ��

such that

h�t� � gt�u�q��i � � � a�e� t � ��� t��� u � U�

Taking into account de�nition ������� of the �eld gt�u� we rewrite this inequality
as follows�

h�t� �
�
P t�
t�fu

�
�q��i � h�t� �

�
P t�
t�f�u�t�

�
�q��i�

i�e��
h�P t�

t

��
�t� � fu�$q�t��i � h

�
P t�
t

��
�t� � f�u�t��$q�t��i�

The action of the �ow P t�
t on covectors de�nes the curve in the cotangent bundle�

�t
def
�

�
P t�
t

��
�t� � T ��q�t�M� t � ��� t���

In terms of this covector curve� the inequality above reads

h�t� fu�$q�t��i � h�t� f�u�t��$q�t��i�
Thus the maximality condition of PMP ������ holds along the reference trajec

tory�

hu��t� � h�u�t���t� � u � U � a�e� t � ��� t���
By Proposition ����� the curve �t is a trajectory of the nonautonomous Hamil

tonian �ow with the Hamiltonian function f��u�t� � h�u�t��

�t � �t� 	
�
��
exp

Z t�

t

f�u��� d	

��
� �t�	 ��

exp

Z t

t�

�h�u��� d	�
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thus it satis�es the Hamiltonian equation of PMP ������

!�t � �h�u�t���t��

���� Geometric statement of PMP for free time

In the previous section we proved Pontryagin Maximum Principle for the case
of �xed terminal time t�� Now we consider the case of free t��

Theorem ����� Let $u�
� be an admissible control for control system ������ such
that

$q�t�� � 

��jt�t�j
�Aq��t�

�
for some t� � � and � � ��� t��� Then there exists a Lipschitzian curve

�t � T ��q�t�M� �t �� �� � � t � t��

such that

!�t � �h�u�t���t��

h�u�t���t� � max
u�U

hu��t��

h�u�t���t� � � �������

for almost all t � ��� t���
Remark� In problems with free time� there appears one more variable� the ter

minal time t�� In order to eliminate it� we have one additional condition #
equality �������� This condition is indeed scalar since the previous two equali

ties imply that h�u�t���t� � const� see remark after formulation of Theorem �����

Proof� We reduce the case of free time to the case of �xed time by extension
of the control system via substitution of time� Admissible trajectories of the
extended system are reparametrized admissible trajectories of the initial system
�the positive direction of time on trajectories is preserved��
Let a new time be a smooth function

� � R� R� !� � ��

We �nd an ODE for a reparametrized trajectory�

d

d t
qu���t�� � !��t�fu���t���qu���t����

so the required equation is

!q � !��t�fu���t���q��
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Now consider along with the initial control system

!q � fu�q�� u � U�

an extended system of the form

!q � vfu�q�� u � U� jv � �j � �� �������

where � � ��t� � ��� ��� Admissible controls of the new system are

w�t� � �v�t�� u�t���

and the reference control corresponding to the control $u�
� of the initial system
is

$w�t� � ��� $u�t���

It is easy to see that since $q�t�� � 

��jt�t�j
�Aq� �t�

�
� then the trajectory of

the new system through the point q� corresponding to the control $w�
� comes
at the moment t� to the boundary of the attainable set of the new system for
time t�� Thus $w�t� satis�es PMP with �xed time� We apply Theorem ���� to
the new system �������� The Hamiltonian for the new system is vhu���� Then
the maximality condition ������ reads

� 
 h�u�t���t� � max
u�U� jv��j
�

vhu��t��

We take u � $u�t� under the maximum and obtain

h�u�t���t� � ��

then we restrict the maximum to the set v � � and come to

h�u�t���t� � max
u�U

hu��t��

The Hamiltonian systems along $w�
� and $u�
� coincide one with another� thus
the proposition follows�

���� PMP for optimal control problems

Now we apply PMP in geometric form to optimal control problems� starting
from problems with �xed time�
For a control system

!q � fu�q�� q �M� u � U� �������

with the boundary conditions

q��� � q�� q�t�� � q�� q�� q� �M �xed� �������

t� � � �xed� �������
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and the cost functional

J�u� �

Z t�

�

��qu�t�� u�t�� dt �������

we consider the optimal control problem

J�u�� min � �������

We transform the problem as in Sec� ����� We extend the state space�

bq � �
y
q

�
� R�M�

de�ne the extended vector �eld bfu � Vec�R�M ��

bfu�q� � �
��q� u�
fu�q�

�
�

and come to the new control system�

d bq
d t
� bfu�q� �

�
!y � ��q� u��

!q � fu�q�
�������

with the boundary conditions

bq��� � bq� � �
�
q�

�
� bq�t�� � �

J�u�
q�

�
�

If a control $u�
� is optimal for problem ���������������� then the trajectory bq�u�t�
of the extended system ������� starting from bq� satis�es the condition

bq�u�t�� � 
 bAbq� �t���
where bAbq��t�� is the attainable set of system ������� from the point bq� for time
t�� So we can apply Theorem �����
But the geometric form of PMP applied to the extended system �������

does not distinguish minimum and maximum of the cost J�u�� In order to have
conditions valid only for minimum� we introduce a new control parameter v and
consider a new system of the form�

!y � ��q� u� " v�

!q � fu�q��
v � �� u � U� �������

Now the trajectory of system ������� corresponding to the controls $v�t� � ��
$u�t�� comes to the boundary of the attainable set of this system at time t�� We
apply Theorem ���� to system �������� We have

T�y�q��R�M � � R" TqM�

T ��y�q��R�M � � R" T �qM � f��� ��g�
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The Hamiltonian function for system ������� has the form

bh�v�u���� �� � h�� fui " ���" v��

and the Hamiltonian system of PMP is����
!� � 	 bh

	 y � ��

!y � ��q� u� " v�
!� � �h�u�t���� ���

�������

Here �hu��� �� is the Hamiltonian vector �eld with the Hamiltonian function

hu��� �� � h�� fui" ���

The �rst of equations ������� means that

� � const

along the reference trajectory�
The maximality condition has the form

h�t� f�u�t�i" ���$q�t�� $u�t�� � max
u�U� v��

�h�t� fui" ���$q�t�� u� " �v� �

Since the previous maximum is attained� we have

� � ��
thus we can set v � � in the right
hand side of the maximality condition�

h�t� f�u�t�i" ���$q�t�� $u�t�� � max
u�U

�h�t� fui " ���$q�t�� u�� �

So we proved the following statement�

Theorem ����� Let $u�t�� t � ��� t��� be an optimal control for problem ��������
�������


J�$u� � minfJ�u� j qu�t�� � q�g�
De�ne a Hamiltonian function

h�u��� � h�� fui" ���q� u�� � � T �qM� u � U� � � R�
Then there exists a nontrivial pair


��� �t� �� �� � � R� �t � T ��q�t�M�

such that the following conditions hold


!�t � �h��u�t���t��

h��u�t���t� � max
u�U

h�u��t� � a�e� t � ��� t���
� � ��
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Remarks� ��� If we have a maximization problem instead of minimization prob

lem �������� then the preceding inequality for � should be reversed�

� � ��
��� For the problem with free time t�� �������� �������� �������� ��������

necessary optimality conditions of PMP are the same as in Theorem ���� plus
one additional scalar equality h��u�t���t� � � �exercise��
There are two distinct possibilities for the constant parameter � in Theo


rem �����

�a� if � �� �� then the curve �t is called a normal extremal � Since the pair ��� �t�
can be multiplied by any positive number� we can normalize � � � and assume
that � � �� in the normal case�
�b� if � � �� then �t is an abnormal extremal �

So we can always assume that � � �� or ��
Now consider the time
optimal problem�

!q � fu�q�� q �M� u � U�

q��� � q�� q�t�� � q�� q�� q� �xed�

t� �

Z t�

�
� dt� min �

For the time
optimal problem� Pontryagin Maximum Principle takes the
following form�

Corollary ����� Let an admissible control $u�t�� t � ��� t��� be time�optimal�
De�ne a Hamiltonian function

hu��� � h�� fui� � � T �qM� u � U�

Then there exists a Lipschitzian curve

�t � T �M� �t �� �� t � ��� t���
such that the following conditions hold for almost all t � ��� t��


!�t � �h�u�t���t��

h�u�t���t� � max
u�U

hu��t��

h�u�t���t� � �� �������

Proof� Apply Theorem ���� and the second remark after it� taking � � �� Then
the Hamiltonian system and the maximality condition follow� Inequality �������
is equivalent to conditions h�u�t���t� " � � � and � � ��
The inequality �t �� � is obtained as follows� if �t � �� then h�u�t���t� � ��

thus � � �� But the pair ��� �t� must be nontrivial� consequently� �t �� ��
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���� PMP with general boundary conditions

In this section we prove versions of Pontryagin Maximum Principle for optimal
control problems in which boundary points of trajectories belong to prescribed
manifolds�
First consider the following problem�

!q � fu�q�� q �M� u � U � Rm� �������

q��� � N�� q�t�� � N�� �������

t� � � �xed� �������

J�u� �

Z t�

�
��q�t�� u�t�� dt� min � �������

Here N� and N� are given immersed submanifolds of the state space M � So the
boundary points q��� and q�t�� are not �xed as before� but should belong to N�

and N� respectively�
If a trajectory $q�t� is optimal for this problem� then it is optimal as well

for the problem with the �xed boundary points $q���� $q�t�� considered in Sec

tion ����� Consequently� the statement of Theorem ���� should be satis�ed
for $q�t�� But now we need additional conditions that select boundary points
$q��� � N� and $q�t�� � N�� It is reasonable to expect that they should be
determined by �dimN� " dimN�� scalar equalities� Such conditions can eas

ily be formulated in the Hamiltonian framework� they are called transversality
conditions� see ������� below�

Theorem ����� Let $u�t�� t � ��� t��� be an optimal control in problem ��������
�������� De�ne a family of Hamiltonians


h�u��� � h�� fu�q�i " ���q� u�� � � T �qM� q �M� � � R� u � U�

Then there exists a Lipschitzian curve �t � T ��q�t�M � t � ��� t��� and a number
� � R such that


!�t �
��
h��u�t� ��t�� �������

h��u�t���t� � max
u�U

h�u��t�� �������

��t� �� �� ��� ��� t � ��� t��� �������

� � �� �������

�� � T�q���N�� �t� � T�q�t��N�� �������

Remarks� ��� Any linear functional on a linear space acts naturally on a sub

space by restriction� so transversality conditions ������� read respectively as
follows�

h��� vi � �� v � T�q���N��

h�t� � wi � �� w � T�q�t��N��
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N� N�

���

�t�
�q���

�q�t��

Figure ����� Transversality conditions �������

��� The problem with free time� �������� �������� �������� is reduced to the
case of �xed t� in the same way as in Section ����� so for this problem holds the
previous theorem with the additional condition h��u�t���t� � ��
Now we prove Theorem �����

Proof� The scheme of proof of PMP developed in Theorems ����� ���� can be
applied to much more general problems after appropriate modi�cations� Now
we only indicate how the proofs of these theorems should be changed in order
to cover the new boundary conditions q��� � N�� q�t�� � N��
��� First consider the special case where the initial point is �xed� let

N� � fq�g
for some point q� �M �
As in the proof of Theorem ����� we introduce an extended system onR�M �

bq � �
y
q

�
� R�M�

bfu�q� � �
��q� u� " v

fu�q�

�
� T�y�bq��R�M � � R� TqM�

d bq
d t
� bfu�q� �

�
!y � ��q� u� " v�

!q � fu�q��
�������

bq��� � bq� � �
�
q�

�
�

Further� in the case of �xed terminal point q�t��� the necessary condition for
optimality of the trajectory q�u�t� was the following�

bq� � 
 bAbq� �t��� �������

Here bA is the attainable set of the extended system ������� and bq� � bq�u�t���
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Now� when the target manifold N� is not a point� we should modify the
argument� In a sense� we reduce the target manifold to a point de�ning it
locally by an equation � � �� Choose a submersion

� � Oq	u�t��
� Rp� p � dimM � dimN��

of a small neighborhood Oq	u�t��
�M � so that

������ � N� �Oq	u�t��
�

Further� extend the submersion� de�ne the mapping

b� � R� Oq	u�t��
� R��p� b��

y
q

�
�

�
y
��q�

�
�

Since the control $u�t� is optimal in our problem ���������������� then

b��bq�� � 
b�� bAbq��t���� �������

So we replace the necessary optimality condition ������� by ������� and return
to the scheme of proof of Theorems ����� �����
Take any k � N and any needle
like variation ������� of the optimal control�

us�t�� s � Rk�� u��t� � $u�t�� t � ��� t���

De�ne the mappings

G � Rk� R�M� G�s� � bqus�t�� � bq� 	 ��
exp

Z t�

�

bfus�t� dt� �������

F � Rk� R��p� F �s� � b��G�s�� � bq� 	 ��
exp

Z t�

�

bfus�t� dt 	 b�� �������
Then it follows from inclusion ������� that

b��bq�� � F ��� � 
F �Rk��� �������

By Lemma �����

F ���R
k
�� � cone

�

 F


 si

����
�

j i � �� � � � � k
�
�� R��p�

thus there exists a plane of support� i�e��

� b� � �
R��p

��
� b� �� ��

such that �b�� 
 F

 si

����
�

�
� �� i � �� � � � � k� �������



����� PMP WITH GENERAL BOUNDARY CONDITIONS ���

We compute the derivative by the chain rule�


 F


 si

����
�

� b�� 
 G


 si

����
�

� �������

and rewrite inequalities ������� as follows��b��b�� 
 G

 si

����
�

�
�

�b�� b�� 
 G

 si

����
�

�
� �� i � �� � � � � k� �������

Then we denote the covector

b�t� � b��b� � �
�
�t�

�
� Tbq� �R�M � �������

and obtain conclusions ��������������� in the same way as in Theorem ����� The

only distinction now is that the covector b�t� is not arbitrary� equality �������
implies the second of the transversality conditions �������� Indeed� we have

�t� � �
��� � � �Rp�� �

thus
h�t� � Tq	u�t��N�i � h���� Tq	u�t��N�i � h����Tq	u�t��N�� 	z 


��

i � ��

The �rst transversality condition ������� is now trivially satis�ed� so the proof
of this theorem in the case N� � fq�g is complete�
��� Let now the initial manifold N� be an arbitrary immersed submanifold

of M � We can modify the scheme presented above to cover this case as well�
Since now the initial point q��� is not �xed� we add variations of q����
Replace mappings �������� ������� by the following ones�

G � N� �Rk� R�M� G�q� s� � bq 	 ��
exp

Z t�

�

bfus�t� dt�
F � N� �Rk� R��p� F �q� s� � b��G�q� s�� � bq 	 ��

exp

Z t�

�

bfus�t� dt 	 b��
where bq � ��� q� � R�M � Then the necessary optimality condition ������� is
replaced by the inclusion

F �$q���� �� � 
F �N� �Rk��� �������

Apply Lemma ���� to restriction of the mapping F to the space

Rm �� O�q��� �Rk� m � l " k� l � dimN��

where O�q��� � N� is a small neighborhood of $q���� By the remark after
Lemma ����� inclusion ������� implies that

F ���q�������R
l"Rk�� �� R��p�
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i�e�� there exists a covector

b� � �
R��p

��
� b� �� �� b� � �

�
�

�
�

such that �b�� 
 F

 q

v

�
� �� v � T�q���N���b�� 
 F


 si

�
� �� i � �� � � � � k� �������

In the �rst inequality v belongs to a linear space� thus it turns into equality��b�� 
 F

 q

v

�
� �� v � T�q���N�� �������

Compute by Leibniz rule the partial derivative�


 F


 q

����
��q������

� T�q���N� � R��p�


 F


 q

����
��q������

v �

�
�
v

�
	 ��
exp

Z t�

�

bf�u�t� dt 	 b� � �
�

v 	 P t� 	�
�

�

�
�

��P t�� v

�
� v � T�q���N��

Here we applied formula ������ to the �ow

P t� �
��
exp

Z t�

�

f�u�t� dt�

Then conditions �������� ������� read as follows� 
����P t�� v

!
� �� v � T�q���N�� �������"b��b�� 
 G


 si

����
��q������

#
� �� i � �� � � � � k�

As before� introduce the covector b�t� � ��� �t�� by equality �������� then
conclusions ��������������� of this theorem and the second transversality con

dition ������� follow�
The �rst transversality condition is also satis�ed� equality ������� can be

rewritten as  
�t� � P

t�� v
!
� �� v � T�q���N��

But �� � P �t��t� � thus

h��� vi �
 
P �t��t� � v

!
� �� v � T�q���N��

The theorem is completely proved�
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Now consider even more general problem with mixed boundary conditions�
see inclusion ������� below� Pontryagin Maximum Principle easily generalizes
to this case� both in formulation and in proof�
We study optimal control problem of the form�

!q � fu�q�� q �M� u � U � Rm� �������

�q���� q�t��� � N �M �M� �������

t� � � �xed� �������

J�u� �

Z t�

�
��q�t�� u�t�� dt� min� �������

where N is a smooth immersed submanifold of M �M �

Theorem ����� Let $u be an optimal control in problem ���������������� Then
there hold all statements of Theorem ���� except its transversality condition
�������� which is replaced now by the relation

����� �t�� � T��q�����q�t���N� �������

Remarks� ��� We identify

T ��q��q���M �M � �� T �q�M " T �q�M�

so the transversality condition ������� makes sense�
��� An important particular case of mixed boundary conditions ������� is

the case of periodic trajectories�

q�t�� � q���� �������

Indeed� then

N � &
def
� f�q� q� j q �Mg �M �M� �������

the diagonal of the product M � M � In this case the transversality condi

tion ������� reads

h����� �t��� �v� v�i � �h��� vi" h�t� � vi � �� v � Tq���M � Tq�t��M�

i�e��
�� � �t� �

That is� an optimal trajectory in the problem with periodic boundary conditi

ons ������� possesses a periodic Hamiltonian lift �extremal��

Now we prove Theorem �����

Proof� We reduce our problem to the case of separated boundary conditions by
introducing an auxiliary problem on M �M ��

!x � ��

!q � fu�q��
�x� q� �M �M� u � U�

�x���� q���� � &� �x�t��� q�t��� � N�
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�the diagonal & is de�ned in ������� above�

J�u� �

Z t�

�

��q�t�� u�t�� dt� min �

It is obvious that this problem is equivalent to our problem ����������������
We apply a version of PMP �Theorem ����� to the auxiliary problem� The
Hamiltonian is the same as for the initial problem�

h�u��� �� � h�u��� � h�� fu�q�i " ���q� u�� ��� �� � T �M " T �M�

The corresponding Hamiltonian system is�
!�t � ��

!�t �
��
h��u�t� ��t��

�������

All required statements of PMP obviously follow� we should only check transver

sality conditions�
At the initial instant t � � the �rst of conditions ������� reads�

h���� ���� �v� v�i � h��� vi" h��� vi � �� v � T�q���M�

i�e��
�� " �� � ��

or� taking into account the �rst of equations ��������

�t� � ����

And at the terminal instant t � t��

��t� � �t�� � T��x�t����q�t���N�

that is�
����� �t�� � T��q�����q�t���N�

which is the required transversality condition ��������

Remarks� ��� Needless to say� if the terminal time t� is free� then one should
add to statements of Theorem ���� the additional equality h��u�t���t� � ��
��� Pontryagin Maximum Principle withstands further generalizations to

wider classes of cost functionals and boundary conditions� After certain modi

�cations of argument� the general scheme provides necessary optimality condi

tions for more general problems�



Chapter ��

Examples of optimal control

problems

In this chapter we apply Pontryagin Maximum Principle to solve concrete opti

mal control problems�

���� The fastest stop of a train at a station

Consider a train moving on a railway� The problem is to drive the train to a
station and stop it there in a minimal time�
Describe position of the train by a coordinate x� on the real line� the origin

� � Rcorresponds to the station� Assume that the train moves without friction�
and we can control acceleration of the train by applying a force bounded by
absolute value� Using rescaling if necessary� we can assume that absolute value
of acceleration is bounded by ��
We obtain the control system

(x� � u� x� � R� juj � ��

or� in the standard form��
!x� � x��

!x� � u�
x �

�
x�
x�

�
� R�� juj � �� ������

The time
optimal control problem is

x��� � x�� x�t�� � �� ������

t� � min � ������

First we verify existence of optimal controls by Filippov�s theorem� The set
of control parameters U � ���� �� is compact� the vector �elds in the right
hand

���
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side

f�x� u� �

�
x�
u

�
� juj � ��

are linear� and the set of admissible velocities at a point

f�x� U � � ff�x� u� j juj � �g

is convex� By Corollary ����� the time
optimal control problem has a solution
if the origin � � R� is attainable from the initial point x�� We will show that
any point x � R� can be connected with the origin by an extremal curve�
Now we apply Pontryagin Maximum Principle� Introduce canonical coordi


nates on the cotangent bundle�

M � R��

T �M � T �R� � R���R� �

�
� � ��� x� j x �

�
x�
x�

�
� � � ���� ���

�
�

The control
dependent Hamiltonian function of PMP is

hu��� x� � ���� ���

�
x�
u

�
� ��x� " ��u�

and the corresponding Hamiltonian system has the form����
!x �


 hu

 �

�

!� � �
 hu

 x

�

In coordinates this system splits into two independent subsystems��
!x� � x��

!x� � u�

�
!�� � ��
!�� � ����

������

By PMP� if a control $u�
� is time
optimal� then the Hamiltonian system has a
nontrivial solution ���t�� x�t��� ��t� �� �� such that

h�u�t����t�� x�t�� � maxjuj��
hu���t�� x�t�� � ��

From this maximality condition� if ���t� �� �� then $u�t� � sgn ���t�� Notice that
the maximized Hamiltonian

max
juj��

hu��� x� � ��x� " j��j

is not smooth� So we cannot apply Proposition ����� but we can obtain descrip

tion of optimal controls directly from Pontryagin Maximum Principle� without
preliminary maximization of Hamiltonian�
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Since
(�� � ��

then �� is linear�
���t� � �" �t� �� � � const�

hence the optimal control has the form

$u�t� � sgn��" �t��

So $u�t� is piecewise constant� takes only the extremal values ��� and has not
more than one switching �discontinuity point��
New we �nd all trajectories x�t� that correspond to such controls and come

to the origin� For controls u � ��� the �rst of subsystems ������ reads�
!x� � x��

!x� � ���
Trajectories of this system satisfy the equation

d x�
d x�

� �x��

thus are parabolas of the form

x� � �x
�
�

�
" C� C � const �

First we �nd trajectories from this family that come to the origin without
switchings� these are two semiparabolas

x� �
x��
�
� x� � �� !x� � �� ������

and

x� � �x
�
�

�
� x� � �� !x� � �� ������

for u � "� and �� respectively�
Now we �nd all extremal trajectories with one switching� Let �x�s� x�s� �

R� be a switching point for anyone of curves ������� ������� Then extremal
trajectories with one switching coming to the origin have the form

x� �

�� �x���� " x��s�� " x�s� x� � x�s� !x� � ��

x���� � � x� � x�s� !x� � ��
������

and

x� �

�� x����� x��s�� " x�s� x� � x�s� !x� � ��

�x���� � � x� � x�s� !x� � ��
������
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It is easy to see that through any point �x�� x�� of the plane passes exactly
one curve of the forms �������������� So for any point of the plane there exists
exactly one extremal trajectory steering this point to the origin� Since optimal
trajectories exist� then the solutions found are optimal� The general view of the
optimal synthesis is shown at �g� �����
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Figure ����� Optimal synthesis in problem �������������

���� Control of a linear oscillator

Consider a linear oscillator whose motion can be controlled by force bounded in
absolute value� The corresponding control system �after appropriate rescaling�
is

(x� " x� � u� juj � �� x� � R�
or� in the canonical form��

!x� � x��

!x� � �x� " u�
juj � ��

�
x�
x�

�
� R�� ������

We consider the time
optimal problem for this system�

x��� � x�� x�t�� � �� �������

t� � min � �������
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By Filippov�s theorem� optimal control exists� Similarly to the previous
problem� we apply Pontryagin Maximum Principle� the Hamiltonian function
is

hu��� x� � ��x� � ��x� " ��u� ��� x� � T �R� � R���R��

and the Hamiltonian system reads�
!x� � x��

!x� � �x� " u�

�
!�� � ���
!�� � ����

The maximality condition of PMP yields

���t�$u�t� � maxjuj��
���t�u�

thus optimal controls satisfy the condition

$u�t� � sgn ���t� if ���t� �� ��

For the variable �� we have the ODE

(�� � ����

hence
�� � � sin�t" ��� �� � � const �

Notice that � �� �� indeed� if �� � �� then �� � � !���t� � �� thus ��t� �
����t�� ���t�� � �� which is impossible by PMP� Consequently�

$u�t� � sgn�� sin�t " ����

This equality yields a complete description of possible structure of optimal con

trol� The interval between successive switching points of $u�t� has the length ��
Let � � ��� �� be the �rst switching point of $u�t�� Then

$u�t� �

�
sgn $u���� t � ��� � �� �� " �� � " ��� � �� " ��� � " ��� � � � �
� sgn $u���� t � ��� � " �� � �� " ��� � " ��� � � � �

That is� $u�t� is parametrized by two numbers� the �rst switching time � � ��� ��
and the initial sign sgn $u��� � f��g�
Optimal control $u�t� takes only the extremal values ��� Thus optimal tra


jectories �x��t�� x��t�� consist of pieces that satisfy the system�
!x� � x��

!x� � �x� � ��
�������

i�e�� arcs of the circles

�x� � ��� " x�� � C� C � const�
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passed clockwise�
Now we describe all optimal trajectories coming to the origin� Let � be any

such trajectory� If � has no switchings� then it is an arc belonging to one of the
semicircles

�x� � ��� " x�� � �� x� � �� �������

�x� " ��
� " x�� � �� x� � � �������

and containing the origin� If � has switchings� then the last switching can occur
at any point of these semicircles except the origin� Assume that � has the last
switching on semicircle �������� Then the part of � before the last switching and
after the next to last switching is a semicircle of the circle �x� " ��

� " x�� � C
passing through the last switching point� The next to last switching of � occurs
on the curve obtained by rotation of semicircle ������� around the point ���� ��
in the plane �x�� x�� by the angle �� i�e�� on the semicircle

�x� " ��
� " x�� � �� x� � �� �������

To obtain the geometric locus of the previous switching of �� we have to ro

tate semicircle ������� around the point ��� �� by the angle �� we come to the
semicircle

�x� � ��� " x�� � �� x� � ��
The previous switching of � takes place on the semicircle

�x� " ��
� " x�� � �� x� � ��

and so on�
The case when the last switching of � occurs on semicircle ������� is obtained

from the case just considered by the central symmetry of the plane �x�� x�� w�r�t�
the origin� �x�� x�� �� ��x���x��� Then the successive switchings of � �in the
reverse order starting from the end� occur on the semicircles

�x� " ��
� " x�� � �� x� � ��

�x� � ��� " x�� � �� x� � ��
�x� " ��

� " x�� � �� x� � ��
�x� � ��� " x�� � �� x� � ��

etc� We obtained the switching curve in the plane �x�� x���

�x� � ��k � ���� " x�� � �� x� � �� k � N�
�x� " ��k � ���� " x�� � �� x� � �� k � N� �������

This switching curve divides the plane �x�� x�� into two parts� Any extremal tra

jectory �x��t�� x��t�� in the upper part of the plane is a solution of ODE �������
with �� in the second equation� and in the lower part it is a solution of �������
with "�� For any point of the plane �x�� x�� there exists exactly one curve of
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this family of extremal trajectories that comes to the origin �it has the form of
a �spiral with a �nite number of switchings�� Since optimal trajectories exist�
the constructed extremal trajectories are optimal�

The time
optimal control problem is solved� in the part of the plane �x�� x��
over the switching curve ������� the optimal control is $u � ��� and below this
curve $u � "�� Through any point of the plane passes one optimal trajectory
which corresponds to this optimal control rule� After �nite number of switch

ings� any optimal trajectory comes to the origin� The general view of the optimal
synthesis is shown at �g� �����
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Figure ����� Optimal synthesis in problem ��������������

Now we consider optimal control problems with the same dynamics as in the
previous two sections� but with another cost functional�

���� The cheapest stop of a train

As in Section ����� we control motion of a train� Now the goal is to stop the
train at a �xed instant of time with a minimum expenditure of energy� which is
assumed proportional to the integral of squared acceleration�
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So the optimal control problem is as follows��
!x� � x��

!x� � u�
x �

�
x�
x�

�
� R�� u � R�

x��� � x�� x�t�� � �� t� �xed�

�

�

Z t�

�
u� dt� min �

Filippov�s theorem cannot be applied directly since the right
hand side of
the control system is not compact� Although� one can choose a new time t ��
�
�

R t
� u

��� � d� " C and obtain a bounded right
hand side� then compactify it
and apply Filippov�s theorem� In such a way existence of optimal control can
be proved� See also the general theory of linear quadratic problems below in
Chapter ���
To �nd optimal control� we apply PMP� The Hamiltonian function is

h�u��� x� � ��x� " ��u"
�

�
u�� ��� x� � R���R��

Along optimal trajectories

� � �� � � const �

From the Hamiltonian system of PMP� we have�
!�� � ��
!�� � ����

�������

Consider �rst the case of abnormal extremals�

� � ��

The triple ���� ��� �� must be nonzero� thus

���t� �� ��
But the maximality condition of PMP yields

$u�t����t� � max
u�R

u ���t�� �������

Since ���t� �� �� the maximum above does not exist� Consequently� there are no
abnormal extremals�
Consider the normal case� � �� �� we can take � � ��� The normal Hamil


tonian function is

hu��� x� � h��u ��� x� � ��x� " ��u� �
�
u��
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Maximality condition of PMP is equivalent to 	 hu
	 u � �� thus

$u�t� � ���t�

along optimal trajectories� Taking into account system �������� we conclude
that optimal control is linear�

$u�t� � �t" �� �� � � const �

The maximized Hamiltonian function

H��� x� � max
u

hu��� x� � ��x� "
�

�
���

is smooth� That is why optimal trajectories satisfy the Hamiltonian system��������
!x� � x��

!x� � ���
!�� � ��
!�� � ����

For the variable x� we obtain the boundary value problem

x
���
� � ��

x���� � x��� !x���� � x��� x��t�� � �� !x��t�� � �� �������

For any �x��� x
�
��� there exists exactly one solution x��t� of this problem # a

cubic spline� The function x��t� is found from the equation x� � !x��
So through any initial point x� � R� passes a unique extremal trajectory

arriving at the origin� It is a curve �x��t�� x��t��� t � ��� t��� where x��t� is a cubic
polynomial that satis�es the boundary conditions �������� and x��t� � !x��t�� In
view of existence� this is an optimal trajectory�

���� Control of a linear oscillator with cost

We control a linear oscillator� say a pendulum with a small amplitude� by an
unbounded force u� but take into account expenditure of energy measured by
the integral �

�

R t�
� u��t� dt� The optimal control problem reads�
!x� � x��

!x� � �x� " u�
x �

�
x�
x�

�
� R�� u � R�

x��� � x�� x�t�� � �� t� �xed�

�

�

Z t�

�

u� dt� min �
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Existence of optimal control can be proved by the same argument as in the
previous section�
The Hamiltonian function of PMP is

h�u��� x� � ��x� � ��x� " ��u"
�

�
u��

The corresponding Hamiltonian system yields�
!�� � ���
!�� � ����

In the same way as in the previous problem� we show that there are no ab

normal extremals� thus we can assume � � ��� Then the maximality condition
yields

$u�t� � ���t��

In particular� optimal control is a harmonic�

$u�t� � � sin�t" ��� �� � � const �

The system of ODEs for extremal trajectories�
!x� � x��

!x� � �x� " � sin�t" ��

is solved explicitly�

x��t� � ��
�
t cos�t" �� " a sin�t " b��

x��t� �
�

�
t sin�t" �� � �

�
cos�t" �� " a cos�t" b�� a� b � R�

�������

Exercise ����� Show that exactly one extremal trajectory of the form �������
satis�es the boundary conditions�

In view of existence� these extremal trajectories are optimal�

���� Dubins car

Consider a car moving in the plane� The car can move forward with a �xed
linear velocity and simultaneously rotate with a bounded angular velocity� Given
initial and terminal position and orientation of the car in the plane� the problem
is to drive the car from the initial con�guration to the terminal one for a minimal
time�
Admissible paths of the car are curves with bounded curvature� Suppose that

curves are parametrized by length� then our problem can be stated geometrically�
Given two points in the plane and two unit velocity vectors attached respectively
at these points� one has to �nd a curve in the plane that starts at the �rst point
with the �rst velocity vector and comes to the second point with the second
velocity vector� has curvature bounded by a given constant� and has the minimal
length among all such curves�
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Remark� If curvature is unbounded� then the problem� in general� has no solu

tions� Indeed� the in�mum of lengths of all curves that satisfy the boundary
conditions without bound on curvature is the distance between the initial and
terminal points� the segment of the straight line through these points can be
approximated by smooth curves with the required boundary conditions� But
this in�mum is not attained when the boundary velocity vectors do not lie on
the line through the boundary points and are not collinear one to another�

After rescaling� we obtain a time
optimal problem for a nonlinear system�����
!x� � cos 	�

!x� � sin 	�
!	 � u�

�������

x � �x�� x�� � R�� 	 � S�� juj � ��
x���� 	���� x�t��� 	�t�� �xed�

t� � min �

Existence of solutions is guaranteed by Filippov�s Theorem� We apply Pon

tryagin Maximum Principle�
We have �x�� x�� 	� � M � R�

x � S�� � let ���� ��� �� be the corresponding
coordinates of the adjoint vector� Then

� � �x� 	� �� �� � T �M�

and the control
dependent Hamiltonian is

hu��� � �� cos 	 " �� sin 	 " �u�

The Hamiltonian system of PMP yields

!� � �� �������

!� � �� sin 	 � �� cos 	� �������

and the maximality condition reads

��t�u�t� � max
juj��

��t�u� �������

Equation ������� means that � is constant along optimal trajectories� thus the
right
hand side of ������� can be rewritten as

�� sin 	 � �� cos 	 � � sin�	 " ��� �� � � const� � �
q
��� " ��� � ��

�������

So the Hamiltonian system of PMP ��������������� yields the following system��
!� � � sin�	 " ���
!	 � u�
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Maximality condition ������� implies that

u�t� � sgn��t� if ��t� �� �� �������

If � � �� then ���� ��� � � and � � const �� �� thus u � const � ��� So the
curve x�t� is an arc of a circle of radius ��
Let � �� �� then in view of �������� we have � � �� Conditions ��������

�������� ������� are preserved if the adjoint vector ��� �� is multiplied by any
positive constant� Thus we can choose ��� �� such that � �

p
��� " ��� � �� That

is why we suppose in the sequel that

� � ��

Condition ������� means that behavior of sign of the function ��t� is crucial
for the structure of optimal control� We consider several possibilities for ��t��
��� If the function ��t� does not vanish on the segment ��� t��� then the

optimal control is constant�

u�t� � const � ��� t � ��� t��� �������

and the optimal trajectory x�t�� t � ��� t��� is an arc of a circle� Notice that
an optimal trajectory cannot contain a full circle� a circle can be eliminated
so that the resulting trajectory satisfy the same boundary conditions and is
shorter� Thus controls ������� can be optimal only if t� � ���
In the sequel we can assume that the set

N � f� � ��� t�� j ��� � �� �g

does not coincide with the whole segment ��� t��� Since N is open� it is a union
of open intervals in ��� t��� plus� may be� semiopen intervals of the form ��� ����
���� t���
��� Suppose that the set N contains an interval of the form

���� ��� � ��� t��� �� � ��� �������

We can assume that the interval ���� ��� is maximal w�r�t� inclusion�

����� � ����� � �� �j������� �� ��

From PMP we have the inequality

hu�t����t�� � cos�	�t� " �� " ��t�u�t� � ��

Thus
cos�	���� " �� � ��

This inequality means that the angle

b	 � 	���� " �
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satis�es the inclusion b	 � h
��
�

�

i
�
�
��

�
� ��

�
�

Consider �rst the case b	 � �
��
�

�

i
�

Then !����� � sin b	 � �� thus at �� control switches from �� to "�� so
!	�t� � u�t� � �� t � ���� ����

We evaluate the distance �� � ��� Since

����� �

Z ��

��

sin�b	 " � � ��� d� � ��

then �� � �� � ��� � b	�� thus
�� � �� � ��� ���� �������

In the case b	 � �
��

�
� ��

�
inclusion ������� is proved similarly� and in the case b	 � � we obtain no optimal
controls �the curve x�t� contains a full circle� which can be eliminated��
Inclusion ������� means that successive roots ��� �� of the function ��t�

cannot be arbitrarily close one to another� Moreover� the previous argument
shows that at such instants �i optimal control switches from one extremal value
to another� and along any optimal trajectory the distance between any successive
switchings �i� �i�� is the same�
So in case ��� an optimal control can only have the form

u�t� �

�
�� t � ���k��� ��k��
��� t � ���k� ��k���� �������

� � ���
�i�� � �i � const � ��� ���� i � �� � � � � n� �� �������

�� � ��� ����
here we do not indicate values of u in the intervals before the �rst switching�
t � ��� ���� and after the last switching� t � ��n� t��� For such trajectories�
control takes only extremal values �� and the number of switchings is �nite on
any compact time segment� Such a control is called bang�bang �
Controls u�t� given by �������� ������� satisfy PMP for arbitrarily large t�

but they are not optimal if the number of switchings is n � �� Indeed� suppose
that such a control has at least � switchings� Then the piece of trajectory
x�t�� t � ���� ���� is a concatenation of three arcs of circles corresponding to the
segments of time ���� ���� ���� �	�� ��	� ��� with

�� � �	 � �	 � �� � �� � �� � ��� ����
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Draw the segment of line

$x�t�� t � ���� " ������ ��	 " ������ �

����d $xd t
���� � ��

the common tangent to the �rst and third circles through the points x ���� " ������
and x ���	 " ������� see �g� ����� Then the curve

y�t� �

�
x�t�� t �� ���� " ������ ��	 " ������ �
$x�t�� t � ���� " ������ ��	 " ������ �

is an admissible trajectory and shorter than x�t�� We proved that optimal
bang
bang control can have not more than � switchings�

x�t�

�x�t�

Figure ����� Elimination of � switchings

��� It remains to consider the case where the set N does not contain intervals
of the form �������� Then N consists of at most two semiopen intervals�

N � ��� ��� � ���� t��� �� � ���

where one or both intervals may be absent� If �� � ��� then the function ��t�
has a unique root on the segment ��� t��� and the corresponding optimal control
is determined by condition �������� Otherwise

�� � ���

and

�j������ �� �� �j������ � � �� �j����t�� �� �� �������

In this case the maximality condition of PMP ������� does not determine op

timal control u�t� uniquely since the maximum is attained for more than one
value of control parameter u� Such a control is called singular � Nevertheless�
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singular controls in this problem can be determined from PMP� Indeed� the
following identities hold on the interval ���� ����

!� � sin�	 " �� � �  	 " � � �k  	 � const  u � ��

Consequently� if an optimal trajectory x�t� has a singular piece� which is a
line� then �� and �� are the only switching times of the optimal control� Then

uj������ � const � ��� uj����t�� � const � ���

and the whole trajectory x�t�� t � ��� t��� is a concatenation of an arc of a circle
of radius �

x�t�� u�t� � ��� t � ��� ����
a line

x�t�� u�t� � �� t � ���� ����
and one more arc of a circle of radius �

x�t�� u�t� � ��� t � ���� t���

So optimal trajectories in the problem have one of the following two types�
��� concatenation of a bang
bang piece �arc of a circle� u � ���� a singular

piece �segment of a line� u � ��� and a bang
bang piece� or
��� concatenation of bang
bang pieces with not more than � switchings� the

arcs of circles between switchings having the same central angle � ��� ����
If boundary points x���� x�t�� are su�ciently far one from another� then

they can be connected only by trajectories containing singular piece� For such
boundary points� we obtain a simple algorithm for construction of an optimal
trajectory� Through each of the points x��� and x�t��� construct a pair of circles
of radius � tangent respectively to the velocity vectors !x��� � �cos 	���� sin 	����
and !x�t�� � �cos 	�t��� sin 	�t���� Then draw common tangents to the circles
at x��� and x�t�� respectively� so that direction of motion along these tangents
was compatible with direction of rotation along the circles determined by the
boundary velocity vectors !x��� and !x�t��� Finally� choose the shortest curve
among the candidates obtained� This curve is the optimal trajectory�
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Hamiltonian systems with

convex Hamiltonians

A well
known theorem states that if a level surface of a Hamiltonian is convex�
then it contains a periodic trajectory of the Hamiltonian system ������ ������
In this chapter we prove a more general statement as an application of optimal
control theory for linear systems�

Theorem ����� Let S be a strongly convex compact subset of Rn� n even� and
let the boundary of S be a level surface of a Hamiltonian H � C��Rn�� Then
for any vector v � Rn there exists a chord in S parallel to v such that there exists
a trajectory of the Hamiltonian system !x � �H�x� passing through the endpoints
of the chord�

We assume here that Rn is endowed with the standard symplectic structure

�x� x� � hx� Jxi� J �

�
� Id
� Id �

�
�

i�e�� the Hamiltonian vector �eld corresponding to a Hamiltonian H has the
form �H � J gradH�
The theorem on periodic trajectories of Hamiltonian systems is a particular

case of the previous theorem with v � �� Now we prove Th� �����

Proof� Without loss of generality� we can assume that � � intS�
Consider the polar of the set S�

S� � fu � Rn j sup
x�S
hu� xi � �g�

It follows from the separation theorem that

�S��� � S� � � intS��
and that S� is a strongly convex compact subset of Rn�

���
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Introduce the following linear optimal control problem�

!x � u� u � S�� x � Rn�
x��� � a� x��� � b�Z �

�

hx� Jui dt� min � ������

Here a and b are any points in S� su�ciently close to the origin and such that
the vector J�b � a� is parallel to v� By Filippov�s theorem� this problem has
optimal solutions� We use these solutions in order to construct the required
trajectory of the Hamiltonian system on 
S�
The control
dependent Hamiltonian of PMP has the form�

h�u�p� x� � pu" �hx� Jui�
We show �rst that abnormal trajectories cannot be optimal� Let � � ��

Then the adjoint equation is !p � �� thus

p � p� � const �

The maximality condition of PMP reads

p�u�t� � max
v�S�

p�v�

Since the polar S� is strictly convex� then

u�t� � const� u�t� � 
S� �

Consequently� abnormal trajectories are lines with velocities separated from
zero� For points a� b su�ciently close to the origin� abnormal trajectories cannot
meet the boundary conditions�
Thus optimal trajectories are normal� so we can set � � ��� The normal

Hamiltonian is
hu�p� x� � pu� hx� Jui�

and the corresponding Hamiltonian system reads�
!p � Ju�

!x � u�

The normal Hamiltonian can be written as

hu�p� x� � hy� ui�
y � p" Jx�

where the vector y satis�es the equation

!y � �Ju�



���

Along a normal trajectory

hu�t��p�t�� x�t�� � hy�t�� u�t�i � max
v�S�

hy�t�� vi � C � const � ������

Consider �rst the case C �� �� thus C � �� Then

z�t� �
�

C
y�t� � �S��� � S�

i�e�� z�t� � S� Moreover� z�t� � 
S and the vector u�t� is a normal to 
S at the
point z�t�� Consequently� the curve z�t� is� up to reparametrization� a trajectory

of the Hamiltonian �eld �H � J gradH� Compute the boundary conditions�

p���� p��� � J�x���� x�����

y��� � y��� � �J�x���� x���� � �J�b� a��

z���� z��� �
�

C
J�b� a��

Thus z�t� is the required trajectory� the chord z��� � z��� is parallel to the
vector v�
In order to complete the proof� we show now that the case C � � in ������

is impossible� Indeed� if C � �� then y�t� � �� thus u�t� � �� If a �� b� then
the boundary conditions for x are not satis�ed� And if a � b� then the pair
�u�t�� x�t�� � ��� �� does not realize minimum of functional ������� which can
take negative values� for any admissible �
periodic trajectory x�t�� the trajectory
*x�t� � x��� t� is periodic with the costZ �

�

h*x� J !*xi dx � �
Z �

�

hx� Jui dx�



��� CHAPTER ��� CONVEX HAMILTONIANS



Chapter ��

Linear time�optimal

problem

���� Problem statement

In this chapter we study the following optimal control problem�

!x � Ax"Bu� x � Rn� u � U � Rm�
x��� � x�� x�t�� � x�� x�� x� � Rn �xed�
t� � min�

������

where U is a compact convex polytope inRm� andA and B are constant matrices
of order n�n and n�m respectively� Such problem is called linear time�optimal
problem�
The polytope U is the convex hull of a �nite number of points a�� � � � � ak in

Rm�

U � convfa�� � � � � akg�
We assume that the points ai do not belong to the convex hull of all the rest
points aj� j �� i� so that each ai is a vertex of the polytope U �
In the sequel we assume the following General Position Condition�
For any edge �ai� aj� of U � the vector eij � aj � ai satis�es the equality

span�Beij � ABeij� � � � � A
n��Beij� � Rn� ������

This condition means that no vector Beij belongs to a proper invariant
subspace of the matrix A� By Theorem ���� this is equivalent to controllability
of the linear system !x � Ax" Bu with the set of control parameters u � Reij�
Condition ������ can be achieved by a small perturbation of matrices A�B�
We already considered examples of linear time
optimal problems in Sec


tions ����� ����� Here we study the structure of optimal control� prove its
uniqueness� evaluate the number of switchings�

���
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Existence of optimal control for any points x�� x� such that x� � A�x�� is
guaranteed by Filippov�s theorem� Notice that for the analogous problem with
an unbounded set of control parameters� optimal control may not exist� it is
easy to show this using linearity of the system�
Before proceeding with the study of linear time
optimal problems� we recall

some basic facts on polytopes�

���� Geometry of polytopes

The convex hull of a �nite number of points a�� � � � � ak � Rm is the set

U � convfa�� � � � � akg def
�

�
kX
i��

�iai j �i � ��
kX
i��

�i � �

�
�

An a�ne hyperplane in Rm is a set of the form

) � fu � Rm j h�� ui � cg� � � Rm� n f�g� c � R�
A hyperplane of support to a polytope U is a hyperplane ) such that

h�� ui � c �u � U

for the covector � and number c that de�ne )� and this inequality turns into
equality at some point u � 
U � i�e�� ) � U �� ��

a�

a�a�

a�

�

�

U

Figure ����� Polytope U with hyperplane of support )

A polytope U � convfa�� � � � � akg intersects with any its hyperplane of sup

port ) � fu j h�� ui � cg by another polytope�

U �) � convfai�� � � � � ailg�
h�� ai�i � 
 
 
 � h�� aili � c�

h�� aji � c� j �� fi�� � � � � ilg�
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Such polytopes U �) are called faces of the polytope U � Zero
dimensional and
one
dimensional faces are called respectively vertices and edges� A polytope has
a �nite number of faces� each of which is the convex hull of a �nite number
of vertices� A face of a face is a face of the initial polytope� Boundary of a
polytope is a union of all its faces� This is a straightforward corollary of the
separation theorem for convex sets �or the Hahn
Banach Theorem��

���� Bang
bang theorem

Optimal control in the linear time
optimal problem is bang
bang� i�e�� it is piece

wise constant and takes values in vertices of the polytope U �

Theorem ����� Let u�t�� � � t � t�� be an optimal control in the linear time�
optimal control problem ������� Then there exists a �nite subset

T � ��� t��� /T ���

such that

u�t� � fa�� � � � � akg� t � ��� t�� n T � ������

and restriction u�t�jt����t��nT is locally constant�

Proof� Apply Pontryagin Maximum Principle to the linear time
optimal prob

lem ������� State and adjoint vectors are

x �

�B� x�
���
xn

�CA � Rn� � � ���� � � � � �n� � Rn��

and a point in the cotangent bundle is

� � ��� x� � Rn��Rn � T �Rn�

The control
dependent Hamiltonian is

hu��� x� � �Ax" �Bu

�we multiply rows by columns�� The Hamiltonian system and maximality con

dition of PMP take the form��

!x � Ax"Bu�
!� � ��A�

��t� �� ��
��t�Bu�t� � max

u�U
��t�Bu� ������

The Hamiltonian system implies that adjoint vector

��t� � ����e�tA� ���� �� �� ������
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is analytic along the optimal trajectory�
Consider the set of indices corresponding to vertices where maximum ������

is attained�

J�t� �

�
� � j � k j ��t�Baj � max

u�U
��t�Bu � maxf��t�Bai j i � �� � � � � kg

�
�

At each instant t the linear function ��t�B attains maximum at vertices of the
polytope U � We show that this maximum is attained at one vertex always
except a �nite number of moments�
De�ne the set

T � ft � ��� t�� j /J�t� � �g�
By contradiction� suppose that T is in�nite� there exists a sequence of distinct
moments

f��� � � � � �n� � � �g � T �
Since there is a �nite number of choices for the subset J��n� � f�� � � � � kg� we
can assume� without loss of generality� that

J���� � J���� � 
 
 
 � J��n� � 
 
 
 �

Denote J � J��i��
Further� since the convex hull

convfaj j j � Jg

is a face of U � then there exist indices j�� j� � J such that the segment �aj� � aj��
is an edge of U � We have

���i�Baj� � ���i�Baj� � i � �� �� � � � �

For the vector e � aj� � aj� we obtain

���i�Be � �� i � �� �� � � � �

But ���i� � ����e��iA by ������� so the analytic function

t �� ����e�tABe

has an in�nite number of zeros on the segment ��� t��� thus it is identically zero�

����e�tABe � ��

We di�erentiate this identity successively at t � � and obtain

����Be � �� ����ABe � �� � � � � ����An��Be � ��

By General Position Condition ������� we have ���� � �� a contradiction to �������
So the set T is �nite�
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Out of the set T � the function ��t�B attains maximum on U at one vertex
aj�t�� fj�t�g � J�t�� thus the optimal control u�t� takes value in the vertex aj�t��
Condition ������ follows� Further�

��t�Baj�t� � ��t�Bai� i �� j�t��

But all functions t �� ��t�Bai are continuous� so the preceding inequality preser

ves for instants close to t� The function t �� j�t� is locally constant on ��� t��nT �
thus the optimal control u�t� is also locally constant on ��� t�� n T �
In the sequel we will need the following statement proved in the preceding

argument�

Corollary ����� Let ��t�� t � ��� t��� be a nonzero solution of the adjoint equa�
tion !� � ��A� Then everywhere in the segment ��� t��� except a �nite number of
points� there exists a unique control u�t� � U such that ��t�Bu�t� � max

u�U
��t�Bu�

���� Uniqueness of optimal controls and extre


mals

Theorem ����� Let the terminal point x� be reachable from the initial point
x�


x� � A�x���
Then linear time�optimal control problem ������ has a unique solution�

Proof� As we already noticed� existence of an optimal control follows from Fil

ippov�s Theorem�
Suppose that there exist two optimal controls� u��t�� u��t�� t � ��� t��� By

Cauchy�s formula�

x�t�� � et�A
�
x� "

Z t�

�

e�tABu�t� dt
�
�

we obtain

et�A
�
x� "

Z t�

�

e�tABu��t� dt
�
� et�A

�
x� "

Z t�

�

e�tABu��t� dt
�
�

thus Z t�

�

e�tABu��t� dt �
Z t�

�

e�tABu��t� dt� ������

Let ���t� � �����e
�tA be the adjoint vector corresponding by PMP to the control

u��t�� Then equality ������ can be written in the formZ t�

�

���t�Bu��t� dt �

Z t�

�

���t�Bu��t� dt� ������
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By the maximality condition of PMP

���t�Bu��t� � max
u�U

���t�Bu�

thus

���t�Bu��t� � ���t�Bu��t��

But this inequality together with equality ������ implies that almost everywhere
on ��� t��

���t�Bu��t� � ���t�Bu��t��

By Corollary �����

u��t� � u��t�

almost everywhere on ��� t���

So for linear time
optimal problem� optimal control is unique� The standard
procedure to �nd the optimal control for a given pair of boundary points x�� x�
is to �nd all extremals ���t�� x�t�� steering x� to x� and then to seek for the best
among them� In the examples considered in Sections ����� ����� there was one
extremal for each pair x�� x� with x� � �� We prove now that this is a general
property of linear time
optimal problems�

Theorem ����� Let x� � � � A�x�� and � � U n fa�� � � � � akg� Then there
exists a unique control u�t� that steers x� to � and satis�es Pontryagin Maximum
Principle�

Proof� Assume that there exist two controls

u��t�� t � ��� t��� and u��t�� t � ��� t���

that steer x� to � and satisfy PMP�
If t� � t�� then the argument of the proof of preceding theorem shows that

u��t� � u��t� a�e�� so we can assume that

t� � t��

Cauchy�s formula gives

et�A
�
x� "

Z t�

�

e�tABu��t� dt
�
� ��

et�A
�
x� "

Z t�

�

e�tABu��t� dt
�
� ��

thus Z t�

�

e�tABu��t� dt �
Z t�

�

e�tABu��t� dt� ������
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According to PMP� there exists an adjoint vector ���t�� t � ��� t��� such that

���t� � �����e
�tA� ����� �� �� ������

���t�Bu��t� � max
u�U

���t�Bu� �������

Since � � U � then

���t�Bu��t� � �� t � ��� t��� �������

Equality ������ can be rewritten asZ t�

�

���t�Bu��t� dt �

Z t�

�

���t�Bu��t� dt� �������

Taking into account inequality �������� we obtainZ t�

�
���t�Bu��t� dt �

Z t�

�
���t�Bu��t� dt� �������

But maximality condition ������� implies that

���t�Bu��t� � ���t�Bu��t�� t � ��� t��� �������

Now inequalities ������� and ������� are compatible only if

���t�Bu��t� � ���t�Bu��t�� t � ��� t���

thus inequality ������� should turn into equality� In view of �������� we haveZ t�

t�

���t�Bu��t� dt � ��

Since the integrand is nonnegative� see �������� then it vanishes identically�

���t�Bu��t� � �� t � �t�� t���

By the argument of Theorem ����� the control u��t� is bang
bang� so there exists
an interval I � �t�� t�� such that

u��t�jI � aj �� ��

Thus

���t�Baj � �� t � I�

But ���t�� � �� this is a contradiction with uniqueness of the control for which
maximum in PMP is obtained� see Corollary �����
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���� Switchings of optimal control

Now we evaluate the number of switchings of optimal control in linear time

optimal problems� In the examples of Sections ����� ���� we had respectively
one switching and an arbitrarily large number of switchings� although �nite on
any segment� It turns out that in general there are two cases� non
oscillating and
oscillating� depending on whether the matrix A of the control system has real
spectrum or not� Recall that in the example with one switching� Section �����
we had

A �

�
� �
� �

�
� Sp�A� � f�g � R�

and in the example with arbitrarily large number of switchings� Section �����

A �

�
� �
�� �

�
� Sp�A� � f�ig �� R�

We consider systems with scalar control�

!x � Ax " ub� u � U � ��� �� � R� x � Rn�

under the General Position Condition

span�b� Ab� � � � � An��b� � Rn�

Then attainable set of the system is full
dimensional for arbitrarily small times�
We can evaluate the minimal number of switchings necessary to �ll a full

dimensional domain� Optimal control is piecewise constant with values in
f�� �g� Assume that we start from the initial point x� with the control ��
Without switchings we �ll a piece of a �
dimensional curve e�Ax��b�tx�� with
� switching we �ll a piece of a �
dimensional surface e�Ax��b�t� 	 e�Ax��b�t�x��
with � switchings we can attain points in a �
dimensional surface� etc� So the
minimal number of switchings required to reach an n
dimensional domain is
n � ��
We prove now that in the non
oscillating case we never need more than n��

switchings of optimal control�

Theorem ����� Assume that the matrix A has only real eigenvalues


Sp�A� � R�

Then any optimal control in linear time�optimal problem ������ has no more
than n� � switchings�
Proof� Let u�t� be an optimal control and ��t� � ����e�tA the corresponding
solution of the adjoint equation !� � ��A� The maximality condition of PMP
reads

��t�bu�t� � max
u������

��t�bu�
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thus

u�t� �

�
� if ��t�b � ��

� if ��t�b � ��

So the number of switchings of the control u�t�� t � ��� t��� is equal to the number
of changes of sign of the function

y�t� � ��t�b� t � ��� t���
We show that y�t� has not more than n� � real roots�
Derivatives of the adjoint vector have the form

��k��t� � ����e�tA��A�k�
By Cayley Theorem� the matrix A satis�es its characteristic equation�

An " c�A
n�� " 
 
 
" cn Id � ��

where
det�t Id�A� � tn " c�t

n�� " 
 
 
" cn�

thus
��A�n � c���A�n�� " 
 
 
" ����ncn Id � ��

Then the function y�t� satis�es an n
th order ODE�

y�n��t�� c�y
�n����t� " 
 
 
" ����ncny�t� � �� �������

It is well known �see e�g� ������ that any solution of this equation is a
quasipolynomial�

y�t� �
kX
i��

e��itPi�t��

Pi�t� a polynomial�

�i �� �j for i �� j�

where �i are eigenvalues of the matrix A and degree of each polynomial Pi is
less than multiplicity of the corresponding eigenvalue �i� thus

kX
i��

degPi � n� k�

Now the statement of this theorem follows from the next general lemma�

Lemma ����� A quasipolynomial

y�t� �
kX
i��

e�itPi�t��
kX
i��

degPi � n� k� �������

�i �� �j for i �� j�

has no more than n� � real roots�
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Proof� Apply induction on k�
If k � �� then a quasipolynomial

y�t� � e�tP �t�� degP � n� ��
has no more than n� � roots�
We prove the induction step for k � �� Denote

ni � degPi� i � �� � � � � k�

Suppose that the quasipolynomial y�t� has n real roots� Rewrite the equation

y�t� �
k��X
i��

e�itPi�t� " e�ktPk�t� � �

as follows�

k��X
i��

e��i��k�tPi�t� " Pk�t� � �� �������

The quasipolynomial in the left
hand side has n roots� We di�erentiate this
quasipolynomial successively �nk"�� times so that the polynomial Pk�t� disap

pear� After �nk " �� di�erentiations we obtain a quasipolynomial

k��X
i��

e��i��k�tQi�t�� degQi � degPi�

which has �n � nk � �� real roots by Rolle�s Theorem� But by induction as

sumption the maximal possible number of real roots of this quasipolynomial
is

k��X
i��

ni " k � � � n� nk � ��

The contradiction �nishes the proof of the lemma�

So we completed the proof of Theorem ����� in the non
oscillating case an
optimal control has no more than n� � switchings on the whole domain �recall
that n � � switchings are always necessary even on short time segments since
the attainable sets Aq� �t� are full
dimensional for all t � ���
For an arbitrary matrix A� one can obtain the upper bound of �n � ��

switchings for su�ciently short intervals of time�

Theorem ����� Consider the characteristic polynomial of the matrix A


det�t Id�A� � tn " c�t
n�� " 
 
 
" cn�

and let
c � max

��i�n
jcij�



����� SWITCHINGS OF OPTIMAL CONTROL ���

Then for any time�optimal control u�t� and any +t � R� the real segment�
+t� +t" ln

�
� "

�

c

��
contains not more than �n� �� switchings of an optimal control u�t��

In the proof of this theorem we will require the following general proposition�
which we learned from S� Yakovenko�

Lemma ����� Consider an ODE

y�n� " c��t�y
�n��� " 
 
 
" cn�t�y � �

with measurable and bounded coe�cients


ci � max
t���t��t���

jci�t�j�

If

nX
i��

ci
�i

i�
� �� �������

then any nonzero solution y�t� of the ODE has not more than n � � roots on
the segment t � �+t� +t" ���

Proof� By contradiction� suppose that the function y�t� has at least n roots on
the segment t � �+t� +t" ��� By Rolle�s Theorem� derivative !y�t� has not less than
n� � roots� etc� Then y�n����t� has a root tn�� � �+t� +t" ��� Thus

y�n����t� �
Z t

tn��

y�n��� � d��

Let tn�� � �+t� +t" �� be a root of y�n����t�� then

y�n����t� �
Z t

tn��

d��

Z ��

tn��

y�n����� d���

We continue this procedure by integrating y�n�i����t� from a root tn�i � �+t� +t"��
of y�n�i��t� and obtain

y�n�i��t� �
Z t

tn�i

d��

Z ��

tn�i��

d�� 
 
 

Z �i��

tn��

y�n���i� d�i� i � �� � � � � n�

There holds a bound����y�n�i��t���� �
Z t

tn�i

d��

Z ��

tn�i��

d�� 
 
 

Z �i��

tn��

���y�n���i���� d�i
�

Z �t��

�t

d��

Z ��

�t

d�� 
 
 

Z �i��

�t

���y�n���i���� d�i
� �i

i�
sup

t���t��t���

���y�n��t���� �
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Then�����
nX
i��

ci�t�y
�n�i��t�

����� �
nX
i��

jci�t�j
���y�n�i��t���� � nX

i��

ci
�i

i�
sup

t���t��t���

���y�n��t���� �
i�e�� ���y�n��t���� � nX

i��

ci
�i

i�
sup

t���t��t���

���y�n��t���� �
a contradiction with �������� The lemma is proved�

Now we prove Theorem �����

Proof� As we showed in the proof of Theorem ����� the number of switchings of
u�t� is not more than the number of roots of the function y�t� � ��t�b� which
satis�es ODE ��������
We have

nX
i��

jcij�
i

i�
� c�e� � �� �� � ��

By Lemma ����� if

c�e� � �� � �� �������

then the function y�t� has not more than n � � real roots on any interval of
length �� But inequality ������� is equivalent to the following one�

� � ln
�
� "

�

c

�
�

so y�t� has not more than n�� roots on any interval of the length ln �� " �
c

�
�



Chapter ��

Linear�quadratic problem

���� Problem statement

In this chapter we study a class of optimal control problems very popular in
applications� linear�quadratic problems� That is� we consider linear systems
with quadratic cost functional�

!x � Ax "Bu� x � Rn� u � Rm� ������

x��� � x�� x�t�� � x�� x�� x�� t� �xed�

J�u� �
�

�

Z t�

�

hRu�t�� u�t�i" hPx�t�� u�t�i" hQx�t�� x�t�i dt� min �

Here A� B� R� P � Q are constant matrices of appropriate dimensions� R and Q
are symmetric�

R� � R� Q� � Q�

and angle brackets h
� 
i denote the standard inner product in Rm and Rn�
One can show that the condition R � � is necessary for existence of optimal

control� We do not touch here the case of degenerate R and assume that R � ��
The substitution of variables u �� v � R���u transforms the functional J�u� to a
similar functional with the identity matrix instead of R� That is why we assume
in the sequel that R � Id� A linear feedback transformation kills the matrix P
�exercise� �nd this transformation�� So we can write the cost functional as
follows�

J�u� �
�

�

Z t�

�

ju�t�j� " hQx�t�� x�t�i dt�

For dynamics of the problem� we assume that the linear system is control

lable�

rank�B�AB� � � � � An��B� � n� ������

���
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���� Existence of optimal control

Since the set of control parameters U � Rm is noncompact� Filippov�s Theorem
does not apply� and existence of optimal controls in linear
quadratic problems
is a nontrivial problem�
In this chapter we assume that admissible controls are square
integrable�

u � Lm� ��� t��

and use the Lm� norm for controls�

kuk �
�Z t�

�

ju�t�j� dt
����

�

�Z t�

�

u���t� " 
 
 
" u�m�t� dt

����

�

Consider the set of all admissible controls that steer the initial point to the
terminal one�

U�x�� x�� � fu � Lm� ��� t�� j x�t�� u� x�� � x�g �

We denote by x�t� u� x�� the trajectory of system ������ corresponding to an
admissible control u � Lm� starting at a point x� � Rn� By Cauchy�s formula�
the endpoint mapping

u �� x�t�� u� x�� � et�Ax� "

Z t�

�
e�t����ABu�� � d�

is an a�ne mapping from Lm� ��� t�� to R
n� Controllability of the linear sys


tem ������ means that for any x� � Rn� t� � �� the image of the endpoint
mapping is the whole Rn� The subspace

U�x�� x�� � Lm� ��� t��

is a�ne� the subspace
U��� �� � Lm� ��� t��

is linear� moreover�

U�x�� x�� � u" U��� �� for any u � U�x�� x���

Thus it is natural that existence of optimal controls is closely related to behavior
of the cost functional J�u� on the linear subspace U��� ���
Proposition ����� ��� If there exist points x�� x� � Rn such that

inf
u�U�x��x��

J�u� � ��� ������

then
J�u� � � �u � U��� ���
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��� Conversely� if
J�u� � � �u � U��� �� n ��

then the minimum is attained


� min
u�U�x��x��

J�u� �x�� x� � Rn�

Remark� That is� the inequality

J jU����� � �
is necessary for existence of optimal controls at least for one pair �x�� x��� and
the strict inequality

J jU�����n� � �
is su�cient for existence of optimal controls for all pairs �x�� x���

In the proof of Proposition ����� we will need the following auxiliary propo

sition�

Lemma ����� If J�v� � � for all v � U��� �� n �� then
J�v� � �kvk� for some � � � and all v � U��� ���

or� which is equivalent�

inffJ�v� j kvk � �� v � U��� ��g � ��
Proof� Let vn be a minimizing sequence of the functional J�v� on the sphere
fkvk � �g � U��� ��� Closed balls in Hilbert spaces are weakly compact� thus
we can �nd a subsequence weakly converging in the unit ball and preserve the
notation vn for its terms� so that

vn � bv weakly as n��� kbvk � �� bv � U��� ���
J�vn�� inffJ�v� j kvk � �� v � U��� ��g� n��� ������

We have

J�vn� �
�

�
"
�

�

Z t�

�

hQxn�� �� xn�� �i d��
Since the controls converge weakly� then the corresponding trajectories converge
strongly�

xn�
�� xbv�
�� n���

thus

J�vn�� �

�
"
�

�

Z t�

�

hQxbv�� �� xbv�� �i d�� n���

In view of ������� the in�mum in question is equal to

�

�
"
�

�

Z t�

�

hQxbv�� �� xbv�� �i d� � �

�

�
�� kbvk��" J�bv� � ��
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Now we prove Proposition �����

Proof� ��� By contradiction� suppose that there exists v � U��� �� such that
J�v� � �� Take any u � U�x�� x��� then u" sv � U�x�� x�� for any s � R�
Let y�t�� t � ��� t��� be the solution to the Cauchy problem

!y � Ay "Bv� y��� � ��

and let

J�u� v� �
�

�

Z t�

�

hu�� �� v�� �i " hQx�� �� y�� �i d��

Then the quadratic functional J on the family of controls u " sv� s � R� is
computed as follows�

J�u" sv� � J�u� " �sJ�u� v� " s�J�v��

Since J�v� � �� then J�u " sv� � �� as s � �� The contradiction with
hypothesis ������ proves item ����

��� We have

J�u� �
�

�
kuk� " �

�

Z t�

�

hQx�� �� x�� �i d��

The norm kuk is lower semicontinuous in the weak topology on Lm� � and the

functional
R t�
� hQx�� �� x�� �i d� is weakly continuous on Lm� � Thus J�u� is weakly

lower semicontinuous on Lm� � Since balls are weakly compact in Lm� and the
a�ne subspace U�x�� x�� is weakly compact� it is enough to prove that J�u��
� when u��� u � U�x�� x���
Take any control u � U�x�� x��� Then any control from U�x�� x�� has the

form u" v for some v � U��� ��� We have

J�u" v� � J�u� " �kvkJ
�
u�

v

kvk
�
" J�v��

Denote J�u� � C�� Further�
���J �

u� v
kvk

���� � C� � const for all v � U��� �� n
�� Finally� by Lemma ����� J�v� � �kvk�� � � �� for all v � U��� �� n ��
Consequently�

J�u" v� � C� � �kvkC� " �kvk� ��� v ��� v � U��� ���

Item ��� of this proposition follows�

So we reduced the question of existence of optimal controls in linear
qua

dratic problems to the study of the restriction J jU������ We will consider this
restriction in detail in Section �����
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���� Extremals

We cannot directly apply Pontryagin MaximumPrinciple to the linear
quadratic
problem since we have conditions for existence of optimal controls in Lm� only�
while PMP requires controls from Lm�� Although� suppose for a moment that
PMP is applicable to the linear
quadratic problem� It is easy to write equations
for optimal controls and trajectories that follow from PMP� moreover� it is
natural to expect that such equations should hold true� Now we derive such
equations� and then substantiate them�
So we write PMP for the linear
quadratic problem� The control
dependent

Hamiltonian is

hu��� x� � �Ax" �Bu � �

�
�juj� " hQx� xi�� x � Rn� � � Rn��

Consider �rst the abnormal case� � � �� By PMP� adjoint vector along an
extremal satis�es the ODE !� � ��A� thus ��t� � ����e�tA� The maximality
condition implies that � � ��t�B � ����e�tAB� We di�erentiate this identity
n � � times� take into account the controllability condition ������ and obtain
���� � �� This contradicts PMP� thus there are no abnormal extremals�
In the normal case we can assume � � �� Then the control
dependent

Hamiltonian takes the form

hu��� x� � �Ax" �Bu � �
�
�juj� " hQx� xi�� x � Rn� � � Rn��

The term �Bu� �
�
juj� depending on u has a unique maximum in u � Rm at the

point where

 hu

 u

� �B � u� � ��

thus

u � B���� ������

So the maximized Hamiltonian is

H��� x� � max
u�Rm

hu��� x� � �Ax� �
�
hQx� xi" �

�
jB���j�

� �Ax� �
�
hQx� xi" �

�
jB�j��

The Hamiltonian function H��� x� is smooth� thus normal extremals are solu

tions of the corresponding Hamiltonian system

!x � Ax" BB���� ������

!� � x�Q� �A� ������

Now we show that optimal controls and trajectories in the linear
quadratic
problem indeed satisfy equations �������������� Consider the extended system

!x � Ax" Bu�

!y �
�

�
�juj� " hQx� xi��
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and the corresponding endpoint mapping�

F � u �� �x�t�� u� x��� y�t�� u� ���� F � Lm� ��� t��� Rn�R�

This mapping can be written explicitly via Cauchy�s formula�

x�t�� u� x�� � et�A
�
x� "

Z t�

�

e�tABu�t� dt
�
� ������

y�t�� u� �� �
�

�

Z t�

�
ju�t�j� " hQx�t�� x�t�i dt� ������

Let $u�
� be an optimal control and $x�
� � x� 
 � $u� x�� the corresponding optimal
trajectory� then

F �$u� � 
 ImF�

By implicit function theorem� the di�erential

D�uF � Lm� ��� t��� Rn"R

is not surjective� i�e�� there exists a covector ��� �� � Rn�"R�� ��� �� �� �� such
that

��� �� � D�uFv� v � Lm� ��� t��� �������

The di�erential of the endpoint mapping is found from the explicit formu

las ������� �������

D�uFv �

�Z t�

�

e�t��t�ABv�t� dt�Z t�

�

�
$u�t� "

Z t�

t

B�e���t�A
�

Q$x�� � d�� v�t�

�
dt

�
�

Then the orthogonality condition ������� reads�

Z t�

�

�
B�e�t��t�A

�

�" �$u�t� " �

Z t�

t

B�e���t�A
�

Q$x�� � d�� v�t�

�
dt � ��

v � Lm� ��� t���

that is�

B�e�t��t�A
�

�" �$u�t� " �

Z t�

t

B�e���t�A
�

Q$x�� � d� � �� t � ��� t��� �������

The case � � � is impossible by condition ������� Denote � � ����� then
equality ������� reads

$u�t� � B����t��
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where

��t� � ��e�t��t�A �
Z t�

t

$x��� �Qe���t�A dt� �������

So we proved equalities ������� ������� Di�erentiating �������� we arrive at the
last required equality �������

So we proved that optimal trajectories in the linear
quadratic problem are
projections of normal extremals of PMP ������� ������� while optimal controls
are given by ������� In particular� optimal trajectories and controls are analytic�

���� Conjugate points

Now we study conditions of existence and uniqueness of optimal controls depend

ing upon the terminal time� So we write the cost functional to be minimized as
follows�

Jt�u� �
�

�

Z t

�

ju�� �j�" hQx�� �� x�� �i d��

Denote

Ut��� �� � fu � Lm� ��� t� j x�t� u� x�� � x�g �
��t�

def
� inffJt�u� j u � Ut��� ��� kuk � �g� �������

We showed in Proposition ���� that if ��t� � � then the problem has solution
for any boundary conditions� and if ��t� � � then there are no solutions for any
boundary conditions� The case ��t� � � is doubtful� Now we study properties
of the function ��t� in detail�

Proposition ����� ��� The function t �� ��t� is monotone nonincreasing and
continuous�

��� For any t � � there hold the inequalities

� � ���t� � �� t�

�
e�tkAkkBk�kQk� �������

��� If � � ���t�� then the in�mum in ������� is attained� i�e�� it is minimum�

Proof� ��� Denote

It�u� �
�

�

Z t

�

hQx�� �� x�� �i d��

the functional It�u� is weakly continuous on L
m
� � Notice that

Jt�u� �
�

�
" It�u� on the sphere kuk � ��
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Take a minimizing sequence of the functional It�u� on the sphere fkuk � �g �
Ut��� ��� Since the ball fkuk � �g is weakly compact� we can �nd a weakly
converging subsequence�

un� bu weakly as n��� kbuk � �� bu � Ut��� ���
It�un�� It�bu� � inffIt�u� j kuk � �� u � Ut��� ��g� n���

If bu � �� then It�bu� � �� thus ��t� � �
� � which contradicts hypothesis of item ����

So bu �� �� It�bu� � �� and It � bu
kbuk

�
� It�bu�� Thus kbuk � �� and Jt�u� attains

minimum on the sphere fkuk � �g � Ut��� �� at the point bu�
��� Let kuk � � and x� � �� By Cauchy�s formula�

x�t� �

Z t

�

e�t���ABu�� � d��

thus

jx�t�j �
Z t

�

e�t���kAkkBk 
 ju�� �j d�

by Cauchy
Schwartz inequality

� kuk
�Z t

�

e�t����kAkkBk� d�
����

�

�Z t

�

e�t����kAkkBk� d�
����

�

We substitute this estimate of x�t� into Jt and obtain the second inequality
in ��������
The �rst inequality in ������� is obtained by considering a weakly converging

sequence un � �� n��� in the sphere kunk � �� un � Ut��� ���
��� Monotonicity of ��t�� Take any *t � t� Then the space Ut��� �� is isomet


rically embedded into Ut��� �� by extending controls u � Ut��� �� by zero�

u � Ut��� ��  bu � Ut��� ���
bu�� � � �

u�� �� � � t�
�� � � t�

Moreover�

Jt�bu� � Jt�u��

Thus

��t� � inffJt�u� j u � Ut��� ��� kuk� �g
� inffJt�u� j u � Ut��� ��� kuk� �g � ��*t��
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Continuity of ��t�� we show separately continuity from the right and from
the left�
Continuity from the right� Let tn # t� We can assume that ��tn� �

�
�

�otherwise ��tn� � ��t� � �
� �� thus minimum in ������� is attained�

��tn� �
�

�
" Itn�un�� un � Utn��� ��� kunk � ��

Extend the functions un � Lm� ��� tn� to the segment ��� t�� by zero� Choosing a
weakly converging subsequence in the unit ball� we can assume that

un � u weakly as n��� u � Ut��� ��� kuk � ��
thus

Itn�un�� It�u� � inffIt�v� j v � Ut��� ��� kvk � �g� tn # t�

Then

��t� � �

�
" lim

tn�t
Itn�un� � lim

tn�t
��tn��

By monotonicity of ��
��t� � lim

tn�t
��tn��

i�e�� continuity from the right is proved�
Continuity from the left� We can assume that ��t� � �

�
�otherwise ��� � �

��t� � �
� for � � t�� Thus minimum in ������� is attained�

��t� �
�

�
" It�bu�� bu � Ut��� ��� kbuk � ��

For the trajectory bx�� � � x��� bu� ���
we have bx�� � � Z �

�

e�����ABbu�	� d	�
Denote

���� � k buj����� k
and notice that

����� �� �� ��

Denote the ball
B� � fu � Lm� j kuk � �� u � U��� ��g�

Obviously�
x��� B����� �� � bx����

The mappingu �� x��� u� �� fromLm� toR
n is linear� and the system !x � Ax"Bu

is controllable� thus x��� B����� �� is a convex full
dimensional set inR
n such that

the positive cone generated by this set is the whole Rn� That is why

x��� �B����� �� � �x��� B����� �� � Ox���B�������
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for some neighborhood Ox���B������� of the set x��� B����� ��� Further� there exists
an instant t� � � such that

bx�t�� � x��� �B����� ���

consequently� bx�t�� � x��� v�� ��� kv�k � ������
Notice that we can assume t� � � as � � �� Consider the following family of
controls that approximate bu�

u��� � �

�
v��� �� � � � � ��bu�� " t� � ��� � � � � t" � � t��

We have

u� � Ut���t���� ���
kbu� u�k � �� �� ��

But t" �� t� � t and � is nonincreasing� thus it is continuous from the left�
Continuity from the right was already proved� hence � is continuous�

Now we prove that the function � can have not more than one root�

Proposition ����� If ��t� � � for some t � �� then ��� � � � for all � � t�

Proof� Let ��t� � �� t � �� By Proposition ����� in�mum in ������� is attained
at some control bu � Ut��� ��� kbuk � ��

��t� � minfJt�u� j u � Ut��� ��� kuk � �g
� Jt�bu� � ��

Then
Jt�u� � Jt�bu� � � �u � Ut��� ���

i�e�� the control bu is optimal� thus it satis�es PMP� There exists a solution
���� �� x�� ��� � � ��� t�� of the Hamiltonian system�

!� � x�Q� �A�

!x � Ax" BB����

with the boundary conditions

x��� � x�t� � ��

and
u�� � � B����� �� � � ��� t��

We proved that for any root t of the function �� any control u � Ut��� ���
kuk � �� with Jt�u� � � satis�es PMP�
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Now we prove that ��� � � � for all � � t� By contradiction� suppose that
the function � vanishes at some instant t� � t� Since � is monotone� then

�j�t�t�� � ��
Consequently� the control

u��� � �
� bu�� �� � � t�
�� � � �t� t���

satis�es the conditions�

u� � Ut���� ��� ku�k � ��
Jt��u

�� � ��

Thus u� satis�es PMP� i�e��

u��� � � B��
���� �� � � ��� t���

is an analytic function� But u�j�t�t�� � �� thus u� � �� a contradiction with

ku�k � ��
It would be nice to have a way to solve the equation ��t� � � without

performing the minimization procedure in �������� This can be done in terms
of the following notion�

De�nition ����� A point t � � is conjugate to � for the linear
quadratic prob

lem in question if there exists a nontrivial solution ���� �� x�� �� of the Hamilto

nian system �

!� � x�Q� �A�

!x � Ax"BB���

such that x��� � x�t� � ��

Proposition ����� The function � vanishes at a point t � � if and only if t is
the closest to � conjugate point�

Proof� Let ��t� � �� t � �� First of all� t is conjugate to �� we showed this in
the proof of Proposition �����
Suppose that t� � � is conjugate to �� Compute the functional Jt� on the

corresponding control u�� � � B����� �� � � ��� t���

Jt��u� �
�

�

Z t�

�

hB����� �� B����� �i " hQx�� �� x�� �i d�

�
�

�

Z t�

�

hBB����� �� ���� �i " hQx�� �� x�� �i d�

�
�

�

Z t�

�
��� �� !x�� �� Ax�� �� " x��� �Qx�� � d�

�
�

�

Z t�

�

�� !x" !�x� d�

�
�

�
���t��x�t�� � ����x���� � ��
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Thus ��t�� � Jt�
�

u
kuk

�
� �� Now the result follows since � is nonincreasing�

The �rst �closest to zero� conjugate point determines existence and unique

ness properties of optimal control in linear
quadratic problems�
Before the �rst conjugate point� optimal control exists and is unique for any

boundary conditions �if there are two optimal controls� then their di�erence
gives rise to a conjugate point��
At the �rst conjugate point� there is existence and nonuniqueness for some

boundary conditions� and nonexistence for other boundary conditions�
And after the �rst conjugate point� the problem has no optimal solutions for

any boundary conditions�
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Su�cient optimality

conditions� Hamilton�Jacobi

equation� and Dynamic

Programming

��� Su�cient optimality conditions

Pontryagin MaximumPrinciple is a universal and powerful necessary optimality
condition� but the theory of su�cient optimality conditions is not so complete�
In this section we consider an approach to su�cient optimality conditions that
generalizes �elds of extremals of the Classical Calculus of Variations�
Consider the following optimal control problem�

!q � fu�q�� q �M� u � U� ������

q��� � q�� q�t�� � q�� q�� q�� t� �xed� ������Z t�

�

��q�t�� u�t�� dt� min � ������

The control
dependent Hamiltonian of PMP corresponding to the normal case
is

hu��� � h�� fu�q�i � ��q� u�� � � T �M� q � ���� �M� u � U�

Assume that the maximized Hamiltonian

H��� � max
u�U

hu��� ������

is de�ned and smooth on T �M � We can assume smoothness of H on an open
domain O � T �M and modify respectively the subsequent results� But for

���
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simplicity of exposition we prefer to take O � T �M � Then trajectories of the
Hamiltonian system

!� � �H���

are extremals of problem �������������� We assume that the Hamiltonian vector

�eld �H is complete�

�
���� Integral invariant

First we consider a general construction that will play a key role in the proof of
su�cient optimality conditions�
Fix an arbitrary smooth function

a � C��M ��

Then the graph of di�erential da is a smooth submanifold in T �M �

L� � fdqa j q �Mg � T �M�

dimL� � dimM � n�

Translations of L� by the �ow of the Hamiltonian vector �eld

Lt � et
�H �L��

are smooth n
dimensional submanifolds in T �M � and the graph of the mapping
t �� Lt�

L � f��� t� j � � Lt� � � t � t�g � T �M �R
is a smooth �n " ��
dimensional submanifold in T �M �R�
Consider the �
form

s �H dt � .��T �M �R��

Recall that s is the tautological �
form on T �M � s� � �	��� and its di�erential
is the canonical symplectic structure on T �M � ds � � In mechanics� the form
s�H dt � p dq�H dt is called the integral invariant of Poincar�e�Cartan on the
extended phase space T �M �R�
Proposition �	��� The form �s�H dt�jL is exact�

Proof� First we prove that the form is closed�

� � d�s �H dt�jL � � � dH � dt�jL � ������

��� Fix Lt � L�ft � constg and consider restriction of the form �dH�dt
to Lt� We have

� � dH � dt�jLt � jLt
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since dtjLt � �� Recall that
d
et �H  � � thus

jLt �
�d
et �H 

�����
L�
� jL� � dsjL� �

But sjL� � d�a 	 ��jL� � hence
dsjL� � d 	 d�a 	 ��jL� � ��

We proved that � � dH � dt�jLt � ��
��� The manifold L is the image of the smooth mapping

��� t� ��
�
et
�H�� t

�
�

thus the tangent vector to L transversal to Lt is

�H��� "




 t
� T���t�L�

So

T���t�L � T���t�Lt "R
�
�H��� "





 t

�
�

To complete the proof� we substitute the vector �H���" 	
	 t
as the �rst argument

to  � dH � dt and show that the result is equal to zero� We have�
i �H � �dH� i �

� t
 � ��

i �H �dH � dt� �
�
i �HdH

�� 	z 

��

� dt� dH � �
i �Hdt

�� 	z 

��

� ��

i �
� t
�dH � dt� �

�
i �
� t
dH

�
� 	z 


��

� dt� dH �
�
i �
� t
dt
�

� 	z 

��

� �dH�

consequently�
i �H� �

� t

� � dH � dt� � �dH " dH � ��

We proved that the form �s �H dt�jL is closed�
��� Now we show that this form is exact� i�e��Z



s �H dt � � ������

for any closed curve

� � � �� ���� �� t�� �� � L� � � ��� ���
The curve � is homotopic to the curve

�� � � �� ���� �� �� � L�� � � ��� ���
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Since the form �s �H dt�jL is closed� Stokes� theorem yields thatZ


s �H dt �

Z
�

s �H dt�

But the integral over the closed curve �� � L� is easily computed�Z
�

s �H dt �

Z
�

s �

Z
�

d�a 	 �� � ��

Equality ������ follows� i�e�� the form �s �H dt�jL is exact�

�
���� Problem with �xed time

Now we prove su�cient optimality conditions for problem ��������������

Theorem �	��� Assume that the restriction of projection �jLt is a di�eomor�
phism for any t � ��� t��� Then for any �� � L�� the normal extremal trajectory

$q�t� � � 	 et �H ����� � � t � t��

realizes a strict minimum of the cost functional
R t�
�
��q�t�� u�t�� dt among all

admissible trajectories q�t�� � � t � t�� of system ������ with the same boundary
conditions


q��� � $q���� q�t�� � $q�t��� ������

Remarks� ��� Under the hypotheses of this theorem� no check of existence of
optimal control is required�
��� If all assumptions �smoothness of H� extendibility of trajectories of �H to

the time segment ��� t��� di�eomorphic property of �jLt� hold in a proper open
domain O � T �M � then the statement can be modi�ed to give local optimality
of $q�
� in ��O�� These modi�cations are left to the reader�
Now we prove Theorem �����

Proof� The curve $q�t� is projection of the normal extremal

$�t � et
�H�����

Let $u�t� be an admissible control that maximizes the Hamiltonian along this
extremal�

H�$�t� � h�u�t��$�t��

On the other hand� let q�t� be an admissible trajectory of system ������ gen

erated by a control u�t� and satisfying the boundary conditions ������� We
compare costs of the pairs �$q� $u� and �q� u��
Since � � Lt �M is a di�eomorphism� the trajectory fq�t� j � � t � t�g �

M can be lifted to a smooth curve f��t� j � � t � t�g � T �M �

�t � ��� t�� �� ��t� � Lt such that ����t�� � q�t��



�	��� SUFFICIENT OPTIMALITY CONDITIONS ���

Then Z t�

�
��q�t�� u�t�� dt �

Z t�

�
h��t�� fu�t��q�t��i � hu�t����t�� dt

�
Z t�

�

h��t�� !q�t�i �H���t�� dt ������

�

Z t�

�
hs��t�� !��t�i �H���t�� dt

�

Z


s �H dt�

where
� � t �� ���t�� t� � L� t � ��� t���

By Proposition ����� the form �s�H dt�jL is exact� Then integral of the form
�s �H dt�jL along a curve depends only upon endpoints of the curve� The
curves � and

$� � t �� �$�t� t� � L� $�t � et
�H����� t � ��� t���

have the same endpoints �see �g� ������ thusZ


s �H dt �

Z
�

s �H dt �

Z t�

�

h$�t� !$q�t�i �H�$�t� dt

�

Z t�

�
h$�t� f�u�t��$q�t��i � h�u�t��$�t� dt

�

Z t�

�

��$q�t�� $u�t�� dt�

So Z t�

�

��q�t�� u�t�� dt �
Z t�

�

��$q�t�� $u�t�� dt� ������

i�e�� the trajectory $q�t� is optimal�
It remains to prove that the minimum of the pair �$q�t�� $u�t�� is strict� i�e�

that inequality ������ is strict�
For a �xed point q � M � write cotangent vectors as � � �p� q�� where p

are coordinates of a covector � in T �qM � The control
dependent Hamiltonians
hu�p� q� are a�ne w�r�t� p� thus their maximumH�p� q� is convex w�r�t� p� Any
vector � � TqM such that

hp� �i � max
u�U

hp� fu�q�i

de�nes a hyperplane of support to the epigraph of the mapping p �� H�p� q��
Since H is smooth in p� such a hyperplane of support is unique and maxi

mum in ������ is attained at a unique velocity vector� If q�t� �� $q�t�� then
inequality ������ becomes strict� as well as inequality ������� The theorem is
proved�
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M

q�t�
�q�t��

�q���
�q�t�

��t�

���t�

���t�
� t��

���� ��
L

Figure ����� Proof of Th� ����

Su�cient optimality condition of Theorem ���� is given in terms of the man

ifolds Lt� which are in turn de�ned by a function a and the Hamiltonian �ow
of �H� One can prove optimality of a normal extremal trajectory $q�t�� t � ��� t���
if one succeeds to �nd an appropriate function a � C��M � for which the pro

jections � � Lt �M � t � ��� t��� are di�eomorphisms�
For t � � the projection � � L� �M is a di�eomorphism� So for small t � �

any function a � C��M � provides manifolds Lt projecting di�eomorphically
to M � at least if we restrict ourselves by a compact K bM � Thus the su�cient
optimality condition for small pieces of extremal trajectories follows�

Corollary �	��� For any compact K b M that contains a normal extremal
trajectory

$q�t� � � 	 et �H ����� � � t � t��

there exists t�� � ��� t�� such that the piece

$q�t�� � � t � t���

is optimal w�r�t� all trajectories contained in K and having the same boundary
conditions�

In many problems� one can choose a su�ciently large compact K � $q such
that the functional J is separated from below from zero on all trajectories leav

ing K �this is the case� e�g�� if ��q� u� � ��� Then small pieces of $q are globally
optimal�
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�
���� Problem with free time

For problems with integral cost and free terminal time t�� a su�cient optimality
condition similar to Theorem ���� is valid� see Theorem ���� below�
Recall that all normal extremals of the free time problem lie in the zero

level H����� of the maximized Hamiltonian H� First we prove the following
auxiliary proposition�

Proposition �	��� Assume that � is a regular value of the restriction HjL� �
i�e� d� HjT	L� �� � for all � � L� �H������ Then the mapping

� � L� �H������R� T �M� ����� t� � et
�H�����

is an immersion and b�s is an exact form�

Proof� First of all� regularity of the value � for HjL� implies that L��H����� is a
smoothmanifold� Then� the exactness of b�s easily follows fromProposition �����
To prove that � is an immersion� it is enough to show that the vector 	�	 t ���� t� �
�H��t�� �t � ����� t�� is not tangent to the image of L� � H����� under the
di�eomorphism et

�H � T �M � T �M for all �� � L� � H������ Note that
et
�H �L� �H������ � Lt �H������ We are going to prove a little bit more than

we need� namely� that �H��t� is not tangent to Lt�
Indeed� Proposition ���� implies that jLt � dsjLt � �� Hence it is enough

to show that the form �i �H�jLt does not vanish at the point �t� Recall that the
Hamiltonian �ow et

�H preserves both  and �H� In particular�

�i �H�jLt �
d
et �H

�
�i �H�jL�

�
� �d

et �H �dHjL�� �

The mapping
d
et �H is invertible� So it is enough to prove that dHjL� does not

vanish at ��� But the last statement is our assumption�

Now we obtain a su�cient optimality condition for the problem with free
time�

Theorem �	��� Let W be a domain in L� �H������R such that

� 	�jW � W �M

is a di�eomorphism of W onto a domain in M � and let

$�t � et
�H�$���� t � ��� t���

be a normal extremal such that �$��� t� �W for all t � ��� t��� Then the extremal
trajectory $q�t� � ��$�t� �with the corresponding control $u�t�� realizes a strict
minimum of the cost

R �
�
��q�t�� u�t�� dt among all admissible trajectories such

that q�t� � � 	��W � for all t � ��� � �� q��� � $q���� q�� � � $q�t��� � � ��
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Proof� Set L � ��W �� then � � L � ��L� is a di�eomorphism and sjL is an
exact form� Let q�t�� t � ��� � �� be an admissible trajectory generated by a
control u�t� and contained in ��L�� with the boundary conditions q��� � $q����
q�� � � $q�t��� Then q�t� � ����t��� � � t � � � where t �� ��t� is a smooth curve
in L such that ���� � $��� ��� � � $�t� �
We have

R
��	�

s �
R
���

s� Further�

Z
���

s �

t�Z
�

D
$�t� !$q�t�

E
dt �

t�Z
�

D
$�t� f�u�t��$q�t��

E
dt �

t�Z
�

��$q�t�� $u�t�� dt�

The last equality follows from the fact thatD
$��t�� f�u�t��$q�t��

E
� ��$q�t�� $u�t�� � H�$��t�� � ��

On the other hand�Z
��	�

s �

�Z
�

h��t�� !q�t�i dt �
�Z

�

hu�t����t�� dt "

�Z
�

��q�t�� u�t�� dt

�
�Z

�

��q�t�� u�t�� dt�

The last inequality follows since max
u�U

hu���t�� � H���t�� � �� Moreover� the

inequality is strict if the curve t �� ��t� is not a solution of the equation !� �
�H���� i�e�� if it does not coincide with $��t�� Summing up�

t�Z
�

��$q�t�� $u�t�� dt �
�Z

�

��q�t�� u�t�� dt

and the inequality is strict if q di�ers from $q�

��� Hamilton
Jacobi equation

Suppose that conditions of Theorem ���� are satis�ed� As we showed in the
proof of this theorem� the form �s�H dt�jL is exact� thus it coincides with
di�erential of some function�

�s �H dt�jL � dg� g � L � R� �������

Since the projection � � Lt �M is one
to
one� we can identify ��� t� � Lt�R�
L with �q� t� �M �R and de�ne g as a function on M �R�

g � g�q� t��
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In order to understand the meaning of the function g for our optimal control
problem� consider an extremal

$�t � et
�H ����

and the curve

$� � L� $� � t �� �$�t� t��

as in the proof of Theorem ����� ThenZ
�

s �H dt �

Z t�

�

��$q�� �� $u�� �� d�� �������

where $q�t� � ��$�t� is an extremal trajectory and $u�t� is the control that max

imizes the Hamiltonian hu��� along $�t� Equalities ������� and ������� mean
that

g�$q�t�� t� � g�q�� �� "

Z t

�

��$q�� �� $u�� �� d��

i�e�� g�q� t� � g�q�� �� is the optimal cost of motion between points q� and q for
the time t� Initial value for g can be chosen of the form

g�q�� �� � a�q��� q� �M� �������

Indeed� at t � � de�nition ������� of the function g reads

dgjt�� � �s �H dt�jL� � sjL� � da�

which is compatible with ��������
We can rewrite equation ������� as a partial di�erential equation on g� In

local coordinates on M and T �M � we have

q � x �M� � � ��� x� � T �M� g � g�x� t��

Then equation ������� reads

�� dx�H��� x� dt�jL � dg�x� t��

i�e�� ����

 g


 x
� ��


 g


 t
� �H��� x��

This system can be rewritten as a single �rst order nonlinear partial di�erential
equation�


 g


 t
"H

�

 g


 x
� x

�
� �� �������
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which is called Hamilton�Jacobi equation� We showed that the optimal cost
g�x� t� satis�es Hamilton
Jacobi equation ������� with initial condition ��������
Characteristic equations of PDE ������� have the form����������

!x �

 H


 �
�

!� � �
 H

 x

�

d

d t
g�x�t�� t� � � !x�H�

The �rst two equations form the Hamiltonian system !� � �H��� for normal
extremals� Thus solving our optimal control problem ������������� leads to the
method of characteristics for the Hamilton
Jacobi equation for optimal cost�

��� Dynamic programming

One can derive the Hamilton
Jacobi equation for optimal cost directly� without
Pontryagin Maximum Principle� due to an idea going back to Huygens and
constituting a basis for Bellman�s method of Dynamic Programming � see ����
For this� it is necessary to assume that the optimal cost g�q� t� exists and is
C�
smooth�
Let an optimal trajectory steer a point q� to a point q for a time t� Apply

a constant control u on a time segment �t� t " �t� and denote the trajectory
starting at the point q by qu�� �� � � �t� t" �t�� Since qu�t " �t� is the endpoint
of an admissible trajectory starting at q�� the following inequality for optimal
cost holds�

g�qu�t " �t�� t" �t� � g�q� t� "

Z t��t

t

��qu�� �� u� d��

Divide by �t�

�

�t
�g�qu�t " �t�� t" �t�� g�q� t�� � �

�t

Z t��t

t

��qu�� �� u� d�

and pass to the limit as �t� ���

 g


 q
� fu�q�

�
"

 g


 t
� ��q� u��

So we obtain the inequality


 g


 t
" hu

�

 g


 q
� q

�
� �� u � U� �������

Now let �$q�t�� $u�t�� be an optimal pair� Let t � � be a Lebesgue point of
the control $u� Take any �t � ��� t�� A piece of an optimal trajectory is optimal�
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thus $q�t � �t� is the endpoint of an optimal trajectory� as well as $q�t�� So the
optimal cost g satis�es the equality�

g�$q�t�� t� � g�$q�t � �t�� t� �t� "

Z t

t��t
��$q�� �� $u�� �� d��

We repeat the above argument�

�

�t
�g�$q�t�� t�� g�$q�t � �t�� t� �t�� �

�

�t

Z t

t��t
��$q�� �� $u�� �� d��

take the limit �t� ��


 g


 t
" h�u�t�

�

 g


 q
� q

�
� �� �������

This equality together with inequality ������� means that

h�u�t�

�

 g


 q
� q

�
� max

u�U
hu

�

 g


 q
� q

�
�

We denote
H��� q� � max

u�U
hu��� q�

and write ������� as Hamilton
Jacobi equation�


 g


 t
"H

�

 g


 q
� q

�
� ��

Thus derivative of the optimal cost

 g


 q
is equal to the impulse � along the

optimal trajectory $q�t��
We do not touch here a huge theory on nonsmooth generalized solutions of

Hamilton
Jacobi equation for smooth and nonsmooth Hamiltonians�
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Chapter �	

Hamiltonian systems for

geometric optimal control

problems

���� Hamiltonian systems on trivialized cotan


gent bundle

����� Motivation

Consider a control system described by a �nite set of vector �elds on a mani

fold M �

!q � fu�q�� u � f�� � � � � kg� q �M� ������

We construct a parametrization of the cotangent bundle T �M adapted to this
system� First� choose a basis in tangent spaces TqM of the �elds fu�q� and their
iterated Lie brackets�

TqM � span�f��q�� � � � � fn�q���

we assume that the system is bracket
generating� Then we have special coordi

nates in the tangent spaces�

� v � TqM v �
nX
i��

�ifi�q��

���� � � � � �n� � Rn�

Thus any tangent vector to M can be represented as an �n" ��
tuple

���� � � � � �n� q�� ���� � � � � �n� � Rn� q �M�

���
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i�e�� we obtain a kind of parametrization of the tangent bundle TM � �q�MTqM �
One can construct coordinates on TM by choosing local coordinates in M � but
such a choice is extraneous to our system� and we stay without any coordinates
in M �
Having in mind the Hamiltonian system of PMP� we pass to the cotangent

bundle� Construct the dual basis in T �M � choose di�erential forms

��� � � � � �n � .�M
such that

h�i� fji � �ij� i� j � �� � � � � n�

Then the cotangent spaces become endowed with special coordinates�

� � � T �qM � �
nX
i��

�i�iq�

���� � � � � �n� � Rn�
So we obtain a kind of parametrization of the cotangent bundle�

� �� ���� � � � � �n� q�� ���� � � � � �n� � Rn� q �M�

In notation of Sec� �����

�i � f�i ��� � h�� fi�q�i
is the linear on �bers Hamiltonian corresponding to the �eld fi� Canonical co

ordinates on T �M arise in a similar way from commuting vector �elds fi �

	
	 xi
�

i � �� � � � � n� corresponding to local coordinates �x�� � � � � xn� on M � Conse

quently� in the �only interesting in control theory� case where the �elds fi do
not commute� the �coordinates ���� � � � � �n� q� on T �M are not canonical�
Now our aim is to write Hamiltonian system in these nonstandard coordi


nates on T �M � or in other natural coordinates adapted to the control system in
question�

����� Trivialization of T �

M

Let M be a smooth manifold of dimension n� and let E be an n
dimensional
vector space� Suppose that we have a trivialization of the cotangent bundle
T �M � i�e�� a di�eomorphism

� � E �M � T �M

such that�

��� the diagram

E �M
������ T �M$$y $$y�

M M
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is commutative� i�e��

� 	��e� q� � q� e � E� q �M�

��� for any q �M the mapping

e �� ��e� q�� e � E�

is a linear isomorphism of vector spaces�

�� 
 � q� � E � T �qM�

So the space E is identi�ed with any vertical �ber T �qM � it is a typical �ber of
the cotangent bundle T �M �
For a �xed vector e � E� we obtain a di�erential form on M �

�e
def
� ��e� 
 � � .�M�

In the previous section we had

E � f���� � � � � �n�g � Rn�

��e� q� �
nX
i��

�i�iq�

but now we do not �x any basis in E�

����� Symplectic form on E �M

In order to write a Hamiltonian system on E �M �� T �M � we compute the
symplectic form b� on E �M � We start from the Liouville form

s � .��T �M �
and evaluate its pull
back b�s � .��E �M ��

The tangent and cotangent spaces are naturally identi�ed with the direct prod

ucts�

T�e�q��E �M � �� TeE " TqM �� E " TqM�

T ��e�q��E �M � �� T �e E " T �qM �� E� " T �qM�

Any vector �eld V � Vec�E �M � is a sum of its vertical and horizontal parts�

V � Vv " Vh� Vv�e� q� � E� Vh�e� q� � TqM�

Similarly� any di�erential form

� � .��E �M �
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is decomposed into its vertical and horizontal parts�

� � �v " �h� �v �e�q� � E�� �h �e�q� � T �qM�

The vertical part �v vanishes on horizontal tangent vectors� while the horizontal
one �h vanishes on vertical tangent vectors�
In particular� vector �elds and di�erential forms on M �possibly depending

on e � E� can be considered as horizontal vector �elds and di�erential forms on
E �M �

TqM � �" TqM � T�e�q��E �M ��

T �qM � �" T �qM � T ��e�q��E �M ��

Compute the action of the form b�s on a tangent vector ��� v� � TeE"TqM �

hb�s� ��� v�i � hs��e�q������� v�i � hs��e�q�� ����� v�i � h��e� q�� vi�
Thus

�b�s��e�q� � ��e� q�� ������

where � in the right
hand side of ������ is considered as a horizontal form on
E �M �
We go on and compute the pull
back of the standard symplectic form�b� � b�ds � db�s � d��

Recall that di�erential of a form � � .��N � can be evaluated by formula ��������
d��W��W�� �W�h��W�i �W�h��W�i � h�� �W��W��i� W�� W� � VecN�

������

In our case N � E �M we take test vector �elds of the form

Wi � ��i� Vi� � Vec�E �M �� i � �� ��

where �i � const � E are constant vertical vector �elds and Vi � VecM are
horizontal vector �elds� By �������

d������ V��� ���� V���

� ���� V��h�� 
 � 
 �� V�i � ���� V��h�� 
 � 
 �� V�i � h�� 
 � 
 �� �V�� V��i
since ����� V��� ���� V��� � �V�� V��� Further�

����� V��h�� 
 � 
 �� V�i��e�
� � ���h�� 
 � 
 �� V�i" V�h�� 
 � 
 �� V�i��e�
�
and taking into account that � is linear w�r�t� e

� h��� � V�i " V�h�e� V�i�
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Consequently�

d������ V��� ���� V����e�
� �
h��� � V�i � h��� � V�i" V�h�e� V�i � V�h�e� V�i � h�e� �V�� V��i�

We denote the �rst two termse������ V��� ���� V��� � h��� � V�i � h��� � V�i�
and apply formula ������ to the horizontal form �e�

d�e�V�� V�� � V�h�e� V�i � V�h�e� V�i � h�e� �V�� V��i�
Finally� we obtain the expression for pull
back of the symplectic form�b��e�
������ V��� ���� V��� � e������ V��� ���� V��� " d�e�V�� V��� ������

i�e�� b��e�
� � e�" d�e�

Remark� In the case of canonical coordinates we can take test vector �elds
Vi �

	
	 xi
� then it follows that d�e � ��

����� Hamiltonian system on E �M

Formula ������ describes the symplectic structure b� on E � M � Now we
compute the Hamiltonian vector �eld corresponding to a Hamiltonian function

h � C��E �M ��

One can consider h as a family of functions onM parametrized by vectors from
E�

he � h�e� 
 � � C��M �� e � E�

Decompose the required Hamiltonian vector �eld into the sum of its vertical
and horizontal parts�

�h � X " Y�

X � X�e� q� � E�

Y � Y �e� q� � TqM�

By de�nition of a Hamiltonian �eld�

iX�Y
b� � �dh� ������

Transform the both sides of this equality�

�dh � �
 h

 e� 	z 


�E�

� dhe�	z

�T�M

�

iX�Y je b� � iX�Y je �e�" d�e� � i�X�Y �

��
e
e�" i�X�Y �

��
e
d�e

� h�X � 
 i� 	z 

�T�M

�h�
� Y i� 	z 

�E�

" iY d�e� 	z 

�T�M

�
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Now we equate the vertical parts of �������

h�
� Y i � 
 h


 e
� ������

from this equation we can �nd the horizontal part Y of the Hamiltonian �eld
�h� Indeed� the linear isomorphism

�� 
 � q� � E � T �qM

has a dual mapping

��� 
 � q� � TqM � E��

Then equation ������ can be written as

��� 
 � q�Y � 
 h


 e
�e� q�

and then solved w�r�t� Y �

Y � ����

 h


 e
�

To �nd the vertical part X of the �eld �h� we equate the horizontal parts
of �������

�X " iY d�e � �dhe�
rewrite as

�X � �iY d�e � dhe�

and solve this equation w�r�t� X�

X � �����iY d�e " dhe��

Thus the Hamiltonian system on E �M corresponding to a Hamiltonian h
has the form� �� !q � ����


 h


 e
�

!e � �����i �qd�e " dhe��
������

Now we write this system using coordinates in the cotangent and tangent spaces
�we do not require any coordinates on M ��
Choose a basis in E�

E � span�e�� � � � � en��

so that vectors u � E are decomposed as

u �
nX
i��

uiei�
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Then

��u� 
 � � �
�

nX
i��

uiei� 

�
�

nX
i��

ui�i�

where
�i � �ei � .��M �� i � �� � � � � n�

are basis �
forms on M � Further� the wedge products

�i � �j � .��M �� � � i � j � n�

form a basis in the space .��M � of �
forms on M � Decompose the di�erentials
in this basis�

d�k �
X

��i
j�n
ckij �i � �j �

nX
i�j��

�

�
ckij �i � �j�

where coe�cients are smooth functions

ckij � C��M �� i� j� k � �� � � � � n�

skew
symmetric w�r�t� lower indices�

ckij � �ckji�

The coe�cients ckij are called structural constants �although� in general� they
are not constant�� We explain the name and give a simple recipe for computing
them below in Proposition �����
Choose a frame in TqM dual to the frame ��� � � � � �n�

V�� � � � � Vn � VecM�

h�i� Vji � �ij� i� j � �� � � � � n�

Now we compute our Hamiltonian system ������ in the coordinates introduced�
The Hamiltonian function has the form

h � C��Rn�M ��

h � h�u�� � � � � un� q�� �u�� � � � � un� � Rn� q �M�

We have
h���Vi�� eji � h�ej � Vii � h�j� Vii � �ij �

thus

���Vi� � e�i �

�BBBB�
�

 
 

�

 
 

�

�CCCCA �
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the only unit is the i
th component� Consequently� the horizontal part of the
�eld �h decomposes along the basis horizontal �elds as follows�

Y �
nX
i��


 h


 ui
Vi�

Consider the vertical part of �h�

X � �����iY d�u " dhu��

The second term is easily computed since

dhu �
nX
i��

�Vihu��i�

this decomposition is immediately checked on basis vector �elds Vi� And the
�rst term has the form

����iY d�u �
nX

i�j�k��

�

�
ukc

k
ij

�

 h


 uj





 ui
� 
 h


 ui





 uj

�
�

we leave this as an exercise for the reader�

Finally� the Hamiltonian system in the moving frames �V�� � � � � Vn� and
���� � � � � �n� reads�����������

!q �
nX
i��


 h


 ui
Vi�

!ui � �Vihu "
nX

j�k��

ukc
k
ij


 h


 uj
� i � �� � � � � n�

Remark� This system becomes especially simple �triangular� when the Hamil

tonian does not depend upon the point in the base�


 h


 q
� ��

The vertical subsystem simpli�es even more when

ckij � const� i� j� k � �� � � � � n�

Both these conditions are satis�ed for invariant problems on Lie groups discussed
in subsequent sections�

The structural constants ckij can easily be expressed in terms of Lie brackets
of basis vector �elds�
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Proposition �
��� Let the frame of vector �elds V�� � � � � Vn � VecM be dual
to the frame of ��forms ��� � � � � �n � .��M �


h�i� Vji � �ij � i� j � �� � � � � n�

Then

d�k �
nX

i�j��

�

�
ckij �i � �j� k � �� � � � � n�

if and only if

�Vi� Vj� � �
nX

k��

ckij Vk� i� j � �� � � � � n�

Proof� The equality for d�k can be written as

hd�k� �Vi� Vj�i � ckij� i� j� k � �� � � � � n�

The left
hand side is computed by formula �������

hd�k� �Vi� Vj�i � Vih�k� Vji� 	z 

��

�Vjh�k� Vii� 	z 

��

�h�k� �Vi� Vj�i�

and the statement follows�

If the coe�cients ckij are constant� then the vector �elds V�� � � � � Vn span a

�nite
dimensional Lie algebra� and the numbers ckij are called structural con�
stants of this Lie algebra� As we mentioned above� for general vector �elds
ckij �� const�

���� Lie groups

State spaces for many interesting problems in geometry� mechanics� and applica

tions are often not just smooth manifolds but Lie groups� in particular� groups
of transformations� A manifold with a group structure is called a Lie group
if the group operations are smooth� The cotangent bundle of a Lie group has
a natural trivialization� We develop an approach of the previous section and
study optimal control problems on Lie groups�

����� Examples of Lie groups

The most important examples of Lie groups are given by groups of linear trans

formations of �nite
dimensional vector spaces�
The group of all nondegenerate linear transformations of Rn is called the

general linear group�

GL�n� � fX � Rn� Rn j detX �� �g�
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Linear volume
preserving transformations of Rn form the special linear group�

SL�n� � fX � Rn� Rn j detX � �g�
Another notation for these groups is respectively GL�Rn� and SL�Rn�� The or�
thogonal group is formed by linear transformations preserving Euclidean struc

ture�

O�n� � fX � Rn� Rn j X�X � Idg�
and orthogonal orientation
preserving transformations form the special orthog�
onal group�

SO�n� � fX � Rn� Rn j X�X � Id� detX � �g�
One can also consider the complex and Hermitian versions of these groups�

GL�Cn �� SL�Cn�� U�n�� SU�n��

for this one should replace in the de�nitions above Rn by Cn � Each of these
groups realizes as a subgroup of the corresponding real or orthogonal group�
Namely� the general linear group GL�Cn � and the unitary group U�n� can be
considered respectively as the subgroups of GL�R�n� or O��n� commuting with
multiplication by the imaginary unit�

GL�C n� �

��
A B
�B A

�
j A� B � Rn� Rn� det�A" det�B �� �

�
� GL�R�n��

U�n� �

��
A B
�B A

�
j A� B � Rn� Rn�

AA� " BB� � Id� BA� �AB� � �
�
� GL�Cn � �O��n��

The special linear group SL�Cn � and the special unitary group SU�n� realize as
follows�

SL�Cn � �

��
A B
�B A

�
j A� B � Rn� Rn� det�A" iB� � �

�
� SL�R�n��

SU�n� �

��
A B
�B A

�
j A� B � Rn� Rn�

AA� "BB� � Id� BA� � AB� � �� det�A" iB� � �

�
� U�n� � SL�Cn � � SO��n��

Lie groups of linear transformations are called linear Lie groups� These
groups often appear as a state space of a control system� e�g�� SO�n� arises in
the study of rotating con�gurations� For such systems� one can consider� as
usual� the problems of controllability and optimal control�
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����� Lie�s theorem for linear Lie groups

Consider a control system of the form

!X � XA� X �M � GL�N �� A � A � gl�N �� ������

where A is an arbitrary subset of gl�N �� the space of all real N � N matrices�
We compute orbits of this system� Systems of the form ������ are called left�
invariant � they are preserved by multiplication from the left by any constant
matrix Y � GL�N ��
Notice that the ODE with a constant matrix A

!X � XA

is solved by the matrix exponential�

X�t� � X���etA�

Lie bracket of left
invariant vector �elds is left
invariant as well�

�XA�XB� � X�A�B�� ������

this follows easily from the coordinate expression for commutator �exercise��

Remark� Instead of left
invariant systems !X � XA� we can consider right�
invariant ones� !X � CX� These forms are equivalent and transformed one into
another by the inverse of matrix� Although� the Lie bracket for right
invariant
vector �elds is

�CX�DX� � �D�C�X�

which is less convenient than �������

Return to control system ������� By the Orbit Theorem� the orbit through
identity OId�A� is an immersed submanifold of GL�N �� Moreover� by de�nition�
the orbit admits the representation via composition of �ows�

OId�A� � fId	et�A� 	 
 
 
 	 etkAk j ti � R� Ai � A� k � Ng

thus via products of matrix exponentials

� fet�A� 
 
 
 
 
 etkAk j ti � R� Ai � A� k � Ng�

Consequently� the orbit OId�A� is a subgroup of GL�N �� Further� in the proof
of the Orbit Theorem we showed that the point q 	 et�A� 	 
 
 
 	 etkAk depends
continuously on �t�� � � � � tk� in the �strong topology of the orbit� thus it depends
smoothly�
To summarize� we showed that the orbit through identity has the following

properties�

��� OId�A� is an immersed submanifold of GL�N ��
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��� OId�A� is a subgroup of GL�N ��
��� the group operations �X�Y � �� XY � X �� X�� in OId�A� are smooth�
In other words� the orbit OId�A� is a Lie subgroup of GL�N ��
The tangent spaces to the orbit are easily computed via the analytic version

of the Orbit theorem �system ������ is real analytic��

TIdOId�A� � Lie�A�� �������

TXOId�A� � X Lie�A��

The orbit of the left
invariant system ������ through any point X � GL�N �
is obtained by left translation of the orbit through identity�

OX�A� � fXet�A� 
 
 
etkAk j ti � R� Ai � A� k � Ng � XOId�A��

We considered before system ������ de�ned by an arbitrary subset A �
gl�N �� Restricting to Lie subalgebras

A � Lie�A� � gl�N ��

we see that the following proposition was proved� to any Lie subalgebra A �
gl�N �� there corresponds a connected Lie subgroup M � GL�N � such that
TIdM � A� Here M � OIdA� Now we show that this correspondence is invert

ible�
Let M be a connected Lie subgroup of GL�N �� i�e��

��� M is an immersed connected submanifold of GL�N ��

��� M is a group w�r�t� matrix product�

��� the group operations �X�Y � �� XY � X �� X�� in M are smooth map

pings�

Then Id �M � Consider the tangent space

TIdM �

�
A �

d

d t

����
t��

't j 't �M� 't smooth� '� � Id

�
�

Since M � GL�N � � gl�N �� then

TIdM � gl�N ��

Further�

A � TIdM� X �M  XA � TXM

since

XA �
d

d t

����
t��

X't�
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the velocity of the curve X't� where A � !'�� Consequently� for any A � TIdM
the vector �eld XA is identically tangent to M � So the following control system
is well
de�ned on M �

!X � XA� X �M� A � TIdM�

This system has a full rank� Since the state space M is connected� it coincides
with the orbit OId of this system through identity� We have already computed
the tangent space to the orbit of a left
invariant system� see �������� thus

TIdM � TId�OId� � Lie�TIdM ��

That is� TIdM is a Lie subalgebra of gl�N �� We proved the following classical
proposition�

Theorem �
�� �Lie�� There exists a one�to�one correspondence between Lie
subalgebras A � gl�N � and connected Lie subgroups M � GL�N � such that
TIdM � A�
We showed that Lie�s theorem for linear Lie algebras and Lie groups follows

from the Orbit Theorem� connected Lie subgroups are orbits of left
invariant
systems de�ned by Lie subalgebras� and Lie subalgebras are tangent spaces to
Lie subgroups at identity�

����� Abstract Lie groups

An abstract Lie group is an abstract smooth manifold �not considered embedded
into any ambient space� which is simultaneously a group� with smooth group
operations� There holds Ado�s theorem ����� stating that any �nite
dimensional
Lie algebra is isomorphic to a Lie subalgebra of gl�N �� A similar statement for
Lie groups is not true� a Lie group can be represented as a Lie subgroup of
GL�N � only locally� but� in general� not globally� Although� the major part of
properties of linear Lie groups can be generalized for abstract Lie groups�
In particular� let M be a Lie group� For any point q �M � the left product

by q�

+q � M �M� +q�x� � qx� x �M�

is a di�eomorphism of M � Any tangent vector

v � TIdM

can be shifted to any point q �M by the left translation +q�

V �q� � +q�v � TqM� q �M�

thus giving rise to a left
invariant vector �eld on M �

V � VecM� +q�V � V� q �M�
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There is a one
to
one correspondence between left
invariant vector �elds on M
and tangent vectors to M at identity�

V �� V �Id� � v�

Left translations in M preserve �ows of left
invariant vector �elds on M � thus
�ows of their commutators� Consequently� left
invariant vector �elds on a Lie
group M form a Lie algebra� called the Lie algebra of the Lie group M � The
tangent space TIdM is thus also a Lie algebra�
Then� similar to the linear case� one can prove Lie�s theorem on one
to
one

correspondence between Lie subgroups of a Lie group M and Lie subalgebras
of its Lie algebra A�

���� Hamiltonian systems on Lie groups

����� Trivialization of cotangent bundle of a Lie group

Let M � GL�N � be a Lie subgroup� Denote by M the corresponding Lie
subalgebra�

M � TIdM � gl�N ��
The cotangent bundle of M admits a trivialization of the form

� � M� �M � T �M�

where M� is the dual space to the Lie algebra M� We start from describing
the dual mapping

�� � TM �M�M�

Recall that TqM � qTIdM � qM for any q �M � We set

�� � qa �� �a� q�� a �M� q �M� qa � TqM� �������

I�e�� the value of a left
invariant vector �eld qa at a point q is mapped to the
pair consisting of the value of this �eld at identity and the point q� Then the
trivialization � has the form�

� � �x� q� �� +xq� x �M�� q �M� +xq � T �qM� �������

where +x is the left
invariant �
form on M coinciding with x at identity�

h+xq� qai def
� hx� ai�

����� Hamiltonian system on M� �M

The Hamiltonian system corresponding to a Hamiltonian

h � h�x� q� � C��M� �M �
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was computed in Section ����� see ��������� !q � ����

 h


 x
�

!x � �����dhx " i �qd�x��
�������

Taking into account de�nition ������� of ��� we can write the �rst equation as
follows�

!q � q

 h


 x
�

Here

 h


 x
is the vertical part of dh � .��M� �M �� i�e��


 h


 x
�x� q� � �M��� �M� �x� q� �M� �M�

In order to �nd !x� compute the action of the di�erential d+x � d�x on left

invariant vector �elds by formula ��������

d+x�qa� qb� � �qa� hx� bi� 	z 

�const

��qb� hx� ai� 	z 

�const

�hx� �a� b�i� �hx� �a� b�i�

Then

���i �qd�x � ���iq � h
� x
d+x � �

�
x�

�

 h


 x
� 


��
� �

�
x�

�
ad


 h


 x

�


�

� �
��
ad


 h


 x

��
x� 


�
� �

�
ad


 h


 x

��
x�

So Hamiltonian system ������� takes the form�����
!q � q


 h


 x
�

!x �

�
ad


 h


 x

��
x� ���dhx�

�������

Recall that dhx is the horizontal part of dh� thus

�dhx�q � T �qM� �x� q� � M� �M�

and
���dhx �M��

System ������� describes the Hamiltonian system for an arbitrary Lie group and
any Hamiltonian function h�
In the case of commutative Lie groups �which arise in trivialization of T �M

generated by local coordinates in M �� the �rst term in the second equation
������� vanishes� and we obtain the usual form of Hamiltonian equations in
canonical coordinates� �� !q � q


 h


 x
�

!x � ����dhx�
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On the contrary� if the Hamiltonian is left
invariant�

h � h�x��

then Hamiltonian system ������� becomes triangular�����
!q � q


 h


 x
�

!x �

�
ad


 h


 x

��
x�

�������

Here the second equation does not contain q� So in left
invariant control prob

lems� where the Hamiltonian h of PMP is left
invariant� one can solve the equa

tion for vertical coordinates x independently� and then pass to the horizontal
equation for q�

����� Compact Lie groups

The Hamiltonian system ������� simpli�es even more in the case of compact Lie
groups�
Let M be a compact Lie subgroup of GL�N �� Then M can be considered

as a Lie subgroup of the orthogonal group O�N �� Indeed� one can choose a
Euclidean structure h 
 � 
 i in RN invariant w�r�t� all transformations fromM �

hAv�Awi � hv� wi� v� w � RN� A �M � GL�N ��

Such a structure can be obtained from any Euclidean structure g� 
 � 
 � on RN
by averaging over A �M using a volume form �� � � � �� �n� where �i are basis
left
invariant forms on M �

hv� wi �
Z
M

�v�w �� � � � �� �n�
�v�w�A� � g�Av�Aw�� A �M�

So we will assume that elements of M are orthogonal N � N matrices� and
the tangent space to M at identity consists of skew
symmetric matrices�

M � TIdM � TIdO�N � � so�N � � fa � RN � RN j a� " a � �g�
There is an invariant scalar product on so�N � de�ned as follows�

ha� bi � � tr ab� a� b � so�N ��

This product is invariant in the sense that

het ad ca� etad cbi � ha� bi� a� b� c � so�N �� t � R� �������

i�e�� the operator
Ad etc � etad c � so�N �� so�N �
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is orthogonal w�r�t� this product� Equality ������� is a corollary of the invariance
of trace�

het ad ca� etad cbi � h�Ad etc�a� �Ad etc�bi � hetcae�tc� etcbe�tci
� � tr�etcae�tcetcbe�tc� � � tr�etcabe�tc� � � tr�ab�
� ha� bi�

The sign minus in the de�nition of the invariant scalar product on so�N � pro

vides positive
de�niteness of the product� This can be easily seen in coordinates�
if

a � �aij�� b � �bij� � so�N ��
aij � �aji� bij � �bji� i� j � �� � � � � N�

then

� tr�ab� � �
NX

i�j��

aijbji �
NX

i�j��

aijbij�

The norm on so�N � is naturally de�ned�

jaj �
p
ha� ai� a � so�N ��

The in�nitesimal version of the invariance property ������� is easily obtained
by di�erentiation at t � ��

h�c� a�� bi" ha� �c� b�i � �� a� b� c � so�N �� �������

That is� all operators

ad c � so�N �� so�N �� c � so�N ��
are skew
symmetric w�r�t� the invariant scalar product� Equality ������� is a
multidimensional generalization of a property of vector and scalar products in
R	 �� so����
Since M � so�N �� there is an invariant scalar product in the Lie algebra

M� Then the dual space M� can be identi�ed with the Lie algebraM via the
scalar product h 
 � 
 i�

M�M�� a �� ha� 
 i�
In terms of this identi�cation� the operator �ad a��� a �M� takes the form�

�ad a�� � M�M� �ad a�� � � ad a�
In the case of a compact Lie group M � Hamiltonian system ������� for an
invariant Hamiltonian h � h�a� becomes de�ned onM�M and reads����

!q � q

 h


 a
�

!a �

�
a�

 h


 a

�
�

�������

We apply this formula in the next chapter for solving several geometric
optimal control problems�
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Chapter �


Examples of optimal control

problems on compact Lie

groups

���� Riemannian problem

Let M be a compact Lie group� The invariant scalar product h 
 � 
 i in the Lie
algebraM � TIdM de�nes a left
invariant Riemannian structure on M �

hqu� qviq def
� hu� vi� u� v �M� q �M� qu� qv � TqM�

So in every tangent space TqM there is a scalar product h 
 � 
 iq� For any Lips

chitzian curve

q � ��� ���M

its Riemannian length is de�ned as integral of velocity�

l �

Z �

�

j !q�t�j dt� j !qj �
p
h !q� !qi�

The problem is stated as follows� given any pair of points q�� q� �M � �nd the
shortest curve in M that connects q� and q��
The corresponding optimal control problem is as follows�

!q � qu� q �M� u �M� ������

q��� � q�� q��� � q�� ������

q�� q� �M �xed� ������

l�u� �

Z �

�

ju�t�j dt� min �

���
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First of all� we prove existence of optimal controls� Parametrizing trajec

tories of control system ������ by arc length� we see that the problem with
unbounded admissible control u � M on the �xed segment t � ��� �� is equiva

lent to the problem with the compact space of control parameters U � fjuj � �g
and free terminal time� Obviously� afterwards we can extend the set of control
parameters to U � fjuj � �g so that the set of admissible velocities fU �q� be

come convex� Then Filippov�s theorem implies existence of optimal controls in
the problem obtained� thus in the initial one as well�
By Cauchy
Schwartz inequality�

�l�u��� �

�Z �

�

ju�t�j dt
��

�
Z �

�

ju�t�j� dt�

moreover� the equality occurs only if ju�t�j � const� Consequently� the Rieman

nian problem l � min is equivalent to the problem

J�u� �
�

�

Z �

�

ju�t�j� dt� min � ������

The functional J is more convenient than l since J is smooth and its extremals
are automatically curves with constant velocity� In the sequel we consider the
problem with the functional J � �������������� The Hamiltonian of PMP for this
problem has the form�

h�u�a� q� � h+aq� qui"
�

�
juj� � ha� ui" �

�
juj��

The maximality condition of PMP is�

h�u�t��a�t�� q�t�� � max
v�M

�ha�t�� vi " �

�
jvj��� � � ��

��� Abnormal case� � � ��
The maximality condition implies that a�t� � �� This contradicts PMP since

the pair ��� a� should be nonzero� So there are no abnormal extremals�
��� Normal case� � � ���
The maximality condition gives u�t� � a�t�� thus the maximized Hamiltonian

is smooth�

H�a� �
�

�
jaj��

Notice that the Hamiltonian H is invariant �does not depend on q�� which is a
corollary of left
invariance of the problem�
Optimal trajectories are projections of solutions of the Hamiltonian system

corresponding to H� This Hamiltonian system has the form �see ����������
!q � qa�

!a � �a� a� � ��
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Thus optimal trajectories are left translations of one
parameter subgroups inM �

q�t� � q�e
ta� a � M�

recall that an optimal solution exists� In particular� for the case q� � Id� we
obtain that any point q� �M can be represented in the form

q� � ea� a � M�

That is� any element q� in a compact Lie group M has a logarithm a in the Lie
algebraM�

���� A sub
Riemannian problem

Now we modify the previous problem� As before� we should �nd the shortest
path between �xed points q�� q� in a compact Lie groupM � But now admissible
velocities !q are not free� they should be tangent to a left
invariant distribution
�of corank �� on M � That is� we de�ne a left
invariant �eld of tangent hyper

planes on M � and !q�t� should belong to the hyperplane attached at the point
q�t�� A problem of �nding shortest curves tangent to a given distribution is
called a sub�Riemannian problem�
To state the problem as an optimal control one� choose any element b �M�

jbj � �� Then the set of admissible velocities at identity is the hyperplane

U � b� � fu �M j hu� bi � �g�

Remark� In the case M � SO���� this restriction on velocities means that we
�x an axis b in a rigid body and allow only rotations of the body around any
axis u orthogonal to b�

The optimal control problem is stated as follows�

!q � qu� q �M� u � U�

q��� � q�� q��� � q��

q�� q� �M �xed�

l�u� �

Z �

�

ju�t�j dt� min �

Similarly to the Riemannian problem� Filippov�s theorem guarantees exis

tence of optimal controls� and the length minimization problem is equivalent to
the problem

J�u� �
�

�

Z �

�
ju�t�j� dt� min �

The Hamiltonian of PMP is the same as in the previous problem�

h�u�a� q� � ha� ui"
�

�
juj��
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but the maximality condition di�ers since now the set U is smaller�

h�u�t��a�t�� q�t�� � max
v�b�

�ha�t�� v� " �

�
jvj���

Consider �rst the normal case� � � ��� Then the Lagrange multipliers rule
implies that the maximum

max
v�b�

h��v �a� q�

is attained at the vector
vmax � a� ha� bib�

the orthogonal projection of a to U � b�� The maximized Hamiltonian is
smooth�

H�a� �
�

�
�jaj� � ha� bi���

and the Hamiltonian system for normal extremals reads as follows��
!q � q�a � ha� bib��
!a � ha� bi�b� a��

The second equation has an integral of the form

ha� bi � const�
this is easily veri�ed by di�erentiation w�r�t� this equation�

d

d t
ha� bi � ha� bih�b� a�� bi

by invariance of the scalar product

� �ha� biha� �b� b�i� ��
Consequently� the equation for a can be written as

!a � ha�� bi�b� a� � ad�ha�� bib�a�
where a� � a���� This linear ODE is easily solved�

a�t� � et ad�ha��bib�a��

Now consider the equation for q�

!q � q
�
etad�ha��bib�a� � ha�� bib

�
since et ad�ha��bib�b � b

� qet ad�ha��bib��a� � ha�� bib�� ������
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This ODE can be solved with the help of the Variations formula� Indeed� we
have �see ��������

et�f�g� �
��
exp

Z t

�

e� ad fg d� 	 etf �

i�e��

��
exp

Z t

�
e� ad fg d� � et�f�g� 	 e�tf ������

for any vector �elds f and g� Taking

f � ha�� bib� g � a� � ha�� bib�

we solve ODE �������

q�t� � q� e
ta� e�tha� �bib� ������

Consequently� normal trajectories are products of two one
parameter subgroups�
Consider the abnormal case� � � �� The Hamiltonian

h�u�a� q� � ha� ui� u � b�

attains maximum only if

a�t� � ��t�b� ��t� � R� ������

But the second equation of the Hamiltonian system reads

!a � �a� u�� ������

thus
h !a� ai � h�a� u�� ai� �hu� �a� a�i � ��

That is� !a � a� In combination with ������ this means that

a�t� � const � �b� � �� �� � � R� �������

Notice that � �� � since the pair ��� a�t�� should be nonzero� Equalities ������
and ������� imply that abnormal extremal controls u�t� satisfy the relation

�u�t�� b� � ��

That is� u�t� belong to the Lie subalgebra

Hb � fc � M j �c� b� � �g � M�

For generic b � M the subalgebra Hb is a Cartan subalgebra ofM� thus Hb is
Abelian� In this case the �rst equation of the Hamiltonian system

!q � qu
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contains only mutually commuting controls�

u�� � � Hb  �u����� u����� � ��

and the equation is easily solved�

q�t� � q�e
R
t

�
u��� d� � �������

Conversely� any trajectory of the form ������� with u�� � � Hb� � � ��� t� is
abnormal� it is a projection of abnormal extremal �q�t�� a�t�� with a�t� � �b for
any � �� ��
We can give an elementary explanation of the argument on Cartan subal


gebra in the case M � so�n�� Any skew
symmetric matrix b � so�n� can be
transformed by a change of coordinates to the diagonal form�

TbT�� �

�BBBBB�
i��

�i��
i��

�i��
� � �

�CCCCCA �������

for some T � GL�n� C �� But changes of coordinates �even complex� do not a�ect
commutativity�

�c� b� � � � �TcT��� T bT��� � ��

thus we can compute the subalgebra Hb using new coordinates�

Hb � T��HTbT��T�

Generic skew
symmetric matrices b � so�n� have distinct eigenvalues� thus for
generic b the diagonal matrix ������� has distinct diagonal entries� For such b
the Lie algebra HTbT�� is easily found� Indeed� the commutator of a diagonal
matrix

b �

�BBB�
��

��
� � �

�n

�CCCA
with any matrix c � �cij� is computed as follows�

�ad b� c � ���i � �j�cij��

If a diagonal matrix b has simple spectrum�

�i � �j �� �� i �� j�

then the Lie algebra Hb consists of diagonal matrices of the form �������� con

sequently Hb is Abelian�
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So for a matrix b � so�n� with mutually distinct eigenvalues �i�e�� for generic
b � so�n�� the Lie algebra HTbT�� is Abelian� thus Hb is Abelian as well�
Returning to our sub
Riemannian problem� we conclude that we described all

normal extremal curves ������� and described abnormal extremal curves �������
for generic b �M�

Exercise ����� Consider a more general sub
Riemannian problem stated in the
same way as in this section� but with the space of control parameters U � M
any linear subspace such that its orthogonal complementU� w�r�t� the invariant
scalar product is a Lie subalgebra�

�U�� U�� � U�� �������

Prove that normal extremals in this problem are products of two one
parameter
groups �as in the corank one case considered above��

a� � const� �������

aU�t� � etad a� a�U � a�U � aU ���� �������

q�t� � q� e
ta e�ta� � �������

where a � aU " a� is the decomposition of a vector a � M corresponding to
the splittingM � U " U�� We apply these results in the next problem�

���� Control of quantum systems

This section is based on the paper of U� Boscain� T� Chambrion� and J�
P� Gau

thier ������
Consider a three
level quantum system described by the Schr(odinger equa


tion �in a system of units such that � � ���

i !� � H�� �������

where � � R� C 	 � � � ���� ��� �	�� is a wave function and

H �

�� E� ,� �
,� E� ,�

� ,� E	

�A �������

is the Hamiltonian� Here E� � E� � E	 are constant energy levels of the system
and ,i � R� C are controls describing the in�uence of the external pulsed �eld�
The controls are connected to the physical parameters by ,j�t� � �jFj�t����
j � �� �� with Fj the external pulsed �eld and �j the couplings �intrinsic to the
quantum system� that we have restricted to couple only levels j and j " � by
pairs�
This �nite
dimensional problem can be thought as the reduction of an in


�nite
dimensional problem in the following way� We start with a Hamiltonian
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which is the sum of a drift
term H�� plus a time dependent potential V �t� �the
control term� i�e�� the lasers�� The drift term is assumed to be diagonal� with
eigenvalues �energy levels� E� � E� � E	 � 
 
 
 � Then in this spectral reso

lution of H�� we assume the control term V �t� to couple only the energy levels
E�� E� and E�� E	� The projected problem in the eigenspaces corresponding to
E�� E�� E	 is completely decoupled and is described by Hamiltonian ��������
The problem is stated as follows� Assume that at the initial instant t �

� the state of the system lies in the eigenspace corresponding to the ground
eigenvalue E�� The goal is to determine controls ,�� ,� that steer the system
at the terminal instant t � t� to the eigenspace corresponding to E	� requiring
that these controls minimize the cost �energy in the following��

J �

Z T

�

�j,��t�j� " j,��t�j�
�
dt�

From the physical viewpoint� this problem may be considered either with arbi

trary controls ,i�t� � C � or with controls �in resonance�

,j�t� � uj�t�e
i��j t��j�� �j � Ej�� �Ej � �������

uj � R� R� �j � ���� ��� j � �� �� �������

In the sequel we call this second problem of minimizing the energy J � which in
this case reduces to Z t�

�

�
u���t� " u���t�

�
dt� �������

the �real
resonant problem� The �rst problem �with arbitrary complex con

trols� will be called the �general
complex problem�
Since Hamiltonian ������� is self
adjoint� H� � H� it follows that Schr(odin


ger equation ������� is well
de�ned on the unit sphere

SC � S� �
�
� � ���� ��� �	� � C 	 j j�j� � j��j� " j��j� " j�	j� � �

�
�

The source and the target� i�e�� the initial and the terminal manifolds in the
general
complex problem are respectively the circles

SdC � f�ei�� �� �� j � � Rg� T d
C � f��� �� ei�� j � � Rg�

The meaning of the label �d� here will be clari�ed later�
Summing up� the general
complex problem is stated as follows�

i !� � H�� � � S�� ,�� ,� � C �
���� � SdC� ��t�� � T d

C �Z t�

�

�j,�j� " j,�j�
�
dt� min�

with the Hamiltonian H de�ned by ��������
For the real
resonant case� the control system is ������� with Hamiltonian

�������� admissible controls �������� �������� and cost �������� The natural state
space� source� and target in this problem will be found later�
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������ Elimination of the drift

We change variables in order to transfer the a�ne in control system ��������
������� to a system linear in control� both in the general
complex and real

resonant cases�
For , � C � denote by Mj�,� and Nj�,� the n� n matrices�

Mj�,�k�l � �j�k�j���l," �j���k�j�l,

Nj�,�k�l � �j�k�j���l,� �j���k� �j�l,� j � �� �� �������

where � is the Kronecker symbol� �i�j � � if i � j� �i�j � � if i �� j� Let
& � diag�E�� E�� E	�� �j � Ej�� � Ej� j � �� �� We will consider successively
the general
complex problem�

i !� � H�� H � &"
�X

j��

Mj�,j�� ,j � C �

and the real
resonant problem�

i !� � H�� H � &"
�X

j��

Mj�e
i��j t��j�uj�� uj� �j � R�

In both cases� we �rst make the change of variable � � e�it
. to get�

i !. �
�X

j��

�
Ad eit
Mj�,j�

�
. �

�X
j��

Mj

�
e�it�j,j�.�

The source S and the target T are preserved by this �rst change of coordinates�

The general�complex case

In that case� we make the time
dependent cost preserving change of controls�

e�it�j,j � i$,j �

Hence our problem becomes �after the change of notation .� �� $,j � uj��

!� �
�X

j��

Nj�uj�� � eHC �� uj � C � �������

Z t�

�

�ju�j� " ju�j�� dt� min� �������

���� � SdC� ��t�� � T d
C � �������

where

eHC �
�� � u��t� �
�+u��t� � u��t�
� �+u��t� �

�A � �������
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Notice that the matrices Nj���� Nj�i� generate su��� as a Lie algebra� The
cost and the relation between controls before and after elimination of the drift
are�

J �

Z t�

�

�ju��t�j� " ju��t�j�� dt� �������

,��t� � u��t�e
i��E��E��t������ �������

,��t� � u��t�e
i��E��E��t������ �������

The real�resonant case

In this case ,j � uje
i��j t��j�� and we have�

i !. �
�X

j��

Mj

�
ei�juj

�
.� uj � R�

We make another diagonal� linear change of coordinates�

. � eiL�� L � diag���� ��� �	�� �j � R�
which gives�

i !� �
�X

j��

Mj

�
ei��j��j����j�uj

�
��

Choosing the parameters �j such that ei��j��j����j� � i� we get�

!� �
�X

j��

Nj�uj��� uj � R� �������

The source and the target are also preserved by this change of coordinates�
Notice that the matrices N����� N���� in ������� generate so��� as a Lie algebra�
This means that the orbit of system ������� through the points ���� �� �� is the
real sphere S�� Hence �by multiplication on the right by ei��� the orbit through
the points ��ei�� �� �� is the set S�ei�� Therefore �after the change of notation
�� �� the real
resonant problem is well
de�ned on the real sphere

SR� S� �
�
� � ���� ��� �	� � R	 j j�j� � ��

� " ��
� " ��

	 � �
�
�

as follows�

!� �
�X

j��

Nj�uj�� � $HR�� � � S�� uj � R� �������

Z t�

�

�
u�� " u��

�
dt� min� �������

���� � f���� �� ��g� ��t�� � f��� �����g� �������
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where

$HR�

�� � u��t� �
�u��t� � u��t�
� �u��t� �

�A � �������

The cost is given again by formula ������� and the relation between controls
before and after elimination of the drift is�

,j�t� � uj�t� e
i��j t��j�� �j � Ej�� �Ej�

uj � R� R� �j � ���� ��� j � �� ��

In the following we will use the labels �C� and �R� to indicate respectively
the general
complex problem and the real
resonant one� When these labels are
dropped in a formula� we mean that it is valid for both the real
resonant and
the general
complex problem� With this notation�

SdC � f�ei�� �� ��g� T d
C � f��� �� ei��g�

SdR� f���� �� ��g� T d
R� f��� �����g�

������ Lifting of the problems to Lie groups

The problems ��������������� and ��������������� on the spheres SC � S� and
SR� S� are naturally lifted to right
invariant problems on the Lie groups
MC � SU��� and MR� SO��� respectively� The lifted systems read

!q � eHq� q �M� �������

Denote the projections

�C � SU���� S�� �R� SO���� S�

both de�ned as

q �� q

�� �
�
�

�A �

i�e�� a matrix maps to its �rst column� We call problems ������� on the Lie
groups M problems upstairs� and problems �������� ������� on the spheres S
problems downstairs� We denote the problem upstairs by the label �u� in parallel
with the label �d� for the problem downstairs�
Now we compute boundary conditions for the problems upstairs� De�ne the

corresponding sources and targets�

Su � ����Sd�� T u � ����T d��

The source Su
C
consists of all matrices q � SU��� with the �rst column in Sd

C
�

q �

�BB�
� �

� A

�CCA � � � U���� A � U���� det q � ��
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We denote the subgroup of SU��� consisting of such matrices by S�U����U�����
So the source upstairs in the general
complex problem is the subgroup

SuC � S�U����U�����

Further� the matrix

bq �
�� � � �
� � �
� � �

�A
maps Sd

C
into T d

C
� thus

T u
C � bq SuC � bq S�U���� U�����

Similarly� in the real case the source upstairs is

SuR� S�O����O�����

the subgroup of SO��� consisting of the matrices

q �

�BB�
� �

� A

�CCA � � � O���� A � O���� det q � ��

and the target is

T u
R� bq SuR� bq S�O���� O�����

Summing up� we state the lifted problems� The real problem upstairs reads�

!q � eHRq � �u�X� " u�X�� q� q � SO���� u�� u� � R� �������

q��� � SuR� q�t�� � T u
R�Z t�

�

�
u�� " u��

�
dt� min�

where

X� �

�� � � �
�� � �
� � �

�A � X� �

�� � � �
� � �
� �� �

�A � �������

Notice that the real problem upstairs is a right
invariant sub
Riemannian prob

lem on the compact Lie group SO��� with a corank one set of control parameters
U � so���� i�e�� a problem already considered in Section ����� We have

U � span�X�� X��� U� � span�X	�� X	 �

�� � � �
� � �
�� � �

�A �
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Moreover� the frame ������� is orthonormal w�r�t� the invariant scalar product

hX�Y i � ��
�
tr�XY �� X� Y � so����

The complex problem upstairs is stated as follows�

!q � eHC q � �u�X� " u�X� " u	Y� " u�Y�� q� q � SU���� uj � R�

�������

q��� � SuC � q�t�� � T u
C �Z t�

�

�
u�� " u�� " u�	 " u��

�
dt� min �

Here X� and X� are given by ������� and

Y� �

�� � i �
i � �
� � �

�A � Y� �

�� � � �
� � i
� i �

�A �

The set of control parameters is

U � span�X�� X�� Y�� Y���

Notice that its orthogonal complement is

U� � span�Z�� Z�� Z	� Z���

where

Z� �

�� � � �
� � �
�� � �

�A � Z� �

�� � � i
� � �
i � �

�A �

Z	 �

�� i � �
� �i �
� � �

�A � Z� �

�� � � �
� i �
� � �i

�A �

and it is easy to check that U� is a Lie subalgebra� So the general
complex
problem is of the form considered in Exercise ����� Again the distribution is
right
invariant and the frame �X�� X�� Y�� Y�� is orthonormal for the metric

hX�Y i � ��
�
tr�XY �� X� Y � su����

The problems downstairs and upstairs are related as follows� For any trajec

tory upstairs q�t� � M satisfying the boundary conditions in M � its projection
��t� � ��q�t�� � S is a trajectory of the system downstairs satisfying the bound

ary conditions in S� And conversely� any trajectory downstairs ��t� with the
boundary conditions can be lifted to a trajectory upstairs q�t� with the corre

sponding boundary conditions �such q�t� is a matrix fundamental solution of the
system downstairs�� The cost for the problems downstairs and upstairs is the
same� Thus solutions of the optimal control problems downstairs are projections
of the solutions upstairs�
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������ Controllability

The set of control parameters U in the both problems upstairs �������� �������
satis�es the property �U�U � � U�� thus

U " �U�U � �M � TIdM� �������

The systems upstairs have a full rank and are symmetric� thus they are com

pletely controllable on the corresponding Lie groups SU���� SO���� Passing to
the projections �� we obtain that the both systems downstairs �������� �������
are completely controllable on the corresponding spheres S�� S��

������ Extremals

The problems upstairs are of the form considered in Section ���� and Exer

cise ����� but right
invariant not left
invariant ones� Thus normal extremals are
given by formulas ���������������� where multiplication from the left is replaced
by multiplication from the right�

a� � const�

aU �t� � e�t ada� a�U � a�U � aU ����

q�t� � e�ta� eta q�� �������

for any a� � U�� a�U � U � Geodesics are parametrized by arclength i�

ha�U � a�U i � �� �������

Equality ������� means that in the problems upstairs� vector �elds in the
right
hand sides and their �rst order Lie brackets span the whole tangent space�
Such control systems are called �
generating� In Chapter �� we prove that for
such systems strictly abnormal geodesics �i�e�� trajectories that are projections of
abnormal extremals but not projections of normal ones� are not optimal� see the
argument before Example ����� Thus we do not consider abnormal extremals
in the sequel�

������ Transversality conditions

In order to select geodesics meeting the boundary conditions� we analyze trans

versality conditions upstairs�
Transversality conditions of PMP on T �M corresponding to the boundary

conditions

q��� � S� q�t�� � T � S� T �M�

read as follows�

h��� Tq���Si � h�t� � Tq�t��T i � �� �������



���� CONTROL OF QUANTUM SYSTEMS ���

Via trivialization ������� of T �M � transversality conditions ������� are rewritten
for the extremal �x�t�� q�t�� �M� �M in the form� 

x���� q����� Tq���S
!
�

 
x�t��� q�t��

�� Tq�t��T
!
� ��

Here the brackets h 
 � 
 i denote action of a covector on a vector� The transver

sality conditions for the extremal �a�t�� q�t�� �M�M read as follows� 

a���� q����� Tq���S
!
�

 
a�t��� q�t��

�� Tq�t��T
!
� ��

where the brackets denote the invariant scalar product inM�
For the right
invariant problem� transversality conditions are written in

terms of right translations� 
a���� �Tq���S� q�����

!
�

 
a�t��� �Tq�t��T � q�t����

!
� �� �������

The following features of transversality conditions for our problems upstairs
simpli�es their analysis�

Lemma ����� ��� Transversality conditions at the source are required only
at the identity�

��� Transversality conditions at the source imply transversality conditions at
the target�

Proof� Item ��� follows since the problem is right
invariant and the source Su
is a subgroup�
Item ���� Let �t � T �q�t�M be a normal extremal for the problem upstairs

such that q��� � Id� We assume the transversality conditions at the source�

h��� TIdSui � ��
and prove the transversality conditions at the target�

h�t� � Tq�t��T ui � �� �������

Notice �rst of all that since q�t�� � T u � bq Su� then bq��q�t�� � Su and
T u � bq Su � bq �bq��q�t���Su � q�t��Su�

Then transversality conditions at the target ������� read

h�t� � Tq�t�� �q�t��Su�i � ��
In order to complete the proof� we show that the function

I�t� � h�t� Tq�t� �q�t�Su�i� t � ��� t���
is constant� Denote the tangent space S � TIdSu� Then we have�

I�t� � h�t� q�t�Si �
 
x�t�� q�t�Sq�t���

!
� hx�t�� �Ad q�t��Si � ha�t�� �Ad q�t��Si
�

D
�Ad e�ta��a���� �Ad e�ta���Ad e�ta����S

E
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by invariance of the scalar product

�
D
a���� �Ad e�ta����S

E
�

D
�Ad e�ta����a���� S

E
� ha���� Si

� I����

That is� I�t� � const� and item ��� of this lemma follows�

�����	 Optimal geodesics upstairs and downstairs

Similarly to N�� N� �see formula ��������� let us de�ne N��	 by�

N��	�a	e
i��� �

�� � � a	e
i��

� � �
�a	e�i�� � �

�A �

Let us set� in the real
resonant case

a�U � a�N���� " a�N����� a� � a	N��	����

In the general complex case� set

a�U � N��a�e
i��� " N��a�e

i�� �� a� � a�Z	 " a�Z� "N��	�a	e
i����

Here ai � R and 	i � ���� ���

The real�resonant case

Proposition ����� For the real�resonant problem� transversality condition at
the identity in the source ha� TIdSuRi � � means that a� � ��

Proof� We have

TIdSuR�
��
�� � � �

� � ��
� � �

�A � � � R
%&' �

thus the equation ha� TIdSuRi � � is satis�ed for every � � R if and only if
a� � ��

From Proposition ���� and condition �������� one gets the covectors to be
used in formula ��������

a� �

�� � �� a	
 � � �
�a	 � �

�A � �������
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Proposition ����� Geodesics ������� with the initial condition q��� � Id and
matrix a given by ������� reach the target T u

R
for the smallest time �arclength�

jtj� if and only if a	 � ���
p
�� Moreover� the � geodesics �corresponding to a�

and to the signs � in a	� have the same length and reach the target at the time

t� �

p
�

�
��

Proof� Computing q�t� � e�a�te�a��a
�
U �t� with a given by formula �������� and

recalling that

��t� � q�t�

�� �
�
�

�A �

one gets for the square of the third component of the wave function�

��	�t��
� �

�
cos�t a	� sin �t �� a	 � � cos �t �� sin�t a	� ��

��
��

� �������

� �
q
� " a�	�

Then the following lemma completes the proof of this proposition�

Lemma ����� Set fa � cos�ta� sin�t
p
� " a�� ap

��a�
� cos�tp� " a�� sin�ta��

then jfaj � �� Moreover� jfaj � � i� jajp
��a�

�
��� �
�k "

k�

k

��� � �� k �� � and

t � k�p
��a�

� In particular� the smallest jtj is obtained for k � ��� a � � �p
	
�

t � ��p	
� �

Proof� Set � � ap
��a�

� 	 � t
p
� " a�� then�

fa�t� � � cos��	� sin�	� � cos�	� sin��	�
� h�� cos��	�� sin��	��� �sin�	��� cos�	��i
� hv�� v�i�

Both v�� v� have norm � � and jfaj � �� Hence� for jfaj � �� we must have
jv�j � jv�j � �� v� � �v�� It follows that cos��	� � � and cos�	� � ���
Hence 	 � k�� �	 � �

� " k��� � � �
�k "

k�

k � Therefore�
��� �
�k "

k�

k

��� � � � ��

Conversely� choose k� k� meeting this condition� and 	 � k�� Then cos�	� � ���
sin��	� � ��� fa�t� � ��� Now� jtj � k�p

��a�
� and the smallest jtj is obtained

for k � �� �if k � �� 	 � � and fa�t� � ��� Moreover�
��� �
�k "

k�

k

��� � � is possible
only for �k� k�� � ��� �� or ������ or ���� �� or �������� In all cases� j�j � �

� �

a � � �p
	
� and t � ��

p
	

� �
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Let us �x for instance the sign � in ������� and a	 � "��
p
�� The expres


sions of the three components of the wave function are�

���t� � cos

�
tp
�

�	

�

���t� �

p
�

�
sin

�
� tp
�

�
�

�	�t� � �sin
�

tp
�

�	

�

Notice that this curve is not a circle on S��
Controls can be obtained with the following expressions�

u� � � !qq
������� u� � � !qq

�����	�

We get�

u��t� � � cos
�

tp
�

�
�

u��t� � sin

�
tp
�

�
�

Using conditions ��������������� �resonance hypothesis�� we get for the external
�elds�

,��t� � � cos
�
t�
p
�
�
ei���t�����

,��t� � sin
�
t�
p
�
�
ei���t�����

Notice that the phases ��� �� are arbitrary�

The general�complex case

Proposition ����� For the general�complex problem� transversality condition
at the identity in the source ha� TIdSuCi � � means that a� � a� � a� � ��

Proof� We have�

TIdSuC �
��
�� i�� � �

� i��� � ��� �� " i��
� ��� " i�� �i��

�A � ��� ��� ��� �� � R
%&' �

The equation ha� TIdSuCi � � is satis�ed for every ��� ��� ��� �� � R if and only
if a� � a� � a� � ��

The covector to be used in formula ������� is then�

a������� �

�� � ei�� a	e
i��

�e�i�� � �
�a	e�i�� � �

�A � �������
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Proposition ����� The geodesics �������� with a given by formula ������� �for
which q��� � Id�� reach the target T u

C
for the smallest time �arclength� jtj� if and

only if a	 � ���p�� Moreover� all the geodesics of the two parameter family
corresponding to 	�� 		 � ���� ��� have the same length


t� �

p
�

�
��

Proof� The explicit expression for j�	j� is given by the right
hand side of for

mula �������� The conclusion follows as in the proof of Proposition �����

The expressions of the three components of the wave function and of optimal
controls are�

���t� � cos

�
tp
�

�	

�

���t� � �
p
�

�
sin

�
� tp
�

�
e�i�� �

�	�t� � �sin
�

tp
�

�	

e�i�� �

and

u��t� � cos
�
t�
p
�
�
ei�� �

u��t� � � sin
�
t�
p
�
�
ei��������

Notice that all the geodesics of the family described by Proposition ���� have
the same length as the � geodesics described by Proposition ����� This proves
that the use of the complex Hamiltonian ������� instead of the real one �������
does not allow to reduce the cost �������� We obtain the following statement�

Proposition ����� For the three�level problem with complex controls� optimal�
ity implies resonance� More precisely� controls ,�� ,� are optimal if and only
if they have the following form


,��t� � cos�t�
p
��ei��E��E��t�����

,��t� � sin�t�
p
��ei��E��E��t�����

where ��� �� are two arbitrary phases� Here the �nal time t� is �xed in such a
way sub�Riemannian geodesics are parametrized by arclength� and it is given by

t� �
p
	
� ��

���� A time
optimal problem on SO���

Consider a rigid body in R	� Assume that the body can rotate around some axis
�xed in the body� At each instant of time� orientation of the body in R	 de�nes
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an orthogonal transformation q � SO���� We are interested in the length of
the curve in SO��� corresponding to the motion of the body� Choose a natural
parameter �arc length� t� then the curve q � q�t� satis�es the ODE

!q � qf�

where
f � so���� jf j � ��

is the unit vector of angular velocity corresponding to the �xed axis of rotation
in the body� The curve is a one
parameter subgroup in SO����

q�t� � q���etf �

and we obviously have no controllability on SO����
In order to extend possibilities of motion in SO���� assume now that there

are two linearly independent axes in the body�

f� g � so���� jf j � jgj � �� f � g �� ��
and we can rotate the body around these axes in certain directions� Now we
have a control system

!q �

�
qf

qg
�

which is controllable on SO����

Lie�qf� qg� � span�qf� qg� q�f� g�� � q so��� � Tq SO����

In order to simplify notation� choose vectors

a� b � so���
such that

f � a" b� g � a� b�

Then the control system reads

!q � q�a� b��

We are interested in the shortest rotation of the body steering an initial orienta

tion q� to a terminal orientation q�� The corresponding optimal control problem
is

q��� � q���� q�t�� � q��

l �

Z t�

�

j !qj dt� min �

Since j !qj � ja� bj � �� this problem is equivalent to the time
optimal problem�

t� � min �
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Notice that

ha� bi � h�f " g���� �f � g���i � �� �������

Moreover� by rescaling time we can assume that

jaj � �� �������

Passing to convexi�cation� we obtain the following �nal form of the problem�

!q � q�a " ub�� u � ���� ��� q � SO����
q��� � q�� q�t�� � q��

t� � min�

where a� b � so��� are given vectors that satisfy equalities �������� �������� Now
we study this time
optimal problem�
By PMP� if a pair �u�
�� q�
�� is optimal� then there exists a Lipschitzian

curve x�t� � so��� such that��
!q � q�a " u�t�b��

!x � �x� a" u�t�b��

hu�t��x�t�� � hx�t�� a" u�t�bi � max
jvj��

hx�t�� a" vbi � ��

moreover�

hu�t��x�t�� � const �

The maximality condition for the function

v �� hx�t�� a" vbi � hx�t�� ai" vhx�t�� bi� v � ���� ���
is easily resolved if the switching function

x �� hx� bi� x �M�

does not vanish at x�t�� Indeed� in this case optimal control can take only
extremal values ���

hx�t�� bi �� �  u�t� � sgnhx�t�� bi�
If the switching function has only isolated roots on some real segment� then the
corresponding control u�t� takes on this segment only extremal values� More

over� the instants where u�t� switches from one extremal value to another are
isolated� Such a control is called bang�bang �
Now we study the structure of optimal controls� Take an arbitrary extremal

with the curve x�t� satisfying the initial condition

hx���� bi �� ��



��� CHAPTER �� PROBLEMS ON COMPACT LIE GROUPS

Then the ODE
!x � �x� a� b�� � � sgnhx���� bi

is satis�ed for t � � until the switching function hx�t�� bi remains nonzero� Thus
at such a segment of time

x�t� � e�t ad�a�b�x����

We study the switching function hx�t�� bi� Notice that its derivative does not
depend upon control�

d

d t
hx�t�� bi � h�x�t�� a" u�t�b�� bi � �hx�t�� �a� b�i�

If the switching function vanishes�

hx�t�� bi � �
at a point where

hx�t�� �a� b�i �� ��
then the corresponding control switches� i�e�� changes its value from "� to ��
or from �� to "�� In order to study� what sequences of switchings of optimal
controls are possible� it is convenient to introduce coordinates in the Lie algebra
M�
In view of equalities �������� �������� the Lie bracket �a� b� satis�es the con


ditions
�a� b�� a� �a� b�� b� j�a� b�j� jbj�

this follows easily from properties of cross
product in R	� Thus we can choose
an orthonormal basis�

so��� � span�e�� e�� e	�

such that
a � e�� b � �e	� �a� b� � �e�� � � ��

In this basis� switching points belong to the horizontal plane span�e�� e���
Let x���� be a switching point� i�e�� t � �� is a positive root of hx�t�� bi�

Assume that at this point control switches from "� to �� �the case of switching
from �� to "� is completely similar� we show this later�� Then

h !x����� bi � �h !x����� �a� b�i � ��
thus

hx����� e�i � ��
Further� since the Hamiltonian of PMP is nonnegative� then

hu�����x����� � hx����� ai � hx����� e�i � ��
So the point x���� lies in the �rst quadrant of the plane span�e�� e���

x���� � cone�e�� e���
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Let x���� be the next switching point after ��� The control has the form

u�t� �

�
�� t � ��� � �� ����

��� t � ���� ����
and the curve x�t� between the switchings is an arc of the circle obtained by
rotation of the point x���� around the vector a� b � e� � �e	�

x�t� � e�tad�a�b�x����� t � ���� ����
The switching points x����� x���� satisfy the equalities�

hx����� e	i � hx����� e	i � ��
hx����� e�i � hx����� e�i � hu�������x��� � ����

jx���� � jx����j�
Consequently�

hx����� e�i � �hx����� e�i�
i�e�� x���� is the re�ection of x���� w�r�t� the plane span�e�� e	�� Geometrically
it is easy to see that the angle of rotation 	 from x���� to x���� around a� b is
bounded as follows�

	 � ��� ����
see �g� ����� The extremal values of 	 are attained when the point x���� is on

e�

e� � a

e�

b � �e�

�a� b� � �e�

a� b

�

x����

x����

Figure ����� Estimate of rotation angle 	

the boundary of cone�e�� e���

x���� � R�e�  	 � ��

x���� � R�e�  	 � ���
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In the second case the point x�t�� as well as the point q�t�� makes a complete
revolution at the angle ��� Such an arc cannot be a part of an optimal trajectory�
it can be eliminated with decrease of the terminal time t�� Consequently� the
angle between two switchings is

	 � ��� ����

Let x���� be the next switching after x����� The behavior of control after
the switching x���� from �� to "� is similar to the behavior after x����� Indeed�
our time
optimal problem admits the symmetry

b �� �b�

After the change of basis

e	 �� �e	� e� �� �e�� e� �� e�

the curve x�t� is preserved� but now it switches at x���� from "� to ��� This
case was already studied� thus the angle of rotation from x���� to x���� is again
	� moreover� x���� � x����� The next switching point is x��	� � x����� and so
on�

Thus the structure of bang
bang optimal trajectories is quite simple� Such
trajectories contain a certain number of switching points� Between these switch

ing points the vector x�t� rotates alternately around the vectors a" b and a� b
at an angle 	 � ��� ��� constant along each bang
bang trajectory� Before the
�rst switching and after the last switching the vector x�t� can rotate at angles
	� and 	� respectively� � � 	�� 	� � 	� The system of all optimal bang
bang
trajectories is parametrized by � continuous parameters 	�� 	� 	�� and � discrete
parameters� the number of switchings and the initial control sgnhx���� bi�
An optimal trajectory can be not bang
bang only if the point x���� corre


sponding to the �rst nonnegative root of the equation hx�t�� bi � � satis�es the
equalities

hx����� bi � hx����� �a� b�i � ��
Then

x���� � �e�� � �� ��
There can be two possibilities�

��� either the switching function hx�t�� bi takes nonzero values for some t � ��
and arbitrarily close to ���

��� or

hx�t�� bi � �� t � ���� �� " ��� �������

for some � � ��
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We start from the �rst alternative� From the analysis of bang
bang trajec

tories it follows that switching times cannot accumulate to �� from the right�
the angle of rotation between two consecutive switchings 	 � �� Thus in case
��� we have

hx�t�� bi � �� t � ���� �� " ���

for some � � �� That is� �� is a switching time� Since x���� � Re�� then the
angle of rotation until the next switching point is 	 � ��� which is not optimal�
So case ��� cannot occur for an optimal trajectory�
Consider case ���� We di�erentiate identity ������� twice w�r�t� t�

d

d t
hx�t�� bi � �hx�t�� �a� b�i � ��

d

d t
hx�t�� �a� b�i � h�x�t�� a" u�t�b� �a� b�i� u�t�h�x�t�� b�� �a� b�i

� ��

Then x�t� � ��t�e�� t � ���� �� " ��� thus

u�t�h�a� b�� �a� b�i� ��
i�e��

u�t� � �� t � ���� �� " ���

This control is not determined directly from PMP �we found it with the help of
di�erentiation�� Such a control is called singular �
Optimal trajectories containing a singular part �corresponding to the control

u�t� � �� can have an arc with u � �� before the singular part� with the angle
of rotation around a� b less then ��� such an arc can also be after the singular
one� So there can be � types of optimal trajectories containing a singular arc�

" � "� " � �� � � "� � � � �

The family of such trajectories is parametrized by � continuous parameters
�angles of rotation at the corresponding arcs� and by � discrete parameters
�signs at the initial and �nal segments��
So we described the structure of all possible optimal trajectories� the bang


bang one� and the strategy with a singular part� The domains of points in SO���
attained via these strategies are �
dimensional� and the union of these domains
covers the whole group SO���� But it is easy to see that a su�ciently long
trajectory following any of the two strategies is not optimal� the two domains
in SO��� overlap� Moreover� each of the strategies overlaps with itself� In
order to know optimal trajectory for any point in SO���� one should study the
interaction of the two strategies and intersections of trajectories that follow the
same strategy� This interesting problem remains open�
Notice that the structure of optimal trajectories in this left
invariant time


optimal problem on SO��� is similar to the structure of optimal trajectories for
Dubins car �Sec� ������ This resemblance is not accidental� the problem on
Dubins car can be formulated as a left
invariant time
optimal problem on the
group of isometries of the plane�
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Chapter ��

Second order optimality

conditions

���� Hessian

In this chapter we obtain second order necessary optimality conditions for con

trol problems� As we know� geometrically the study of optimality reduces to
the study of boundary of attainable sets �see Section ������ Consider a control
system

!q � fu�q�� q �M� u � U � intU � Rm� ������

where the state spaceM is� as usual� a smoothmanifold� and the space of control
parameters U is open �essentially� this means that we study optimal controls
that do not come to the boundary of U � although a similar theory for bang
bang
controls can also be constructed�� The attainable set Aq� �t�� of system ������
is the image of the endpoint mapping

Ft� � u�
� �� q�	 ��
exp

Z t�

�

fu�t� dt�

We say that a trajectory q�t�� t � ��� t��� is geometrically optimal for sys

tem ������ if it comes to the boundary of the attainable set for the terminal
time t��

q�t�� � 
Aq� �t���

Necessary conditions for this inclusion are given by Pontryagin MaximumPrin

ciple� A part of the statements of PMP can be viewed as the �rst order opti

mality condition �we see this later�� Now we seek for optimality conditions of
the second order�
Consider the problem in a general setting� Let

F � U �M

���
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be a smooth mapping� where U is an open subset in a Banach space and M
is a smooth n
dimensional manifold �usually in the sequel U is the space of
admissible controls L����� t��� U � and F � Ft� is the endpoint mapping of a
control system�� The �rst di�erential

DuF � Tu U � TF �u�M

is well de�ned independently on coordinates� This is not the case for the second
di�erential� Indeed� consider the case where u is a regular point for F � i�e�� the
di�erential DuF is surjective� By implicit function theorem� the mapping F
becomes linear in suitably chosen local coordinates in U and M � thus it has no
intrinsic second di�erential� In the general case� well de�ned independently of
coordinates is only a certain part of the second di�erential�

The di�erential of a smooth mapping F � U � M can be de�ned via the
�rst order derivative

DuF v �
d

d �

����
���

F ������ ������

along a curve � � ����� ���� U with the initial conditions

���� � u � U � !���� � v � Tu U �

In local coordinates� this derivative is computed as

dF

du
!�� !� � !�����

In other coordinates $q in M � derivative ������ is evaluated as

d eF
du

!� �
d $q

d q

dF

du
!��

Coordinate representation of the �rst order derivative ������ transforms under
changes of coordinates as a tangent vector to M # it is multiplied by the

Jacobian matrix
d $q

d q
�

The second order derivative

d�

d ��

����
���

F ������� ������

���� � u � U � !���� � v � Tu U �

is evaluated in coordinates as

d�F

du�
� !�� !�� "

dF

du
(��
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Transformation rule for the second order directional derivative under changes
of coordinates has the form�

d� eF
du�

� !�� !�� "
d eF
du

(� �
d $q

d q

�
d�F

du�
� !�� !�� "

dF

du
(�

�
"
d� $q

d q�

�
dF

du
!��
dF

du
!�

�
� ������

The second order derivative ������ transforms as a tangent vector in TF �u�M
only if !� � v � KerDuF � i�e�� if term ������ vanishes� Moreover� it is deter

mined by u and v only modulo the subspace ImDuF � which is spanned by the

term
dF

du
(��

Thus intrinsically de�ned is the quadratic mapping

KerDuF � TF �u�M� ImDuF�

v �� d�

d ��

����
���

F ������ mod ImDuF� ������

After this preliminary discussion� we turn to formal de�nitions�
The Hessian of a smooth mapping F � U � M at a point u � U is a

symmetric bilinear mapping

Hessu F � KerDuF �KerDuF � CokerDuF � TF �u�M� ImDuF� ������

In particular� at a regular point CokerDuF � �� thus HessuF � �� Hessian is
de�ned as follows� Let

v� w � KerDuF

and
� � �ImDuF �

� � T �F �u�M�

In order to de�ne the value

�Hessu F �v� w��

take vector �elds

V� W � Vec U � V �u� � v� W �u� � w�

and a function
a � C��M �� dF �u�a � ��

Then

�Hessu F �v� w�
def
� V 	W �a 	 F �ju � ������

We show now that the right
hand side does not depend upon the choice of
V � W � and a� The �rst Lie derivative is

W �a 	 F � � hdF �	�a� F�W �
�i�
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and the second Lie derivative V 	W �a 	 F �ju does not depend on second deriva

tives of a since F�W �u� � �� Moreover� the second Lie derivative obviously
depends only on the value of V at u but not on derivatives of V at u� In or

der to show the same for the �eld W � we prove that the right
hand side of the
de�nition of Hessian is symmetric w�r�t� V and W �

�W 	 V �a 	 F �� V 	W �a 	 F ��ju � �W�V � �a 	 F �ju � dF �u�a� 	z 

��

	DuF �W�V ��u�

� �

since � � ImDuF � We showed that the mapping HessuF given by ������ is
intrinsically de�ned independently of coordinates as in �������

Exercise ����� Show that the quadratic mapping ������ de�ned via the second
order directional derivative coincides with Hessu F �v� v��

If we admit only linear changes of variables in U � then we can correctly de�ne
the full second di�erential

D�
uF � KerDuF � KerDuF � TF �u�M

in the same way as Hessian ������� but the covector is arbitrary�

� � T �F �u�M�

and the vector �elds are constant�

V � v� W � w�

The Hessian is the part of the second di�erential independent on the choice of
linear structure in the preimage�

Exercise ����� Compute the Hessian of the restriction F jf����� of a smooth
mapping F to a level set of a smooth function f � Consider the restriction of a
smooth mappingF � U �M to a smooth hypersurface S � f������ f � U � R�
df �� �� and let u � S be a regular point of F � Prove that the Hessian of the
restriction is computed as follows�

�Hessu �F jS� � �D�
uF � d�uf� � � ImDu F jS � � � T �F �u�M n f�g�

and the covector � is normalized so that

�DuF � duf�

���� Local openness of mappings

A mapping F � U �M is called locally open at a point u � U if
F �u� � intF �Ou�
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for any neighborhood Ou � U of u� In the opposite case� i�e�� when

F �u� � 
F �Ou�

for some neighborhood Ou� the point u is called locally geometrically optimal
for F �
A point u � U is called locally �nite�dimensionally optimal for a mapping F

if for any �nite
dimensional smooth submanifold S � U � u � S� the point u is
locally geometrically optimal for the restriction F jS �

������ Critical points of corank one

Corank of a critical point u of a smooth mapping F is by de�nition equal to
corank of the di�erential DuF �

corankDuF � codimImDuF�

In the sequel we will often consider critical points of corank one� In this case
the Lagrange multiplier

� � �ImDuF �
�� � �� ��

is de�ned uniquely up to a nonzero factor� and

�Hessu F � KerDuF � KerDuF � R

is just a quadratic form �in the case corankDuF � �� we should consider a
family of quadratic forms��
Now we give conditions of local openness of a mapping F at a corank one

critical point u in terms of the quadratic form �Hessu F �

Theorem ����� Let F � U � M be a continuous mapping having smooth
restrictions to �nite�dimensional submanifolds of U � Let u � U be a corank one
critical point of F � and let � � �ImDuF ��� � �� ��
��� If the quadratic form �HessuF is sign�inde�nite� then F is locally open

at u�

��� If the form �HessuF is negative �or positive�� then u is locally �nite�
dimensionally optimal for F �

Remark� A quadratic form is locally open at the origin i� it is sign
inde�nite�

Proof� The statements of the theorem are local� so we �x local coordinates in
U and M centered at u and F �u� respectively� and assume that U is a Banach
space and M � Rn�
��� Consider the splitting into direct sum in the preimage�

Tu U � E "KerDuF� dimE � n� �� ������
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and the corresponding splitting in the image�

TF �u�M � ImDuF " V� dimV � �� ������

The quadratic form �Hessu F is sign
inde�nite� i�e�� it takes values of both
signs on KerDuF � Thus we can choose vectors

v� w � KerDuF

such that
�F ��u �v� v� � �� �F ��u �v� w� �� ��

we denote by F �� F �� derivatives of the vector function F in local coordi

nates� Indeed� let the quadratic form Q � �F ��u take values of opposite signs
at some v�� w � KerDuF � By continuity of Q� there exists a nonzero vec

tor v � span�v�� w� at which Q�v� v� � �� Moreover� it is easy to see that
Q�v� w� �� ��
Since the �rst di�erential is an isomorphism�

DuF � F �u � E � ImDuF � ���

there exists a vector x� � E such that

F �ux� � �
�

�
F ��u �v� v��

Introduce the following family of mappings�

�� � E �R�M� � � R�
���x� y� � F ���v " �	yw " ��x� " ��x�� x � E� y � R�

notice that
Im�� � ImF

for small �� Thus it is su�cient to show that �� is open� The Taylor expansion

���x� y� � ���F �ux" yF ��u �v� w�� "O����� �� ��

implies that the family �
�
�� is smooth w�r�t� parameter � at � � �� For � � �

this family gives a surjective linear mapping� By implicit function theorem� the
mappings �

�

�� are submersions� thus are locally open for small � � �� Thus

the mapping F is also locally open at u�
��� Take any smooth �nite
dimensional submanifold S � U � u � S� Similarly

to ������� ������� consider the splittings in the preimage�

S �� TuS � L "KerDu F jS �

and in the image�

M �� TF �u�M � ImDu F jS "W�

dimW � k � corankDu F jS � ��



����� LOCAL OPENNESS OF MAPPINGS ���

Since the di�erential DuF � E � ImDuF is an isomorphism� we can choose�
by implicit function theorem� coordinates �x� y� in S and coordinates inM such
that the mapping F takes the form

F �x� y� �

�
x

��x� y�

�
� x � L� y � KerDu F jS �

Further� we can choose coordinates � � ���� � � � � �k� in W such that

�F �x� y� � ���x� y��

Now we write down hypotheses of the theorem in these coordinates� Since
ImDu F jS �W � f�g� then

D������� � ��

Further� the hypothesis that the form �HessuF is negative reads


� ��

 y�

����
�����

� ��

Then the function
����� y� � � for small y�

Thus the mapping F jS is not locally open at u�
There holds the following statement� which is much stronger than the pre


vious one�

Theorem ���� �Generalized Morse�s lemma�� Suppose that u � U is a
corank one critical point of a smooth mapping F � U � M such that Hessu F
is a nondegenerate quadratic form� Then there exist local coordinates in U and
M in which F has only terms of the �rst and second orders


F �x� v� � DuF x"
�

�
Hessu F �v� v��

�x� v� � U �� E " KerDuF�

We do not prove this theorem since it will not be used in the sequel�

������ Critical points of arbitrary corank

The necessary condition of local openness given by item ��� of Theorem ����
can be generalized for critical points of arbitrary corank�
Recall that positive �negative� index of a quadratic form Q is the maximal

dimension of a positive �negative� subspace of Q�

ind� Q � max
n
dimL j QjLnf�g � �

o
�

ind�Q � max
n
dimL j QjLnf�g � �

o
�
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Theorem ����� Let F � U � M be a continuous mapping having smooth
restrictions to �nite�dimensional submanifolds� Let u � U be a critical point of
F of corank m� If

ind� �Hessu F � m � � � ImDuF� � �� ��

then the mapping F is locally open at the point u�

Proof� First of all� the statement is local� so we can choose local coordinates
and assume that U is a Banach space and u � �� and M � Rn with F ��� � ��
Moreover� we can assume that the space U is �nite
dimensional� now we

prove this� For any � � ImDuF � � �� �� there exists a subspace

E� � U � dimE� � m�

such that
�HessuF jE	nf�g � ��

We take � from the unit sphere

Sm�� �
n
� � �ImDuF �

� j j�j � �
o
�

For any � � Sm��� there exists a neighborhood O� � Sm��� � � O�� such
that E�� � E� for any �� � O�� this easily follows from continuity of the form
��HessuF on the unit sphere in E�� Choose a �nite covering�

Sm�� �
N�
i��

O�i �

Then restriction of F to the �nite
dimensional subspace
PN

i��E�i satis�es the
hypothesis of the theorem� Thus we can assume that U is �nite
dimensional�
Then the theorem is a consequence of the following Lemmas ���� and �����

Lemma ����� Let F � RN � Rn be a smooth mapping� and let F ��� � ��
Assume that the quadratic mapping

Q � Hess� F � KerD�F � CokerD�F

has a regular zero


� v � KerD�F s�t� Q�v� � �� DvQ surjective�

Then the mapping F has regular zeros arbitrarily close to the origin in RN�

Proof� We modify slightly the argument used in the proof of item ��� of Theo

rem ����� Decompose preimage of the �rst di�erential�

RN � E " KerD�F� dimE � n�m�



����� LOCAL OPENNESS OF MAPPINGS ���

then the restriction
D�F � E � ImD�F

is one
to
one� The equality Q�v� � Hess�F �v� � � means that

F ��� �v� v� � ImD�F�

Then there exists x� � E such that

F ��x� � �
�

�
F ��� �v� v��

De�ne the family of mappings

���x� y� � F ���v " �	y " ��x� " ��x�� x � E� y � KerD�F�

The �rst four derivatives of �� vanish at � � �� and we obtain the Taylor
expansion

�

��
���x� y� � F ��x" F ��� �v� y� " O���� �� ��

Then we argue as in the proof of Theorem ����� The family �
�

�� is smooth and

linear surjective at � � �� By implicit function theorem� the mappings �
�
�� are

submersions for small � � �� thus they have regular zeros in any neighborhood of
the origin inRN� Consequently� the mappingF also has regular zeros arbitrarily
close to the origin in RN�

Lemma ����� Let Q � RN � Rm be a quadratic mapping such that

ind� �Q � m � � � Rm�� � �� ��

Then the mapping Q has a regular zero�

Proof� We can assume that the quadratic form Q has no kernel�

Q�v� 
� �� � � v �� �� �������

If this is not the case� we factorize by kernel of Q� Since DvQ � �Q�v� 
��
condition ������� means that DvQ �� � for v �� ��
Now we prove the lemma by induction on m�
In the case m � � the statement is obvious� a sign
inde�nite quadratic form

has a regular zero�
Induction step� we prove the statement of the lemma for any m � � under

the assumption that it is proved for all values less than m�

��� Suppose �rst that Q����� �� f�g� Take any v �� � such that Q�v� � ��
If v is a regular point of Q� then the statement of this lemma follows� Thus we
assume that v is a critical point of Q� Since DvQ �� �� then

rankDvQ � k� � � k � m�
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Consider Hessian of the mapping Q�

Hessv Q � KerDvQ� Rm�k�
The second di�erential of a quadratic mapping is the doubled mapping itself�
thus

�Hessv Q � � �QjKerDvQ
�

Further� since ind� �Q � m and codimKerDvQ � k� then

ind� �HessvQ � ind� �QjKerDvQ
� m � k�

By the induction assumption� the quadratic mapping HessvQ has a regular zero�
Then Lemma ���� applied to the mapping Q yields that Q has a regular zero
as well� The statement of this lemma in case ��� follows�

��� Consider now the second case� Q����� � f�g�
���a� It is obvious that ImQ is a closed cone�
���b� Moreover� we can assume that ImQ n f�g is open� Indeed� suppose

that there exists
x � Q�v� � 
 ImQ� x �� ��

Then v is a critical point of Q� and in the same way as in case ��� the induction
assumption for Hessv Q yields that Hessv Q has a regular zero� By Lemma �����
Q is locally open at v and Q�v� � int ImQ� Thus we assume in the sequel that
ImQ n f�g is open� Combined with item �a�� this means that Q is surjective�
���c� We show now that this property leads to a contradiction which proves

the lemma�
The smooth mapping

Q

jQj � S
N�� � Sm��� v �� Q�v�

jQ�v�j � v � SN���

is surjective� By Sard�s theorem� it has a regular value� Let x � Sm�� be a
regular value of the mapping Q�jQj�
Now we proceed as follows� We �nd the minimal a � � such that

Q�v� � ax� v � SN���

and apply optimality conditions at the solution v� to show that ind� �Q � m���
a contradiction�
So consider the following �nite
dimensional optimization problem with con


straints�

a� min� Q�v� � ax� a � �� v � SN��� �������

This problem obviously has a solution� let a pair �v�� a�� realize minimum� We
write down �rst
 and second
order optimality conditions for problem ��������
There exist Lagrange multipliers

��� �� �� �� � � R� � � T �a�xR
m�
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such that the Lagrange function

L��� �� a� v� � �a" ��Q�v� � ax�

satis�es the stationarity conditions�


 L

 a

� � � �x � �� �������


 L

 v

����
�v��a��

� �Dv�QjSN�� � ��

Since v� is a regular point of the mapping Q�jQj� then � �� �� thus we can set
� � ��

Then second
order necessary optimality condition for problem ������� reads

�Hessv� QjSN�� � �� �������

Recall that Hessian of restriction of a mapping is not equal to restriction of
Hessian of this mapping� see Exercise ���� above�

Exercise ����� Prove that

� �Hessv QjSN�� � �u� � ���Q�u�� juj��Q�v���
v � SN��� u � KerDv QjSN�� �

That is� inequality ������� yields

�Q�u�� juj��Q�v�� � �� u � KerDv� QjSN�� �
thus

�Q�u� � juj��Q�v�� � juj�a��x � juj�a�� � juj�a� � ��
i�e��

�Q�u� � �� u � KerDv� QjSN�� �
Moreover� since v� �� Tv�S

N��� then

�QjL � �� L � KerDv� QjSN�� "Rv��
Now we compute dimension of the nonnegative subspace L of the quadratic

form �Q� Since v� is a regular value of
Q

jQj � then

dimImDv�

Q

jQj � m � ��

Thus ImDv� QjSN�� can have dimension m or m� �� But v� is a critical point
of QjSN�� � thus

dimImDv� QjSN�� � m� �
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and

dimKerDv� QjSN�� � N � �� �m� �� � N �m�

Consequently� dimL � N � m " �� thus ind� �Q � m � �� which contradicts
the hypothesis of this lemma�
So case �c� is impossible� and the induction step in this lemma is proved�

Theorem ���� is completely proved�

���� Di�erentiation of the endpoint mapping

In this section we compute di�erential and Hessian of the endpoint mapping for
a control system

!q � fu�q�� u � U � Rm� U � intU� q �M� �������

q��� � q��

u�
� � U � L����� t��� U ��

with the right
hand side fu�q� smooth in �u� q�� We study the endpoint mapping

Ft� � U �M�

Ft� � u�
� �� q�	 ��
exp

Z t�

�

fu�t� dt

in the neighborhood of a �xed admissible control

$u � $u�
� � U �

In the same way as in the proof of PMP �see Section ������ the Variations
formula yields a decomposition of the �ow�

Ft��u� � q� 	 ��
exp

Z t�

�

gt�u�t� dt 	 Pt� �

where

Pt �
��
exp

Z t

�

f�u��� d��

gt�u � P��t� �fu � f�u�t���

Further� introduce an intermediate mapping

Gt� � U �M�

Gt� � u �� q� 	 ��
exp

Z t�

�

gt�u�t� dt�
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Then
Ft��u� � Pt��Gt��u���

consequently�

D�uFt� � Pt��D�uGt��

Hess�uFt� � Pt��Hess�uGt� �

so di�erentiation of Ft� reduces to di�erentiation of Gt� � We compute deriva

tives of the mapping Gt� using the asymptotic expansion of the chronological
exponential�

a�Gt��u��

� q� 	
��Id" Z t�

�
g��u��� d� "

ZZ
��������t�

g���u���� 	 g���u���� d�� d��

�A a

" O
�ku� $uk	L��

� �������

Introduce some more notations�

g�� �




 u

����
�u���

g��u�

g��� �

�


 u�

����
�u���

g��u�

hu��� � h�� fu�q�i� � � T �qM�

h�� �




 u

����
�u���

hu�

h��� �

�


 u�

����
�u���

hu�

Then di�erential �the �rst variation� of the mapping Gt� has the form�

�D�uGt��v � q� 	
Z t�

�

g�tv�t� dt� v � v�
� � T�u U �

The control $u is a critical point of Ft� �or� which is equivalent� of Gt�� if and
only if there exists a Lagrange multiplier

�� � T �q�M� �� �� ��

such that
���D�uGt��v � � � v � T�u U �

i�e��
��g

�
t�q�� � �� t � ��� t���
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Translate the covector �� along the reference trajectory

q�t� � q� 	 Pt�
we obtain the covector curve

�t � P ���t �� � ��P
��
t� � T �q�t�M�

which is a trajectory of the Hamiltonian system

!�t � �h�u�t���t�� t � ��� t���
see Proposition ����� Then

��g
�
t�q�� � ��P

��
t�





 u

����
�u�t�

fu�q�t�� � h�t��t��

We showed that $u is a critical point of the endpoint mapping Ft� if and only if
there exists a covector curve

�t � T �q�t�M� �t �� �� t � ��� t���

such that

!�t � �h�u�t���t�� �������


 hu

 u

����
�u�t�

��t� � �� t � ��� t��� �������

In particular� any Pontryagin extremal is a critical point of the endpoint map

ping� Pontryagin Maximum Principle implies �rst order necessary optimality
conditions �������� �������� Notice that PMP contains more than these con

ditions� by PMP� the Hamiltonian hu��t� is not only critical� as in ��������
but attains maximum along the optimal $u�t�� We go further to second order
conditions�
Asymptotic expansion ������� yields the expression for the second di�eren


tial�

D�
�uGt��v� w� a

� q� 	
��Z t�

�
g��� �v�� �� w�� �� d� " �

ZZ
��������t�

�g���v����� 	 g���w���� d��d��
�A a�

where a � C��M � and

v� w � KerD�uGt� � KerD�uFt� �

i�e��

q� 	
Z t�

�

g�tv�t� dt � q� 	
Z t�

�

g�tw�t� dt � ��

Now we transform the formula for the second variation via the following decom

position into symmetric and antisymmetric parts�
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Exercise ����� Let X� be a nonautonomous vector �eld on M � ThenZZ
��������t

X�� 	X�� d��d��

�
�

�

Z t

�

X� d� 	
Z t

�

X� d� "
�

�

ZZ
��������t

�X�� � X�� � d��d���

Choosing Xt � g�tv�t� and taking into account that q� 	
Z t�

�

g�tv�t� dt � �� we

obtain�

q� 	
ZZ

��������t�

X�� 	X�� d��d�� �
�

�
q� 	

ZZ
��������t�

�X�� � X�� � d��d���

thus

D�
�uGt��v� w�a

� q� 	
��Z t�

�
g��� �v�� �� w�� �� d� "

ZZ
��������t�

�g���v����� g
�
��w����� d�� d��

�A a

� q� 	
�Z t�

�

g��� �v�� �� w�� �� d� "
Z t�

�

�Z ��

�

g���v���� d��� g
�
��
w����

�
d��

�
a�

The �rst term can conveniently be expressed in Hamiltonian terms since

��g��u � ��P
��
�� �fu � f�u���� � hu��� � � h�u������ ��

Then

�t�D
�
�uFt��v� w� � ��D

�
�uGt��v� w�

�

Z t�

�

h��� ��� ��v�� �� w�� �� d� "
Z t�

�

��

�Z ��

�

g���v���� d��� g
�
��w����

�
d���

�������

In order to write also the second term in this expression in the Hamiltonian
form� compute the linear on �bers Hamiltonian corresponding to the vector �eld
g��v�

��g
�
�v �

�
��� P

��
��





 u
fuv

�
�

�
P ���� ���





 u
fuv

�
�





 u

 
P ���� ��� fu

!
v �





 u
hu 	 P ���� ����v�

where derivatives w�r�t� u are taken at u � $u�� �� Introducing the Hamiltonian

hu�� ��� � hu�P
���
� �����
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we can write the second term in expression ������� for the second variation as
follows�Z t�

�

Z ��

�

��
(
g���v����� g

�
��w����

)
d��d��

�

Z t�

�

Z ��

�

�




 u
hu��� v�����





 u
hu��� w����

�
���� d�� d��

�

Z t�

�

Z ��

�

��

�




 u

��
hu��� v�����





 u

��
hu��� w����

�
d�� d��� �������

Here the derivatives




 u
hu��i and





 u

��
hu��i are evaluated at u � $u��i��

���� Necessary optimality conditions

Now we apply our results on second variation and obtain necessary conditions
for geometric optimality of an extremal trajectory of system �������

������ Legendre condition

Fix an admissible control $u which is a corankm � � critical point of the endpoint
mapping Ft�� For simplicity� we will suppose that $u�
� is piecewise smooth� Take
any Lagrange multiplier

�� � �ImD�uFt��
� n f�g�

then

�t � P ���t �� � �� 	 ��
exp

Z t

�

�h�u��� d�� t � ��� t���

is a trajectory of the Hamiltonian system of PMP� Denote the corresponding
quadratic form that evaluates Hessian of the endpoint mapping in ��������

Q � T�u U � R�

Q�v� �

Z t�

�
h��� ��� ��v�� �� v�� �� d� "

Z t�

�
��

�Z ��

�
g���v���� d��� g

�
��v����

�
d���

Then ������� reads

�t� Hess�u Ft��v� v� � Q�v�� v � KerD�uFt� �

By Theorem ����� if a control $u is locally geometrically optimal �i�e�� the
endpoint mapping Ft� is not locally open at $u�� then there exists a Lagrange
multiplier �� such that the corresponding form Q satis�es the condition

ind� QjKerD	uFt�
� m � corankD�uFt�� �������
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The kernel of the di�erential D�uFt� is de�ned by a �nite number of scalar linear
equations�

KerD�uFt� �

�
v � T�u U j q� 	

Z t�

�

g�tv�t� dt � �
�
�

i�e�� it has a �nite codimension in T�u U � Thus inequality ������� implies that
ind�Q � "�

for the corresponding extremal �t� If we take the extremal ��t projecting to
the same extremal curve q�t�� then we obtain a form Q with a �nite positive
index� So local geometric optimality of $u implies �niteness of positive index of
the form Q for some Lagrange multiplier ���

Proposition ����� If the quadratic form Q has a �nite positive index� then
there holds the following inequality along the corresponding extremal �t


h��t ��t��v� v� � �� t � ��� t��� v � Rm� �������

Inequality ������� is called Legendre condition�
In particular� if a trajectory q�t� is locally geometrically optimal� then Leg


endre condition holds for some extremal �t� ���t� � q�t�� However� necessity of
Legendre condition for optimality follows directly from the maximality condi

tion of PMP �exercise�� But we will need in the sequel the stronger statement
related to index of Q as in Proposition �����
Notice once more that in the study of geometric optimality� all signs may be

reversed� multiplying �t by ��� we obtain a quadratic form with ind�Q � "�
and the reversed Legendre condition h��t ��t��v� v� � �� Of course� this is true
also for subsequent conditions related to geometric optimality�
Now we prove Proposition �����

Proof� Take a smooth vector function

v � R� Rm� supp v � ��� ���
and introduce a family of variations of the form�

v�� ���� � � v

�
� � +�
�

�
� +� � ��� t��� � � ��

Notice that the vector function v�� �� is concentrated at the segment �+�� +� " ���
Compute asymptotics of the form Q on the family introduced�

Q�v�� ��� � �

Z �

�

h������s������s��v�s�� v�s�� ds

" ��
Z �

�

��

�Z �

�

g�����s�v�s�� ds�� g
�
����s�v�s��

�
ds� �������

� �

Z �

�

h���� ���� ��v�s�� v�s�� ds " O�����
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where O���� is uniform w�r�t� v in the L� norm�

Suppose� by contradiction� that

h���� ���� ��v� v� � �

for some +� � ��� t��� v � Rm� In principal axes� the quadratic form becomes a
sum of squares�

h���� ���� ��v� v� �
mX
i��

�i�� �v
i��

with at least one coe�cient

�i�� � ��

Choose a vector function v of the form

v�s� �

�BBBB�
v��s�

 
 

vi�s�

 
 


vm�s�

�CCCCA �

�BBBB�
�

 
 

vi�s�

 
 

�

�CCCCA
with the only nonzero component vi�s�� For su�ciently small � � �� Q�v�� ��� �
�� But for any �xed +� and �� the space of vector functions v�� �� is in�nite

dimensional� Thus the quadratic form Q has an in�nite positive index� By
contradiction� the proposition follows�

������ Regular extremals

We proved that Legendre condition is necessary for �niteness of positive index
of the quadratic form Q� The corresponding su�cient condition is given by the
strong Legendre condition�

h��t ��t��v� v� � ��jvj�� t � ��� t��� v � Rm� �������

� � ��

An extremal that satis�es the strong Legendre condition is called regular �notice
that this de�nition is valid only in the case of open space of control parameters
U � where Legendre condition is related to maximality of hu��

Proposition ����� If �t� t � ��� t��� is a regular extremal� then


��� For any � � ��� t�� there exists � � � such that the form Q is negative on
the space Lm���� � " ���

��� The form Q has a �nite positive index on the space T�u U � Lm���� t���
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Proof� ��� We have�

Q�v� � Q��v� " Q��v��

Q��v� �

Z t�

�

h��� ��� ��v�� �� v�� �� d��

Q��v� �

Z t�

�

��

�Z ��

�

g���v���� d��� g
�
��
v����

�
d��

�

Z t�

�

��

�Z ��

�





 u

��
hu��� v�����





 u

��
hu��� v����

�
d�� d���

By continuity of h��� ��� � w�r�t� � � the strong Legendre condition implies that

Q�

�
vj�������

�
� ��

�
� kvk�L�

for small � � �� It follows by the same argument as in ������� that the term Q�

dominates on short segments�

Q�

�
vj�������

�
� O����kvk�L� � �� ��

thus
Q
�
vj�������

�
� �

for su�ciently small � � � and all v � Lm���� t��� v �� ��
��� We show that the form Q is negative on a �nite codimension subspace

in Lm���� t��� this implies that ind�Q ���
By the argument used in the proof of item ���� any point � � ��� t�� can be

covered by a segment �� ��� � "�� such that the form Q is negative on the space
Lm��� � �� � " ��� Choose points � � �� � �� � 
 
 
 � �N � t� such that Q is
negative on the spaces Lm���i��� �i�� i � �� � � � � N � De�ne the following �nite
codimension subspace of Lm���� t���

L �

�
v � Lm���� t�� j �� 	

Z �i

�i��





 u

��
hu�� v�� � d� � �� i � �� � � � � N

�
�

For any v � L� v �� ��

Q�v� �
NX
i��

Q
�
vj��i����i �

�
� ��

Thus L is the required �nite codimension negative subspace of the quadratic
form Q� Consequently� the form Q has a �nite positive index�

Propositions ���� and ���� relate sign
de�niteness of the form h��� ��t� with
sign
de�niteness of the form Q� thus� in the corank one case� with local geo

metric optimality of the reference control $u �via Theorem ������ Legendre con

dition is necessary for �niteness of ind� Q� thus for local geometric optimality
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of $u� On the other hand� strong Legendre condition is su�cient for negative

ness of Q on short segments� thus for local �nite
dimensional optimality of $u
on short segments� Notice that we can easily obtain a much stronger result
from the theory of �elds of extremals �Section ������ Indeed� under the strong
Legendre condition the maximized Hamiltonian of PMP is smooth� and Corol

lary ���� gives local optimality on short segments �in C���� t���M � topology� thus
in L����� t��� U � topology and in topology of convergence on �nite
dimensional
submanifolds in U��

������ Singular extremals

Now we consider the case where the second derivative of the Hamiltonian hu
vanishes identically along the extremal� in particular� the case of control
a�ne
systems !q � f��q� "

Pm
i�� uifi�q�� So we assume that an extremal �t satis�es

the identity

h��t ��t� � �� t � ��� t��� �������

Such an extremal is called totally singular � As in the case of regular extremals�
this de�nition is valid only if the set of control parameters U is open�
For a totally singular extremal� expression ������� for the Hessian takes the

form�

�t� Hess�u Ft��v�� v�� � ��

Z t�

�

�Z ��

�
g���v����� d��� g

�
��v�����

�
d���

In order to �nd the dominating term of the Hessian �concentrated on the diag

onal �� � ���� we integrate by parts� Denote

wi�� � �

Z t�

�

vi�s� ds�

!g�� �
d

d �
g�� �

Then

�t� Hess�u Ft��v�� v��

� ��

�Z t�

�

�
�g���w����� " g��w���� "

Z ��

�

!g���w����� d��� g
�
��v�����

�
d��

�
� ��

�
�
Z t�

�

�g��w��� �� g
�
�v��� �� d� " �g

�
�w����� g

�
�w�����

"

�
g��w�����

Z t�

�

!g��w��� � d�

�
"

Z t�

�

� !g��w��� �� g
�
�w��� �� d�

"

Z t�

�

�
!g���w������

Z t�

��

!g���w����� d��

�
d��

�
� �������
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We integrate by parts also the admissibility condition q� 	
Z t�

�

g�tvi�t� dt � ��

q� 	
�Z t�

�

!g�twi�t� dt" g��wi���
�
� �� �������

In the sequel we take variations vi subject to the restriction

wi��� �

Z t�

�
vi�t� dt � �� i � �� ��

We assume that functions v�s� used in construction of the family v�� ���� � �
v
�
����
�

�
satisfy the equality Z �

�

v�s� ds � ��

then the primitive

w�s� �

Z s

�

v�s�� ds�

is also concentrated at the segment ��� ��� Then the last term in expressi

on ������� of the Hessian vanishes� and equality ������� reduces to

q� 	
Z t�

�

!g�twi�t� dt � ��

Asymptotics of the Hessian on the family v�� �� has the form�

�t� Hess�uFt��v�� ��� v�� ��� � Q�v����� � ����

Z �

�

�g���w�s�� g
�
��v�s�� ds " O��	��

The study of this dominating term provides necessary optimality conditions�

Proposition ����� Let �t� t � ��� t��� be a totally singular extremal� If the
quadratic form Q � �t� Hess�uFt� has a �nite positive index� then

���g
�
tv�� g

�
tv�� � � � v�� v� � Rm� t � ��� t��� �������

Equality ������� is called Goh condition� It can be written also as follows�

�t

�

 fu

 u

v��

 fu

 u

v�

�
� ��

or in Hamiltonian form��

 hu

 ui

�

 hu

 uj

�
��t� � �t

�




 ui
�hu�





 uj
�hu

�
� ��

i� j � �� � � � �m� t � ��� t���
As before� derivatives w�r�t� u are evaluated at u � $u�t��
Now we prove Proposition �����
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Proof� Take a smooth vector function v � R� Rm concentrated at the seg


ment ��� ��� such that

Z ��

�

v�s� ds � �� and construct as before the variation of

controls

v�� ���� � � v

�
� � +�
�

�
�

Then

Q�v����� � ��
Z ��

�

���g
�
��w�s�� g

�
��v�s�� ds " O��	�kvk�L� �

where w�s� �

Z s

�

v�s�� ds�� The leading term is the integral

Z ��

�

���g
�
��w�s�� g

�
��v�s�� ds �

Z ��

�

��w�s�� v�s�� ds� �������

��x� y� � ���g
�
��x� g

�
��y�� x� y � Rm�

notice that the bilinear skew
symmetric form � enters Goh condition ��������
In order to prove the proposition� we show that if � �� �� then the leading
term ������� of Hessian has a positive subspace of arbitrarily large dimension�
Let � �� � for some +� � ��� t��� then rank� � �l � �� and there exist

coordinates in Rm in which the form � reads

��x� y� �
lX

i��

�xiyi�l � xi�lyi��

x �

�� x�


 
 

xm

�A � y �

�� y�


 
 

ym

�A �

Take a vector function v of the form

v�s� �

�BBBBBBBBBB�

v��s�
�

 
 

�

vl���s�
�

 
 

�

�CCCCCCCCCCA
�

v��s� �
X
k��

�k cos ks� vl���s� �
X
k��

�k sin ks�

Substituting v�s� to �������� we obtain�Z ��

�

��w�s�� v�s�� ds � ���
X
k��

�

k
�k�k�
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This form obviously has a positive subspace of in�nite dimension�
For an arbitrarily great N � we can �nd an N 
dimensional positive space LN

for form �������� There exists �N � � such that Q�v�� ��N � � � for any v � LN �
Thus ind� Q ��� By contradiction� Goh condition follows�
Exercise ����� Show that Goh condition holds not only for piecewise smooth�
but also for measurable bounded extremal control $u at Lebesgue points�

Goh condition imposes a strong restriction on a totally singular optimal
control $u� For a totally singular extremal� the �rst two terms in ������� vanish
by Goh condition� Moreover� under the condition w��� � �� the third term
in ������� vanishes as well� Thus the expression for Hessian ������� reduces to
the following two terms�

�t� Hess�u Ft��v� v� � Q�v�

� ��

�Z t�

�

� !g��w�� �� g
�
�w�� �� d� "

Z t�

�

�
!g���w�����

Z t�

��

!g���w���� d��

�
d��

�
�

�������

Suppose that the quadratic form Q has a �nite positive index� Then by the
same argument as in Proposition ���� we prove one more pointwise condition�

��� !g
�
tv� g

�
tv� � � � v � Rm� t � ��� t��� �������

This inequality is called generalized Legendre condition�
Notice that generalized Legendre condition can be rewritten in Hamiltonian

terms���
h�u�t�� h

�
tv
�
� h�tv

�
��t� "

�
h��t � !$u�t�� v�� h

�
tv
�
��t� � �� v � Rm� t � ��� t���

This easily follows from the equalities�

g�tv � P��t�

 fu

 u

v � AdPt

 fu

 u

v�

!g�tv �
d

d t

��
exp

Z t

�

ad f�u��� d�

 fu

 u

v

� P��t�

�
f�u�t��


 fu

 u

v

�
" P��t�


� fu

 u�

� !$u�t�� v��

The strong version ������� of generalized Legendre condition plays in the
totally singular case the role similar to that of the strong Legendre condition in
the regular case�

Proposition ����� Let an extremal �t be totally singular� satisfy Goh condi�
tion� the strong generalized Legendre condition
��

h�u�t�� h
�
tv
�
� h�tv

�
��t� "

�
h��t � !$u�t�� v�� h

�
tv
�
��t� � ��jvj��
v � Rm� t � ��� t��� �������
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for some � � �� and the following nondegeneracy condition


the linear mapping

 fu�q��


 u

����
�u���

� Rm� Tq�M is injective� �������

Then the quadratic form QjKerD	uFt
is negative on short segments and has a

�nite positive index on Lm���� t���

Proof� This proposition is proved similarly to Proposition ����� In decomposi

tion ������� the �rst two terms vanish by Goh condition� and the fourth term
is negative and dominates on short segments� The third term is small on short
segments since

q� 	 g��w���� �

 fu�q��


 u

����
�u���

w�����

and condition ������� allows to express w���� through the integral

Z t�

�

w��� � d�

on the kernel of D�uFt� � which is de�ned by equality ��������

We call an extremal that satis�es all hypotheses of Proposition ���� a nice
singular extremal �

������ Necessary conditions

Summarizing the results obtained in this section� we come to the following
necessary conditions for the quadratic form Q to have a �nite positive index�

Theorem ����� Let a piecewise smooth control $u � $u�t�� t � ��� t��� be a critical
point of the endpoint mapping Ft�� Let a covector �t� � T �Ft� ��u�M be a Lagrange

multiplier


�t�D�uFt� � �� �t� �� ��
If the quadratic form Q has a �nite positive index� then


�I� The trajectory �t of the Hamiltonian system of PMP

!�t � �h�u�t���t��

hu��� � h�� fu�q�i�

satis�es the equality

h�t��t� � �� t � ��� t���

�II��� Legendre condition is satis�ed


h��t ��t��v� v� � �� v � Rm� t � ��� t���
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�II��� If the extremal �t is totally singular


h��t ��t��v� v� � �� v � Rm� t � ��� t���
then there hold Goh condition


fh�tv�� h�tv�g ��t� � �� v�� v� � Rm� t � ��� t��� �������

and generalized Legendre condition
��
h�u�t�� h

�
tv
�
� h�tv

�
��t� "

�
h��t � !$u�t�� v�� h

�
tv
�
��t� � ��

v � Rm� t � ��� t��� �������

Remark� If the Hamiltonian hu is a�ne in u �for control
a�ne systems�� then
the second term in generalized Legendre condition ������� vanishes�

Recall that the corresponding su�cient conditions for �niteness of index of
the second variation are given in Propositions ���� and �����
Combining Theorems ���� and ����� we come to the following necessary

optimality conditions�

Corollary ����� If a piecewise smooth control $u � $u�t� is locally geometrically
optimal for control system �������� then �rst�order conditions �I� and second�
order conditions �II���� �II��� of Theorem ���� hold along the corresponding
extremal �t�

���� Applications

In this section we apply the second order optimality conditions obtained to
particular problems�

������ Abnormal sub�Riemannian geodesics

Consider the sub
Riemannian problem�

!q �
mX
i��

uifi�q�� q �M� u � �u�� � � � � um� � Rm�

q��� � q�� q��� � q��

J�u� �
�

�

Z �

�

mX
i��

u�i dt �
�

�

Z �

�

juj� dt� min �

The study of optimality is equivalent to the study of boundary of attainable set
for the extended system� ������

!q �
mX
i��

uifi�q�� q �M�

!y �
�

�
juj�� y � R�
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The Hamiltonian is

hu��� �� �
mX
i��

uih�� fi�q�i " �

�
juj�� � � T �M� � � R� � R�

The parameter � is constant along any geodesic �extremal�� If � �� � �the normal
case�� then extremal control can be recovered via PMP� In the sequel we consider
the abnormal case�

� � ��

Then

hu��� � hu��� �� �
mX
i��

uihi����

hi��� � h�� fi�q�i� i � �� � � � �m�

The maximality condition of PMP does not determine controls in the abnormal
case directly �abnormal extremals are totally singular�� What that condition
implies is that abnormal extremals �t satisfy� in addition to the Hamiltonian
system

!�t �
mX
i��

ui�t��hi��t��

the following identities�

hi��t� � �� i � �� � � � �m�

We apply second order conditions� As we already noticed� Legendre condi

tion degenerates� Goh condition reads�

fhi� hjg��t� � �� i� j � �� � � �m�

If an abnormal extremal �t projects to an optimal trajectory q�t�� then at any
point q of this trajectory there exists a covector

� � T �qM� � �� ��
such that

h�� fi�q�i � �� i � �� � � � �m�

h�� �fi� fj��q�i � �� i� j � �� � � � �m�

Consequently� if

span�fi�q�� �fi� fj��q�� � TqM� �������

then no locally optimal strictly abnormal trajectory passes through the point q�
An extremal trajectory is called strictly abnormal if it is a projection of an
abnormal extremal and it is not a projection of a normal extremal� Notice that
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in the case corank � � extremal trajectories can be abnormal but not strictly
abnormal �i�e�� can be abnormal and normal simultaneously�� there can be two
Lagrange multipliers ��� �� and ���� � �� ��� Small arcs of such trajectories are
always local minimizers since the normal HamiltonianH � �

�

Pm
i�� h

�
i is smooth

�see Corollary ������
Distributions span�fi�q�� that satisfy condition ������� are called ��genera�

ting � E�g�� the left
invariant bracket
generating distributions appearing in the
sub
Riemannian problem on a compact Lie group in Section ���� and Exer

cise ���� are �
generating� thus there are no optimal strictly abnormal trajecto

ries in those problems�

Example ����� Consider the following left
invariant sub
Riemannian problem
on GL�n� with a natural cost�

!Q � QV� Q � GL�n�� V � V �� �������

J�V � �
�

�

Z �

�

trV � dt� min � �������

Exercise ����� Show that normal extremals in this problem are products of �
one
parameter subgroups� �Hint� repeat the argument of Section ������ Then
it follows that any nonsingular matrix can be represented as a product of two
exponentials eV e�V�V

����� Notice that not any nonsingular matrix can be rep

resented as a single exponential eV �

There are many abnormal extremals in problem �������� �������� but they
are never optimal� Indeed� the distribution de�ned by the right
hand side of the
system is �
generating� We have

�QV�� QV�� � Q�V�� V���

and if matrices Vi are symmetric then their commutator �V�� V�� is antisymmet

ric� Moreover� any antisymmetric matrix appears in this way� But any n � n
matrix is a sum of symmetric and antisymmetric matrices� Thus the distribu

tion fQV j V � � V g is �
generating� and strictly abnormal extremal trajectories
are not optimal�

������ Local controllability of bilinear system

Consider a bilinear control system of the form

!x � Ax" uBx" vb� u� v � R� x � Rn� �������

We are interested� when the system is locally controllable at the origin� i�e��

� � intA��t� � t � ��
Negation of necessary conditions for geometric optimality gives su�cient condi

tions for local controllability� Now we apply second order conditions of Corol

lary ���� to our system� Suppose that

� � 
A��t� for some t � ��
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Then the reference trajectory x�t� � � is geometrically optimal� thus it satis�es
PMP� The control
dependent Hamiltonian is

hu�v�p� x� � pAx" upBx" vpb� � � �p� x� � T �Rn � Rn��Rn�
The vertical part of the Hamiltonian system along the reference trajectory x�t�
reads�

!p � �pA� p � Rn�� �������

It follows from PMP that

p�� �b � p���e�A� b � �� � � ��� t��
i�e��

p���Aib � �� i � �� � � � � n� �� �������

for some covector p��� �� �� thus
span�b� Ab� � � � � An��b� �� Rn�

We pass to second order conditions� Legendre condition degenerates since the
system is control
a�ne� and Goh condition takes the form�

p�� �Bb � �� � � ��� t��
Di�erentiating this identity by virtue of Hamiltonian system �������� we obtain�
in addition to �������� new restrictions on p����

p���AiBb � �� i � �� � � � � n� ��
Generalized Legendre condition degenerates�
Summing up� the inequality

span�b� Ab� � � � � An��b� Bb�ABb� � � � � An��Bb� �� Rn

is necessary for geometric optimality of the trajectory x�t� � �� In other words�
the equality

span�b� Ab� � � � � An��b� Bb�ABb� � � � � An��Bb� � Rn

is su�cient for local controllability of bilinear system ������� at the origin�

���� Single
input case

In this section we apply �rst
 and second
order optimality conditions to the
simplest �and the hardest to control� case with scalar input�

!q � f��q� " uf��q�� u � ��� �� � R� q �M� �������
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Since the system is control
a�ne� Legendre condition automatically degenerates�
Further� control is one
dimensional� thus Goh condition is trivial� Although�
generalized Legendre condition works �we write it down later�� We apply �rst
Pontryagin MaximumPrinciple� Introduce the following Hamiltonians linear on
�bers of the cotangent bundle�

hi��� � h�� fi�q�i� i � �� ��

then the Hamiltonian of the system reads

hu��� � h���� " uh�����

We look for extremals corresponding to a control

u�t� � ��� ��� �������

The Hamiltonian system of PMP reads

!�t � �h���t� " u�t��h���t�� �������

and maximality condition reduces to the identity

h���t� � �� �������

Extremals �t are Lipschitzian� so we can di�erentiate the preceding identity�

!h���t� �
d

d t
h���t� � fh� " u�t�h�� h�g��t� � fh�� h�g��t� � �� �������

Equalities �������� �������� which hold identically along any extremal �t that
satis�es �������� do not allow us to determine the corresponding control u�t��
In order to obtain an equality involving u�t�� we proceed with di�erentiation�

(h���t� � fh� " u�t�h�� fh�� h�gg��t�
� fh�� fh�� h�gg��t� " u�t�fh�� fh�� h�gg��t� � ��

Introduce the notation for Hamiltonians�

hi�i����ik � fhi�� fhi�� � � � � fhik�� � hikg � � �gg� ij � f�� �g�

then any extremal �t with ������� satis�es the identities

h���t� � h����t� � �� �������

h�����t� " u�t�h�����t� � �� �������

If h�����t� �� �� then extremal control u � u��t� is uniquely determined by �t�

u��t� � �h�����t�
h�����t�

� �������
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Notice that the regularity condition h�����t� �� � is closely related to generalized
Legendre condition� Indeed� for the Hamiltonian hu � h� " uh� generalized
Legendre condition takes the form

ffh� " uh�� h�g� h�g��t� � �h�����t� � ��
i�e��

h�����t� � ��
And if this inequality becomes strong� then the control is determined by rela

tion ��������
Assume that h�����t� �� � and plug the control u��� � �h�������h������

given by ������� to the Hamiltonian system ��������

!� � �h���� " u����h����� �������

Any extremal with ������� and h�����t� �� � is a trajectory of this system�
Lemma ����� The manifold

f� � T �M j h���� � h����� � �� h������ �� �g �������

is invariant for system ��������

Proof� Notice �rst of all that the regularity condition h������ �� � guarantees
that conditions ������� determine a smooth manifold since d�h� and d�h�� are
linearly independent� Introduce a Hamiltonian

���� � h���� " u���h�����

The corresponding Hamiltonian vector �eld

����� � �h���� " u����h���� " h�����u���

coincides with �eld ������� on the manifold fh� � h�� � �g� so it is su�cient to
show that �� is tangent to this manifold�
Compute derivatives by virtue of the �eld ���

!h� � fh� " uh�� h�g � h�� � ��h�u�h��
!h�� � fh� " uh�� h��g � h��� " uh���� 	z 


��
���h��u�h� � ���h��u�h��

The linear system with variable coe�cients for h��t� � h���t�� h���t� � h����t��
!h��t� � h���t� � ��h�u���t�h��t��
!h���t� � ���h��u���t�h��t�

has a unique solution� Thus for the initial condition h���� � h����� � � we
obtain the solution h��t� � h���t� � �� So manifold ������� is invariant for the
�eld ������ thus for �eld ��������



����� SINGLE�INPUT CASE ���

Now we can describe all extremals of system ������� satisfying the con

ditions ������� and h��� �� �� Any such extremal belongs to the manifold
fh� � h�� � �g� and through any point �� of this manifold with the boundary
restrictions on control satis�ed�

u���� � �h�������
h�������

� ��� ���

passes a unique such extremal # the trajectory �t of system ��������
In problems considered in Chapters �� and �� �Dubins car� rotation around �

axes in SO����� all singular extremals appeared exactly in this way� Generically�
h��� �� �� thus all extremals with ������� can be studied as above� But in im

portant examples the hamiltonian h��� can vanish� E�g�� consider a mechanical
system with a controlled force�

(y � g�y� " ub� y� b � Rn� u � ��� �� � R�
or� in the standard form� �

!y� � y��

!y� � g�y�� " ub�

The vector �elds in the right
hand side are

f� � y�




 y�
" g�y��





 y�
�

f� � b




 y�
�

thus
h������ � h�� �f�� �f�� f���� 	z 


��

i � ��

More generally� h��� vanishes as well for systems of the form�
!x � f�x� y��

(y � g�x� y� " ub�
x �M� y� b � Rn� u � ��� �� � R� �������

An interesting example of such systems is Dubins car with control of angular
acceleration���������

!x� � cos 	�

!x� � sin 	�
!	 � y�

!y � u�

�x�� x�� � R�� 	 � S�� y � R� juj � ��

Having such a motivation in mind� we consider now the case where

h������ � �� �������
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Then equality ������� does not contain u�t�� and we continue di�erentiation in
order to �nd an equation determining the control�

h
�	�
� ��t� �

!h�����t� � h������t� " u�t�h������t� � ��
It turns out that the term near u�t� vanishes identically under condition ��������

h���� � fh�� fh�� fh�� h�ggg � ffh�� h�g� fh�� h�gg� 	z 

��

"fh�� fh�� fh�� h�ggg

� fh�� h���g � ��
So we obtain� in addition to �������� �������� and �������� one more identity
without u�t� for extremals�

h������t� � ��
Thus we continue di�erentiation�

h
���
� ��t� �

!h������t� � h�������t� " u�t�h�������t� � �� �������

In Dubins car with angular acceleration control h�������t� �� �� and generically
�in the class of systems �������� this is also the case� Under the condition
h�������t� �� � we can express control as u � u��� from equation ������� and
�nd all extremals in the same way as in the case h�����t� �� ��
Exercise ���	� Show that for Dubins car with angular acceleration control�
singular trajectories are straight lines in the plane �x�� x���

x� � x�� " t cos 	�� x� � x�� " t sin 	�� 	 � 	�� y � ��

Although� now geometry of the system is new� There appears a new pat

tern for optimal control� where control has an in�nite number of switchings on
compact time intervals�
For the standard Dubins car �with angular velocity control� singular trajec


tories can join bang trajectories as follows�

u�t� � ��� t � +t� u�t� � �� t � +t� �������

or

u�t� � �� t � +t� u�t� � ��� t � +t� �������

We show that such controls cannot be optimal for the Dubins car with angular
acceleration control�
The following argument shows how our methods can be applied to problems

not covered directly by the formal theory� In this argument we prove Proposi

tion ���� stated below at page ����
Consider the time
optimal problem for our single
input system �������� We

prove that there do not exist time
optimal trajectories containing a singular
piece followed by a bang piece� Suppose� by contradiction� that such a trajectory
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q�t� exists� Consider restriction of this trajectory to the singular and bang
pieces�

q�t�� t � ��� t���
u�t� � ��� ��� t � ���+t ��
u�t� � � � f�� �g� t � �+t� t���

Let �t be an extremal corresponding to the extremal trajectory q�t�� We suppose
that such �t is unique up to a nonzero factor �generically� this is the case��
Reparametrizing control �i�e�� taking u� u�+t � �� as a new control�� we obtain

u�+t� �� � �� � � � � ��

without any change of the structure of Lie brackets� Notice that now we study a
time
optimal trajectory� not geometrically optimal one as before� Although� the
Hamiltonian of PMP hu � h�"uh� for the time
optimal problem is the same as
for the geometric problem� thus the above analysis of singular extremals applies�
In fact� we prove below that a singular piece and a bang piece cannot follow
one another not only for a time
minimal trajectory� but also for a time
maximal
trajectory or for a geometrically optimal one�
We suppose that the �elds f�� f� satisfy the identity

�f�� �f�� f��� � �

and the extremal �t satis�es the inequality

h��������t� �� ��

Since u�+t� �� � �� then equality ������� implies that h��������t� � ��
It follows from the maximality condition of PMP that

hu�t���t� � h���t� " u�t�h���t� � h���t��

i�e�� along the whole extremal

u�t�h���t� � �� t � ��� t���

But along the singular piece h���t� � �� thus

u�t�h���t� � �� t � ��� +t ��

The �rst nonvanishing derivative of u��t�h���t� at t � +t"� is positive� Keeping
in mind that u�t� � � at the singular piece t � �+t� t��� we compute this derivative�
Since h����t� � h�����t� � h������t� � h�������t� � h�������t� � �� then the �rst
three derivatives vanish�

dk

dtk

����
t��t��

u�t�h���t� � �� k � �� �� �� ��
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Thus the fourth derivative is nonnegative�

d�

dt�

����
t��t��

u�t�h���t� � ��h��������t� " �h��������t��

� ��h��������t� � ��

Since �� � �� then

h��������t� � �� �������

Now we apply this inequality in order to obtain a contradiction via the theory
of second variation�
Recall expression ������� for Hessian of the endpoint mapping�

�tHessu Ft�v�

�

Z t

�

�� � !g
�
� � g

�
� �w

��� � d� "

Z t

�

Z ��

�

��
(
!g��� � !g

�
��

)
w����w���� d��d��� �������

Here

w�� � �

Z t

�

v�	� d	� w��� � ��

g�� � P���� f��

!g�� � P���� �f�� f���

P� �
��
exp

Z �

�
fu��� d	�

The �rst term in expression ������� for the Hessian vanishes�

�� � !g
�
� � g

�
� � � �h������ � � ��

Integrating the second term by parts twice� we obtain�

�tHessuFt�v� �

Z t

�

�� �(g
�
� � !g

�
� ��

��� � d� "

Z t

�

Z ��

�

��
(
(g��� � (g

�
��

)
���������� d�� d��

�������

where

(g�� � P���� �f�� �f�� f����

��� � �

Z �

�

w���� d��� ��t� � ��

The �rst term in ������� dominates on needle
like variations v � v�t���

��tHessu F�t�v�t��� � ����� (g
�
�t� !g

�
�t � "O�����
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we compute the leading term in the Hamiltonian form�

��� (g
�
�t� !g

�
�t � � ��t��f�� �f�� f���� �f�� f��� � fh���� h��g���t� � ffh�� h�g� h���g���t�
� fh�� fh�� h���gg���t� � fh�� fh�� h���g� 	z 


�h������

g���t� � h��������t��

By virtue of inequality ��������

��tHessu F�t�v�� � ��

where

v� � v�t��

for small enough � � �� This means that

d�

d s�

����
s��

a 	 F�t�u" sv�� � ��tHessu F�t�v�� � �

for any function a � C��M �� a�q�+t �� � �� dq��t �a � ��t� Then

a 	 F�t�u" sv�� �
s�

�
��tHessu F�t�v�� " O�s	�� s� ��

i�e�� the curve F�t�u"
p
sv�� is smooth at s � "� and has the tangent vector

d

d s

����
s���

F�t�u"
p
sv�� � ���

h��t� ��i � �� �������

That is� variation of the optimal control u in direction of v� generates a tangent
vector �� to the attainable set Aq� �+t � that belongs to the half
space h��t� 
 i � �
in Tq��t �M �
Since the extremal trajectory q�t� is a projection of a unique� up to a scalar

factor� extremal �t� then the control u is a corank one critical point of the
endpoint mapping�

dimImDuF�t � dimM � � � n� ��

This means that there exist variations of control that generate a hyperplane of
tangent vectors to Aq� �+t ��

� v�� � � � � vn�� � TuU such that

d

d s

����
s��

F�t�u " svi� � �i� i � �� � � � � n� ��

span���� � � � � �n��� � ImDuF�t�
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Summing up� the variations v�� v�� � � � � vn�� of the control u at the singular
piece generate a nonnegative half
space of the covector ��t�

us � u"
p
s�v� "

n��X
i��

sivi� s � �s�� s�� � � � � sn��� � R��Rn���





 si

����
s��

F�t�us� � �i� i � �� �� � � � � n� ��

R��� " span���� � � � � �n��� � fh��t� 
 i � �g�
Now we add a needle
like variation on the bang piece� Since the control

u�t�� t � �+t� t��� is nonsingular� then the switching function h���t� �� �� t � �+t� t���
Choose any instant

+t� � �+t� t�� such that h����t�� �� ��
Add a needle
like variation concentrated at small segments near +t��

us���t� �

����
us�t�� t � ��� +t ��
u�t� � �� t � �+t� +t�� � �+t� " �� t���

�� t � �+t�� +t� " ���

The needle
like variation generates the tangent vector





 �

����
���s��������

Ft��us��� � ��
h�
P t�
�t�

�
�
f�

i
�q�t����

P t
� �

��
exp

Z t

�

fu��� d��

this derivative is computed as in the proof of PMP� see Lemma ����� We deter

mine disposition of the vector

�n � ��
h�
P t�
�t�

�
�
f�

i
�q�t���

w�r�t� the hyperplane ImDuFt� �

h�t� � �ni � ��h��t� � f�i � ��h����t���
Since h����t�� �� �� then it follows from PMP that �h����t�� � u�+t��h����t�� � ��
thus

h�t� � �ni � ��
Now we translate the tangent vectors �i� i � �� � � � � n��� from q�+t � to q�t���





 �

����
���s�������

Ft��us��� �




 �

����
���s�������

P t�
�t �F�t�us��

�
�
P t�
�t

�
� �i � �i� i � �� � � � � n� ��
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Inequality ������� translates to

h�t� � ��i � h��t� ��i � �
and� of course�

h�t� � �ii � h��t� �ii � �� i � �� � � � � n� ��
The inequality h�t� � �ni � � means that the needle
like variation on the bang
piece generates a tangent vector in the half
space h�t� � 
 i � � complementary
to the half
space h�t� � 
 i � � generated by variations on the singular piece�
Summing up� the mapping

F � R��Rn���R��M� F �s� �� � Ft��us����

satis�es the condition

D�����F �R��Rn���R�� � R��� " span���� � � � � �n��� "R��n � Tq�t��M�

By Lemma ���� and remark after it� the mapping F is locally open at �s� �� �
��� ��� Thus the image of the mapping Ft��us��� contains a neighborhood of the
terminal point q�t��� By continuity� q�t�� remains in the image of Ft����us���
for su�ciently small � � �� In other words� the point q�t�� is reachable from q�
at t��� instants of time� i�e�� the trajectory q�t�� t � ��� t��� is not time
optimal�
a contradiction�
We proved that a time
optimal trajectory q�t� cannot have a singular piece

followed by a bang piece� Similarly� a singular piece cannot follow a bang piece�
We obtain the following statement on the possible structure of optimal con


trol�

Proposition ����� Assume that vector �elds in the right�hand side of sys�
tem ������� satisfy the identity

�f�� �f�� f��� � �� �������

Let a time�optimal trajectory q�t� of this system be a projection of a unique� up
to a scalar factor� extremal �t� and let h�������t� �� �� Then the trajectory q�t�
cannot contain a singular piece and a bang piece adjacent one to another�

Remark� In this proposition� time
optimal �i�e�� time
minimal� control can be
replaced by a time
maximal control or by a geometrically optimal one�

What happens near singular trajectories under hypothesis �������	 Assume
that a singular trajectory is optimal �as straight lines for Dubins car with angular
acceleration control�� Notice that optimal controls exist� thus the cost function
is everywhere de�ned� For boundary conditions su�ciently close to the singular
trajectory� there are two possible patterns of optimal control�

��� either it makes in�nite number of switchings on a compact time segment
adjacent to the singular part� so that the optimal trajectory �gets o� the
singular trajectory via in�nite number of switchings�
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��� or optimal control is bang
bang� but the number of switchings grows in

�nitely as the terminal point approaches the singular trajectory�

Pattern ��� of optimal control is called Fuller�s phenomenon� It turns out
that Fuller�s phenomenon takes place in Dubins car with angular acceleration
control� see �g� ����� As our preceding arguments suggest� this phenomenon is
not a pathology� but is ubiquitous for certain classes of systems �in particular�
in applications�� One can observe this phenomenon trying to stop a ping
pong
ball jumping between the table and descending racket� The theory of Fuller�s
phenomenon is described in book ����� It follows from this theory that possibility
��� is actually realized for Dubins car with angular acceleration control�

Figure ����� Singular arc adjacent to arc with Fuller phenomenon



Chapter ��

Jacobi equation

In Chapter �� we established that the sign of the quadratic form �tHess�u Ft
is related to optimality of the extremal control $u� Under natural assumptions�
the second variation is negative on short segments� Now we wish to catch the
instant of time where this quadratic form fails to be negative� We derive an ODE
�Jacobi equation� that allows to �nd such instants �conjugate times�� Moreover�
we give necessary and su�cient optimality conditions in these terms�
Recall expression ������� for the quadratic formQ� �tHess�uFt � QjKerD	uFt

�
obtained in Section �����

Q�v� �

Z t

�

h��� �v�� �� d� "
Z t

�

��

�Z ��

�

g���v���� d��� g
�
��v����

�
d���

We extend the form Q from L� to L� by continuity�
We will consider a family of problems on segments ��� t�� t � ��� t��� so we

introduce the corresponding sets of admissible controls�

Ut � fu � L����� t��� U � j u�� � � � for � � tg�

and spaces of variations of controls�

Vt � T�u Ut � fv � Lm� ��� t�� j v�� � � � for � � tg �� Lm� ��� t��

We denote the second variation on the corresponding segment as

Qt � QjVt �

Notice that the family of spaces Vt is ordered by inclusion�

t� � t��  Vt� � Vt�� �

and the family of forms Qt respects this order�

Qt� � Qt�� jVt� �

���
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In particular�
Qt�� � �  Qt� � ��

Denote the instant of time where the forms Qt lose their negative sign�

t�
def
� sup

�
t � ��� t�� j QtjKt

� �
�
�

where

Kt �

�
v � Vt j q� 	

Z t

�

g��v�� � d� � �
�

is the closure of the space KerD�uFt in L�� If QtjKt
is negative for all t � ��� t���

then� by de�nition� t� � "��

���� Regular case� derivation of Jacobi equation

Proposition ����� Let �t be a regular extremal with t� � ��� t��� Then the
quadratic form Qt�jKt�

is degenerate�

Proof� By the strong Legendre condition� the norm

kvkh�� �
�Z t�

�

�h��� �v�� �� d�
����

is equivalent to the standard Lm� 
norm� Then

Qt� �

Z t�

�

h��� �v�� �� d� "
Z t�

�

��

�Z ��

�

g���v���� d��� g
�
��v����

�
d��

� �kvk�h�� " hRv� vi�
where R is a compact operator in Lm� ��� t���
First we prove that the quadratic form Qt� is nonpositive on the kernel Kt� �

Assume� by contradiction� that there exists v � Vt� such that
Qt��v� � �� v � Kt� �

The linear mapping D�uFt� has a �nite
dimensional image� thus

Vt� � Kt� " E� dimE ���

The family D�uFt is weakly continuous in t� hence D�uFt���jE is invertible and
Vt� � Kt��� "E

for small � � �� Consider the corresponding decomposition

v � v� " x�� v� � Kt���� x� � E�

Then x� � � weakly as �� �� so x� � � strongly since E is �nite
dimensional�
Consequently� v� � v strongly as � � �� Further� Qt����v�� � Qt��v�� �



����� REGULAR CASE� DERIVATION OF JACOBI EQUATION ���

Qt��v� as � � � since the quadratic forms Qt are continuous� Summing up�
Qt����v�� � � for small � � �� a contradiction with de�nition of t�� We proved
that

Qt� jKt�
� �� ������

Now we show that

� v � Kt� � v �� �� such that Qt��v� � ��

By the argument similar to the proof of Proposition ���� �in the study of
conjugate points for the linear
quadratic problem�� we show that the function

��t� � sup fQt�v� j v � Kt� kvkh�� � �g ������

satis�es the properties� ��t� is monotone nondecreasing� the supremum in ������
is attained� and ��t� is continuous from the right�
Inequality ������ means that ��t�� � �� If ��t�� � �� then ��t� " �� � �

for small � � �� which contradicts de�nition of the instant t�� Thus ��t�� � ��
moreover� there exists

v � Kt� � kvkh�� � ��
such that

Qt��v� � ��

Taking into account that the quadratic form Qt� is nonpositive� we conclude
that the element v �� � is in the kernel of Qt� jKt�

�

Proposition ���� motivates the introduction of the following important no

tion� An instant tc � ��� t�� is called a conjugate time �for the initial instant
t � �� along a regular extremal �t if the quadratic form Qtc jKtc

is degenerate�

Notice that by Proposition ����� the forms QtjKt
are negative for small t � ��

thus short arcs of regular extremals have no conjugate points� for them t� � ��
Proposition ���� means that the instant t� where the quadratic forms QtjKt

lose their negative sign is the �rst conjugate time�
We start to derive a di�erential equation on conjugate time for a regular

extremal pair �$u�t�� �t�� The symplectic space

- � T���T
�M �

will be the state space of that ODE� Introduce the family of mappings

Jt � R
m� -�

Jt v �




 u

����
�u�t�

��
hu�t v�

In these terms� the bilinear form Qt reads

Qt�v�� v�� �

Z t

�

h��� �v��� �� v��� �� dt"
ZZ

��������t

�J��v������ J��v������ d��d���

������
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see �������� �������� We consider the form Qt on the subspace

Kt � KerD�uFt �

�
vi � Vt j

Z t

�

J�vi�� � d� � )�

�
� ������

where
)� � T���T

�
q�M � � -

is the vertical subspace�
A variation of control v � Vt satis�es the inclusion

v � Ker �QtjKt

�
i� the linear form Qt�v� 
� annihilates the subspace Kt � Vt� Since the vertical
subspace )� � - is Lagrangian� equality ������ can be rewritten as follows�

Kt �

�
vi � Vt j 

�Z t

�

J� vi�� � d�� �

�
� � �� � )�

�
�

That is� the annihilator of the subspace Kt � Vt coincides with the following
�nite
dimensional space of linear forms on Vt��Z t

�
�J� 
 � �� d� j � � )�

�
� ������

Summing up� we obtain that v � Ker �QtjKt

�
i� the formQt�v� 
 � on Vt belongs

to subspace ������� That is� v � Ker �QtjKt

�
i� there exists � � )� such that

Qt�v� 
 � �
Z t

�

�J� 
 � �� d�� ������

We transform equality of forms �������Z t

�

�J� 
 � �� d� �
Z t

�

h��� �v�� �� 
 � d� "
ZZ

��������t
�J��v����� J�� 
 � d��d��

�

Z t

�
h��� �v�� �� 
 � d� "

Z t

�


�Z �

�
J�v�	� d	� J� 


�
d��

This equality of forms means that the integrands coincide one with another�

�J� 
 � �� � h��� �v�� �� 
 � " 

�Z �

�

J�v�	� d	� J� 

�
� � � ��� t�� ������

In terms of the curve in the space -

�� �

Z �

�

J�v�	� d	 " �� � � ��� t�� ������
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equality of forms ������ can be rewritten as follows�

h��� �v�� �� 
 � " ��� � J� 
 � � �� � � ��� t�� ������

The strong Legendre condition implies that the linear mapping

h��� � R
m� Rm�

is nondegenerate �we denote here and below the linear mapping into the dual
space by the same symbol as the corresponding quadratic form�� thus the inverse
mapping is de�ned�

�h��� �
��
� Rm�� Rm�

Then equality ������ reads

v�� � " �h��� �
��

��� � J� 
 � � �� � � ��� t�� �������

We come to the following statement�

Theorem ����� Let �t� t � ��� t��� be a regular extremal� An instant t � ��� t��
is a conjugate time i� there exists a nonconstant solution �� to Jacobi equation

!�� � J� �h
��
� �
��

�J� 
 � ���� � � ��� t�� �������

that satis�es the boundary conditions

�� � )�� �t � )�� �������

Jacobi equation ������� is a linear nonautonomous Hamiltonian system on -


!�� � �b� ��� � �������

with the quadratic Hamiltonian function

b� ��� � ��
�
�h��� �

��
��J� 
 � ��� �J� 
 � ��� � � � -�

where �h��� �
��

is a quadratic form on Rm��

Proof� We already proved that existence of v � Ker QtjKt
is equivalent to ex


istence of a solution �� to Jacobi equation that satis�es the boundary conditi

ons ��������
If v � �� then �� � const by virtue of ������� Conversely� if �� � const� then

J�v�� � � !�� � �� By ������� the second variation takes the form

Qt�v� �

Z t

�

h��� �v�� �� d� � ��kvk�L� for some � � ��

But v � KerQt� so Qt�v� � �� consequently v � �� Thus nonzero v correspond
to nonconstant �� and vice versa�
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It remains to prove that b� is the Hamiltonian function for Jacobi equa

tion �������� Denote

A� ��� � �h
��
� �
��

�J� 
 � �� � Rm� � � -�
then Jacobi equation reads

!�� � J�A� ��� ��

so we have to prove that

J�A� ��� � �b� ���� � � -� �������

Since

b� ��� � ��
�

D
�J� 
 � ��� �h��� ��� �J� 
 � ��

E
� ��

�
h�J� 
 � ��� A� ���i �

then
hd�b� � �i � �h�J� 
 � ��� A����i � ��� J�A� �����

Thus equality ������� follows and the proof is complete�

���� Singular case� derivation of Jacobi

equation

In this section we obtain Jacobi equation for a nice singular extremal pair
�$u�t�� �t��
In contrast to the regular case� the second variation in the singular case can

be nondegenerate at the instant t� where it loses its negative sign� In order
to develop the theory of conjugate points for the singular case� we introduce a
change of variables in the form Qt� We denote� as before� the integrals

wi�� � �

Z t

�

vi�s� ds� i � �� ��

and denote the bilinear form that enters generalized Legendre condition�

lt�w�� w�� � � !Jtw�� Jtw��� wi � Rm�
For a nice singular extremal� expression ������� for the second variation reads

Qt�v�� v�� �

Z t

�

l� �w��� �� w��� �� d� "

Z t

�



�
!J�w��� ��

Z t

�

!J�w��	� d	

�
d�

" 

�
J�w�����

Z t

�

!J�w��� � d�

�
�

Admissibility condition ������� for variations of control vi�
� can be written as
follows� Z t

�

!J�w�� � d� " J�w��� � )�� �������
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The mapping
v�
� �� �w�
�� w���� � Lm� �Rm

has a dense image in Lm� � Rm� and the Hessian Qt and admissibility condi

tion ������� are extended to Lm� �Rm by continuity�
Denote

� � J�w��� � '�
and consider the extended form

Qt�w�� w�� �

Z t

�

l� �w��� �� w��� �� d� "

Z t

�



�
!J�w��� ��

Z t

�

!J�w��	� d	

�
d�

" 

�
���

Z t

�

!J�w��� � d�

�
on the space Z t

�

!J�w�� � d� " � � )�� �������

Then in the same way as in the regular case� it follows that the restriction
of the quadratic form Qt�w� to the space ������� is degenerate at the instant
t � t�� An instant t that satis�es such a property is called a conjugate time for
the nice singular extremal �t�
Similarly to the regular case� we derive now a Hamiltonian Jacobi equa


tion on conjugate times for nice singular extremals� although the Hamiltonian
function and boundary conditions di�er from the ones for the regular case�
Let t � ��� t�� be a conjugate time� i�e�� let the form Qt�w�� w�� have a

nontrivial kernel on the space �������� That is� there exists a pair

�w� �� � Lm� ��� t�� '��
Z t

�

!J�w�� � d� " � � )��

such that the linear form on the space Lm� ��� t�� '�

Qt� 
 � w� �
Z t

�

l� � 
L� � w�� �� d� "
Z t

�



�
!J� 
L� �

Z t

�

!J�w�	� d	

�
d�

" 

�

�� �

Z t

�

!J�w�� � d�

�
�������

annihilates the admissible space �������� In turn� the annihilator of the admis

sible space ������� is the space of linear formsZ t

�

�
!J� 
L� � �

�
d� "  � 
�� � �� � � � )��

Thus� similarly to the regular case� there exists � � )� such that

Qt� 
 � w� �
Z t

�


�
!J� 
L� � �

�
d� "  � 
�� � �� �
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By virtue of �������� the previous equality of forms splits�

l� � 
Rm � w�� �� " 

�
!J� 
Rm �

Z t

�

!J�w�	� d	

�
� 

�
!J� 
Rm � �

�
� � � ��� t��



�

�� �

Z t

�

!J�w�� � d�

�
�  � 
�� � �� �

That is�

l�w�� � � �
�
!J� 
Rm �

Z t

�

!J�w�	� d	 � �

�
� �������



�

�� �

Z t

�

!J�w�� � d� � �

�
� �� �������

In terms of the curve in the space - � T���T
�M �

�� �

Z t

�

!J�w�	� d	 � �� � � ��� t�� �������

equalities �������� ������� take the form

l�w�� � � �
�
!J� 
Rm � ��

�
� � � ��� t�� �������

 �'�� ��� � ��

The last equality means that �� belongs to the skew
orthogonal complement
'�� � On the other hand� �� � '� " )�� compare de�nition ������� with ��������
That is�

�� � �)� " '�� � '�� � )��
� �

Recall that )��
� is a Lagrangian subspace in the symplectic space - containing

the isotropic subspace '�� see de�nition �������� Notice that Goh condition

�Jtv�� Jtv�� � �� v�� v� � Rm� t � ��� t��
means that the subspaces

't � spanfJtv j v � Rmg � -
are isotropic� We obtain boundary conditions for the curve �� �

�� � )��
� � �t � )�� �������

Moreover� equality ������� yields an ODE for �� �

!�� � � !J�w�� � � !J� l
��
� �� !J� 
 � ����� � � ��� t�� �������

Similarly to the regular case� it follows that this equation is Hamiltonian with
the Hamiltonian function

*b� ��� � ��
�
l��� �� !J� 
 � ��� � !J� 
 � ���� � � -�
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The linear nonautonomous equation ������� is Jacobi equation for the totally
singular case�
Now the next statement follows in the same way as in the regular case�

Theorem ����� Let �t be a nice singular extremal� An instant t � ��� t�� is a
conjugate time i� there exists a nonconstant solution �� to Jacobi equation

!�� � !J� l
��
�

�
� !J� 
 � �� �

�
� � � ��� t�� �������

with the boundary conditions

�� � )��
� � �t � )�� �������

Jacobi equation ������� is Hamiltonian


!�� �
�*b� ��� � �������

with the nonautonomous quadratic Hamiltonian function

*b� ��� � ��
�
l���

�
� !J� 
 � ��� � !J� 
 � ��

�
� � � -�

The following statement provides a �rst integral of equation �������� it can
be useful in the study of Jacobi equation in the singular case�

Lemma ����� For any constant vector v � Rm� the function ��� J�v� is an
integral of Jacobi equation ��������

Proof� We have to show that

� !�� � J�v� " ��� � !J�v� � � �������

for a solution �� to �������� The �rst term can be computed via Jacobi equation�

� !�� � J�v� � �hd��*b� � J�vi
� l���

�
� !J� 
 � J�v�� � !J� 
 � ���

�
where l��� is a bilinear form

�
D
� !J� 
 � ���� l��� � !J� 
 � J�v�

E
where l��� is a linear mapping to the dual space

�
D
� !J� 
 � ���� v

E
� ���� � !J�v��

and equality ������� follows�
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In particular� this lemma means that

�� � '�� � �� � '�� �
i�e�� the �ow of Jacobi equation preserves the family of spaces '�� � Since this
equation is Hamiltonian� its �ow preserves also the family '� � Consequently�
boundary conditions ������� can equivalently be written in the form

�� � )�� �t � )�t
� �

���� Necessary optimality conditions

Proposition ����� Let �$u� �t� be a corank one extremal pair� Suppose that �t
is regular or nice singular� Let t� � ��� t��� Then

��� Either for any nonconstant solution �t� t � ��� t��� to Jacobi equation

������� or ������� that satis�es the boundary conditions ������� or �������
the continuation

+�t �

�
�t� t � ��� t���
�t� � t � �t�� t���

�������

satis�es Jacobi equation on ��� t���

��� Or the control $u is not locally geometrically optimal on ��� t���

Proof� Assume that condition ��� does not hold� we prove that condition ��� is

then satis�ed� Take any nonzero v � Ker
�
Qt� jKt�

�
and let �t� t � ��� t��� be

the corresponding nonconstant solution to Jacobi equation with the boundary
conditions� Consider the continuation of v by zero�

+v�t� �

�
v�t�� t � ��� t���
�� t � �t�� t���

and the corresponding continuation by constant +�t as in �������� Since +�t does
not satisfy Jacobi equation on ��� t��� then +v �� Ker�Qt� jKt�

�� Notice that

Qt��+v� � Qt��v� � �� On the other hand� there exists w � Kt� such that
Qt��+v� w� �� �� Then the quadratic form Qt� takes values of both signs in the
plane span�+v� w��
In the singular case� since the extended form Qt is sign
inde�nite� then the

initial form is sign
inde�nite as well�
Summing up� the form Qt� is sign
inde�nite on Kt� � By Theorem ����� the

control $u�t� is not optimal on ��� t���

Notice that case ��� of Proposition ���� imposes a strong restriction on an
extremal �t� If this case realizes� then the set of conjugate points coincides with
the segment �t�� t���
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Assume that the reference control $u�t� is analytic� then solutions �t to Ja

cobi equation are analytic as well� If �t is constant on some segment� then it
is constant on the whole domain� Thus in the analytic case alternative ��� of
Proposition ���� is impossible� and the �rst conjugate time t� provides a neces

sary optimality condition� a trajectory cannot be locally geometrically optimal
after t��
Absence of conjugate points implies �nite
dimensional local optimality in

the corank one case� see Theorem ����� In the following two sections� we prove
a much stronger result for the regular case� absence of conjugate points is
su�cient for strong optimality�

���� Regular case� transformation of Jacobi

equation

Let �t be a regular extremal� and assume that the maximized HamiltonianH���
is smooth in a neighborhood of �t� The maximality condition of PMP yields
the equation


 hu

 u

��� � ��

which can be resolved in the neighborhood of �t�


 hu

 u

��� � � � u � u����

The mapping � �� u��� is smooth near �t and satis�es the equality

u��t� � $u�t��

The maximized Hamiltonian of PMP is expressed in the neighborhood of �t as

H��� � hu�������

see Proposition ����� Consider the �ow on T �M �

et
�H	 
�

exp

Z t

�
��h�u��� d� � et

�H 	 P �t �

By the variations formula in the Hamiltonian form� see ������ and �������� this
�ow is Hamiltonian�

et
�H 	 P �t � ��

exp

Z t

�

��� d� �������

with the Hamiltonian function

�t��� � �H � h�u�t���P
���
t �����

Notice that
�� 	 et �H 	 P �t � �t 	P �t � ���
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i�e�� �� is an equilibrium point of the �eld ��t� In other words� �� is a critical
point of the Hamiltonian function�

�t��� � � � �t����  d���t � ��

It is natural to expect that the corresponding Hessian is related to optimality
of the extremal �t�
The following statement relates two Hamiltonian systems� Jacobi equation

on - and the maximized Hamiltonian system on T �M � We will use this relation
in the proof of su�cient optimality conditions in Section �����

Proposition ����� The Hamiltonian bt of Jacobi equation coincides with one
half of Hessian of the Hamiltonian �t at ��


bt �
�

�
Hess�� �t�

Proof� Recall that Hamiltonian of Jacobi equation for the regular case is

bt��� � ��
�

 
�Jt 
 � ��� �h��t ����Jt 
 � ��

!
�

Transform the linear form�

�Jt 
 � �� � 

�




 u

��
hu�t 
 � �

�
where hu�t��� � hu�P

���
t ����

� �
�
d��





 u
hu�t 
 � �

�
� �

��
d�t


 hu

 u



��

P ���t

�
��� � �

�
where

�
P ���t

�
� is di�erential of the di�eomorphism

�
P ���t

�
� T �M � T �M

� �
�
d�t


 hu

 u


 � �
�
�

� �
�
P ���t

�
��� � � T�t�T

�M ��

Then the Hamiltonian bt can be rewritten as

bt��� � ��
�

��
d�t


 hu

 u


 � �
�
� �h��t �

��
�
d�t


 hu

 u


 � �
��

�

Now we compute Hessian of the Hamiltonian

�t��� � �hu��� � h�u�t���P
���
t �����

We have
Hess�� �t��� � Hess�t�hu��� � h�u�t������
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Further�

d��hu��� � h�u�t�� �

 hu

 u

����
u���� 	z 


��

d�u" �d�hu�ju��� � d�h�u�t��

D�
�t
�hu��� � h�u�t�� �

�
d�t


 hu

 u

����
u��t�

�
d�tu�

The di�erential d�tu can be found by di�erentiation of the identity


 hu

 u

����
u���

� �

at � � �t� Indeed� we have


� hu

 u�

d�u" d�

 hu

 u

� ��

thus

d�tu � ��h��t ��� d�t

 hu

 u

�

Consequently�

D�
�t�hu��� � h�u�t�� � �d�t


 hu

 u

�h��t �
��d�t


 hu

 u

�

i�e��

Hess�� �t��� � Hess�t�hu��� � h�u�t����� � �bt����

and the statement follows�

Since the Hamiltonian �t attains minimum at ��� the quadratic form bt is
nonnegative�

bt � ��
Denote by Ct the space of constant vertical solutions to Jacobi equation at

the segment ��� t��

Ct �
n
� � )� j �b� ��� � �� � � ��� t�

o
� �������

Now we can give the following simple characterization of this space�

Ct � )�

* �������t�Ker b� � �
Indeed� equilibrium points of a Hamiltonian vector �eld are critical points of the
Hamiltonian� and critical points of a nonnegative quadratic form are elements
of its kernel�
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���� Su�cient optimality conditions

In this section we prove su�cient conditions for optimality in the problem with
integral cost�

!q � fu�q�� q �M� u � U � intU � Rm�
q��� � q�� q�t�� � q��Z t�

�
��q�t�� u�t�� dt� min�

with �xed or free terminal time� Notice that now we study an optimal problem�
not a geometric one as before� Although� the theory of Jacobi equation can be
applied here since Jacobi equation depends only on a Hamiltonian hu��� and
an extremal pair �$u�t�� �t��
For the normal Hamiltonian of PMP

hu��� � h�� fu�q�i � ��q� u�� � � T �M�

and a regular extremal pair �$u�t�� �t� of the optimal control problem� consider
Jacobi equation

!� � �bt���� � � - � T�� �T
�M ��

In Section ���� we showed that absence of conjugate points at the interval ��� t��
is necessary for geometric optimality �at least in the corank one analytic case��

Exercise ����� Show that absence of conjugate points on ��� t�� is necessary
also for optimality �in the analytic case� reducing the optimal control problem
to a geometric one�

Now we can show that absence of conjugate points is also su�cient for op

timality �in the regular case��
A trajectory q�t�� t � ��� t��� is called strongly optimal for an optimal control

problem if it realizes a local minimumof the cost functional w�r�t� all trajectories
of the system close to q�t� in the uniform topology C���� t���M � and having the
same endpoints as q�t�� If the minimum is strict� then the trajectory q�t� is
called strictly strongly optimal �

Theorem ����� Let �t� t � ��� t��� be a regular normal extremal in the problem
with integral cost and �xed time� and let the maximized Hamiltonian H��� be
smooth in a neighborhood of �t� If the segment ��� t�� does not contain conjugate
points� then the extremal trajectory q�t� � ���t�� t � ��� t��� is strictly strongly
optimal�

Proof� We apply the theory of �elds of extremals �see Section ����� and embed
�t into a family of extremals well projected to M �
The maximized Hamiltonian

H��� � max
u�U

hu���� � � T �M�
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is de�ned and smooth� Then by Theorem ����� it is enough to construct a
function a � C��M � such that the family of manifolds

Lt � et
�H�L�� � T �M� t � ��� t���

L� � f� � dqag � T �M�

�� � L��
has a good projection to M �

� � Lt�M is a di�eomorphism near �t� t � ��� t���
In other words� we require that the tangent spaces T�tLt � et

�H
� �T��L�� have

zero intersection with the vertical subspaces )t � T�t�T
�
q�t�M ��

et
�H
� �T��L�� �)t � f�g� t � ��� t���

This is possible due to the absence of conjugate points �a typical picture for a
conjugate point # fold for projection onto M # is shown at �g� ������

M

q�
q�t�

� �t

�t

��

et
�H

L� � T �

q�
M

Figure ����� Conjugate point as a fold

Below we show that such a manifold L� exists by passing to its tangent
space L� # a Lagrangian subspace in - �see de�nition in Subsection ��������
For any Lagrangian subspace L� � - transversal to )�� one can �nd a function
a � C��M � such that the graph of its di�erential L� � f� � dqag � T �M
satis�es the conditions�
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��� �� � L��
��� T��L� � L��

Indeed� in canonical coordinates �p� q� on T �M � take a function of the form

a�q� � hp�� qi" �
�
qTSq� �� � �p�� ���

with a symmetric n� n matrix S� Then

L� � f� � �p� q� j p � p� " Sqg�
T��L� � f�dp� dq� j dp � Sdqg

and it remains to choose the linear mapping S with the graph L�� Notice
that the symmetry of the matrix S corresponds to the Lagrangian property of
the subspace L�� Below we use a similar construction for parametrization of
Lagrangian subspaces by quadratic forms�
To complete the proof� we have to �nd a Lagrangian subspace L� � - such

that �
et
�H
� L�

�
�)t � f�g� t � ��� t���

By �������� the �ow of the maximized Hamiltonian decomposes�

et
�H � �t 	 P ���t � �t �

��
exp

Z t

�

��� d��

Notice that the �ow P ���t on T �M is induced by the �ow Pt on M � thus it
preserves the family of vertical subspaces��

P ���t

�
�)� � )t�

So it remains to show that there exists a Lagrangian subspace L� � - for which

��t�L�� �)� � f�g� t � ��� t��� �������

Proposition ���� relates the Hamiltonian bt of Jacobi equation to the Hamil

tonian �t�

�

�
Hess�� �t � bt�

Thus the �eld �bt is the linearization of the �eld ��t at the equilibrium point ���
the Hamiltonian bt and the Hamiltonian �eld �bt are respectively the main terms
in Taylor expansion of �t and ��t at ��� Linearization of a �ow is the �ow of
the linearization� thus�

��
exp

Z t

�

��� d�

�
���

�
��
exp

Z t

�

�b� d��
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Introduce notation for the �ow of Jacobi equation�

Bt �
��
exp

Z t

�

�b� d��

then
�t��� � Bt�

and equality ������� reads

�BtL�� �)� � f�g� t � ��� t��� �������

It remains to prove existence of a Lagrangian subspace L� that satis�es this
equality�
Recall that the segment ��� t�� does not contain conjugate points�

�Bt)�� �)� � Ct� t � ��� t���
where Ct is the space of constant vertical solutions to Jacobi equation on ��� t��
see ��������
In order to make the main ideas of the proof more clear� we consider �rst

the simple case where

Ct � f�g� t � ��� t��� �������

i�e��
�Bt)�� �)� � f�g� t � ��� t���

Fix any � � ��� t��� By continuity of the �ow Bt� there exists a neighborhood
of the vertical subspace )� such that for any Lagrangian subspace L� from this
neighborhood

�BtL�� �)� � f�g� t � ��� t���
In order to complete the proof� it remains to �nd such a Lagrangian subspace L�

satisfying the condition

�BtL�� �)� � f�g� t � ��� ���
We introduce a parametrization of the set of Lagrangian subspaces L� �

- su�ciently close to )�� Take any Lagrangian subspace H � - which is
horizontal� i�e�� transversal to the vertical subspace )�� Then the space - splits�

- � )� "H�

Introduce Darboux coordinates �p� q� on - such that

)� � f�p� ��g� H � f��� q�g�
Such coordinates can be chosen in many ways� Indeed� the symplectic form  de

�nes a nondegenerate pairing of the mutually transversal Lagrangian subspaces
)� and H�

H � )���
hf� ei � �e� f�� e � )�� f � H�
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Taking any basis e�� � � � � en in )� and the corresponding basis f�� � � � � fn in H
dual w�r�t� this pairing� we obtain a Darboux basis in -� In Darboux coordinates
the symplectic form reads

��p�� q��� �p�� q��� � hp�� q�i � hp�� q�i�

Any n
dimensional subspace L � - transversal to H is a graph of a linear
mapping

S � )� � H�

i�e��

L � f�p� Sp� j p � )�g�

A subspace L is Lagrangian i� the corresponding mapping S has a symmetric
matrix in a symplectic basis �exercise��

S � S��

Introduce the quadratic form on )� with the matrix S�

S�p� p� � hp� Spi�

So the set of Lagrangian subspaces L � - transversal to the horizontal space H
is parametrized by quadratic forms S on )�� We call such parametrization of
Lagrangian subspaces L � -� L �H � f�g� a �)��H�
parametrization�
Consider the family of quadratic forms St that parametrize a family of La


grangian subspaces of the form

Lt � BtL��

i�e��

Lt � f�p� Stp� j p � )�g�

Lemma �����
!St�p� p� � �bt�p� Stp��

Proof� Take any trajectory �p� q� � �pt� qt� of the Hamiltonian �eld �bt� We have

q � Stp�

thus
!q � !Stp" St !p�

i�e��
�bt�p� q� �

�
!p� !Stp " St !p

�
�
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Since the Hamiltonian bt is quadratic� we have


�
�p� q���bt�p� q�

�
� �bt�p� q��

But the left
hand side is easily computed�


�
�p� q���bt�p� q�

�
�  ��p� q�� � !p� !q��

� 
�
�p� Stp�� � !p� !Stp" St !p�

�
�

D
p� !Stp " St !p

E
� h !p� Stpi

�
D
p� !Stp

E
by symmetry of St�

Since the Hamiltonian �t attains minimum at ��� then bt � �� thus
!St � ��

The partial order on the space of quadratic forms induced by positive forms
explains how one should choose the initial subspace L�� Taking any Lagrangian
subspace L� � - with the corresponding quadratic form

S� � �

su�ciently close to the zero form� we obtain

St � �� t � ��� ���

That is�
Lt �)� � f�g

on ��� ��� thus on the whole segment ��� t���
We proved equality ������� in the simple case �������� Now we consider the

general case� The intersection �Bt)�� � )� � Ct is nonempty now� but we can
get rid of it by passing to Jacobi equation on the quotient C�t �Ct�
The family of constant vertical solutions Ct is monotone nonincreasing�

Ct� � Ct�� for t
� � t���

We have C� � )� and set� by de�nition� Ct��� � f�g� The family Ct is
continuous from the left� denote its discontinuity points�

� � s� � s� � 
 
 
� sk � t�

�notice that in the simple case �������� we have k � �� s� � ��� The family Ct
is constant on the segments �si� si����
Construct subspaces Ei � )�� i � �� � � � � k� such that

Ct � Ei�� "Ei�� " 
 
 
 " Ek� t � �si� si����
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Notice that for t � �� we obtain a splitting of the vertical subspace�

)� � C� � E� " 
 
 
 "Ek�

For any horizontal Lagrangian subspace H � -� one can construct the corre

sponding splitting of H�

H � F� " 
 
 
 " Fk� �Ei� Fj� � �� i �� j� �������

Fix any initial horizontal subspace H� � -� H� � )� � f�g� The following
statement completes the proof of Theorem ���� in the general case�

Lemma ����� For any i � �� � � � � k� there exist a number �i � � and a La�
grangian subspace Hi � -� Hi � )� � f�g� such that any Lagrangian subspace
L� � -� L� � H� � f�g� with a �)��H���parametrization S��p� p� � �hp� pi�
� � � � �i� satis�es the conditions


��� Lt �)� � f�g� t � ��� si��
��� Lt �Hi � f�g� t � ��� si�� and the Lagrangian subspace Lt has a �)��Hi��

parametrization St � ��

Proof� We prove this lemma by induction on i�
Let i � �� For s� � �� the statement is trivial� so we assume that s� � ��

Take any �� � � and any Lagrangian subspace L� � - with a quadratic form
�hp� pi� � � � � ��� in the �)��H��
parametrization�
Notice that Ct � )�� i�e�� Btj��

� Id� for t � ��� s��� We have
Lt �)� � BtL� �Bt)� � Bt�L� �)�� � f�g� t � ��� s���

By continuity of the �ow Bt� there exists a horizontal Lagrangian subspace H�

with a �)��H��
parametrization ��hp� pi� � � �� such that Lt �H� � f�g� t �
��� s��� One can easily check that the subspace L� in �)��H��
parametrization
is given by the quadratic form S��p� p� � ��hp� pi � �� �� � ���� " ���� � �� We
already proved that !St � �� thus

St � �� t � ��� s���
in the �)��H��
parametrization�
The induction basis �i � �� is proved�
Now we prove the induction step� Fix i � �� assume that the statement of

Lemma ���� is proved for i� and prove it for i" ��
Let t � �si� si���� then Ct � Ei�� " 
 
 
 " Ek� Introduce a splitting of the

horizontal subspace Hi as in ��������

Hi � F� " 
 
 
 " Fk�

Denote

E�� � E� " 
 
 
 "Ei� E�� � Ct � Ei�� " 
 
 
 " Ek�

F �� � F� " 
 
 
 " Fi� F �� � Fi�� " 
 
 
 " Fk�

L�
� � L� � �E�� " F ���� L�

� � L� � �E�� " F ����
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Since BtE
�
� � E��� then the skew
orthogonal complement �E���� � E��"E��"

F �� is also invariant for the �ow of Jacobi equation� Bt�E���
� � �E���

��
In order to prove that Lt � )� � f�g� compute this intersection� We have

)� � �E����� thus

BtL� �)� � BtL� �Bt�E
�
��
� �)� � Bt�L� � �E����� �)� � BtL

�
� �)��
�������

So we have to prove that BtL
�
� �)� � f�g� t � �si� si����

Since the subspaces E�� and �E���� are invariant w�r�t� the �ow Bt� the
quotient �ow is well
de�ned�

eBt � e-� e-� e- � �E�����E���
In the quotient� the �ow eBt has no constant vertical solutions�eBt

e)� � e)� � f�g� t � �si� si����e)� � )��E
�
��

By the argument already used in the proof of the simple case �������� it follows
that

eBt
eL�
� � e)� � f�g� t � �si� si����eL�

� � L�
��E

�
��

for L� su�ciently close to )�� i�e�� for � su�ciently small� That is�

BtL
�
� �)� � E��� t � �si� si����

Now it easily follows that this intersection is empty�

BtL
�
� �)� � BtL

�
� �E�� � BtL

�
� �BtE

�
� � Bt�L

�
� �E��� � f�g� t � �si� si����

In view of chain ��������

Lt �)� � f�g� t � �si� si����
that is� we proved condition ��� in the statement of Lemma ���� for i " ��
Now we pass to condition ���� In the same way as in the proof of the

induction basis� it follows that there exists a horizontal Lagrangian subspace
Hi�� � - such that the curve of Lagrangian subspaces Lt� t � ��� si���� is
transversal to Hi��� In the �)��Hi���
parametrization� the initial subspace L�

is given by a positive quadratic form S��p� p� � ��hp� pi� � � �� � �� Since
!St � �� then

St � �� t � ��� si����
Condition ��� is proved for i " ��
The induction step is proved� and the statement of this lemma follows�
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By this lemma�
Lt �)� � f�g� t � ��� t���

for all initial subspaces L� given by quadratic forms S� � �hp� pi� � � � � �k� for
some �k � �� in a �)��H��
parametrization� This means that we constructed
a family of extremals containing �t and having a good projection to M � By
Theorem ����� the extremal �t� t � ��� t��� is strongly optimal� Theorem ���� is
proved�

For the problem with integral cost and free terminal time t�� a similar argu

ment and Theorem ���� yield the following su�cient optimality condition�

Theorem ����� Let �t� t � ��� t��� be a regular normal extremal in the problem
with integral cost and free time� and let H��� be smooth in a neighborhood
of �t� If there are no conjugate points at the segment ��� t��� then the extremal
trajectory q�t� � ���t�� t � ��� t��� is strictly strongly optimal�
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Reduction

In this chapter we consider a method for reducing a control
a�ne system to a
nonlinear system on a manifold of a less dimension�

���� Reduction

Consider a control
a�ne system

!q � f�q� "
mX
i��

uigi�q�� ui � R� q �M� ������

with pairwise commuting vector �elds near controls�

�gi� gj� � �� i� j � �� � � � �m�

The �ow of the system can be decomposed by the variations formula�

��
exp

Z t

�

�
f "

mX
i��

ui�� �gi

�
d� �

��
exp

Z t

�

e
P

m
i�� wi��� ad gif d� 	 e

P
m
i�� wi�t�gi �

������

wi�t� �

Z t

�

ui�� � d��

Here we treat
Pm

i�� ui�� �gi as a nonperturbed �ow and take into account that
the �elds gi mutually commute� Introduce the partial system corresponding to
the second term in composition �������

!q � e
P

m
i�� wi ad gif�q�� wi � R� q �M� ������

where wi are new controls� Attainable sets A��t� of the initial system ������
and A��t� of the partial system ������ for time t from a point q� �M are closely
related one to another�

A��t� � A��t� 	
n
e
P

m
i�� wigi j wi � R

o
� cl�A��t��� ������

���
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Indeed� the �rst inclusion follows directly from decomposition ������� To prove
the second inclusion in ������� notice that the mapping

w�
� �� q� 	 ��
exp

Z t

�

e
P

m
i�� wi��� ad gif d�

is continuous in L� topology� this follows from the asymptotic expansion of the
chronological exponential� Thus the mapping

�w�
�� v� �� q� 	 ��
exp

Z t

�
e
Pm

i�� wi��� ad gif d� 	 e
Pm

i�� vigi

is continuous in topology of L� �Rm� Finally� the mapping

u�
� �� �w�
�� v� �
�� 	Z

�

u�� � d��

tZ
�

u�� � d�

�A
has a dense image in L� �Rm� Then decomposition ������ implies the second
inclusion in �������
The partial system ������ is invariant w�r�t� the �elds gi��

e
Pm

i�� vigi
�
�
e
Pm

i�� wi ad gif � e
Pm

i���wi�vi� ad gif� ������

Thus chain ������ and equality ������ mean that the initial system ������ can
be considered as a composition of the partial system ������ with the �ow of the
�elds gi� any time t attainable set of the initial system is �up to closure� the
time t attainable set of the partial system plus a jump along gi� moreover� the
jump along gi is possible at any instant�
Let �u�t�� �t� be an extremal pair of the initial control
a�ne system� The

extremal �t is necessarily totally singular� moreover the maximality condition
of PMP is equivalent to the identity

h�t� gii � ��
It is easy to see that

�t �
�
e
P

m
i�� wi�t�gi

��
�t

is an extremal of system ������ corresponding to the control

w�t� �

Z t

�

u�� � d��

moreover�

h�t� gii � �� ������

�Here� we use the term extremal as a synonym of a critical point of the endpoint
mapping� i�e�� we require that the extremal control be critical� not necessarily
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minimizing� for the control
dependent Hamiltonian of PMP�� Conversely� if �t
is an extremal of ������ with a Lipschitzian control w�t�� and if identity ������
holds� then

�t �
�
e�
Pm

i�� wi�t�gi
��

�t

is an extremal of the initial system ������ with the control

u�t� � !w�t��

Moreover� the strong generalized Legendre condition for an extremal �t of the
initial system coincides with the strong Legendre condition for the corresponding
extremal �t of the partial system� In other words� the passage from system ������
to system ������ transforms nice singular extremals �t into regular extremals �t�

Exercise ����� Check that the extremals �t and �t have the same conjugate
times�

Since system ������ is invariant w�r�t� the �elds gi� this system can be
considered on the quotient manifold of M modulo action of the �elds gi if the
quotient manifold is well
de�ned� Consider the following equivalence relation
on M �

q� � q � q� � Oq�g�� � � � � gm��

Suppose that all orbits Oq�g�� � � � � gm� have the same dimension and� moreover�
the following nonrecurrence condition is satis�ed� for each point q � M there
exist a neighborhood Oq � q and a manifold Nq � M � q � Nq � transversal to
Oq�g�� � � � � gm�� such that any orbit Oq� �g�� � � � � gm�� q� � Oq� intersects Nq at a
unique point� In particular� these conditions hold ifM � Rn and gi are constant
vector �elds� or if m � � and the �eld g� is nonsingular and nonrecurrent� If
these conditions are satis�ed� then the space of orbitsM�� is a smooth manifold�
Then system ������ is well
de�ned on the quotient manifoldM���

!q � e
Pm

i�� wi ad gif�q�� wi � R� q �M��� ������

The passage from the initial system ������ a�ne in controls to the reduced
system ������ nonlinear in controls decreases dimension of the state space and
transforms singular extremals into regular ones�
Let � � M � M�� be the projection� For the attainable set A	�t� of the

reduced system ������ from the point ��q��� inclusions ������ take the form

A��t� � ����A	�t�� � cl�A��t��� ������

It follows from the analysis of extremals above that q�t� is an extremal curve
of the initial system ������ i� its projection ��q�t�� is an extremal curve of
the reduced system ������� The �rst inclusion in ������ means that if ��q�� ���
� � ��� t�� is geometrically optimal� then q�� �� � � ��� t�� is also geometrically
optimal�
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One can also de�ne a procedure of inverse reduction� Given a control system

!q � f�q� w�� q �M� w � Rn� ������

we restrict it to Lipschitzian controls w�
� and add an integrator��
!q � f�q� w��

!w � u�
�q� w� �M �Rn� u � Rn� �������

Exercise ����� Prove that system ������ is the reduction of system ��������

���� Rigid body control

Consider the time
optimal problem for the system that describes rotations of a
rigid body� see Section �����

!q � q�a" ub�� q � SO���� u � R� �������

where
a� b � so���� ha� bi � �� jbj � �� a �� ��

Notice that in Section ���� we assumed jaj � �� not jbj � � as now� but one
case is obtained from another by dividing the right
hand side of the system by
a constant�
We construct the reduced system for system ��������
The state space SO��� factorizes modulo orbits qesb� s � R� of the �eld qb�

The corresponding equivalence relation is�

q � qesb� s � R�
and the structure of the factor space is described in the following statement�

Proposition �����
SO����� � S��

the canonical projection is

q �� q�� q � SO���� � � S�� �������

Here � � S� � R	 is the unit vector corresponding to the matrix b � so����

� �

�� b�
b�
b	

�A � b �

�� � �b	 b�
b	 � �b�
�b� b� �

�A �

Proof� The group SO��� acts transitively on the sphere S�� The subgroup of
SO��� leaving a point � � S� �xed consists of rotations around the line �� i�e��
it is

eRb � fesb j s � Rg�
Thus the quotient SO����eRb � SO����� is di�eomorphic to S�� projection
SO��� � S� is given by �������� and level sets of this mapping coincide with
orbits of the �eld qb�
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The partial system ������ in this example takes the form

!q � qew ad ba� q � SO���� w � R�

and the reduced system ������ is

d

d t
�q�� � qew ad ba�� q� � S�� �������

The right
hand side of this symmetric control system de�nes a circle of radius jaj
in the tangent plane �q��� � Tq�S

�� In other words� system ������� determines
a Riemannian metric on S�� Since the vector �elds in the right
hand side of
system ������� are constant by absolute value� then the time
optimal problem
is equivalent to the Riemannian problem �time minimization is equivalent to
length minimization if velocity is constant by absolute value��
Extremal curves �geodesics� of a Riemannian metric on S� are arcs of great

circles� they are optimal up to semicircles� And the antipodal point is conju

gate to the initial point� Conjugate points for the initial and reduced systems
coincide� thus for both systems extremal curves are optimal up to the antipodal
point�

���� Angular velocity control

Consider the system that describes angular velocity control of a rotating rigid
body� see �������

!� � �� �� " ul� u � R� � � R	� �������

Here � is the vector of angular velocity of the rigid body in a coordinate sys

tem connected with the body� and l � R	 is a unit vector in general position
along which the torque is applied� Notice that in Section ��� we allowed only
torques u � ��� while now the torque is unbounded� In Section ��� we proved
that the system with bounded control is completely controllable �even in the
six
dimensional space�� Now we show that with unbounded control we have
complete controllability in R	 for an arbitrarily small time�
We apply the reduction procedure to the initial system �������� The partial

system reads now

!� � ew ad l��� ���

� ��" wl�� ��� "wl�� w � R� � � R	�

The quotient of R	 modulo orbits of the constant �eld l can be realized as
the plane R� passing through the origin and orthogonal to l� Then projection
R	� R� is the orthogonal projection along l� and the reduced system reads

!x � �x"wl� � ��x " wl�� hx� ��x "wl�� li l� x � R�� w � R� �������
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Introduce Cartesian coordinates in R	 corresponding to the orthonormal frame
with basis vectors collinear to the vectors l� l��l� l��l��l�� In these coordinates
x � �x�� x�� and the reduced system ������� takes the form�

!x� � b�	x
�
� " ��b�� � b		�x� � b�	x��w � b�	w

�� �������

!x� � �b�	x�x� " ��b�� � b���x� " b�	x��w� �������

where b � �bij� is the matrix of the operator � in the orthonormal frame� Direct
computation shows that b�	 � � and b�� � b�� �� �� In polar coordinates �r� ��
in the plane �x�� x��� the reduced system �������� ������� reads

!r � rF �cos�� sin��w � b�	 cos�w
��

!� � �b�	r sin� � ���r� sin�w� " G�cos�� sin��w�

where F and G are homogeneous polynomials of degree � with G���� �� �
b�� � b���
Choosing appropriate controls� one can construct trajectories of the system

in R� of the following two types�

��� �spirals� i�e�� trajectories starting and terminating at the positive semi

axes x�� not passing through the origin �r �� ��� and rotating counter

clockwise � !� � ���

��� �horizontal trajectories almost parallel to the axis x� � !x� $ !x���

Moreover� we can move fast along these trajectories� Indeed� system ��������
������� has an obvious self
similarity# it is invariantwith respect to the changes
of variables x� �� �x�� x� �� �x�� w �� �w� t �� ���t �� � ��� Consequently�
one can �nd �spirals arbitrarily far from the origin and with an arbitrarily small
time of complete revolution� Further� it is easy to see from equations ��������
������� that taking large in absolute value controls w one obtains arbitrarily
fast motions along the �horizontal trajectories in the positive direction of the
axis x��
Combining motions of types ��� and ���� we can steer any point x � R� to

any point *x � R� for any time � � �� see �g� ����� Details of this argument are
left to the reader as an exercise� see also �����
That is� time t attainable sets A	

x�t� of the reduced system ������� from a
point x satisfy the property�

A	
x��� � R

� � x � R�� � � ��

By virtue of chain ������� attainable sets A�
��t� of the initial system �������

satisfy the equality

cl�A�
����� � R

	 � � � R	� � � ��

Since the vector l is in general position� the �
dimensional system ������� has a
full rank �see Proposition ����� thus it is completely controllable for arbitrarily
small time�

A�
���� � R

	 � � � R	� � � ��
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x

�x

x�

x�

Figure ����� Complete controllability of system �������
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Curvature

���� Curvature of �
dimensional systems

Consider a control system of the form

!q � fu�q�� q �M� u � U� ������

where
dimM � �� U � R or S��

We suppose that the right
hand side fu�q� is smooth in �u� q�� A well
known
example of such a system is given by a two
dimensional Riemannian problem�
locally� such a problem determines a control system

!q � cosu f��q� " sinu f��q�� q �M� u � S��

where f�� f� is a local orthonormal frame of the Riemannian structure� For
control systems ������� we obtain a feedback
invariant form of Jacobi equation
and construct the main feedback invariant # curvature �in the Riemannian
case this invariant coincides with Gaussian curvature�� We prove comparison
theorem for conjugate points similar to those in Riemannian geometry�
We assume that the curve of admissible velocities of control system ������

satis�es the following regularity conditions�

fu�q� � 
 fu�q�


 u
�� ��


 fu�q�


 u
� 
� fu�q�


 u�
�� �� q �M� u � U� ������

Condition ������ means that the curve ffu�q� j u � Ug � TqM is strongly
convex� it implies strong Legendre condition for extremals of system �������
Introduce the following control
dependent Hamiltonian linear on �bers of

the cotangent bundle�
hu��� � h�� fu�q�i

���
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and the maximized Hamiltonian

H��� � max
u�U

hu���� ������

We suppose that H��� is de�ned in a domain in T �M under consideration�
Moreover� we assume that for any � in this domain maximum in ������ is at

tained for a unique u � U � this means that any line of support touches the curve
of admissible velocities at a unique point� Then the convexity condition ������
implies that H��� is smooth in this domain and strongly convex on �bers of
T �M � Moreover� H is homogeneous of order one on �bers� thus we restrict to
the level surface

H � H����� � T �M�

Denote the intersection with a �ber

Hq � H� T �qM�

������ Moving frame

We construct a feedback
invariant moving frame on the �
dimensional mani

foldH in order to write Jacobi equation in this frame� Notice that the maximized
Hamiltonian H is feedback
invariant since it depends on the whole admissible
velocity curve fU �q�� not on its parametrization by u� Thus the level surface H
and the �ber Hq are also feedback
invariant�
We start from a vertical �eld tangent to the curve Hq� Introduce polar

coordinates in a �ber�

p � �r cos�� r sin�� � T �qM�

then Hq is parametrized by angle ��

Hq � fp � p���g�

Since the curve Hq does not pass through the origin� p��� �� �� it follows that

p��� � d p

d�
��� �� �� ������

Decompose the second derivative in the frame p�
d p

d�
�

d� p

d��
��� � a���p��� " b���

d p

d�
����

The curve Hq is strongly convex� thus

a��� � ��
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A change of parameter 	 � 	��� gives

d� p

d 	�
� a���

�
d�

d 	

��

p�	� " $b�	�
d p

d 	
�	��

thus there exists a unique �up to translations and orientation� parameter 	 on
the curve Hq such that

d� p

d 	�
� �p�	� " b�	�

d p

d 	
�	��

We �x such a parameter 	 and de�ne the corresponding vertical vector �eld
on H�

v �




 	
�

In invariant terms� v is a unique �up to multiplication by ��� vertical �eld on
H such that

L�
vs � �s " b Lvs� ������

where s � p dq is the tautological form on T �M restricted to H�
We de�ne the moving frame on H as follows�

V� � v� V� � �v� �H�� V	 � �H�

Notice that these vector �elds are linearly independent since v is vertical and
the other two �elds have linearly independent horizontal parts�

�� �H � f�

���v� �H� �

 fu

 u

d u

d 	
�

d u

d 	
�� ��

Here we denote by u�	� the maximizing control on Hq�

hp�	�� fu���i � hp�	�� fui� u � U�

Di�erentiating the identity "
p�	��


 fu

 u

����
u���

#
� �

w�r�t� 	� we obtain
d u

d 	
�� ��

In order to write Jacobi equation along an extremal �t� we require Lie brack

ets of the Hamiltonian �eld �H with the vector �elds of the frame�

� �H� V�� � �V��
� �H� V�� � 	�

� �H� V	� � ��

The missing second bracket is given by the following proposition�
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Theorem �����

� �H� � �H� v�� � ��v� ������

The function � � ����� � � H� is called the curvature of the two
dimensional
control system ������� The Hamiltonian �eld �H is feedback
invariant� and the
�eld v is feedback
invariant up to multiplication by ��� Thus the curvature �
is a feedback invariant of system �������
Now we prove Theorem �����

Proof� The parameter 	 provides an identi�cation

H �� f	g �M� ������

thus tangent spaces to H decompose into direct sum of the horizontal and
vertical subspaces� By duality� any di�erential form on H has a horizontal and
vertical part� Notice that trivialization ������ is not feedback invariant since
the choice of the section 	 � � is arbitrary� thus the form d	 and the property
of a subspace to be horizontal are not feedback
invariant�
For brevity� we denote in this proof

s � sjH �

a horizontal form on H� Denote the Lie derivative�

Lv � L �
� �
� �

and consider the following coframe on H�

d	� s� s�� ������

It is easy to see that these forms are linearly independent� d	 is vertical� while
the horizontal forms s� s� are linearly independent by ������� Now we construct
a frame on H dual to coframe �������

Decompose �H into the horizontal and vertical parts�

�H � Y�	z

horizontal

" �




 	� 	z 

vertical

� � � ��	� q�� ������

We prove that the �elds





 	
� Y� Y � �

�




 	
� Y

�
give a frame dual to coframe ������� We have to show only that the pair of
horizontal �elds Y � Y � is dual to the pair of horizontal forms s� s�� First�

hs�� Y i � hs�� �Hi � h�� fui � H��� � ��
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Further�

hs�� Y �i � hs�� �H�i �
�
��

 fu

 	

�
�

�
��

 fu

 u

�
� 	z 


��

d u

d 	
� ��

Consequently�
� � hs� Y i� � hs�� Y i " hs� Y �i�

i�e��
hs�� Y i � ��

Finally�
� � hs�� Y i� � hs��� Y i " hs�� Y �i�

Equality ������ can be written as s�� � �s " bs�� thus

hs�� Y �i � �hs��� Y i � hs � bs�� Y i � ��

So we proved that the frame





 	
� Y� Y � � VecH

is dual to the coframe
d	� s� s� � .��H��

We complete the proof of this theorem computing the bracket � �H� ��H� v�� using
these frames�
First consider the standard symplectic form�

jH � d �sjH� � ds � d	 � s� " dqs�

where dqs is the di�erential of the form s w�r�t� horizontal coordinates� The
horizontal �
form dqs decomposes�

dqs � c s � s�� c � c�	� q��

thus
jH � d	 � s� " cs � s��

Since
i �H jH � ��

then

jH � �H� 
 � � jH �Y " �




 	
� 
 �

� �s� � hs�� Y i d	 " c hs� Y is� � c hs�� Y is
� �s� " cs� � ��
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i�e�� � � �c� thus
�H � Y � c





 	
�

Now we can compute the required Lie bracket�

�H� �
�




 	
� �H

�
� Y � � c�





 	
�

consequently��
�H�

�
�H�





 	

��
�

h
�H�� �H�

i
�

�
Y � c





 	
��Y � " c�





 	

�
�

�
�Hc� � �H�c

� 



 	� 	z 

vertical part

" �Y �� Y � " cY �� � c�Y �� 	z 

horizontal part

�

In order to complete the proof� we have to show that the horizontal part of the
bracket � �H� � �H� 	

	 �
�� vanishes�

The equality s�� � �s " bs� implies� by duality of the frames Y � Y � and s�
s�� that

Y �� � �Y � bY ��

Further�

ds � d	 � s� " cs � s��
d�s�� � �ds�� � d	 � s�� " c�s � s� " cs � s��

� �d	 � s � b d	 � s� " �c� " cb�s � s��
and we can compute the bracket �Y �� Y � using duality of the frames and Propo

sition �����

�Y �� Y � � cY " �c� " cb�Y ��

Summing up� the horizontal part of the �eld � �H� � �H� v�� is

�Y �� Y � " cY �� � c�Y � � cY " �c� " cb�Y � � cY � cbY � � c�Y � � ��

We proved that �
�H�

�
�H�





 	

��
� �� 



 	
�

where the curvature has the form

� � � �Hc� " �H�c�

Remark� Recall that the vertical vector �eld v that satis�es ������ is unique up
to a factor ��� On the other hand� the vertical �eld v that satis�es ������ is

unique� up to a factor constant along trajectories of �H �so this factor does not
a�ect ��� Consequently� any vertical vector �eld v for which an equality of the
form ������ holds can be used for computation of curvature ��
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So now we know all brackets of the Hamiltonian vector �eld X � �H with
the vector �elds of the frame V�� V�� V	�

� �H� V�� � �V�� �������

� �H� V�� � �V�� �������

� �H� V	� � �� �������

������ Jacobi equation in moving frame

We apply the moving frame constructed to derive an ODE on conjugate time
of our two
dimensional system # Jacobi equation in the moving frame�
As in Chapter ��� consider Jacobi equation along a regular extremal �t�

t � ��� t��� of the two
dimensional system �������

!� � �bt���� � � - � T�� �T
�M ��

and its �ow

Bt �
��
exp

Z t

�

�b� d��

Recall that )� � T�� �T
�
q�M � is the vertical subspace in - and Ct � )� is the

subspace of constant vertical solutions to Jacobi equation at ��� t�� see ��������
The intersection Bt)� � )� always contains the subspace Ct� An instant t �
��� t�� is a conjugate time for the extremal �t i� that intersection is greater
than Ct�

Bt)� �)� �� Ct�

In order to complete the frame V�� V�� V	 to a basis in T�� �T
�M �� consider

a vector �eld transversal to H # the vertical Euler �eld E � Vec�T �M � with
the �ow

� 	 etE � et 
 �� � � T �M� t � R�
In coordinates �p� q� on T �M � this �eld reads

E � p




 p
�

The vector �elds V�� V�� V	� E form a basis in T��T �M �� � � H� The �elds
V� �

	
	 �
and E are vertical�

)� � span�V������ E������

To compute the constant vertical subspace Ct� evaluate the action of the
�ow Bt on these �elds� In the proof of Theorem ����� we decomposed the �ow
of Jacobi equation�

Bt��� � �P
�
t �� e

t �H
� ����

Thus
BtE���� � �P

�
t �� e

t �H
� E�����
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The Hamiltonian H is homogeneous of order one on �bers� consequently the
�ow of �H is homogeneous as well�

�k�� 	 et �H � k
�
� 	 et �H

�
� k � ��

and the �elds �H and E commute� That is� the Hamiltonian vector �eld �H
preserves the vertical Euler �eld E� Further� the �ow P �t is linear on �bers�
thus it also preserves the �eld E� Summing up� the vector E���� is invariant
under the action of the �ow of Jacobi equation� i�e��

RE���� � Ct�

It is easy to see that this inclusion is in fact an equality� Indeed� in view of
bracket ��������

et
�H
� V����� � �t 	 e�tad �HV� � �t 	 �V� " tV� " o�t�� �� T�t�T

�
q�t�M ��

thus
BtV����� �� )�

for small t � �� This means that

Ct � RE����� t � ��� t���
Thus an instant t is a conjugate time i�

Bt)� �)� �� RE�����
i�e��

et
�H
� V����� � RV���t��

or� equivalently�

�� 	 etad �HV� � R��� 	 V��� �������

Now we describe the action of the �ow of a vector �eld on a moving frame�

Lemma ����� Let N be a smooth manifold� dimN � m� and let vector �elds
V�� � � � � Vm � VecN form a moving frame on N � Take a vector �eld X � VecN �
Let the operator adX have a matrix A � �aij� in this frame


�adX�Vj �
mX
i��

aijVi� aij � C��N ��

Then the matrix '�t� � ��ij�t�� of the operator etad
�H in the moving frame


et adX Vj �
mX
i��

�ij�t�Vi� �ij�t� � C��N �� �������
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is the solution to the following Cauchy problem


!'�t� � '�t�A�t�� �������

'��� � Id� �������

where A�t� � �etXaij��

Proof� Initial condition ������� is obvious� In order to derive the matrix equa

tion �������� we di�erentiate identity ������� w�r�t� t�

mX
i��

!�ij�t�Vi � et adX �X�Vj� � etadX

�
mX
k��

akjVk

�
�

mX
k��

�
etXakj

�
etadXVk

�
mX

k�i��

�
etXakj

�
�ikVi�

and the ODE follows�

In view of inclusion �������� an instant t is a conjugate time i� the coe�cients
in the decomposition

�� 	 et ad �HVj �
	X
i��

�ij�t���� 	 Vi�

satisfy the equalities�
����t� � �	��t� � ��

By the previous lemma� the matrix '�t� � ��ij�t�� is the solution to Cauchy
problem �������� ������� with the matrix

A�t� �

�� � �t �
�� � �
� � �

�A � �t � ���t��

see Lie bracket relations ����������������
Summing up� an instant t � ��� t�� is a conjugate time i� the solutions to the

Cauchy problems�
!��� � �����
!��� � �t����

������ � �� ������ � �

and �
!�	� � ��	��
!�	� � �t�	��

�	���� � �� �	���� � �

satisfy the equalities
����t� � �	��t� � ��
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But Cauchy problem for �	�� �	� has only trivial solution� Thus for a conjugate
time t� we obtain the linear nonautonomous system for �x�� x�� � ����� ������

!x� � �x��
!x� � �tx��

x���� � x��t� � �� �������

We call system �������� or� equivalently� the second order ODE

(x" �tx � �� x��� � x�t� � �� �������

Jacobi equation for system ������ in the moving frame� We proved the following
statement�

Theorem ����� An instant t � ��� t�� is a conjugate time for the two�dimen�
sional system ������ i� there exists a nontrivial solution to boundary prob�
lem ��������

Sturm�s comparison theorem for second order ODEs �see e�g� ������ implies
the following comparison theorem for conjugate points�

Theorem ����� ��� If � � C� for some C � � along an extremal �t� then there
are no conjugate points at the time segment ��� �C �� In particular� if � � � along
�t� then there are no conjugate points�
��� If � � C� along �t� then there is a conjugate point at the segment ��� �C ��

A typical behavior of extremal trajectories of the two
dimensional system ������
in the cases of negative and positive curvature is shown at �g� ���� and ����
respectively�

q

q

Figure ����� � � � Figure ����� � � �

Example ����� Consider the control system corresponding to a Riemannian
problem on a �
dimensional manifoldM �

!q � cos u f��q� " sinu f��q�� q �M� u � S��

where f�� f� is an orthonormal frame of the Riemannian structure h
� 
i�
hfi� fji � �ij� i� j � �� ��
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In this case� � is the Gaussian curvature of the Riemannian manifoldM � and
it is evaluated as follows�

� � �c�� � c�� " f�c� � f�c��

where ci are structure constants of the frame f�� f�� �f�� f�� � c�f� " c�f�� We
prove this formula for � in Chapter ���
For the Riemannian problem� the curvature � � ��q� depends only on the

base point q � M � not on the coordinate 	 in the �ber� Generally� this is not
the case� the curvature is a function of �q� 	� � H�
Optimality conditions in terms of conjugate points obtained in Chapter ��

can easily be applied to the two
dimensional system ������ under consideration�
Assume �rst that tc � ��� t�� is a conjugate time for an extremal �t� t � ��� t���

of system ������� We verify hypotheses of Proposition ����� Condition ������
implies that the extremal is regular� The corresponding control $u has corank one
since the Lagrange multiplier �t is uniquely determined by PMP �up to a scalar
factor�� Further� Jacobi equation cannot have solutions of form �������� if this
were the case� Jacobi equation in the moving frame (x " �tx � � would have a
nontrivial solution with the terminal conditions x�tc� � !x�tc� � �� which is im

possible� Summing up� the extremal �t satis�es hypotheses of Proposition �����
and alternative ��� of this proposition is not realized� Thus the corresponding
extremal trajectory is not locally geometrically optimal�
If the segment ��� t�� does not contain conjugate points� then by Theorem ����

the corresponding extremal trajectory is time
optimal compared with all other
admissible trajectories su�ciently close in M �

���� Curvature of �
dimensional control
a�ne

systems

In this section we consider control
a�ne �
dimensional systems�

!q � f��q� " uf��q�� u � R� q �M� �������

dimM � ��

We reduce such a system to a �
dimensional one as in Chapter �� and compute
the curvature of the �
dimensional system obtained # a feedback invariant of
system ��������
We assume that the following regularity conditions hold on M �

f� � f� � �f�� f�� �� �� �������

f� � �f�� f�� � �f�� �f�� f��� �� �� �������

Any extremal �t of the control
a�ne system ������� is totally singular� it
satis�es the equality

h���t� � h�t� f�i � �� �������
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and the corresponding extremal control cannot be found immediately from this
equality� Di�erentiation of ������� w�r�t� t yields

h����t� � h�t� �f�� f��i � ��

and one more di�erentiation leads to an equality containing control�

h�����t� " u�t�h�����t� � h�t� �f�� �f�� f���i" u�t�h�t� �f�� �f�� f���i � ��

Then the singular control is uniquely determined�

u � $u�q� � �h������
h������

� h���� � h����� � ��

We apply a feedback transformation to system ��������

u �� u� $u�q��

This transformation a�ects the �eld f�� but preserves regularity conditions
�������� �������� After this transformation the singular control is

u � ��

In other words�

�f� � ��f�� f�� � �  ��f�� �f�� f��� � ��

So we assume below that

�f�� �f�� f��� � span�f�� �f�� f���� �������

In a tubular neighborhood of a trajectory of the �eld f�� consider the reduc

tion of the three
dimensional system ��������

d $q

d t
� ew ad f�f��$q�� w � ���� ��� $q � fM �M�eRf�� �������

for a small enough ��
This system has the same conjugate points as the initial one �������� If sys


tem ������� has no conjugate points� then the corresponding singular trajectory
of system ������� is strongly geometrically optimal� i�e�� comes� locally� to the
boundary of attainable set�
Describe the cotangent bundle of the quotient fM � A tangent space to fM

consists of tangent vectors to M modulo f��

T�qfM �� TqM�Rf��q�� �������

q � M� $q � q 	 eRf� � fM�
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identi�cation ������� is given by the mapping

v �� $v� v � TqM� $v � T�qfM�

v �
d

d t

����
t��

q�t�� $v �
d

d t

����
t��

$q�t��

Thus a cotangent space to fM consists of covectors on M orthogonal to f��

T ��q fM �� T �qM � fh� � �g�
� �� $�� � � T �qM � fh� � �g� $� � T ��q fM�

h$�� $vi � h�� vi� v � TqM� $v � T�qfM�

Taking into account that the �eld f� is the projection of the Hamiltonian �eld �h��
it is easy to see that

T �fM �� fh� � �g�eR�h��
where the mapping � �� $� is de�ned above �exercise� show that $�� � $�� �
�� � �� 	 eR�h��� Summing up� cotangent bundle to the quotient fM is obtained

from T �M via Hamiltonian reduction by �h�� restriction to the level surface of
h� with subsequent factorization by the �ow of �h��
Further� regularity condition ������� implies that the �eld �h� is transversal

to the level surface fh� � h�� � �g� so this level surface gives another realization
of the cotangent bundle to the quotient�

T �fM �� fh� � h�� � �g�
In this realization� �h� is the Hamiltonian �eld corresponding to the maximized
Hamiltonian# generator of extremals � �H in Section ������ The level surface of
the maximized Hamiltonian �H in Section ����� realizes as the submanifold

fh� � h�� � �� h� � �g � T �M�

Via the canonical projection � � T �M �M � this submanifold can be identi�ed
with M � so the level surface H of Section ���� realizes now as M � We use this
realization to compute curvature of the three
dimensional system ������� as the
curvature � of its two
dimensional reduction ��������

The Hamiltonian �eld �H of Section ���� is now f�� and f� is a vertical �eld�
It remains to normalize f�� i�e�� to �nd a vertical �eld af�� a � C��M �� such
that

�f�� �f�� af��� � ��af�� �������

see ������� The triple
f�� f�� f� � �f�� f��

forms a moving frame on M � consider the structure constants of this frame�

�fi� fj � �
�X

k��

ckjifk� i� j � �� �� ��



��� CHAPTER ��� CURVATURE

Notice that inclusion ������� obtained after preliminary feedback transformation
reads now as c��� � �� That is why

�f�� �f�� f��� � �c���f� � c����f�� f���

Now we can �nd the normalizing factor a for f� such that ������� be satis�ed�
We have

�f�� �f�� af��� � �f�� �f�a� " a�f�� f��� � �f
�
� a�f� " ��f�a��f�� f�� " a�f�� �f�� f���

� �f�� a� c���a�f� " ��f�a� c�����f�� f���

Then the required function a is found from the �rst order PDE

�f�a� c���a � ��

and the curvature is computed�

� � �f
�
�a � c���a

a
�

Summing up� curvature of the control�a�ne ��dimensional system ������� is
expressed through the structure constants as

� � c��� �
�

�
�c����

� � �
�
f�c

�
���

a function on the state space M �
Bounds on curvature � along a �necessarily singular� extremal of a �
dimen


sional control
a�ne system allow one to obtain bounds on conjugate time� thus
on segments where the extremal is locally optimal� Indeed� by construction�
� is the curvature of the reduced �
dimensional system� As we know from
Chapter ��� reduction transforms singular extremals into regular ones� and the
initial and reduced systems have the same conjugate times� Thus Theorem ����
can be applied� via reduction� to the study of optimality of singular extremals
of �
dimensional control
a�ne systems�



Chapter ��

Rolling bodies

We apply the Orbit Theorem and Pontryagin MaximumPrinciple to an intrinsic
geometric model of a pair of rolling rigid bodies� We solve the controllability
problem� in particular� we show that the system is completely controllable i�
the bodies are not isometric� We also state an optimal control problem and
study its extremals�

���� Geometric model

Consider two solid bodies in the �
dimensional space that roll one on another
without slipping or twisting� Rather than embedding the problem into R	� we
construct an intrinsic geometric model of the system�
Let M and cM be two
dimensional connected manifolds # surfaces of the

rolling bodies� In order to measure lengths of paths in M and cM � we suppose
that each of these manifolds is Riemannian� i�e�� endowed with a Riemannian
structure # an inner product in the tangent space smoothly depending on the
point in the manifold�

hv�� v�iM � vi � TxM�

hbv��bv�icM � bvi � TbxcM�

Moreover� we suppose that M and cM are oriented �which is natural since sur

faces of solid bodies in R	 are oriented by the exterior normal vector��

At contact points of the bodies x � M and bx � cM � their tangent spaces
are identi�ed by an isometry �i�e�� a linear mapping preserving the Riemannian
structures�

q � TxM � TbxcM�

see �g� ����� We deal only with orientation
preserving isometries and omit the
words �orientation
preserving in order to simplify terminology� An isometry q
is a state of the system� and the state space is the connected �
dimensional

���
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� �
x

M

bx

cM cM

M

TxM

T
bx

cM

Figure ����� Identi�cation of tangent spaces at contact point

manifold

Q � f q � TxM � TbxcM j x �M� bx � cM� q an isometryg�

Denote the projections from Q to M and cM �
��q� � x� b��q� � bx� q � TxM � TbxcM�

q � Q� x �M� bx � cM�

Local coordinates on Q can be introduced as follows� Choose arbitrary local
orthonormal frames e�� e� on M and be�� be� on cM �

hei� ejiM � �ij � hbei� bejicM � �ij � i� j � �� ��

For any contact con�guration of the bodies q � Q� denote by 	 the angle of
rotation from the frame be�� be� to the frame qe�� qe� at the contact point�

qe� � cos 	 be� " sin 	 be��
qe� � � sin 	 be� " cos 	 be��

Then locally points q � Q are parametrized by triples �x� bx� 	�� x � ��q� � M �bx � b��q� � cM � 	 � S�� Choosing local coordinates �x�� x�� on M and �bx�� bx��
on cM � we obtain local coordinates �x�� x�� bx�� bx�� 	� on Q�
Let q�t� � Q be a curve corresponding to a motion of the rolling bodies� then

x�t� � ��q�t�� and bx�t� � b��q�t�� are trajectories of the contact points in M

and cM respectively� The condition of absence of slipping means that

q�t� !x�t� � !bx�t�� ������

and the condition of absence of twisting is geometrically formulated as follows�

q�t� �vector �eld parallel along x�t�� � �vector �eld parallel along bx�t�� �
������
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Our model ignores the state constraints that correspond to admissibility of
contact of the bodies embedded in R	� Notice although that if the surfaces M
and cM have respectively positive and nonnegative Gaussian curvatures at a
point� then their contact is locally admissible�
The admissibility conditions ������ and ������ imply that a curve x�t� �

M determines completely the whole motion q�t� � Q� That is� velocities of
admissible motions determine a rank � distribution & on the �
dimensional
space Q� We show this formally and compute the distribution & explicitly
below� Before this� we recall some basic facts of Riemannian geometry�

���� Two
dimensional Riemannian geometry

Let M be a �
dimensional Riemannian manifold� We describe Riemannian
geodesics� Levi
Civita connection and parallel translation on T �M �� TM �
Let h 
 � 
 i be the Riemannian structure and e�� e� a local orthonormal frame

on M �

������ Riemannian geodesics

For any �xed points x�� x� � M � we seek for the shortest curve in M connect

ing x� and x��

!x � u�e��x� " u�e��x�� x �M� �u�� u�� � R��

x��� � x�� x�t�� � x��

l �

Z t�

�

h !x� !xi��� dt �
Z t�

�

�u�� " u���
��� dt� min �

In the same way as in Section ����� it easily follows from PMP that arc
length
parametrized extremal trajectories in this problem �Riemannian geodesics� are
projections of trajectories of the normal Hamiltonian �eld�

x�t� � � 	 et �H���� � � H � fH � ���g � T �M�

H �
�

�
�h�� " h����

hi��� � h�� eii� i � �� ��

The level surface H is a spherical bundle over M with a �ber

Hq � fh�� " h�� � �g � T �qM �� S�

parametrized by angle ��

h� � cos�� h� � sin��

Cotangent bundle of a Riemannian manifold can be identi�ed with the tan

gent bundle via the Riemannian structure�

TM �� T �M�

v �� � � hv� 
 i�
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Then H � T �M is identi�ed with the spherical bundle

S � fv � TM j kvk � �g � TM

of unit tangent vectors to M � After this identi�cation� et
�H can be considered

as a geodesic �ow on S�

������ Levi�Civita connection

A connection on the spherical bundle S � M is an arbitrary horizontal distri

bution D�

D � fDv � TvS j v � Sg�
Dv " Tv�Sx� � TvS� Sx � S � TxM�

Any connection D onM de�nes a parallel translation of unit tangent vectors
along curves inM � Let x�t�� t � ��� t��� be a curve inM � and let v� � Tx���M be
a unit tangent vector� The curve x�t� has a unique horizontal lift on S starting
at v��

v�t� � S� � 	 v�t� � x�t��

!v�t� � Dv�t��

v��� � v��

Indeed� if the curve x�t� satis�es the nonautonomous ODE

!x � u��t� e��x� " u��t� e��x��

then its horizontal lift v�t� is a solution to the lifted ODE

!v � u��t� ���v� " u��t� ���v�� ������

where �i are horizontal lifts of the basis �elds ei�

Dv � span����v�� ���v��� ���i � ei�

Notice that solutions of ODE ������ are continued to the whole time segment
��� t�� since the �bers Sx are compact� The vector v�t�� is the parallel translation
of the vector v� along the curve x�t��
A vector �eld v�t� along a curve x�t� is called parallel if it is preserved by

parallel translations along x�t��
Levi�Civita connection is the unique connection on the spherical bundle S �

M such that�

��� velocity of a Riemannian geodesic is parallel along the geodesic �i�e�� the

geodesic �eld �H is horizontal��

��� parallel translation preserves angle� i�e�� horizontal lifts of vector �elds on
the baseM commute with the vector �eld 	

	 � that determines the element

of length �or� equivalently� the element of angle� in the �ber Sx�
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Now we compute the Levi
Civita connection as a horizontal distribution
on H �� S� In Chapter �� we constructed a feedback
invariant frame on the
manifold H�

T�H � span
�
�H�





 �
� �H�

�
� �H� �

�




 �
� �H

�
�

We have

�H � h�

�
e� " c�





 �

�
" h�

�
e� " c�





 �

�
� ������

�H� � �h�
�
e� " c�





 �

�
" h�

�
e� " c�





 �

�
� ������

where ci are structure constants of the orthonormal frame on M �

�e�� e�� � c�e� " c�e�� ci � C��M ��

Indeed� the component of the �eld �H � h��h� " h��h� in the tangent space of
the manifoldM is equal to h�e� " h�e�� In order to �nd the component of the
�eld �H in the �ber� we compute the derivatives �Hhi in two di�erent ways�

�Hh� � �h��h� " h��h��h� � h���h�h�� � h�fh�� h�g � h���c�h� � c�h���

�Hh� � �H cos� � � sin�� �H�� � �h�� �H���

similarly
�Hh� � h��c�h� " c�h�� � h�� �H���

thus
�H� � c�h� " c�h��

Consequently�

�H � h�e� " h�e� " �c�h� " c�h��




 �
�

and equality ������ follows� Then equality ������ is obtained by straightforward
di�erentiation�
Notice that using decompositions ������� ������� we can easily compute Gaus


sian curvature k of the RiemannianmanifoldM via the formula of Theorem ������
�H�

�
�H�





 �

��
� �k 



 �
�

Since

� �H� �H�� � �c�� " c�� � e�c� " e�c��




 �
�

then

k � �c�� � c�� " e�c� � e�c�� ������



��� CHAPTER ��� ROLLING BODIES

Properties ��� and ��� of the horizontal distribution D on H that determines
the Levi
Civita connection mean that �H � D and e

s �
� 
� D � D� thus

D � span

�
e
s �
� 
� �H j s � R

�
�

Since

e
s �
� 
� �H � h��� � s�

�
e� " c�





 �

�
" h���� s�

�
e� " c�





 �

�
�

we obtain
D � span

�
�H� �H�

�
�

The �
form of the connection D�

� � .��H�� D � Ker ��

reads
� � c��� " c��� � d��

where ���� ��� is the dual coframe to �e�� e���

�i � .��M �� h�i� eji � �ij� i� j � �� ��

���� Admissible velocities

We return to the rolling bodies problem and write down admissibility conditi

ons ������� ������ for a curve q�t� � Q as restrictions on velocity !q�t�� Decompose

velocities of the contact curves in M and cM in the orthonormal frames�

!x � a� e��x� " a� e��x�� ������

!bx � ba� be��bx� " ba� be��bx�� ������

Then the nonslipping condition ������ reads�

ba� � a� cos 	 � a� sin 	� ba� � a� sin 	 " a� cos 	� ������

Now we consider the nontwisting condition ������� Denote the structure
constants of the frames�

�e�� e�� � c�e� " c�e�� ci � C��M ��

�be�� be�� � bc�be� " bc�be�� bci � C��cM ��
Let $q � T �xM � T �bx cM be the mapping induced by the isometry q via identi�ca

tion of tangent and cotangent spaces�

$q �� � cos 	 b�� " sin 	 b���
$q �� � � sin 	 b�� " cos 	 b���
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In the cotangent bundle� the nontwisting condition means that if

��t� � �x�t�� ��t�� � H
is a parallel covector �eld along a curve x�t� �M � then

b��t� � $q�t���t� � �bx�t�� b��t�� � bH
is a parallel covector �eld along the curve bx�t� � cM �
Since the isometry q�t� rotates the tangent spaces at the angle 	�t�� then the

mapping $q�t� rotates the cotangent spaces at the same angle� b��t� � ��t�"	�t��
thus

!	�t� � !b��t�� !��t�� �������

A covector �eld ��t� is parallel along the curve in the base x�t� i� !� � Ker ��
i�e��

!� � hc��� " c���� !xi � c�a� " c�a��

Similarly� b��t� is parallel along bx�t� i�
!b� � Dbc� b�� " bc� b��� !bxE � bc� ba� " bc� ba�
� a��bc� cos 	 " bc� sin 	� " a���bc� sin 	 " bc� cos 	��

In view of �������� the nontwisting condition reads

!	 � bc�ba� " bc�ba� � �c�a� " c�a��

� a���c� " bc� cos 	 " bc� sin 	� " a���c� � bc� sin 	 " bc� cos 	�� �������

Summing up� admissibility conditions ������ and ������ for rolling bodies
determine constraints ������ and ������� along contact curves ������� �������
i�e�� a rank two distribution & on Q spanned locally by the vector �elds

X� � e� " cos 	 be� " sin 	 be� " ��c� " bc� cos 	 " bc� sin 	� 


 	

� �������

X� � e� � sin 	 be� " cos 	 be� " ��c� � bc� sin 	 " bc� cos 	� 


 	

� �������

Admissible motions of the rolling bodies are trajectories of the control system

!q � u�X��q� " u�X��q�� q � Q� u�� u� � R� �������

���� Controllability

Denote the Gaussian curvatures of the Riemannian manifolds M and cM by k
and bk respectively� We lift these curvatures fromM and cM to Q�

k�q� � k���q��� bk�q� � bk�b��q��� q � Q�
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Theorem ����� ��� The reachable set O of system ������� from a point q � Q
is an immersed smooth connected submanifold of Q with dimension equal to �
or �� Speci�cally �

�k � bk�jO � �  dimO � ��

�k � bk�jO �� �  dimO � ��

��� There exists an injective correspondence between isometries i � M � cM
and ��dimensional reachable sets O of system �������� In particular� if the mani�

folds M and cM are isometric� then system ������� is not completely controllable�

��� Suppose that both manifolds M and cM are complete and simply con�

nected� Then the correspondence between isometries i � M � cM and ��
dimensional reachable sets O of system ������� is bijective� In particular� sys�

tem ������� is completely controllable i� the manifolds M and cM are not iso�
metric�

Proof� ��� By the Orbit theorem� the reachable set of the symmetric sys

tem �������� i�e�� the orbit of the distribution & through any point q � Q�
is an immersed smooth connected submanifold of Q� Now we show that any
orbit O of & has dimension either � or ��
Fix an orbit O and assume �rst that at some point q � O the manifolds M

and cM have di�erent Gaussian curvatures� k�q� �� bk�q�� In order to construct
a frame on Q� compute iterated Lie brackets of the �elds X�� X��

X	 � �X�� X�� � c�X� " c�X� " �bk � k�




 	
� �������

X� � �X�� X	�

� �X�c��X� " �X�c��X� " c�X	 " �X��bk � k��




 	
" �bk � k�

�
X��





 	

�
�

�������

X� � �X�� X	�

� �X�c��X� " �X�c��X� � c�X	 " �X��bk � k��




 	
" �bk � k�

�
X��





 	

�
�

��������
X��





 	

�
� sin 	 be� � cos 	 be� " �
 
 
 � 



 	
� ��������

X��




 	

�
� cos 	 be� " cos 	 be� " �
 
 
 � 



 	
� �������

In the computation of bracket ������� we used expression ������ of Gaussian
curvature through structure constants� It is easy to see that

Lie�X�� X���q� � span �X�� X�� X	� X�� X�� �q� � span

�
e�� e�� be�� be�� 



 	

�
�q�

� TqQ�
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System ������� has the full rank at the point q � O where k �� bk� thus dimO � ��

On the other hand� if k�q� � bk�q� at all points q � O� then equality �������
implies that the distribution & is integrable� thus dimO � ��
��� Let i � M � cM be an isometry� Its graph

' �
n
q � Q j q � i�x � TxM � TbxcM� x �M� bx � i�x� � cM o

is a smooth �
dimensional submanifold of Q� We prove that ' is an orbit of &�
Locally� choose an orthonormal frame e�� e� in M and take the corresponding
orthonormal frame be� � i�e�� be� � i�e� in cM � Then 	j� � �� Since bc� � c��bc� � c�� and k�q� � bk�q�� restrictions of the �elds X�� X� read

X�j� � e� " be�� X�j� � e� " be��
Then it follows that the �elds X�� X� are tangent to '� Lie bracket �������
yields

�X�� X��j� � c�X� " c�X��

thus ' is an orbit of &� Distinct isometries i� �� i� have distinct graphs '� �� '��
i�e�� the correspondence between isometries and �
dimensional orbits is injective�
��� Now assume that the manifolds M and cM are complete and simply

connected� Let O be a �
dimensional orbit of &� We construct an isometry
i � M � cM with the graph O�
Notice �rst of all that for any Lipschitzian curve x�t� � M � t � ��� t��� and

any point q� � Q� there exists a trajectory q�t� of system ������� such that
��q�t�� � x�t� and q��� � q�� Indeed� a Lipschitzian curve x�t�� t � ��� t��� is
a trajectory of a nonautonomous ODE !x � u��t�e��x� " u��t�e��x� for some
ui � L���� t��� Consider the lift of this equation to Q�

!q � u��t�X��q� " u��t�X��q�� q��� � q�� �������

We have to show that the solution to this Cauchy problem is de�ned on the
whole segment ��� t��� Denote by R the Riemannian length of the curve x�t� and
by B�x�� �R� �M the closed Riemannian ball of radius �R centered at x�� The
curve x�t� is contained in B�x�� �R� and does not intersect with its boundary�
Notice that the ball B�x�� �R� is a closed and bounded subset of the complete

space M � thus it is compact� The projection bx�t� � cM of the maximal solution
q�t� to Cauchy problem ������� has Riemannian length not greater than R�

thus it is contained in the compact B�bx�� �R� � cM � bx� � b��q��� and does not
intersect with its boundary� Summing up� the maximal solution q�t� to �������
is contained in the compact K � B�x�� �R��B�bx�� �R��S� and does not come
to its boundary� Thus the maximal solution q�t� is de�ned at the whole segment
��� t���
Now it easily follows that ��O� � M for the two
dimensional orbit O� In


deed� let q� � O� then x� � ��q�� � ��O�� Take any point x� � M and
connect it with x� by a Lipschitzian curve x�t�� t � ��� t��� Let q�t� be the lift
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of x�t� to the orbit O with the initial condition q��� � q�� Then q�t�� � O and

x� � ��q�t��� � ��O�� Thus ��O� �M � Similarly� b��O� � cM �
The projections

� � O�M and b� � O� cM �������

are local di�eomorphisms since

���X�� � e�� b���X�� � cos 	 be� " sin 	 be��
���X�� � e�� b���X�� � � sin 	 be� " cos 	 be��

Moreover� it follows that projections ������� are global di�eomorphisms�
Indeed� let q � O� Any Lipschitzian curve x�
� on M starting from ��q� has
a unique lift to O starting from q and this lift continuously depends on x�
��
Suppose that q� � O� q� �� q� ��q�� � ��q�� and q�
� is a path on O connecting q
with q�� Contracting the loop ��q�
�� and taking the lift of the contraction� we
come to a contradiction with the local invertibility of �jO� Hence �jO is globally
invertible� thus it is a global di�eomorphism� The same is true for b�jO�
Thus we can de�ne a di�eomorphism

i � b� 	 ��jO��� � M � cM�

Since

i�e� � cos 	 be� " sin 	 be��
i�e� � � sin 	 be� " cos 	 be��

the mapping i is an isometry�
If the manifolds M and cM are not isometric� then all reachable sets of

system ������� are �
dimensional� thus open subsets of Q� But Q is connected�
thus it is a single reachable set�

���� Length minimization problem

������ Problem statement

Suppose that k�x� �� bk�bx� for any x �M � bx � cM � i�e�� k�bk �� � on Q� Then� by
item ��� of Theorem ����� system ������� is completely controllable� Consider
the following optimization problem� given any two contact con�gurations of the
system of rolling bodies� �nd an admissible motion of the system that steers the
�rst con�guration into the second one and such that the path of the contact
point in M �or� equivalently� in cM � was the shortest possible� This geometric
problem is stated as the following optimal control one�

!q � u�X� " u�X�� q � Q� u � �u�� u�� � R�� �������

q��� � q�� q�t�� � q�� t� �xed�

l �

Z t�

�

�u�� " u���
��� dt� min �
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Notice that projections of ODE ������� to M and cM read respectively as

!x � u�e� " u�e�� x �M�

and

!bx � u��cos 	 be� " sin 	 be�� " u��� sin 	 be� " cos 	 be��� bx � cM�

thus the sub
Riemannian length l of the curve q�t� is equal to the Riemannian
length of the both curves x�t� and bx�t��
As usual� we replace the length l by the action�

J �
�

�

Z t�

�

�u�� " u��� dt� min�

and restrict ourselves to constant velocity curves�

u�� " u�� � const �� ��

������ PMP

As we showed in the proof of Theorem ����� the vector �elds X�� � � � � X� form a
frame on Q� see ���������������� Denote the corresponding Hamiltonians linear
on �bers in T �Q�

gi��� � h��Xii� � � T �Q� i � �� � � � � ��

Then the Hamiltonian of PMP reads

g�u��� � u�g���� " u�g���� "
�

�
�u�� " u����

and the corresponding Hamiltonian system is

!� � u��g���� " u��g����� � � T �Q� �������

������ Abnormal extremals

Let � � �� The maximality condition of PMP implies that

g���t� � g���t� � � �������

along abnormal extremals� Di�erentiating these equalities by virtue of the
Hamiltonian system �������� we obtain one more identity�

g	��t� � �� �������

The next di�erentiation by virtue of ������� yields an identity containing con

trols�

u��t�g���t� " u��t�g���t� � �� �������
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It is natural to expect that conditions ��������������� on abnormal extremals

on Q should project to reasonable geometric conditions on M and cM � This is
indeed the case� and now we derive ODEs for projections of abnormal extremals
to M and cM �
According to the splitting of the tangent spaces

TqQ � TxM " TbxcM " T�S
��

the cotangent space split as well�

T �q Q � T �xM " T �bx cM " T �� S
��

� � � " b� " �d	� � � T �q Q� � � T �xM� b� � T �bx cM� �d	 � T �� S
��

Then

g���� � h��X�i �
�
� " b� " �d	� e� " cos 	 be� " sin 	 be� " b�





 	

�
� h���� " cos 	 bh��b�� " sin 	 bh��b�� " �b�� �������

g���� � h��X�i �
�
� " b� " �d	� e� � sin 	 be� " cos 	 be� " b�





 	

�
� h���� � sin 	 bh��b�� " cos 	 bh��b�� " �b�� �������

where b� � �c� " bc� cos 	 " bc� sin 	� b� � �c� � bc� sin 	 " bc� cos 	�
g	��� � h��X	i �

�
� " b� " �d	� c�X� " c�X� " �bk � k�





 	

�
� c�g���� " c�g���� " ��bk � k�� �������

Then identities ������� and ������� read as follows�

� � ��

h� " cos 	 bh� " sin 	 bh� � ��
h� � sin 	 bh� " cos 	 bh� � ��

Under these conditions� taking into account equalities ���������������� we have�

g���� �

�
� " b�� �X�c��X� " �X�c��X� " c�X	

"�X��bk � k��




 	
" �bk � k�

�
X��





 	

��
� �bk � k��sin 	 bh� � cos 	 bh�� � �bk � k�h��

g���� �

�
� " b�� �X�c��X� " �X�c��X� � c�X	 "

�X��bk � k��




 	
" �bk � k�

�
X��





 	

��
� �bk � k��cos 	 bh� " sin 	 bh�� � ��bk � k�h��
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Then identity ������� yields

u�h� � u�h� � ��

That is� up to reparametrizations of time� abnormal controls satisfy the identi

ties�

u� � h����� u� � h����� �������

In order to write down projections of the Hamiltonian system ������� to

T �M and T �cM � we decompose the Hamiltonian �elds �g�� �g�� In view of equal

ities �������� �������� we have

�g� � �h� " cos 	
�bh� " sin 	�bh� " �� sin 	 bh� " cos 	 bh���	 " ��a� " a����

�g� � �h� � sin 	�bh� " cos 	�bh� " �� cos 	 bh� � sin 	 bh���	 " ��a� " a����

It follows easily that �	 � � 	
	 � � Since � � � along abnormal extremals� projec


tion to T �M of system ������� with controls ������� reads

!� � h��h� " h��h� � �H� H �
�

�
�h�� " h����

Consequently� projections x�t� � ��q�t�� are Riemannian geodesics in M �

Similarly� for projection to cM we obtain the equalities

u� � � cos 	 bh� � sin 	 bh�� u� � sin 	 bh� � cos 	 bh��
thus

!b� � �
� cos 	 bh� � sin 	 bh���

cos 	
�bh� " sin 	�bh��

"
�
sin 	 bh� � cos 	 bh���

� sin 	�bh� " cos 	�bh��
� �bh� �bh� � bh� �bh� � ��bH� bH �

�

�

�bh�� " bh��� �
i�e�� projections bx�t� � b��q�t�� are geodesics in cM �
We proved the following statement�

Proposition ����� Projections of abnormal extremal curves x�t� � ��q�t�� andbx�t� � b��q�t�� are Riemannian geodesics respectively in M and cM �

Abnormal sub
Riemannian geodesics q�t� are optimal at segments ��� � � at
which at least one of Riemannian geodesics x�t�� bx�t� is a length minimizer� In
particular� short arcs of abnormal geodesics q�t� are optimal�
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������ Normal extremals

Let � � ��� The normal extremal controls are determined from the maximality
condition of PMP�

u� � g�� u� � g��

and normal extremals are trajectories of the Hamiltonian system

!� � �G���� � � T �Q� �������

G �
�

�
�g�� " g����

The maximized Hamiltonian G is smooth� thus short arcs of normal extremal
trajectories are optimal�
Consider the case where one of the rolling surfaces is the plane� cM � R��

In this case the normal Hamiltonian system ������� can be written in a simple
form� Choose the following frame on Q�

Y� � X�� Y� � X�� Y	 �




 	
� Y� � �Y�� Y	�� Y� � �Y�� Y	��

and introduce the corresponding linear on �bers Hamiltonians

mi��� � h�� Yii� i � �� � � � � ��

Taking into account that bc� � bc� � bk � �� we compute Lie brackets in this
frame�

�Y�� Y�� � c�Y� " c�Y� � kY	�

�Y�� Y�� � �c�Y�� �Y�� Y�� � �c�Y��
�Y�� Y�� � c�Y�� �Y�� Y�� � c�Y��

Then the normal Hamiltonian system ������� reads as follows�

!m� � �m��c�m� " c�m� � km	��

!m� � m��c�m� " c�m� � km	��

!m	 � m�m� "m�m��

!m� � ��c�m� " c�m��m��

!m� � �c�m� " c�m��m��

!q � m�X� "m�X��

Notice that� in addition to the Hamiltonian G �
�

�
�m�

� "m�
��� this system has

one more integral� � � �m�
�"m

�
��

���� Introduce coordinates on the level surface

G �
�

�
�

m� � cos �� m� � sin�� m	 � m� m� � � cos�� "��� m� � � sin��"���
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Then the Hamiltonian system simpli�es even more�

!� � c� cos � " c� sin � � km�

!m � � cos��

!� � km�

!q � cos � X� " sin � X��

The case k � const� i�e�� the sphere rolling on a plane� is completely inte

grable� This problem was studied in detail in book �����
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Appendix A

In this Appendix we prove several technical propositions from Chapter ��

A�� Homomorphisms and operators in C��M�

Lemma A��� On any smooth manifold M � there exists a function a � C��M �
such that for any N � � exists a compact K bM for which

a�q� � N � q �M nK�
Proof� Let ek� k � N� be a partition of unity on M � the functions ek � C��M �
have compact supports supp ek b M � which form a locally �nite covering ofM �
and

P�
k�� ek � �� Then the function

P�
k�� kek can be taken as a�

Now we recall and prove Proposition ����

Proposition ���� Let � � C��M � � R be a nontrivial homomorphism of
algebras� Then there exists a point q �M such that � � bq�
Proof� For the homomorphism � � C��M �� R� the set

Ker� � ff � C��M � j �f � �g
is a maximal ideal in C��M �� Further� for any point q �M � the set of functions

Iq � ff � C��M � j f�q� � �g
is an ideal in C��M �� To prove the proposition� we show that

Ker� � Iq �A���

for some q �M � Then it follows that Ker� � Iq and � � bq�
By contradiction� suppose that Ker� �� Iq for any q �M � This means that

� q �M � bq � Ker� s� t� bq�q� �� ��
Changing if necessary the sign of bq � we obtain that

� q �M � bq � Ker�� Oq �M s� t� bqjOq
� �� �A���

���
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Fix a function a given by Lemma A��� Denote ��a� � �� then ��a��� � ��
i�e��

�a� �� � Ker��
Moreover�

� K bM s� t� a�q� � � � � � q �M nK�
Take a �nite covering of the compact K by the neighborhoods Oq as in �A����

K �
n�
i��

Oqi �

and let e�� e�� � � � � en � C��M � be a partition of unity subordinated to the
covering of M �

M nK�Oq�� � � � � Oqn �

Then we have a globally de�ned function on M �

c � e��a� �� "
nX
i��

eibqi � ��

Since

� � �

�
c 
 �

c

�
� ��c� 
 �

�
�

c

�
�

then
��c� �� ��

But c � Ker�� a contradiction� Inclusion �A��� is proved� and the proposition
follows�

Now we formulate and prove the theorem on regularity properties of com

position of operators in C��M �� in particular� for nonautonomous vector �elds
or �ows on M �

Proposition A��� Let At and Bt be continuous w�r�t� t families of linear con�
tinuous operators in C��M �� Then the composition At 	Bt is also continuous
w�r�t� t� If in addition the families At and Bt are di�erentiable at t � t�� then
the family At 	 Bt is also di�erentiable at t � t�� and its derivative is given by
the Leibniz rule


d

d t

����
t�

�At 	Bt� �

�
d

d t

����
t�

At

�
	Bt� "At� 	

�
d

d t

����
t�

Bt

�
�

Proof� To prove the continuity� we have to show that for any a � C��M �� the
following expression tends to zero as �� ��

�At�� 	Bt�� � At 	Bt� a � At�� 	 �Bt�� �Bt� a " �At�� � At� 	Bta�

By continuity of the familyAt� the second term �At�� �At�	Bta� � as �� ��
Since the family Bt is continuous� the set of functions �Bt�� �Bt� a lies in any



A��� REMAINDER TERM ���

preassigned neighborhood of zero in C��M � for su�ciently small �� For any
�� � �� the familyAt��� j�j � ��� is locally bounded� thus equicontinuous by the
Banach
Steinhaus theorem� Consequently� At�� 	 �Bt�� �Bt� a � � as � � ��
Continuity of the family At 	Bt follows�
The di�erentiability and Leibniz rule follow similarly from the decomposition

�

�
�At�� 	Bt�� � At 	Bt� a � At�� 	 �

�
�Bt�� � Bt� a"

�

�
�At�� �At� 	Bta�

A�� Remainder term of the chronological

exponential

Here we prove estimate ������ of the remainder term for the chronological ex

ponential�

Lemma A��� For any t� � �� complete nonautonomous vector �eld Vt� com�
pactum K bM � and integer s � �� there exist C � � and a compactum K� bM �
K � K�� such that

kPtaks�K � C eC
R
t

� kV�ks�K� d� kaks�K�� a � C��M �� t � ��� t��� �A���

where

Pt �
��
exp

Z t

�

V� d��

Proof� Denote the compact set

Kt � �fP� �K� j � � ��� t�g

and introduce the function

��t� � sup

� kPtaks�K
kaks���Kt

j a � C��M �� kaks���Kt
�� �

�
� sup fkPtaks�K j a � C��M �� kaks���Kt

� �g � �A���

Notice that the function ��t�� t � ��� t��� is measurable since the supremum
in the right
hand side of �A��� may be taken over only an arbitrary countable
dense subset of C��M �� Moreover� in view of inequalities ����� and

kaks�Pt�K� � kaks���Kt
�

the function ��t� is bounded on the segment ��� t���
As in the de�nition of the seminorms k 
 ks�K in Section ���� we �x a proper

embedding M � RN and vector �elds h�� � � � � hN � VecM that span tangent
spaces to M �
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Let q� � K be a point at which

kPtaks�K � sup fjhil 	 
 
 
 	 hi��Pta��q� j q � K� � � i�� � � � � il � N� � � l � sg
attains its upper bound� and let pa � pa�x�� � � � � xN � be the polynomial of degree
� s whose derivatives of order up to and including s at the point qt � Pt�q��
coincide with the corresponding derivatives of a at qt� Then

kPtaks�K � jhil 	 
 
 
 	 hi��Ptpa��q��j � kPtpaks�K� �A���

kpaks�qt � kaks�Kt
�

In the �nite
dimensional space of all real polynomials of degree � s� all norms
are equivalent� so there exists a constant C � � which does not depend on the
choice of the polynomial p of degree � s such that

kpks�Kt

kpks�qt
� C� �A���

Inequalities �A��� and �A��� give the estimate

kPtaks�K
kaks�Kt

� kPtpaks�K
kpaks�qt

� C
kPtpaks�K
kpaks�Kt

� C
kPtpaks�K
kpaks���Kt

� C��t�� �A���

Since

Pta � a"

Z t

�

P� 	 V�a d��
then

kPtaks�K � kaks�K "
Z t

�

kP� 	 V�aks�K d�

by inequality �A��� and de�nition �����

� kaks�K "C kaks���Kt

Z t

�

��� � kV�ks�Kt
d��

Dividing by kaks���Kt
� we arrive at

kPtaks�K
kaks���Kt

� � " C

Z t

�
��� � kV�ks�Kt

d��

Thus we obtain the inequality

��t� � � "C

Z t

�

��� � kV�ks�Kt
d��

from which it follows by Gronwall�s lemma that

��t� � eC
R
t

� kV�ks�Kt
d� �

Then estimate �A��� implies that

kPtaks�K � C eC
R
t

� kV�ks�Kt
d� kaks�Kt

�

and the required inequality �A��� follows for any compactum K� � Kt�
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Now we prove estimate �������

Proof� Decomposition ������ can be rewritten in the form

Pt � Sm�t� "

Z

 
 


Z

m�t�

P�m 	 V�m 	 
 
 
 	 V�� d�m � � � d���

where

Sm�t� � Id"
m��X
k��

Z

 
 


Z

k�t�

V�k 	 
 
 
 	 V�� d�k � � � d���

Then

k�Pt � Sm�t��aks�K �
Z

 
 


Z

m�t�

kP�m 	 V�m 	 
 
 
 	 V��aks�K d�m � � � d��

by Lemma A��

� CeC
R
t

� kV�ks�K� d�
Z

 
 


Z

m�t�

kV�m 	 
 
 
 	 V��aks�K� d�m � � � d���

Now we estimate the last integral� By de�nition ����� of seminorms�Z

 
 


Z

m�t�

kV�m 	 
 
 
 	 V��aks�K� d�m � � � d��

�
Z

 
 


Z

m�t�

kV�mks�K�kV�m��ks���K� 
 
 
 kV��ks�m���K� kaks�m�K� d�m � � � d��

� kaks�m�K�Z

 
 


Z

m�t�

kV�mks�m���K�kV�m��ks�m���K� 
 
 
 kV��ks�m���K� d�m � � � d��

� kaks�m�K�

�

m�

�Z t

�

kV�ks�m���K� d�

�m

�

and estimate ������ follows�

k�Pt � Sm�t�� aks�K �
C

m�
eC
R
t

� kV�ks�K� d�
�Z t

�

kV�ks�m���K� d�

�m

kaks�m�K� �
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