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Abstract We consider the problem Pcurve of minimizing
∫ `

0

√
β 2 + |κ(s)|2ds for a

planar curve having fixed initial and final positions and directions. Here κ is the cur-
vature of the curve with free total length `. This problem comes from a 2D model
of geometry of vision due to Petitot, Citti and Sarti. Here we will provide a gen-
eral theory on cuspless sub-Riemannian geodesics within a sub-Riemannian man-
ifold in SE(d), with d ≥ 2, where we solve for their momentum in the general d-
dimensional case. We will explicitly solve the curve optimization problem Pcurve in
2D (i.e. d = 2) with a corresponding cuspless sub-Riemannian geodesic lifted prob-
lem defined on a sub-Riemannian manifold within SE(2). We also derive the so-
lutions of Pcurve in 3D (i.e. d = 3) with a corresponding cuspless sub-Riemannian
geodesic problem defined on a sub-Riemannian manifold within SE(3). Besides
exact formulas for cuspless sub-Riemannian geodesics, we derive their geometric
properties, and we provide a full analysis of the range of admissible end-conditions.
Furthermore, we apply this analysis to the modeling of association fields in neuro-
physiology.

1 Introduction

Curve optimization plays a major role both in imaging and visual perception. In
imaging there exist many works on snakes and active contour modeling, whereas
in visual perception illusionary contours arise in various optical illusions [38, 42].
Mostly, such snake and active contour models involve curve optimization in Rd ,
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d ≥ 2, that rely on Euler’s elastica curves [24] (minimizing
∫
(|κ|2+β 2)ds) in order

to obtain extensions where typically external forces to the data are included, cf. [9,
12, 50–52] .

The elastica problem suffers from the well-known fact that not every stationary
curve is a global minimizer, e.g. many local minimizers exist, cf. Figure 1. Sta-
tionarity of a curve can be reasonably checked by the visual system using local
perturbations, whereas checking for (global) optimality [45, 46] is much more dif-
ficult. Some visual illusions (e.g. the Kanisza triangle) involve corners requiring
abrupt resetting of initial and ending conditions, which are difficult to explain in
the elastica model. Another problem with elastica is that it is very hard to solve
the boundary value problem analytically [3, 4], and typically require (2d−1)-dim.
shooting schemes. On top of that elastica curves relate to modes of the direction
process (for contour-completion [21, 23, 38, 50]) where the direction of an oriented
random walker is deterministic and its orientation is random. Such deterministic
propagation only makes sense when the initial orientation is sharply defined. In-
stead Brownian motion with random behavior both in spatial propagation direc-
tion and in orientation direction ( [2, 13, 19, 22]), relates to hypo-elliptic diffu-
sion on the planar roto-translation group. Such a Brownian motion models con-
tour enhancement [19] rather than contour completion [21], see [17] for a short
overview. The corresponding Brownian bridge measures [22, 57] (relating to so-
called completion fields in imaging [3, 21, 53]) tend to concentrate towards optimal
sub-Riemannian geodesics [7, 13, 20, 35, 37, 45]. So both elastica curves and sub-
Riemannian geodesics relate to two different fundamental left-invariant stochastic
processes on sub-Riemannian manifolds on the 2D-Euclidean motion group [21]
(respectively to the direction process and to hypo-elliptic Brownian motion).

In short, advantages of the sub-Riemannian geodesic model over the elastica
model are:

• If d = 2, every cuspless sub-Riemannian geodesic is a global minimizer [8, 15].
• The Euler-Lagrange ODE for momentum (including normalized curvature vector

κ/
√
|κ|2 +β 2) can be reduced to a linear one,

• The boundary value problem can be tackled via effective analytic techniques,
• If d = 2, the locations where global optimality is lost can be derived explicitly.
• Sub-Riemannian geodesics (in contrast to lifted elastica) are parametrization in-

dependent in the roto-translation group SE(d). Here we note in case d = 2, the
sub-Riemannian manifold (SE(2),∆2,Gβ ) is encoded via a pinwheel structure of
cortical columns in the primary visual cortex [41].

However, the practical drawback of sub-Riemannian geodesics compared to elas-
tica is that their spatial projections may exhibit cusps and it is hard to analyze when
such a cusp occurs. Therefore, in this article we provide a complete analysis of
such sub-Riemannian geodesics, their parametrization, solving the boundary value
problem, and we show precisely when a cusp occurs. See Figure 3 and see Figure 2.

A variant of the sub-Riemannian problem that ensures avoiding cusps is the fol-
lowing variational problem, which we will explain next.
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Fig. 1: Stationary curves
of the elastica problem
(
∫ `

0 κ2(s) + β 2ds → min)
do not need to be global
minimizers, cf. [44]. E.g.
the non-dashed elastica
is a global minimum (for
β = 1), whereas in dashed
lines we have depicted
a local minimum. This
is in contrast to cuspless
sub-Riemannian geodesics
in (SE(2),∆2,Gβ ) where
every stationary curve is
globally optimal.

Fig. 2: An example of a
smooth sub-Riemannian
geodesic in (SE(2),∆2,Gβ )
whose spatial projection
shows a cusp.

On the space of sufficiently regular curves in Rd , we define a functional E :
W 2,1([0, `],Rd)→ R+, with ` ∈ R+ being the length (free) of the curves, by

E (x) :=
∫ `

0

√
κ(s)2 +β 2 ds. (1)

Here, s denotes the arc-length parameter of curve x and κ : [0, `]→ R+ ∪{∞} de-
notes the absolute curvature ‖ẍ(·)‖ of the curve x at each arc-length, and β > 0 is a
constant.

The two dimensional case (i.e. d = 2) of this variational problem was studied
as a possible model of the mechanism used by the primary visual cortex V1 of the
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Fig. 3: Top left: example of a spatially projected sub-Riemannian geodesic without cusp (i.e. a
solution of Pcurve ). Top right: example of an elastica curve reaching points x < 0. Such a (weak)
connection is not possible with cuspless sub-Riemannian geodesics. Instead we see in the bottom
left figure a comparable example of a spatially projected sub-Riemannian geodesic connecting the
gin = (0,0,0) with g f in = (0,y f in,0) via two cusps. Bottom right: not all points in x ≥ 0 can be
reached via a globally minimizing geodesic, here we have depicted the set R of admissible end-
conditions g f in = (x f in,y f in,θ f in) via black cones on half circles with radius 1 and 2.

human brain to reconstruct curves which are partially hidden or corrupted. The two
dimensional model was initially due to Petitot (see [40, 41] and references therein).
Subsequently, the sub-Riemannian structure was introduced in the problem by Pe-
titot [42] for the contact geometry of the fiber bundle of the 1-jets of curves in the
plane (the polarized Heisenberg group) and by Citti and Sarti [13, 47] for the prin-
cipal bundle on SE(2) also considered in this article. The stationary curves of the
problem were derived and studied by Boscain, Charlot and Rossi in [7], by Duits
in [20], by Sachkov in [35] and their global optimality is shown by Boscain, Duits,
Rossi and Sachkov in [8, 15]. The two dimensional problem relates to a mechanical
problem completely solved by Sachkov [37, 45, 46]. It was also studied by Hladky
and Pauls in [32] and by Ben-Yosef and Ben-Shahar in [6]. Within Section 3 of this
article we will summarize only the main results from our previous works [8,15]. For
detailed proofs of these results, we refer the reader to [8, 15].
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Many imaging applications such as DW-MRI require an extension to higher di-
mensions, see e.g. [14, 23, 27, 50], which motivates us to study the higher dimen-
sional curve optimization of the functional given by Eq. (1).

Let x0,x1 ∈ Rd and n0,n1 ∈ Sd−1 = {v ∈ Rd |‖v‖ = 1}. The goal is to find an
arc-length parameterized curve s 7→ x(s) such that

x = arg inf
y ∈W 2,1([0, `],Rd), `,
y(0) = x0, ẏ(0) = n0,
y(`) = x1, ẏ(`) = n1

E (y). (2)

We shall refer to this curve optimization problem as problem P. We assume that the
boundary conditions (x0,n0) and (x1,n1) are chosen such that a minimizer exists.

Remark 1. Due to rotation and translational invariance of the problem P, it is equiv-
alent to the problem with the same functional, but with boundary conditions (0,a)
and (RT

n0
(x1−x0),RT n1), where a∈ Sd−1 is a fixed axis, and with Rn0 is any rotation

that maps a fixed reference axis a to n0 ∈ Sd−1.

Remark 2. The physical dimension of parameter β is [Length]−1. From a physical
point of view it is crucial to make the energy integrand dimensionally consistent.
However, the problem with β > 0 is equivalent up to a scaling to the problem with
β = 1: The minimizer x of P with β > 0 and boundary conditions (x1,n1) relates
to the minimizer x of P with β = 1 and boundary condition (βx1,n1) by spatial
re-scaling, x(s) = β−1x(s).

Therefore, without loss of generality, we set (unless explicitly stated otherwise)

β = 1, x0 = 0, and n0 = ed

for the remainder of the article. Hence, the problem now is to find a sufficiently
smooth arc-length parameterized curve s 7→ x(s) such that

x = arg inf
y ∈W 2,1([0, `],Rd), `≥ 0,

y(0) = 0, ẏ(0) = ed ,
y(`) = x1, ẏ(`) = n1

E (y). (3)

We refer to the above problem as Pcurve.
We stress that there are restrictions on the boundary conditions for problem P

and problem Pcurve to be well-posed [7]. For instance in case d = 2, one must have(
R−1

nin
(xin−x f in),R−1

nin
n f in

)
∈R, (4)

where in d = 2 we have n f in = (cos(θ f in),sin(θ f in))
T and where R denotes the

range of the exponential map [8,15]. Roughly speaking this means that the endpoint
in Pcurve must be chosen such that it can be connected with a stationary curve.
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In the d-dimensional setting criterium (4) is necessary, but so far it is still an
open problem whether it is sufficient (for d > 2). Therefore, in this article we
will lift and extend problem Pcurve to a problem Pmec of finding sub-Riemannian
geodesics within SE(d), which is well-posed regardless the end-condition. Then
subsequently, we assume the end-condition in problem Pcurve is chosen such that
this end-condition gives rise to sub-Riemannian geodesic without cusps (i.e. ẋ(t) 6= 0
at the interior of the curve). Criterium (4) is then satisfied. Before we can formally
introduce this problem Pmec we need some preliminaries.

1.1 Preliminaries and Notations

• The group of rotations in Rd equals SO(d) = {R ∈Rd×d |RT = R−1,det(R) = 1}
• The special Euclidean motion group on Rd is given by the semi-direct product

SE(d) = Rd oSO(d). Its group elements are denoted by g = (x,R) and it is en-
dowed with group product (x1,R1)(x2,R2)= (R1x2+x1,R1R2). Its unity element
equals e = (0, I) with I denoting the d×d identity matrix. The group SE(d) acts
on the set Rd×Sd−1 via

(x,R)(y,n) = (Ry+x,Rn). (5)

• Let a ∈ Sd be a fixed element on the d-dimensional Euclidean sphere Sd := {x ∈
Rd | ‖x‖= 1}. We set a = ed , e.g. if d = 3 we set a = ez := (0,0,1)T , if d = 2 we
set a = ey := (0,1)T .

• Let d ≥ 2. The coupled space of positions and directions is defined as the Lie
group quotient

Rd oSd−1 := SE(d)/({0}×SO(d−1)) (6)

where we identify SO(d−1) with {R∈ SO(d) |Ra = a}. For simplicity elements
of Rd o Sd−1 are denoted by (y,n) with y ∈ Rd and n ∈ Sd−1, where we keep
in mind that each element represents a left coset within SE(d). Such a left-coset
contains equivalent rigid body motions that map (0,a) to (y,n) via the rigid body
motion action (5):

(y,n) = (y,Rn)(0,a)

where Rn ∈ SO(d) denotes any rotation that maps a onto n ∈ Sd−1.
• The left-invariant vector fields considered as differential operators acting on

smooth functions φ : SE(d)→R are given by the push-forward of the left multi-
plication Lg : SE(d)→ SE(d) given by Lgh = gh:

Ag = (Lg)∗Ae, i.e. Agφ = Ae(φ ◦Lg), (7)

where Ae ∈ Te(SE(d)), with Te(SE(d)) the tangent space at the unity element e.
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• We choose1 a basis in Te(SE(d)), say {A1, . . . ,Ad}∪{Ad+1, . . . ,Ad(d+1)/2} with
vector fields A j =

∂

∂x j , j = 1, . . . ,d acting only on the spatial part2, and
{Ad+1, . . . ,Ad(d+1)/2} acting only on the SO(d) part. The matrix representations
of the spatial generators are given by

Ak =

(
0 ek
0 0

)
∈ R(d+1)×(d+1),k = 1 . . .d.

The matrix representations of these angular generators in Te(SE(d)) are given by

Ad(d+1)/2−i+1 =



(
−En

n+1 +En+1
n 0

0 0

)
,

if i = n(n+1)/2
for some n ∈ {1, . . . ,d−1},(

E i0
n+2−En+2

i0
0

0 0

)
,

if i = n(n+1)/2+ i0
with i0 ∈ {1, . . . ,n}
for some n ∈ {1, . . . ,d−1}.

(8)

with E i
j ∈ Rd×d a matrix with all zero elements except for a unity 1 in row i and

column j. In this way we have

span{Ad+1, . . . ,Ad(d+1)/2}≡Te(SO(d))= so(d)= span{E i
j−E j

i | 1≤ i< j≤ d}.

Furthermore, we observe that the angular generators are ordered such that

span{A2d , . . . ,Ad(d+1)/2} ≡ Te({0}×SO(d−1)). (9)

So in view of Rd oSd−1, Eq.(6), the redundant directions in SE(d) (i.e. the angu-
lar generators of the stabilizing sub-group of a, which is isomorphic to SO(d−1))
come at the end. To this end we note that

d(d +1)/2 = dim(SE(d)) = dim(Rd oSd−1)+dim(SO(d−1))
= (2d−1)+(d−2)(d−1)/2.

(10)

Via the push-forward (Lg)∗ of the left-multiplication, Eq. (7), this basis {A1, . . . ,Ad(d+1)/2}
provides us a moving frame of reference in the group SE(d). This basis will be
denoted by {A1, . . . ,Ad(d+1)/2} with

Ai|g = (Lg)∗Ai , for all i = 1 . . . ,d(d +1)/2,g ∈ SE(d), (11)

with Ai = Ai|g=e. The corresponding dual frame {ωk}k=1,...,d(d+1)/2 is given by

〈ωk
∣∣∣
g
, A j

∣∣
g〉= δ

k
j , for all k, j = 1, . . . ,d(d +1)/2 and all g ∈ SE(d), (12)

1 The main results (in contrast to the structure constants ck
i, j) in this article do not depend on this

choice of basis, one may choose a different basis with an ordering such that (9) holds.
2 In previous works [19, 20] on SE(2), different ordering conventions are used in the Lie-algebra,
and we set a = ex instead of a = ey. In subsections 3.2–3.5 we will also adhere to that convention.



8 Remco Duits, Arpan Ghosh, Tom Dela Haije and Yuri Sachkov

where δ i
j are the usual components of the Kronecker tensor. Explicit formulas for

the frame of left-invariant vector fields and corresponding dual frame are derived
in [18, 20]. Note that the vector space of left-invariant vector fields forms a Lie-
algebra, with structure constants ck

i, j given by

[Ai,A j] = AiA j−A jAi =
d(d+1)/2

∑
k=1

ck
i, jAk. (13)

• Within this article we consider the sub-Riemannian manifold (SE(d),∆d ,Gβ ),
with base manifold SE(d), and with distribution ∆d , and metric tensor Gβ :
SE(d)×∆d×∆d → R given by

∆d = span{Ad , . . . ,A2d−1},

Gβ

∣∣
g

(
2d−1

∑
i=d

bi Ai|g ,
2d−1

∑
j=d

c j A j
∣∣
g

)
= β 2bdcd +

2d−1
∑

i=d+1
bici,

(14)

for all b = (bi)2d−1
i=d ,c = (ci)2d−1

i=d ∈ Rd . So by construction the horizontal left-
invariant vector fields {Ai}2d−1

i=d form an orthonormal basis in ∆d w.r.t. metric
tensor G1.

1.2 Lifting Problem Pcurve to Problem Pmec on (SE(d),∆d,Gβ )

Now we relate the problem Pcurve to a sub-Riemannian problem Pmec on the Lie
group quotient Rd o Sd−1 given by Eq. (6). We define this sub-Riemannian prob-
lem by means of the left-invariant frame {Ai}d(d+1)/2

i=d , recall Eq. (11), and its left-

invariant co-frame {ω i}d(d+1)/2
i=1 given by Eq. (12). Within this frame, we will con-

sider the horizontal part only, where we recall that the d-dimensional distribution
∆d is given by Eq. (14) where indices run from d to 2d − 1. See Figure 4 for a
visualization of this left-invariant frame in case d = 3. We will define Pmec on the
sub-Riemannian manifold (SE(d),∆d ,Gβ ), with distribution ∆d and metric tensor
Gβ given by Eq. (14), i.e.

Gβ = β
2
ω

d⊗ω
d +

2d−1

∑
i=d+1

ω
i⊗ω

i.

In the geometric control problem Pmec on SE(d), we use the sub-Riemannian arc-
length parameter t. In Pmec, we aim for curves γ : [0,T ]→ SE(d), with prescribed
boundary conditions γ(0) = (0, I) and γ(T ) = (x1,Rn1), such that
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Fig. 4: Illustrations of the left invariant frame representing a moving frame of ref-
erence along a curve on R3 o S2, i.e. d = 3. The spatial velocity and the angular
velocity are depicted in the frame to highlight the constraints between the spatial
and angular frame.

T∫
0

√
Gβ |γ(t)(γ̇(t), γ̇(t))dt =

T∫
0

√
β 2 (ud(t))2

+
2d−1

∑
i=d+1

(ui(t))2 dt

→minimize (with free T )

(15)

with

γ̇(t) =
2d−1

∑
i=d

ui(t)Ai|γ(t) =
2d−1

∑
i=d
〈ω i|γ(t), γ̇(t)〉Ai|γ(t)

where, ui ∈ L1([0,T ]) for i = d, . . . ,2d− 1 and Rn1 ∈ SO(d) is any rotation such
that Rn1a = n1. In particular, we only consider the stationary curves for which the
absolute curvature is L1 rather than L∞.

The existence of minimizers for the problem Pmec is guaranteed by the theorems
by Chow-Rashevskii and Filippov on sub-Riemannian structures [1]. We consider
those boundary conditions, for which a minimizer of Pmec does not admit an internal
cusp (i.e. an interior point with infinite curvature). Clearly, such minimizers are also
geodesics. We have the following important remarks about these minimizers.

Remark 3. • We have that for Pmec, there are no abnormal extremals. It follows
from the fact that any sub-Riemannian manifold with a 2-generating distribution
does not allow abnormal extremals (see Chapter 20.5.1 in [1]). This is the case,
since for ∆d := {Ad , . . . ,A2d−1} we have dim(∆d + [∆d ,∆d ]) = d(d +1)/2 =
dim(SE(d)).

• Due to the non-existence of abnormal extremals, the minimizers are always ana-
lytic [1].
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Remark 4. Geodesics of Pmec may lose local and/or global optimality after the end
condition at a conjugate point, or global optimality at a Maxwell point. A Maxwell
point is a point γ(t) on a sub-Riemannian geodesic γ such that γ(t) = γ̃(t) for an-
other extremal trajectory γ̃ with initial condition satisfying γ̃(0) = γ(0). A conjugate
point on the other hand is a critical point of the exponential map underlying the ge-
ometric control problem (cf. Theorem 21.11 in [1]). Here the exponential map maps
each allowable pair (λ (0), `), with initial momentum λ (0) and length `, to the end-
point γ(`) of the corresponding cuspless sub-Riemannian geodesic s 7→ γ(s) that
arises from integrating the canonical Euler-Lagrange or Hamiltonian equations (e.g.
obtained via the Pontryagin Maximum Principle). We will provide explicit tangible
formulas for this exponential map in case d ∈ {2,3}.

Remark 5. Throughout this article we will associate to a curve γ in (SE(d),∆d ,Gβ )

a corresponding curve γ in Rd oSd−1 by setting

(SE(d),∆d ,Gβ ) 3 γ(s) = (x(s),R(s))→

γ(s) := (x(s),n(s)) ∈ Rd oSd−1, with n(s) := R(s)a.
(16)

In the remainder of this article, we will write γ(s) both for curves in (SE(d),∆d ,Gβ )

and for its associated curve in Rd oSd−1 as it is clear from the context what is meant.

The energy functional in Problem Pcurve and Problem Pmec coincide for arc-length
parameterizable curves γ(·) = (x(·),R(·)) in (SE(d),∆d ,Gβ ), as we have

2d−1
∑

i=d+1
|〈ω i

∣∣
γ(s) , γ̇(s)〉|

2 = ‖κ(s)‖2 = κ2(s),

〈ωd
∣∣
γ(s) , γ̇(s)〉= ‖ẋ(s)‖= 1,

(17)

where κ(s) = ẍ(s) denotes the curvature vector and κ(s) the curvature magnitude at
x(s) along the spatial part x of the curve γ .

Remark 6. Stationary curves of Problem Pcurve and the spatial part of stationary
curves of Problem Pmec coincide if the end-condition (x1,n1)∈Rd oSd−1 is chosen
such that it can be connected by a stationary curve of Pcurve (i.e. if the end condition
is contained within the range R of the exponential map of Problem Pcurve).
From now on, such end conditions will be called admissible end conditions. E.g. for
d = 2, we have shown [8] that for each admissible end condition, Problem Pcurve
is well-posed and there exists a unique stationary curve connecting the origin (0,a)
with (x1,n1) that is the global minimum of Problem Pcurve. Furthermore, in [15] we
have explicitly derived the set of admissible conditions R. We will summarize these
results in Section 3.
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1.3 Structure of the Article

In Section 2, we will derive general results for (cuspless) sub-Riemannian geodesics
in (Rd o Sd−1,∆d ,Gβ ). We apply the Pontryagin maximum principle and we will
show that for cuspless sub-Riemannian geodesics, the phase portrait of momentum
reduces to a d-fold planar hyperbolic phase portrait. We express their momentum
in terms of the initial momentum accordingly. We show that momentum is parallel
transported along the geodesics w.r.t. a Cartan connection, and we derive a theorem
allowing explicit integration to the sub-Riemannian geodesics from their momen-
tum. Finally, we show that cuspless sub-Riemannian geodesics are a good model
for association fields obtained in neurophysiology and neuropsychology.

In Section 3, we consider the special case d = 2, where we derive the unique
globally optimal cuspless sub-Riemannian geodesics and their properties. We also
carefully analyze the set R of admissible end conditions, which is contained in
x≥ 0, and for which we solve the boundary value problem associated with Problem
Pcurve via a semi-analytic method, allowing for a 1D numerical shooting algorithm
to solve the boundary value problem. We also obtain a description and computation
of the piecewise smooth boundary ∂R. From this description we deduce that the
extreme orientations per positions are given by endpoints of geodesics ending in a
cusp and/or departing from a cusp.

In Section 4, we consider the special case d = 3, where we explicitly derive the
stationary curves for admissible end conditions (allowing a connection via cusp-
less sub-Riemannian geodesics). We express their torsion and curvature in terms
of momentum, from which we deduce a wide range of geometrical properties.
E.g. we show that if the boundary-conditions are co-planar, we obtain the sub-
Riemannian geodesics with d = 2. Numerical computations show that the sub-
Riemannian geodesics are again contained within cones determined by endpoints
of those geodesics that end and/or depart from a cusp, supporting (together with
the co-planarity results) our conjecture that the exponential map of the geometric
control problem has similar homeomorphic and diffeomorphic properties as in the
case d = 2, leaving a challenging open problem for future research. Furthermore,
we show that the extreme sub-Riemannian geodesics departing from a cusp will be
contained entirely in the half-plane z≥ 0.

In Section 5 we consider the special case d = 4, where we explicitly derive mo-
mentum of the stationary curves.

2 Sub-Riemannian Geodesics in (Rd oSd−1,∆d,G1)

A general well-established tool to deal with geometric control problems, following
a Hamiltonian approach, is the Pontryagin Maximum Principle (PMP) [1, 43, 55].
In Appendix A, we formally apply the Pontryagin maximum principle to prob-
lem Pmec of finding sub-Riemannian geodesics in the sub-Riemannian manifold
(SE(d),∆d ,G1). There we also include techniques from theoretical mechanics, fol-
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lowing a Lagrangian optimization approach as proposed by [10,11] which produces
the same canonical equations, to simplify the canonical equations considerably. The
resulting equations are surprisingly simple and structured as we will show next. Let

λ (t) =
d(d+1)/2

∑
i=1

λi(t) ω
i∣∣

γ(t) =
2d−1

∑
i=1

λi(t) ω
i∣∣

γ(t)

denote the momentum along the sub-Riemannian geodesics (stationary curves t 7→
γ(t) = (x(t),R(t))) expressed in sub-Riemannian arc-length t. Here,

λi = 0 for all 2d ≤ i≤ d(d +1)/2 = dim(SE(d)),

since momentum does not contain components in the redundant directions ω2d =
ω2d+1 = . . .= ωd(d+1)/2 = 0, recall Eq. (10) and Eq. (6). To this end we recall that
we are interested in connecting points in the Lie group quotient

Rd oSd−1 = SE(d)/({0}×SO(d−1)),

and the d(d − 1)/2-dimensional Lie-algebra spanned by {A2d , . . . ,Ad(d+1)/2} is
precisely the Lie algebra of the SO(d − 1) subgroup (i.e. the Lie-algebra of the
stabilizer subgroup of our arbitrarily fixed a ∈ Sd−1). Then the canonical equations
are given by

γ̇(t) =
2d−1

∑
i=d

λi(t) Ai|γ(t) ,

λ̇i(t) =−
2d−1

∑
j=d

2d−1
∑

k=1
ck

i, jλk(t)λ j(t),
(18)

where the first equation relates to the horizontal part of PMP and the second equation
to the vertical part of PMP. These equations can be combined in a single equation
using a Cartan connection ∇ on a cotangent bundle of the sub-Riemannian manifold
(SE(d),∆d ,Gβ ) that is derived from a Cartan-Maurer form on the underlying prin-
cipal fiber bundle (akin to [15, App.C] for d = 2 and [30, App.A] for d = 3). More
explicitly, it turns out that (as we shall prove in Theorem 2):

∇γ̇ λ = 0⇔
2d−1

∑
i=d

(
λ̇i +

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, j γ̇

j
λk

)
ω

i = 0.

with γ̇k := 〈ωk
∣∣
γ
, γ̇〉, which according to the first equality in (18) (i.e. the horizontal

part of PMP) is equal to λk. Computation of (18), where we omit the vanishing
structure constants, see (13), yields
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λ̇k(t) =−λd(t)λ2d−k(t)cd
k,2d−k for k = 1 . . . ,d−1,

λ̇d(t) =−
d−1
∑

k=1
λk(t)λ2d−k(t)ck

d,2d−k,

λ̇k(t) =−λd(t)λ2d−k(t)c2d−k
k,d for k = d +1, . . . ,2d−1,

λ̇k(t) = 0 for k = 2d, . . . ,d(d +1)/2.

(19)

Now, only for cusp-less sub-Riemannian geodesics γ of problem Pmec, we switch to
spatial arc-length parameter s, where we note that along such curves we have

t ′(s) =
√
|κ(s)|2 +1 and s′(t) = λd(t) (20)

which follows from ‖ẋ(s)‖ = 1 and Eq. (18). On top of that, we use the cyclic
property on the structure constants that holds for structure constants of SE(d):

cd
k,2d−k = ck

2d−k,d , for k = 1 . . . ,d−1,

and we obtain the following remarkably simple ODE system

λ̈ k(s) = λ k(s), for k 6= d,

(λ d(s))λ̇ d(s) =−
2d−1

∑
k=d+1

(λ k(s))λ̇ k(s),
(21)

where λ k(s) := λk(t(s)) for k = 1 . . . ,2d−1. Then we use the fact (akin to [15,30])
that orbits in the augmented space of position and momentum are contained in the
co-adjoint orbits3 of SE(d), i.e.

d

∑
k=1
|λk(s)|2 =

d

∑
k=1
|λk(0)|2 =: c2, (22)

for all 0≤ s≤ smax, where smax will be computed later, and the fact that λ d is positive
(by Eq. (20)) to solve for momentum of cuspless sub-Riemannian geodesics:

λ k(s) = λ k(0)cosh(s)+ λ̇ k(0)sinh(s), for k 6= d,

λ d(s) =

√
c2−

d−1
∑

k=1
|λ (s)|2.

(23)

Remark 7. In the remainder of this article, we will just write λ (s) instead of λ (s).
When writing λ̇ (s), we mean d

ds λ (s).

Remark 8. Besides preservation law (22), we deduce the preservation laws

2d−1

∑
i=d
|λi|2 = 1 and W (λi,λ j) := λiλ̇ j−λ jλ̇i = λi(0)λ̇ j(0)−λ j(0)λ̇i(0), (24)

3 Conservation law (22) can also be deduced from the second part of Eq.(21).
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where W denotes the (constant) Wronskian of λi and λ j for each pair i, j ∈
{1, . . . ,d−1} with i 6= j.

We represent the momentum co-vector λ (s) =
2d−1

∑
i=1

λi(s) ω i
∣∣
γ(s) by storing its com-

ponents in a row-vector where we split spatial and angular part

λ = (λ (1),λd ;λ
(2)),

with λ
(1)=(λ1, . . . ,λd−1) (where the component index increases), λ

(2)=(λ2d−1, . . . ,λd+1)
(where the component index decreases). Then Eq.(21) becomes

λ̇
(1)
(s) = Λλ

(2)(s),

λ̇d(s) =−(λd(s))−1
d−1
∑

k=1
λk(s)λ2d−k(s)ck

d,2d−k,

λ̇
(2)
(s) = Λλ

(1)(s),

where Λ = diag
(
{cd

k,2d−k}
d−1
k=1

)
∈ R(d−1)×(d−1) is a diagonal matrix whose diago-

nal elements are determined by the vector {cd
k,2d−k}

d−1
k=1 whose elements are within

{−1,1}. Since Λ 2 = I, it produces the solutions

λ
(1)(s) = λ

(1)(0)cosh(s)+Λλ
(2)(0)sinh(s),

λd(s) =
√

1−‖λ (2)(s)‖2 =

√
c2−‖λ (1)(s)‖2,

λ
(2)(s) = λ

(2)(0)cosh(s)+Λλ
(1)(0)sinh(s).

(25)

In turn, these formulas allows us to compute the arc-length towards a cusp

smax(λ (0))= log


√

1+ c2 +

√
|1+ c2|2−‖λ (1)(0)+Λλ

(2)(0)‖‖λ (1)(0)−Λλ
(2)(0)‖

‖λ (1)(0)+Λλ
(2)(0)‖

 ,

(26)
since at a cusp, we have λd(tcusp) = 0 and we have

lim
s↑smax

‖λ (2)(s)‖= 1⇔ lim
s↑smax

|λd(s)|= 0⇔ lim
s↑smax

κ(s)→ ∞,

recall Eq. (20), with tcusp = t(smax).
Let us summarize these results on sub-Riemannian geodesics in (SE(d),∆d ,G1)

in the following theorems.
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Theorem 1. Along the sub-Riemannian geodesics in (SE(d),∆d ,G1), the following
canonical equations hold

γ̇(t) =
2d−1

∑
i=d

λi(t) Ai|γ(t) ,

λ̇i(t) =−
2d−1

∑
j=d

2d−1
∑

k=1
ck

i, jλk(t)λ j(t),
(27)

along cuspless sub-Riemannian geodesics (i.e. the sub-Riemannian geodesics that
allow parametrization by spatial arc-length s) in (SE(d),∆d ,Gβ ). Momentum λ =
2d−1

∑
i=1

λiω
i satisfies the simple ODE system Eq. (21), whose explicit solution is given

by Eq. (25). The spatial arc-length towards a cups is given by Eq. (26).

Proof For Eq. (27), see Appendix A. The remainder of the proof follows by the
earlier derivations in between Eq. (19) and Eq. (26). �

Corollary 1. The momentum orbit s 7→ λ (s) of a sub-Riemannian geodesic s 7→ γ(s)
is determined by a d-fold hyperbolic phase portrait, see Figure 5,

d
ds

(
−ci

d,2d−iλ2d−i(s)
λi(s)

)
=

(
0 −1
1 0

)(
−ci

d,2d−iλ2d−i(s)
λi(s)

)
for i = 1, . . . ,d,

and preservation law λd(s) =

√
1−

2d−1
∑

i=d+1
|λi(s)|2 for all s≤ smax(λ (0)).

Fig. 5: In momentum space, sub-Riemannian geodesics reduce to a d-fold hyper-
bolic phase portrait, see Corollary 1.

Theorem 2. • Horizontal exponential curves given by s 7→ g0 Exp(s
2d−1

∑
i=d

ciAi),

with cd = 1, g0 ∈ SE(d), are the auto parallel curves (i.e. ∇γ̇ γ̇ = 0) w.r.t. connec-
tion ∇̄ on the sub-Riemannian manifold (SE(d),∆d ,Gβ ) given by
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∇̄XA =
2d−1

∑
k=d

(
ȧk−

2d−1

∑
i, j=d

ck
i, j γ̇

ia j

)
Ak (28)

with X =
2d−1

∑
i=d

γ̇ iAi, A =
2d−1

∑
k=d

akAk.

• Along an exponential curve, the tangent vectors are covariantly constant, whereas,
along a stationary curve, one has covariantly constant momentum, i.e.

∇̄γ̇ λ =
2d−1

∑
i=1

(
λ̇i +

2d−1

∑
j=d

2d−1

∑
k=1

ck
i, jλk γ̇

j

)
ω

i = 0.

Proof Define γ̇ i := 〈ω i
∣∣
γ
, γ̇〉. Then following the same approach as done in [20], [15,

App.C] (for the case d = 2) and done in [30, App.A] (for the case d = 3), the Cartan
connection on the tangent bundle is given by Eq. (28). From Eq. (28), it is directly
clear that the auto-parallel curves are horizontal exponential curves, since

∇̄γ̇ γ̇ = 0⇔∀i∈{d,...,2d−1}γ̈
i = 0⇔∀i∈{d,...,2d−1}γ̇

i = ci for some constants ci

⇔ γ(s) = γ(0)Exp
(

s
2d−1

∑
i=d

ciAi

)
.

and in order to ensure s to be the spatial arclength parameter we must have cd = 1.
Now the Cartan connection on the tangent bundle naturally imposes the following

Cartan connection formula on the co-tangent bundle given by

∇γ̇

2d−1

∑
i=1

λiω
i|γ =

2d−1

∑
i=1

(
λ̇i +

2d−1

∑
j=1

2d−1

∑
k=1

ck
i, jλk γ̇

j

)
ω

i∣∣
γ
, (29)

which follows from Eq. (28) and d〈ωk|γ ,A j|γ〉= 〈∇γ̇ ωk|γ ,A j|γ〉+〈ωk|γ ,∇γ̇A j|γ〉=
0. For details see [30, Lemma A.11]. Now, by the horizontal part of PMP (i.e. first
equation in Theorem 1), we have

γ̇
i = λi for all i ∈ {d, . . . ,2d−1},

so that the result follows by substituting this equality into Eq. (29). �
Now that we have computed momentum λ (s) in Theorem 1, we can integrate the

equation in Theorem 2 to find the sub-Riemannian geodesics.

Theorem 3. Let m : G→ Aut(R2d) denote the matrix group representation (see Re-
mark 9) such that

dλ |
γ
= λ |

γ
m(γ−1)dm(γ),

where we represent the covector field λ |
γ
= ∑

2d−1
i=1 λi ω i

∣∣
γ

along the geodesic γ(·) =
(x(·),R(·)), by a row-vector λ |

γ
= (λ1, . . . ,λ2d)|γ , where we note λ2d = 0. Then

along the sub-Riemannian geodesics in (SE(d),∆d ,Gβ ) the following relation with
momentum applies
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λ (s)m(γ(s))−1 = λ (0)m(γ(0))−1.

Proof Note that ∇γ̇(s) λ |
γ(s) = 0 iff

d
ds

λ (s)|
γ(s)− λ (s)|

γ(s) m((γ(s))−1)
d
ds

m(γ(s)) = 0

for all 0≤ s≤ smax(λ (0)). The rest follows by

d
ds

(λ (s)(g(s))−1) =−λ (s)(g(s))−1
γ̇(s)(g(s))−1 + λ̇ (s)(g(s))−1 = 0 ,

with g(s) = m(γ(s)). The last equation must be multiplied with g(s) from the right
to obtain the result. �

Remark 9. For d = 2, this group representation m is given by Eq. (33). For d > 2
this group representation m is given by

m(x,R) =
(

R σxR
0 R

)
, (30)

where σx =
d
∑

i=1
xiAd+i ∈ so(d), with x =

d
∑

i=1
xiei and Ad+i ∈ so(d). Here, we have

σRx = RσxR−1 and thereby m(g1g2) = m(g1)m(g2) for all g1,g2 ∈ SE(d). Then

dλ = λm(γ−1)dm(γ) = λ

(
R−1dR σR−1dx

0 R−1dR

)
= λ

(
σ(ωd+1,...,ω2d)T σ(ω1,...,ωd)T

0 σ(ωd+1,...,ω2d)T

)
,

with short notation ω j = ω j
∣∣
γ
, λ = λ |

γ
, dλ = dλ |

γ
, and where we represent cov-

ector λ = ∑
2d−1
i=1 λi ω i

∣∣
γ

by a row-vector λ = (λ1, . . . ,λ2d). Note that ω j
∣∣
γ
= 0 and

λ j = 0 for all j ≥ 2d along sub-Riemannian geodesics γ(·) = (x(·),R(·)).

2.1 Summary: The Exponential Map of Control Problem Pcurve

Now let us combine the results of Theorems 1, 2 and 3. Theorem 1 provides us
momentum λ (s) which is entirely determined by λ (0). This is not surprising as by
Theorem 2, one has covariantly constant momentum, as follows from the canon-
ical equations of the Pontryagin maximum principle. The structure of the Cartan
connection can be employed to explicitly derive an admissible endpoint γ(`) of a
cuspless sub-Riemannian geodesic γ from a pair
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(λ0, `) ∈D := {(λ0, `) ∈ C ×R+ | `≤ smax(λ (0)) 6= 0},

with C := {λ (0) ∈ T ∗e (SE(d)) |
2d−1

∑
i=d
|λi(0)|2 = 1} (31)

consisting of momentum λ0 and length `, with the preservation law of Theorem 3.
The associated mapping

(λ0, `) 7→ γ(`) =: Ẽxp(λ0, `)

is called exponential map4 Ẽxp of Pcurve . It coincides with the exponential map for
Pmec when restricting to admissible end-conditions.

In the subsequent sections we apply this procedure to get an explicit formula
for the exponential map Ẽxp for the special cases of interest, respectively d = 2
and d = 3. We will also provide analysis and visualization of the range R :=
Ẽxp(D) of the exponential map and show that it provides a reasonable group-
ing criterium to connect two points, say (0,a) and (x1,n1) within Rd o Sd−1 :=
SE(d)/({0}× SO(d− 1)). This analysis of problem Pcurve (and Pmec for admissi-
ble end-conditions) is related to earlier neuro-psychological models of association
fields [26, 41].

3 The Case d = 2: Sub-Riemannian Geodesics in (R2oS1,∆2,G1)

Let us first apply the results regarding sub-Riemannian geodesics within (Rd o
Sd−1,∆d ,Gβ ) to the special case d = 2. Following our standard conventions, we
get

a := ey and furthermore
A1 = ∂x, A2 = ∂y, A3 = ∂θ ,
A1 = cosθ∂x + sinθ∂y, A2 =−sinθ∂x + cosθ∂y, A3 = ∂θ ,
ω1 = dθ ,ω2 = cosθdx+ sinθdy,ω3 =−sinθdx+ cosθdy,
∆2 = span{A2,A3},
Gβ = ω3⊗ω3 +β 2ω2⊗ω2 where we set β = 1.

This produces the following canonical ODE-system for momentum λ =
3
∑

i=1
λiω

i

along the sub-Riemannian geodesics:

λ̇1(t) = λ2(t)λ3(t), λ̇2(t) =−λ1(t)λ3(t), λ̇3(t) = λ1(t)λ2(t),

expressed in sub-Riemannian arclength parameter t. Along cuspless sub-Riemannian
geodesics, this ODE-system simplifies to

λ̇1(s) =−λ3(s), λ̇2(s) =−λ1(s)λ3(s)
λ2(s)

, λ̇3(s) =−λ1(s),

4 In our notation of the exponential map, we include a tilde to avoid possible confusion with the
exponential map Exp : Te(G)→ G from Lie algebra to Lie group.
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using the spatial arc-length parameter s, and we find preservation laws

λ 2
1 +λ 2

2 = c2 := λ 2
1 (0)+λ 2

2 (0), λ 2
2 +λ 2

3 = 1,

and solutions

λ1(s) = λ1(0)cosh(s)−λ3(0)sinh(s),
λ2(s) =

√
1−|λ3(s)|,

λ3(s) = dθ

dt (t(s)) =
κ(s)√

κ2(s)+1
= λ3(0)coshs−λ1(0)sinhs,

where κ(s) denotes the curvature of the spatially projected curve s 7→ (x(s),y(s)).
The maximum length towards a cusp is given by

smax(λ (0)) = log
1+ c

|λ1(0)−λ3(0)|
, (32)

with c=
√
|λ1(0)|2 + |λ2(0)|2. Let m : SE(2)→ R3×3 be given by

m(x,y,θ) =

 cosθ sinθ −x
−sinθ cosθ y

0 0 1

 . (33)

Then along the geodesics we have

λ (s) m(γ(s)) = λ (0) m(γ(0)) = λ (0) for all s ∈ [0,smax(λ (0))),

which allows us to compute the endpoint γ(s) = (x(s),y(s),θ(s)) ∈ SE(2) of a cus-
pless sub-Riemannian geodesic from a pair (s,λ (0)) with s≤ smax(λ (0)).

3.1 Switching to the Case a = ex and Re-labeling of the Lie-algebra

So far we have applied the general formula for sub-Riemannian geodesics within
(Rd o Sd−1,∆d ,G1) to the special case d = 2, where we kept track of consistency
with the case d ≥ 3.

However, in order to directly relate to previous works by the authors on sub-
Riemannian geodesics within the 2D-Euclidean motion group and orientation scores
[19, 20], we will in the remainder of this section switch to the case a = ex (instead
of a = ey), and we will re-label the Lie-algebra as follows:

A1 := ∂θ , A2 := cosθ∂x + sinθ∂y, A3 :=−sinθ∂x + cosθ∂y. (34)

The corresponding dual vectors are given by

ω1 := dθ , ω2 := cosθdx+ sinθdy, ω3 :=−sinθdx+ cosθdy, (35)
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that we will use to represent the momentum covector λ =
3
∑

i=1
λiω

i accordingly.

3.2 Explicit Parameterizations of the Cuspless Sub-Riemannian
Geodesics and their Properties

Let us explicitly compute the exponential map for the case d = 2 using spa-
tial arc-length parametrization which provides us an explicit formula for the sub-
Riemannian geodesics in (SE(2),∆2,G1) (recall Remark 2). We will use the label-
ing/ordering conventions (34) and (35).

Theorem 1 directly provides us the linear ODE

λ̈1(s) = λ1(s)⇔
d2

ds2

(
κ(s)√

κ2(s)+1

)
=

κ(s)√
κ2(s)+1

,

which directly provides us with the curvature κ(s) of the cuspless sub-Riemannian
geodesics in terms of λ (0) = λ1(0)dθ +λ2(0)dx+λ3(0)dy and spatial arc-length
s, with s ≤ smax(λ (0)), recall Eq. (32). Now instead of integrating a Frenet ODE
system, we apply an effective integration procedure via Theorem 3. We have

dλ̂ = λ̂ (m(γ))−1dm(γ)⇔ λ̂ (s)m(γ(s)) = λ̂ (0)m(γ(0)) = λ̂ (0), (36)

where we use short notation for the row-vector

λ̂ := (−λ3(s),λ2(s),λ1(s)) = (λ̇1(s),
1√

κ2(s)+1
,

κ(s)√
κ2(s)+1

) (37)

with m(γ) =

 cosθ −sinθ x
sinθ cosθ y

0 0 1

 the most common group representation of SE(2).

Lemma 1. Let c :=
√
|λ2(0)|2 + |λ3(0)|2. There exists a unique h0 ∈ SE(2) such

that λ̂ (0)m(h−1
0 ) = (c,0,0). Consequently, we have for γ̃(s) := h0γ(s) that

(−λ3(s),λ2(s),λ1(s)) = λ̂ (s) = (c 0 0) m(γ̃(s)). (38)

Proof Follows by Theorem 3 and the fact that m is a group representation. �

Application of this lemma provides the following explicit formula for the sub-
Riemannian geodesics in (SE(2),∆2,G1).

Theorem 4. The exponential map of Pcurve expressed in spatial arc-length parametriza-
tion is given by

Ẽxp
(

3
∑

i=1
λi(0) ω i

∣∣
γ(0)=e , s

)
,

= γ(s) = (x(s),y(s),θ(s)),
(39)
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for all s ∈ [0, `] with total spatial length ` ≤ smax(λ (0)). The cuspless geodesics in
(SE(2),∆2,G1) are given by γ(s) = h−1

0 γ̃(s), i.e.

θ(s) = θ̃(s)−θ 0 ∈ [−π,π],

with cos(θ 0) =
−λ3(0)

c and θ 0 ∈ [−π,0],

x(s) = RT
0 (x̃(s)−x0) ,

with RT
0 =

(
cosθ 0 sinθ 0
−sinθ 0 cosθ 0

)
= 1

c

(
−λ3(0) −λ2(0)
λ2(0) −λ3(0)

) (40)

with h0 = (x0,R0) ∈ SE(2), x0 = (−λ3(0)
c ,0)T . Here curve γ̃ = (x̃, ỹ, θ̃) is given by

x̃(s) = λ1(s)
c = λ1(0)cosh(s)−λ3(0)sinh(s)

c ,

ỹ(s) =− 1
c

s∫
0

√
1−|λ1(τ)|2 dτ,

θ̃(s) = arg( ˙̃x(s)+ i ˙̃y(s))
= arg(−λ3(s)− iλ2(s)) ∈ [−π,0],

(41)

with λ1(s)= λ1(0)coshs−λ3(0)sinhs, λ3(s)= λ3(0)coshs−λ1(0)sinhs and where
c=

√
|λ2(0)|2 + |λ3(0)|2 ≥ 0.

From these formulas one can directly deduce the following properties:

• If c ≤ 1, the curvature does not switch sign and we obtain U-shaped curves,
unless λ1(0) = λ3(0) = 0 in which case we get a straight line.

• If c > 1 and λ1(0)λ3(0) > 0, then the curve is an S-shaped curve with bending-
point at sB = log ‖λ1(0)+λ3(0)‖

‖λ1(0)−λ3(0)‖
.

• If c= 1 and λ3(0) = λ1(0) we have smax = ∞.
• The cuspless sub-Riemannian geodesics are monotonically increasing along the

λ2(0)ex +λ3(0)ey-axis:

− ˙̃y(s)≥ 0⇔ λ2(0)ẋ(s)+λ3(0)ẏ(s)≥ 0,

and even if they tend towards a cusp where curvature tends to infinity, they do
not roll up and their sub-Riemannian length stays finite.

• The cuspless sub-Riemannian geodesics are contained within the half-space
x≥ 0 and the boundary x = 0 can only be reached with an angle (w.r.t. the posi-
tive x-axis) of π as formally proven in [15, Thm.7 and Thm.8].

3.3 The Set R and its Boundary ∂R

Now that we have computed the exponential map, let us have a look at the range
R = Ẽxp(D), which according to the results in [8] coincides precisely with the
points for which Pcurve admits a global minimum. In fact, we have
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Theorem 5. In Pcurve with d = 2, we set initial condition (xin,yin,θin) = e = (0,0,0)
and consider (x f in,y f in,θ f in) ∈ R2 oS1. Then

• (x f in,y f in,θ f in) ∈R if and only if Pcurve has a unique minimizing geodesic which
exactly coincides with the unique minimizer of Pmec .

• (x f in,y f in,θ f in) /∈R if and only if problem Pcurve is ill-defined (i.e. Pcurve does not
have a minimizer).

Corollary 2. Set gin = e. Then g f in is an admissible end-condition for Pcurve if
g f in ∈R.

According to the next theorem the exponential map has nice smoothness and bijec-
tion properties and properly maps analytic trajectories in the hyperbolic phase por-
trait in momentum space onto analytic sub-Riemannian geodesics in (SE(2),∆2,G1).
For a visualization on how this is achieved physically, see Figure 6.

Theorem 6. Let D and R denote respectively the domain and range of the exponen-
tial map of Pcurve defined on (SE(2),∆2,G1). Then,

• Ẽxp : D→R is a homeomorphism if we equip D and R with the subspace topol-
ogy5.

• Ẽxp : D̊→ R̊ is a diffeomorphism.

Finally, the boundary ∂R is given by

∂R= SB∪ l ∪SR, (42)

with l := {(0,0,θ) |−π ≤ θ ≤ π} the sphere above the spatial origin,

SB := {Ẽxp(λ0,smax(λ0)) | λ0 ∈ C } (43)

the set of endpoints of geodesics ending at a cusp (the blue surfaces in Fig.6), and

SR :=
{

Ẽxp(λ0,s) |λ0 ∈ C with λ3(0) =±1 and s ∈ (0,smax(λ (0))
}

(44)

the set of endpoints of geodesics departing from a cusp (the red surfaces in Fig.6).

Proof See [15, App.F].

As a result the set R is a connected set with a piecewise smooth boundary ∂R
given by Eq. (42). In fact, when taking the intersection with {(x1,n) | n ∈ S1} with
x1 = (x f in,y f in)∈R2 fixed we get a cone in S1. Sometimes this cone is bounded by a
red and a blue surface and sometimes it is bounded by the blue surfaces in Figure 6.
Also see Figure 7.

5 As D and R are not open w.r.t. standard topologies on the embedding spaces Te(SE(2))×R+

and R2×S1, these subspace topologies do not coincide with the induced topology imposed by the
embedding via the identity map. W.r.t. the subspace topologies the set D, respectively R, are open
sets and the homeomorphism Ẽxp : D→R is well-defined.
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1 

 
 
 
 
  

Fig. 6: Plots (from 3 perspectives a), b) and c)) of the range R of the exponential map of Pcurve .
Red surface: endpoints of geodesics starting from cusps. Blue surface: endpoints of geodesics
ending in cusps. The black lines are the intersections of the blue plane with the red plane. Green
surface: critical surface (c= 1) with ż0 =−z0. Purple surface: critical surface (c= 1) with ż0 = z0.
The critical surface splits the range of the exponential map into four disjoint parts C 1

1 , C 0
1 , C+

2
and C−2 that relate to the splitting of the phase space into C1

1 , C0
1 , C+

2 and C−2 in b) where we have
depicted R viewed from the x-axis. In c) we have depicted R viewed from the θ -axis.

Let us underpin this observation on the cone of reachable angles with a for-
mal theorem. To this end let θendcusp(x f in,y f in) denote the final angle (w.r.t. the
positive x-axis) of the geodesic ending in (x f in,y f in, ·) with a cusp and where
θbegincusp(x f in,y f in) denotes the final angle of a geodesic ending in (x f in,y f in, ·) start-
ing with a cusp. In case there exist two geodesics ending with a cusp at (x f in,y f in),
we order them by writing

θ
1
endcusp(x f in,y f in)≤ θ

2
endcusp(x f in,y f in).

Theorem 7. Let (x f in,y f in,θ f in) ∈R. If

|y f in| ≤ −x f in iE

(
iarcsinh x f in√

4−x2
f in

,
x2

f in−4

x2
f in

)
, and 0≤ x f in < 2. (45)

then we have
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y f in > 0⇒ θ f in ∈ [θbegincusp(x f in,y f in),θendcusp(x f in,y f in)],

y f in < 0⇒ θ f in ∈ [θendcusp(x f in,y f in),θbegincusp(x f in,y f in)],

otherwise (so in particular if x f in ≥ 2) we have

θ f in ∈ [θ 1
endcusp(x f in,y f in),θ

2
endcusp(x f in,y f in)].

Proof See [15, App.E]. For a direct graphical validation of Theorem 7 see Figure 6
(in particular the top view along the θ direction).

3.4 Solving the Boundary Value Problem

The inverse of the exponential map (λ0, `) 7→ Ẽxp(λ (0), `) = γ(`) = g f in in Theo-
rem (4) can be computed analytically to a large extent. That is, `, λ2(0), λ3(0) can
all be analytically expressed in terms of −1 ≤ λ1(0)≤ 1, which leaves an accurate
and efficient one dimensional numerical shooting algorithm to find the final remain-
ing unknown λ1(0), as given by the following theorem. Note that recently proposed
numerical approaches in the literature [6, 35] rely on three dimensional numerical
shooting algorithms.

Theorem 8. Let g f in ∈R. The inverse of the exponential map (λ0, `) 7→ Ẽxp(λ (0), `)=
γ(`) = g f in in Theorem 4 is given by

Fig. 7: Sub-Riemannian geodesics (and their spatial projections in grey) obtained by our analytical
approach to the boundary value problem. We have kept (x f in,y f in) fixed and we have varied θ f in

to full range such that our algorithm finds solutions (with relative errors less than 10−8). Left:
(x f in,y f in) = (1,1.5), middle: (x f in,y f in) = (2,1), right: (x f in,y f in) = (4,1). At the boundary of
cones of reachable angles, the endpoints of the sub-Riemannian geodesics are located on the cusp-
surface ∂R. End-points of geodesics departing from cusps are indicated in red and endpoints of
geodesics ending at cusps are indicated in red (as in Figure 6).
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λ (0) =
2
∑

i=1
λi(0)ω i,

`(λ (0),g f in) =


log λ1(0)

v , c= 1 and λ3(0) = λ1(0),
log v

λ1(0)
, c= 1 and λ3(0) =−λ1(0),

log v+w
λ1(0)−λ3(0)

, else
where v,w,c are given by
v = λ1(`) = λ1(0)− x f inλ3(0)+ y f inλ2(0),
w =−λ3(`) =−λ3(0)cosθ f in +λ2(0)sinθ f in,

c=
√
|λ2(0)|2 + |λ3(0)|2.

(46)

Here λ2(0),λ3(0) are expressed as follows:

λ2(0) = χ2(λ1(0)) :=
√

1−|λ1(0)|2,
−λ3(0) = χ3(λ1(0),g f in) := −b+sign(g f in)

√
D

2a ,

with a = x2
f in + sin2(θ f in),

b = 2x f in(λ1(0)+ y f inλ2(0))−λ2(0)sin(2θ f in),

c = |λ2(0)|2(y2
f in− sin2(θ f in))+2y f inλ1(0)λ2(0),

D = b2−4ac =: D(λ1(0),g f in),

and with sign function given by

sign(gfin) =


1 if g f in ∈ C+

2 ,
1 if g f in ∈ C 1

1 ∪C 0
1 is above V ,

−1 if g f in ∈ C 1
1 ∪C 0

1 is below V ,
−1 if g f in ∈ C−2 ,

(47)

with surface V ∈ SE(2) (corresponding to the solutions with λ3(0) = 0)

V =
{

Ẽxp(z0ω
1 +χ2(z0)ω

2, `) | z0 ∈ [−1,1] and 0≤ `≤ smax(z0ω
1 +χ2(z0)ω

2)
}
.

Finally, λ1(0) denotes the unique root F(λ1(0)) = 0 of F : I→ R+ defined on

I = {z0 ∈ [−1,1] |D(z0,g f in)≥ 0}

given by F(z0)= ‖Ẽxp(z0ω1+χ2(z0)ω
2+χ3(z0,g f in)ω

3, `(z0,g f in) )−g f in‖, where
‖ · ‖ denotes the Euclidean norm on R2×S1.

Proof By Theorem 5, there is a unique stationary curve connecting e and g f in ∈R.
The exponential map of Pcurve is a homeomorphism by Theorem 6 and thereby the
continuous function F has a unique zero, since ` and λ3(0) are already determined
by λ1(0) and g f in. W.r.t the formula for `, Theorem 1 (for d = 2) implies that:

λ1(`) = λ1(0)cosh`−λ3(0)sinh`, λ3(`) = λ3(0)cosh`−λ1(0)sinh`

from which e` can readily be obtained, noting that (by Theorem 4 for s = `):
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λ1(`) = λ1(0)− x f inλ3(0)+ y f inλ2(0), −λ3(`) =−λ3(0)cosθ f in +λ2(0)sinθ f in.

Finally, applying the preservation laws (recall Remark 8) |λ1(s)|2 + |λ2(s)|2 = 1
and |λ2(s)|2 + |λ3(s)|2 = |λ2(0)|2 + |λ3(0)|2 to the case s = ` provides a quadratic
equation for λ3(0) from which the result follows. For details on the choice of the
sign in the solution of this quadratic equation and surface V , we refer to [15, Lem.8].
�

Remark 10. Theorem 8 allows for fast and accurate computations of sub-Riemannian
geodesics, see Figure 7 where the computed geodesics are instantly computed with
an accuracy of relative L2-errors in the order of 10−8. For an example of the appli-
cation of Theorem 8 see Figure 8. Finally, we note that Theorem 6 implies that (our
approach to) solving the boundary-value problem is well-posed, i.e. the solutions
are both unique and stable.

Fig. 8: The particular case where g f in = (2,1,π/6), where sign(g f in) = −1 and
where unique root of F(·,g f in), whose domain I is indicated in green, is approxima-
tively λ1(0) ≈ 0.749551 (and thereby λ2(0) =

√
1−|λ1(0)|2, λ3(0) ≈ −0.809740

and L≈ 2.26253).

3.5 Modeling Association Fields with Solutions of Pcurve

Sub-Riemannian geometry plays a major role in the functional architecture of the
primary visual cortex (V1) and more precisely its pinwheel structure, cf. [42]. In
his paper [42], Petitot shows that the horizontal cortico-cortical connections of V1
implement the contact structure of a continuous fibration π : R×P→ P with base
space the space of the retina and P the projective line of orientations in the plane. He
applies his model to the Field’s, Hayes’ and Hess’ physical concept of an association
field, to several models of visual hallucinations [25] and to a variational model of
curved modal illusory contours [33, 38, 54].
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In their paper, Field, Hayes and Hess [26] present physiological speculations con-
cerning the implementation of the association field via horizontal connections. They
have been confirmed by Jean Lorenceau et al. [34] via the method of apparent speed
of fast sequences, where the apparent velocity is overestimated when the successive
elements are aligned in the direction of the motion path and underestimated when
the motion is orthogonal to the orientation of the elements. They have also been
confirmed by electrophysiological methods measuring the velocity of propagation
of horizontal activation [29]. There exist several other low-level vision models and
neuro-physiological measurements that have produced similar fields of association
and perceptual grouping [31, 39, 58]. For an overview see [42, ch:5.5,5.6].

Subsequently, we discuss three models of the association fields: Legendrian
geodesics, cuspless sub-Riemannian geodesics and horizontal exponential curves.
W.r.t. the latter model, we recall that horizontal exponential curves [20, 48] in the
sub-Riemannian manifold (SE(2),∆2,Gβ ), Eq.(14), are given by circular spirals

r 7→ g0 er(c1A1+c2A2) =(
x0+

c2

c1 (sin(c1r+θ0)−sin(θ0)),y0− c2

c1 (cos(c1r+θ0)−cos(θ0)),θ0+rc1
)
,

(48)

for c1 6= 0, g0 = (x0,y0,θ0) ∈ SE(2) and all r ≥ 0. If c1 = 0 they are straight lines:

g0erc2A2 = (x0 + rc2 cosθ0,y0 + rc2 sinθ0,θ0).

Clearly, these horizontal exponential curves reflect the co-circularity model [36].
To model the association fields from neuropsychology and neurophysiology Pe-

titot [42] computes “Legendrian geodesics”, [42, ch.6.6.4,eq.49] minimizing La-
grangian

√
1+ |y′(x)|2 + |θ ′(x)|2 under the constraint θ(x) = y′(x). This is directly

related6 to the sub-Riemannian geodesics in

((SE(2))0,Ker(−θ dx+dy),dθ ⊗dθ +dx⊗dx), (49)

where (SE(2))0 is the well-known nilpotent Heisenberg approximation ( [19, ch:5.4])
of SE(2), which minimize Lagrangian

√
1+ |θ ′(x)|2 under constraint θ(x) = y′(x).

The drawback of such curves is that they are coordinate dependent and not covari-
ant7 with rotations and translations. Similar problems arise with B-splines which
minimize Lagrangian 1 + |θ ′(x)|2 under constraint θ(x) = y′(x) which are com-
monly used in vector graphics.

To this end, Petitot [42] also proposed the “circle bundle model” which has the
advantage that it is coordinate independent. Its energy integral

6 The dual basis in (SE(2))0 is equal to (dθ ,dx,−θ dx + dy) and thereby the sub-Riemannian
metric on (SE(2))0 does not include the |y′(x)|2 term.
7 The corresponding minimization problem (and induced sub-Riemannian distance) is left invariant
in (SE(2))0 and not left-invariant in SE(2).
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∫ x f in

0

√
1+ |y′(x)|2 + |y′′(x)|2

(1+ |y′(x)|2)2 dx (50)

can be expressed as
∫ `

0

√
1+κ2ds, where s∈ [0, `] denotes spatial arc-length parametriza-

tion. So in case one restricts problem Pcurve to those admissible endpoints that
allow a cuspless sub-Riemannian geodesic which can be well-parameterized by
(x,y(x),θ(x)) with θ(x) = arctany′(x), this restricted problem coincides with Pe-
titot’s circle bundle model of finding sufficiently smooth curves x 7→ (x,y(x)) such
that the functional in Eq. (50) is minimal.

In Figure 9, we have modeled the association field with sub-Riemannian geodesics
(β = 1) and horizontal exponential curves (Eq. (48) as proposed in [5, 48]). Hori-
zontal exponential curves are circular spirals and thereby rely on “co-circularity”, a
well-known principle to include orientation context in image analysis, cf. [28, 36].

On the one hand, a serious drawback arising in the co-circularity model for asso-
ciation fields is that only the spatial part (x f in,y f in) of the end-condition can be pre-
scribed (the angular part is imposed by co-circularity), whereas with geodesics one
can prescribe (x f in,y f in,θ f in) (as long as the ending condition is contained within
R). This drawback is clearly visible in Figure 9, where the association field (see a)
in Figure 9) typically ends in points with almost vertical tangent vectors.

On the other hand, the sub-Riemannian geodesic model describes less accurately
the association field by Field and co-workers in the (much weaker) connections
to the side (where the co-circularity model is reasonable). One could improve the
modeling by varying β , but even then it is hard to approximate large circles: the
ODE z̈ = β 2z does not allow z to be constant and one can approximate large circles
by resigning to large β .

In the more aligned connections in the association field the sub-Riemannian
geodesics model the field lines remarkably well (in comparison to the exponen-
tial curves), as can be observed in part b) of Figure 9. Moreover, the field curves of
the association field end with vertical tangent vectors, and these endpoints are very
close to cusp points in the sub-Riemannian geodesics modeling these field lines.
Following the general idea of Petitot’s work [42] (e.g. the circle bundle model) and
the results in this article on the existence set R, this puts the following conjecture:

Conjecture 1. The criterium in our visual system to connect two local orientations,
say g0 = (x0,y0,θ0) = (0,0,0) and g f in = (x f in,y f in,θ f in) ∈ SE(2), could be mod-
eled by checking whether g f in is within the range R of the exponential map.

This conjecture needs further investigation by neuro-physiological experiments. In
any case, within the model Pcurve (coinciding with Petitot’s circle bundle model [42]
and the sub-Riemannian model by Citti and Sarti [13, 49]) a curve is globally opti-
mal if and only if it is stationary, by the results in [8] (summarized in Theorem 5).
Furthermore, the sub-Riemannian geodesics strongly deviate from horizontal ex-
ponential curves even if the end condition is chosen such that the co-circularity
condition is satisfied (see c) in Figure 9).

Remark 11. Regarding association field models, we discussed 3 different models:



Cuspless Sub-Riemannian Geodesics within the Euclidean Motion Group SE(d) 29

1. The cuspless sub-Riemannian geodesic model Pcurve , cf. [6, 8, 13, 20, 32],
(extending Petitot’s circle bundle model [42, ch:6.6.5])

2. The Legendrian geodesic model [42],
3. The horizontal exponential curve model in [48] given by Eq. (48).

These models relate as follows:

• The Legendrian geodesics follow from the cuspless sub-Riemannian geodesic
model by contracting (e.g. [19]) the sub-Riemannian manifold on (SE(2),∆2,Gβ )
towards its nilpotent approximation, cf. Eq. (49).

• The horizontal exponential curves keep the control variable in Pcurve constant
and they are rough local approximations of sub-Riemannian geodesics, see item
c) in Figure 7. We also recall Theorem 2: The discrepancy between horizon-
tal exponential curves and sub-Riemannian geodesics in (SE(2),∆2,Gβ ) is also
intriguing from the differential geometrical viewpoint. Due to the presence of
torsion in the Cartan connection auto-parallel curves (i.e. the straight curves in
(SE(2),∆2,Gβ ) satisfying ∇γ̇ γ̇ = 0) do not coincide with the sub-Riemannian
geodesics (i.e. the shortest curves in (SE(2),∆2,Gβ ) satisfying ∇γ̇ λ = 0).

Fig. 9: Modeling the association field with sub-Riemannian geodesics and expo-
nential curves, a) the association field [26, 42]. Compare the upper-right part of the
association field to the following lines: in b) we impose the end condition (blue ar-
rows) for the SR-geodesic model in black and the end condition (red arrows) for
the horizontal exponential curve model in grey; c) comparison of sub-Riemannian
geodesics with exponential curves with the same (co-circularity) ending conditions;
d) as in b) including other ending conditions.
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4 The Case d = 3: Sub-Riemannian Geodesics in (R3oS2,∆3,G1)

In order to obtain momentum along cuspless sub-Riemannian geodesics in (R3 o
S2,∆3,Gβ=1), we apply Theorem 1 to the case d = 3 with a = ez. We find

λ1(s) = λ1(0)coshs−λ5(0)sinhs,
λ5(s) = λ5(0)coshs−λ1(0)sinhs,
λ2(s) = λ2(0)coshs+λ4(0)sinhs,
λ4(s) = λ4(0)coshs+λ2(0)sinhs,
λ3(s) =

√
1−|λ4(s)|2−|λ5(s)|2,

(51)

and by using the horizontal part of the PMP, we now find explicit formulas for
curvature and torsion of the spatial part of the sub-Riemannian geodesic:

κ(s) =
√
|λ4(s)|2+|λ5(s)|2

λ3(s)
=

√
1−|λ3(s)|2

λ3(s)
,

τ(s) =− (λ5(s)λ2(s)+λ4(s)λ1(s))
1−|λ3(s)|2

= W
1−|λ3(s)|2

(52)

where W denotes the Wronskian, recall Eq. (24), of λ5 =
κ1√
κ2+1

and−λ4 =
κ2√
κ2+1

,

where κ = (κ1,κ2) = κ1A1 +κ2A2 denote the curvature components of the curva-
ture vector-field ẍ = κ along the curve.

Consequently, we have

τ(s) =W
(
1+κ

−2(s)
)

whenever κ(s) 6= 0 for s < smax(λ (0)) and W the constant Wronskian.
Furthermore, we see that if torsion is absent in any part of the spatial part of a

sub-Riemannian geodesic it is absent everywhere, and we have

γ(s) is planar ⇔ τ = 0⇔W = 0⇔ the boundary conditions are co-planar .

The final equivalence, is non-trivial. For details on the proof, see [30, Cor.3.44].

Remark 12. The planar solutions Pcurve with W = 0 coincide with the unique two
dimensional sub-Riemannian geodesics connecting the corresponding points in
R2 oS1 (see [8, 15]) discussed in the previous section. As a result, the set

{
(

x f in,Rn f in(x f in,θ f in)

)
| (x f in,θ f in) ∈R2}

with n f in(x f in,θ f in) = (sinθ f in
x f in√

x2
f in+y2

f in

,sinθ f in
y f in√

x2
f in+y2

f in

,cosθ f in)
T ,

where R2 denotes the set of admissible end conditions in SE(2) allowing a connec-
tion via a globally minimal sub-Riemannian geodesic in (SE(2),∆2,G1), is a subset
of end conditions admitting a unique globally minimizing sub-Riemannian geodesic
in (SE(3),∆3,G1). See Figure 11.
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Remark 13. A sub-Riemannian geodesic is co-planar if W = −λ5λ2 − λ4λ1 = 0,
i.e. if its angular momentum (λ4,λ5,0) ≡ λ4ω4 +λ5ω5 is orthogonal to its spatial
momentum (λ1,λ2,λ3)≡ λ1ω1 +λ2ω2 +λ3ω3.

Now in order to compute the exponential map Ẽxp(λ (0), `) = γ(`) = g f in ∈ SE(3),
one can substitute Eq. (52) into Eq. (51) while setting s = ` and then integrate the
well-known Frenet-Serret formulas for curves in R3. However, the last step in this
procedure is somewhat cumbersome and here (again) Theorem 3 comes at hand.

4.1 Explicit Parameterizations of the Sub-Riemannian Geodesics

In order to integrate the Frenet-Serret formulas we apply Theorem 3 to the case d =
3. This provides the following explicit formulas for the sub-Riemannian geodesics,
where we use the short notation λ

(1) = (λ1,λ2) and λ
(2) = (λ5,λ4) from Section 2.

Theorem 9. Let the momentum covector be given by Eq. (51). Then the spatial part
of the cuspless sub-Riemannian geodesics8 in (SE(3),∆3,G1) is given by

x(s) = R̃(0)T (x̃(s)− x̃(0)) (53)

where, R̃(0) and x̃(s) := (x̃(s), ỹ(s), z̃(s)) are given in terms of λ (1)(0) and λ (2)(0)
depending on several cases. For all cases, we have

x̃(s) =
1
c

s∫
0

λ3(τ)dτ. (54)

For the case λ
(1)(0) = 0, we have

R̃(0) =

 0 0 1
0 1 0
−1 0 0

 ∈ SO(3), (55)

(
ỹ(s)
z̃(s)

)
=
−1
c

(
λ4(s)
λ5(s)

)
. (56)

For the case λ
(1)(0) 6= 0, we have

R̃(0) =
1
c


λ1(0) λ2(0) λ3(0)

c −λ2(0)
‖λ (1)(0)‖

c λ1(0)
‖λ (1)(0)‖

0
−λ1(0)λ3(0)
‖λ (1)(0)‖

−λ2(0)λ3(0)
‖λ (1)(0)‖

‖λ (1)(0)‖

 ∈ SO(3). (57)

8 which are the lifts of the stationary curves of Pcurve for appropriate boundary conditions and
which coincide with the solutions of Pmec for the same boundary conditions.
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For the case W = 0 along with λ
(1)(0) 6= 0, we have(

ỹ(s)
z̃(s)

)
=

λ2(0)λ4(s)−λ1(0)λ5(s)

c‖λ (1)(0)‖

(
0
1

)
. (58)

While for W 6= 0 along with λ
(1)(0) 6= 0 and

A(s) =
1

‖λ (2)(0)‖2− W 2

c2

(
λ2(s)λ4(s)−λ1(s)λ5(s) −W

c λ3(s)
W
c λ3(s) λ2(s)λ4(s)−λ1(s)λ5(s)

)
,

(59)
we have

(
ỹ(s)
z̃(s)

)
=

e

s∫
0

A(s′)ds′

c2‖λ (1)(0)‖

(
Wλ3(0)

c(λ2(0)λ4(0)−λ5(0)λ1(0))

)
. (60)

Proof. From Theorem 3, we have

d(λm(γ)−1) = 0 (61)

with λ = (λ1, . . . ,λ6), the Lagrange multipliers which are already known by Theo-
rem 1, and with matrix representation m given by Eq. (30). Hence, as γ(0) = e, we
have that ∀s ∈ [0, `] the geodesic must satisfy

λ (s) = λ (0)m(γ(s)). (62)

To make calculations easier, we translate and rotate the curve and solve a slightly

easier equation and transform it back to the original curve. With m(g̃) =
(

R̃ σx̃R̃
0 R̃

)
,

we solve the system

λ (s) = (c,0,0,−W
c
,0,0)m(γ̃(s)) (63)

with γ̃(s) = γ̃(0)m(γ(s)) such that

λ (0) = (c,0,0,−W
c
,0,0)γ̃(0). (64)

Thus after having γ̃(s), we retrieve the geodesic by using the relation

γ(s) = γ̃(0)−1
γ̃(s). (65)

For the most general case, assuming non-vanishing denominators throughout, we
see that choosing (57) and

x̃(0) :=
1

c2
√
|λ1(0)|2 + |λ2(0)|2

 0
Wλ3

c(λ2λ4−λ5λ1)

 ,
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(64) is satisfied. Then solving (63) for x̃, ỹ and z̃ we obtain x̃ and the following
system: (

˙̃y(s)
˙̃z(s)

)
= A(s)

(
ỹ(s)
z̃(s)

)
.

Noting that A(s) and A(t) commute for all pairs s and t, and hence using Wilcox
formula [56], we get the desired results.

Clearly, the formulas are not valid as the denominators in some of the expressions
become zero. Hence we do the whole procedure keeping in mind the special cases
right from the start and get the required results.

The matrix e
∫ s

0 A(s′)ds′ can be computed explicitly, for details see [30, Cor.4.11]. One

has e

s∫
0

A(s′)ds′

=

√
‖λ (2)(s)‖2−W 2c−2

‖λ (2)(0)‖2−W 2c−2

(
cosφ(s) −sinφ(s)
sinφ(s) cosφ(s)

)
, with φ(s)=

s∫
0

Wc−1λ3(s′)
‖λ (2)(s′)‖2−W 2c−2

ds′.

4.2 Explicit Definition of the Exponential Map of Pcurve

In this section, we provide the explicit definition of the exponential map which maps
the pair (λ (0), `) to the endpoint g f in = Ẽxp(λ (0), `) of the corresponding cusp-less
sub-Riemannian geodesic in sub-Riemannian manifold (SE(3),∆3,G1).

Definition 1. Using the arc-length parametrization and setting t = s (⇒ σ = 1), we
consider the canonical ODE system for Γ (s) = (g(s),κ(s),λ (s)) given by

Γ̇ (s) = F(Γ (s)) s ∈ [0, `]
Γ (0) = (e,κ(0),λ (0))

with unity element e = (0, I) ∈ SE(3) and with κ = (κ1,κ2)
T where κ1(0) =

λ5(0)√
1−(λ4(0)2+λ5(0)2)

and κ2(0) =
−λ4(0)√

1−(λ4(0)2+λ5(0)2)
where F denotes the correspond-

ing flow field given as

F(

(
R σxR
0 R

)
,κ(s),λ (s)) =((

RK Rσez +σxRK
0 RK

)
,

λ2λ4−λ1λ5

λ 3
3

(
λ5
−λ4

)
− 1

λ3

(
λ1
λ2

)
,λ

(
K σez

0 K

))
(66)

where K = 1
λ3

 0 0 λ5
0 0 −λ4
−λ5 λ4 0

 . and σez ∈R3×3 such that σezx = ez×x.This ODE has

a unique solution
Γ (s) = Γ (0)esF s ∈ [0, `].

Recall the definition of D in Eq. (31) (for d = 3). On this set, we define Ẽxpe : D→
SE(3) by

Ẽxpe(λ (0), l) = π ◦ elF(e,κ(0),λ (0))
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with π being the natural projection on SE(3). Note that this exponential map is
different from the Lie group valued exponential map defined on the Lie algebra.

1 

Fig. 10: A comparison of the possible end conditions of Pcurve for the two dimen-
sional and the three dimensional cases. Right: possible tangent directions are de-
picted of cuspless sub-Riemannian geodesics in (SE(3),∆3,G1) with initial position
at the origin and the initial direction along ez and the final positions at unit distance
from the origin. Left: cones of possible end conditions of cuspless sub-Riemannian
geodesics in (SE(2),∆2,G1). According to Theorem 7, these cones are obtained by
considering the end conditions of sub-Riemannian geodesics that either begin with
a cusp point (shown in red) or end at a cusp point (shown in blue). Figure 11 depicts
the comparison in the special case when we set the end conditions on a unit circle
containing the z-axis.

4.3 The Range of the Ẽxp Map and Cones of Reachable Angles

There are various restrictions on the possible boundary conditions for which we can
get a cuspless sub-Riemannian geodesic of problem Pcurve, see Fig. 10. We present
some special cases which help us to get an idea about the range of the exponential
map of Pcurve. Note that this set coincides with the set of end conditions for which
Pcurve is expected to be well defined, as we have shown for the 2D-case (recall
Theorem 5). The next corollary gives us the possible final positions when the final
direction is anti parallel to the initial direction.
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(a)

(b)

Fig. 11: A comparison of the cones of reachable angles by the cuspless sub-
Riemannian geodesics in the two dimensional case as in [8, 15] and those in the
three dimensional case respectively. It represents the special case in Figure 10, of
the end conditions being on a unit circle containing the z-axis. The intersection of
the cones in Figure 11b with x = 0 coincides with the cones depicted in Figure 11a.

Fig. 12: An illustration of the spatial part of arbitrary cuspless sub-Riemannian
geodesics in (SE(3),∆3,G1) and the cones of reachable angles as depicted in Fig-
ures 10 and 11. The cuspless sub-Riemannian geodesics are always contained within
the cones. We checked this for many more cases, which supports our Conjecture 2.
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Corollary 3. Let (x1,n1) be the end condition of Pcurve with the initial condition
being (0,ez). Then, given that n1 = −ez, a cuspless sub-Riemannian geodesic of
problem Pcurve exists only for x1 · ez = 0. Moreover, this condition is only possible
for curves departing from a cusp and ending in a cusp.

Proof Let x be a cuspless sub-Riemannian geodesic of problem Pcurve with
ẋ(0) = −ẋ(`) for some ` ≤ smax. This means that going to the tilde coordinates,
we have ˙̃x(0) = − ˙̃x(`), which implies ˙̃x(0) = − ˙̃x(`). But this is possible only if
˙̃x(0) = 0 = ˙̃x(`), which is possible only if ‖λ (2)(0)‖ = 1 and ` = smax, i.e., if the
geodesic both starts and ends in cusp. ut

Now we recall from Subsection 3.2, that in the 2D-case cuspless sub-Riemannian
geodesics in (SE(2),∆2,G1) are contained in the half space x ≥ 0 and x = 0 can
only be reached with sub-Riemannian geodesics both departing from and ending
in a cusp. In the 3D-case one expects a similar result, as it is confirmed by many
numerical experiments, see e.g. Figure 12 and Figure 11. However, it turns out to be
hard to prove for all cases. At least we have the following formal result.

Corollary 4. If a cuspless sub-Riemannian geodesic departs from a cusp, then it
can never have a negative component along the z-axis. Moreover, it can meet the
z = 0 plane at non zero time only if s = smax and W = 0.

Proof See [30, Lemma 4.13].

Based on our numerical experiments, we pose the following conjecture which
is analogous to a result in the two dimensional case of finding cuspless sub-
Riemannian geodesics in (SE(3),∆3,G1) [8, 15].

Conjecture 2. Let the range of the exponential map defined in Definition 1 be de-
noted by R and let D be as defined in Definition 1.

• Ẽxpe : D→R is a homeomorphism when D and R are equipped with the sub-
space topology.

• Ẽxpe : D̊→ R̊ is a diffeomorphism. Here S̊ denotes the interior of the set S.

The boundary of the range is given as

∂R= SB∪SR∪SL with (67)

SB = {Ẽxpe(λ (0),smax(λ (0)))|λ (0) ∈ C } and

SR = {Ẽxpe(λ (0),s)|λ (0) ∈ C and λ4(0)2 +λ5(0)2 = 1 and s > 0}
SL = {(0,Rn) ∈ SE(3)|n ∈ S2}.

This conjecture would imply that no conjugate points, recall Remark 4, arise
within R and problem Pcurve (3) is well posed for all end conditions in R.

The proof of this conjecture would be on similar lines as in Appendix F of [15].
If the conjecture is true, we have a reasonably limited set of possible directions
per given final positions for which a cuspless sub-Riemannian geodesic of problem
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Pcurve exists. Then likewise the d = 2 case, we have that every end condition in R
can be connected with a unique minimizer of a well-posed problem Pcurve. More-
over, the cones determined by SB and SR provide the boundaries of the field of
reachable cones. Figure 11 shows the special case of the end conditions being on a
unit circle containing the z-axis. The final tangents are always contained within the
cones at each position. Numerical computations indeed seem to confirm that this is
the case (see Figure 12). The blue points on the boundary of the cones correspond
to SB while the red points correspond to SR given in Equality (67).

5 The Case d = 4: Sub-Riemannian Geodesics in (SE(4),∆4,G1)

Let us apply the results regarding sub-Riemannian geodesics in (SE(d),∆d ,Gβ=1)
to the special case d = 4. Here we will rely on the standard matrix group repre-

sentation of SE(4) given by M(g) =
(

R x
0 1

)
∈ R5×5, for all g = (x,R) ∈ SE(4). In

matrix-form, the Lie-algebra elements spanning Te(SE(4)) are given by

Ak = Ak|e ≡
(

0 ek
0 0

)
for k = 1 . . .4, with (ek)

j = δ
j

k , and

A5 =


0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

 ,A6 =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

 ,A7 =


0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0

 ,

A8 =


0 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,A9 =


0 0 1 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,A10 =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

The commutator table is given by

[Ai,A j]i, j=1...10 =



0 0 0 0 0 0 A4 0 A3 A2
0 0 0 0 0 A4 0 −A3 0 −A1
0 0 0 0 −A4 0 0 A2 −A1 0
0 0 0 0 A3 −A2 −A1 0 0 0
0 0 A4 −A3 0 A8 −A9 −A6 A7 0
0 −A4 0 A2 −A8 0 A10 A5 0 −A7
−A4 0 0 A1 A9 −A10 0 0 −A5 A6

0 A3 −A2 0 A6 −A5 0 0 −A10 A9
−A3 0 A1 0 −A7 0 A5 A10 0 −A8
−A2 A1 0 0 0 A7 −A6 A9 A8 0


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and the PMP produces the following ODE for the momentum components:

λ̇i(t) =−
7

∑
j=4

7

∑
k=1

ck
i jλ j(t)λk(t),

or more explicitly, using the fact that λ8 = λ9 = λ10 = 0 yields

λ̇1(t) =−λ4(t)λ7(t), λ̇6(t) =−λ2(t)λ4(t),

λ̇2(t) =−λ4(t)λ6(t), λ̇7(t) =−λ1(t)λ4(t),

λ̇3(t) = λ4(t)λ5(t), λ̇8(t) = 0,

λ̇4(t) =−λ3(t)λ5(t)+λ2(t)λ6(t)+λ1(t)λ7(t), λ̇9(t) = 0,

λ̇5(t) = λ3(t)λ4(t), λ̇10(t) = 0.

Along cuspless sub-Riemannian geodesics, this ODE-system simplifies to

λ̇1(s) =−λ7(s), λ̇6(s) =−λ2(s),

λ̇2(s) =−λ6(s), λ̇7(s) =−λ1(s),

λ̇3(s) = λ5(s), λ̇8(s) = 0,

λ̇4(s) =−(λ4(s))−1(λ3(s)λ5(s)+λ2(s)λ6(s)+λ1(s)λ7(s)), λ̇9(s) = 0,

λ̇5(s) = λ3(s), λ̇10(s) = 0,

which is indeed a special case of Eq. (21) with d = 4 and Λ = diag{−1,−1,1},
whose solutions are now given by Eq. (25) (again with d = 4 and Λ = diag{−1,−1,1}).

Now the case d = 3 with (cuspless) sub-Riemannian geodesics on (SE(3),∆3,Gβ=1)
studied in detail in the previous section, by omitting the A1, A7, A9 and A10 directions
and relabeling the indices of the Lie-algebra elements and momentum components
as follows: (2,3,4,5,6,8)→ (1,2,3,4,5,6).
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Appendix A: Derivation of the Canonical Equations for
Sub-Riemannian Geodesics in (SE(d),∆d,G1) using the
Pontryagin Maximum Principle

Consider the sub-Riemannian manifold M = (SE(d),∆d ,Gβ ) given by Eq. (14),
with β = 1. Consider geometric control problem Pmec given by Eq. (15).

There exists a standard PMP for L∞([0,T ]) controls and there exists a recently
generalized PMP for L1([0,T ]) controls [55] which in this case produces (by a
reparameterization argument) the same solutions, despite the fact that L∞([0,T ])⊂
L1([0,T ]). Here we note that Pmec is equivalent to the solutions γ : [0,T ]→ SE(d),
with prescribed boundary conditions γ(0) = (0, I) and γ(T ) = (x1,Rn1), of the con-
trol problem∫ T

0
L(ud(t), . . . ,u2d−1(t))dt→ minimize (with fixed T )

with

γ̇(t) =
2d−1

∑
i=d

ui(t)Ai|γ(t) =
2d−1

∑
i=d
〈ω i|γ(t), γ̇(t)〉Ai|γ(t)

where for i = 1,2,3, ui ∈ L1([0,T ]), and with Lagrangian

L(ud(t), . . . ,u2d−1(t)) =
2d−1

∑
i=d
|ui(t)|2.

Applying the standard PMP to this problem with fixed time T , we have that there
exists a Lipshitzian curve in the cotangent bundle given by [0,T ] 3 t 7→ µ(t) =
(γ(t),λ (t)) 6= 0 with λ (t) ∈ T ∗

γ(t)(M) such that

µ̇ = H(µ(t))

H(µ) = max
u∈Rd

(
L(ud , . . . ,u2d−1)−

2d−1

∑
i=d

µi ui

)

where µ =(γ,λ ), and where the Hamiltonian is given by H(µ)≡H(λ )= 1
2

2d−1
∑

i=d
|λi|2.

The Hamiltonian vector field H given by

H =
2d−1

∑
i=1

α
i ∂

∂λi
+β

iAi (68)

is such that it preserves the canonical symplectic structure

σ =
2d

∑
i=1

dλi∧ω
i =

2d−1

∑
i=d

dλi∧ω
i
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and hence, we have

σ(H, ·) =−dH =−
2d−1

∑
i=d

AiHω
i +

∂H
∂λi

dλi. (69)

From Equations (68), (69), we obtain for i = d, . . . ,2d−1 that

α
i =−AiH and β

i =
∂H
∂λi

= λi.

Consequently, (noting that AiH = 0 for i = 1, . . . ,d and i = 2d, . . . ,d(d +1)/2), we
have the Hamiltonian vector field

H(µ) =
2d−1

∑
i=d

β
iAi−

2d−1

∑
i=d+1

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, jλkβ

j
ω

i

=
2d−1

∑
i=d

λiAi−
2d−1

∑
i=d+1

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, jλkλ jω

i

So now let us consider the full canonical ODE in the PMP: µ̇ = H(µ).
Clearly, the horizontal part of PMP (where time derivatives are w.r.t. sub-

Riemannian arclength t) is given as

γ̇ =
2d−1

∑
i=d

λiAi|γ ⇒ λi(t) = 〈ω i|γ(t), γ̇(t)〉 for i = d, . . . ,2d−1.

The vertical part of PMP gives

d
dt

2d−1

∑
i=1

λi(t) ω
i∣∣

γ(t)=
2d−1

∑
i=1

λ̇i(t) ω
i∣∣

γ(t)+λi(t)
d
dt

ω
i∣∣

γ(t)=−
2d−1

∑
i=d+1

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, jλkλ j ω

i∣∣
γ(t)

which is equivalent to

2d−1

∑
i=1

λ̇i ω
i∣∣

γ
+

d

∑
i=1

λi

(
2d−1

∑
k=d

d

∑
j=1

ci
j,k γ̇

k
ω

j∣∣
γ

)
=−

2d−1

∑
i=d+1

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, jλkλ j ω

i∣∣
γ

and therefore using the horizontal part of PMP we obtain

d
∑

i=1

(
λ̇i(t)+

2d−1
∑

k=d

d
∑
j=1

c j
i,kλk(t)λ j(t)

)
ω i
∣∣
γ(t) = 0,

2d−1
∑

i=d+1

(
λ̇i(t)+

2d−1
∑

j=d

2d−1
∑

k=1
ck

i, jλk(t)λ j(t)

)
ω i
∣∣
γ(t) = 0.

Now in the first equation above index j can as well run from 1 to 2d− 1, since if
i≤ d and k > d then for all j > d we have c j

i,k = 0. As a result we obtain
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λ̇i(t) =−
2d−1

∑
j=d

2d−1

∑
k=1

ck
i, jλk(t)λ j(t), for all i ∈ {1, . . . ,2d−1}.
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