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532 YU. L. SACHKOVdeterminant one SL(n;R), the group of symplectic matrices Sp(n), and thegroup of orthogonal matrices with determinant one SO(n). Some controlla-bility conditions for nonhomogeneous matrix systems were also obtained.The �rst systematic mathematical study of control systems on Lie groupswas ful�lled by V. Jurdjevic and H. J. Sussmann [2]. They noticed that thepassage from the matrix system (1) to the more general right-invariantsystem _x(t) = A(x(t)) + mXi=1 ui(t)Bi(x(t)); x(t) 2 G; u(t) 2 R; (2)where A, B1; : : : ; Bm are right-invariant vector�elds on a Lie group G, \inno essential way a�ects the nature of the problem." The basic propertiesof the attainable set (the semi-group property, path-connectedness, rela-tion with the associated Lie subalgebras determined by the vector�elds A,B1; : : : ; Bm) were established. The rank controllability test was proved forsystem (2) in the homogeneous case and in the case of a compact group G.Su�cient controllability conditions for other cases were also given.V. Jurdjevic and I. Kupka [4] introduced a systematic tool for studyingcontrollability on Lie groups. For the control system (2) presented in theform of the polysystem� = nA+ mXi=1 uiBi j ui 2 Ro� L (3)(where L is the Lie algebra of the group G) they considered its Lie saturationLS(�) | the largest system equivalent to �. Controllability of the system �on G is equivalent to LS(�) = L, and a general technique for veri�cation ofthis equality was proposed. (This technique is outlined in Subsec. 4.2 andused in Subsecs. 4.3, 4.4 below.) In [4] su�cient controllability conditionsfor the single-input systems � = fA + uB g were obtained for simple andsemi-simple groups G with the use of this technique. They were givenin terms of the root decomposition of the algebra L corresponding to theadjoint operator adB.In their preceding paper V. Jurdjevic and I. Kupka [3] presented theenlargement technique for systems on matrix groups G � GL(n;R) andobtained su�cient controllability conditions for G = SL(n;R) and G =GL+(n;R).These results for SL(n;R) and GL+(n;R) were generalized by J.P. Gau-thier and G. Bornard [5].B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet [6] obtained a cha-racterization of controllability on a Lie group which is a semidirect productof a vector space and a compact group which acts linearly on the vector



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 533space. The case G = Rn
s SO(n) was applied to the study of Serret{Frenetmoving frames.The results of [4] for simple and semi-simple Lie groups were general-ized in a series of papers by J.P. Gauthier, I. Kupka, and G. Sallet [7],R.El Assoudi and J. P. Gauthier [9], [10], F. Silva Leite and P.E. Crouch [8]:analogous controllability conditions were obtained for classical Lie groupswith the use of the Lie saturation technique and the known structure of realsimple and semi-simple Lie algebras.In contrast to this \simple" progress, invariant systems on solvable groupsseem not to be studied in the geometric control theory at all until 1993.Then a complete solution of the controllability problem for simply connectednilpotent groups G was given by V. Ayala Bravo and L. San Martin [11].Some results on controllability of (not right-invariant) systems on Lie groupsanalogous to linear systems on Rn were obtained by V. Ayala Bravo andJ. Tirao [12].Several results on controllability of right-invariant systems were obtainedwithin the framework of the Lie semigroups theory [13], [14]: for nilpotentgroups by J. Hilgert, K.H. Hofmann, and J.D. Lawson [15], for reduc-tive groups by J. Hilgert [16]. For Lie groups G with cocompact radical,J.D. Lawson [17] proved that controllability of a system � � L follows fromnonexistence of a half-space in L bounded by a Lie subalgebra and contain-ing �; if G is additionally simply connected, this condition is also necessaryfor controllability. This result generalizes controllability conditions for com-pact groups [2], nilpotent groups [15], and for semidirect products of vectorgroups and compact groups [6].In [18] the author characterized controllability of hypersurface right-inva-riant systems, i.e., of systems � of the form (3) with the codimension one Liesubalgebra generated by the vector�elds B1; : : : ; Bm. This gave a necessarycontrollability condition for simply connected groups | the hypersurfaceprinciple, see its formulation for single-input systems � in Proposition 2below. In its turn, the hypersurface principle was applied and there wasobtained a controllability test for simply connected solvable Lie groups Gwith Lie algebra L satisfying the additional condition: for all X 2 L theadjoint operator adX has real spectrum.The aim of this paper is to give convenient controllability conditions ofsingle-input systems � for a wide class of Lie groups including solvable ones;more precisely, for Lie groups not coinciding with their derived subgroups.The structure of this paper is as follows.We state the problem and introduce the notation in Sec. 2.In Sec. 3 we give the necessary controllability condition for simply con-nected groups G not coinciding with their derived subgroup G(1) (Theorem 1and Corollary 1). These propositions are proved in Subsec. 3.3 after thepreparatory work in Subsec. 3.2. The main tools are the rank controllability



534 YU. L. SACHKOVcondition (Proposition 1) and the hypersurface principle (Proposition 2).Sec. 4 is devoted to su�cient controllability conditions for the groupsG 6= G(1). We present the main su�cient results in Subsec. 4.1. Thenwe recall the Lie saturation technique in Subsec. 4.2 and prove preliminarylemmas in Subsec. 4.3. The main results (Theorem 2 and Corollaries 2, 3)are proved in Subsec. 4.4.In Sec. 5 we consider several applications of our results. Controllabilityconditions for metabelian groups are obtained in Subsec. 5.1. Then con-trollability conditions for some subgroup of the group of motions of the Eu-clidean space are studied in detail (Subsec. 5.2) and are applied to bilinearsystems (Subsec. 5.3). Finally, the clear small-dimensional version of thistheory for the group of motions of the two-dimensional plane is presentedin Subsec 5.4.A preliminary version of the below results was stated in [19].2. Problem statement and definitionsLet G be a connected Lie group, L its Lie algebra (i.e., the Lie algebraof right-invariant vector �elds on G), and A, B any elements of L. Thesingle-input a�ne right-invariant control system on G is a subset of L ofthe form � = �A+ uB j u 2 R	:The attainable set A of the system � is the subsemigroup of G generatedby the set of the one-parameter semigroupsf exp(tX) j X 2 �; t 2 R+g:The system � is called controllable if A = G.To see the relation of these notions with the standard system-theoreticalones, let us write the right-invariant vector �elds A and B as A(x) andB(x), x 2 G. Then the system � can be written in the customary form_x(t) = A(x(t)) + u(t)B(x(t)); u(t) 2 R; x(t) 2 G:The attainable set A is then the set of points of the state space G reachablefrom the identity element of the group G for any nonnegative time. Thesystem � is controllable i� any point of G can be reached along trajectoriesof this system from the identity element of the group G. By right-invarianceof the �elds A(x), B(x), the identity element in the previous sentence canbe changed by an arbitrary one.Our aim is to characterize controllability of the system � in terms of theLie group G and the right-invariant vector �elds A and B.Now we introduce the notation we will use in the sequel.For any subset l � L we denote by Lie (l) the Lie subalgebra of L gen-erated by l. Closure of a set M is denoted by clM . The signs � and



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 535P� denote direct sums of vector spaces; �s and 
s stand for semidirectproducts of Lie algebras and Lie groups correspondingly.We denote by Id the identity operator or the identity matrix of appro-priate dimension,J = �0 �11 0 � ; ��(t) = � cos�t � sin�tsin�t cos�t � ; Mr;� = � r ��� r �for t, �, r 2 R. The square matrix with all zero entries except one unit inthe ith raw and the jth column is denoted by Eij.Now we introduce the notation connected with eigenvalues and eigenspa-ces of the adjoint operator adB in L:� the derived subalgebra and the second derived subalgebra:L(1) = [L;L]; L(2) = [L(1); L(1)];� the complexi�cations of L and L(i), i = 1; 2:Lc = L
 C ; L(i)c = L(i) 
 C(the tensor products over R),� the adjoint representations and operators:ad : L! End(L); (adB)X = [B;X] 8X 2 L;adc : Lc ! End(Lc); (adcB)X = [B;X] 8X 2 Lc;� spectra of the operators adBjL(i) , i = 1; 2:Sp(i) = � a 2 C j Ker(adcBjL(i)c � a Id) 6= f0g	;� real and complex eigenvalues of the operators adBjL(i) , i = 1; 2:Sp(i)r = Sp(i) \R; Sp(i)c = Sp(i) nR;� complex eigenspaces of adcBjL(1)c :Lc(a) = Ker(adcBjL(1)c � a Id);� real eigenspaces of adBjL(1) :L(a) = (Lc(a) + Lc(a)) \ L;� complex root subspaces of adcBjL(i)c , i = 1; 2:L(i)c (a) = [1N=1Ker(adcBjL(i)c � a Id)N ;� real root subspaces of adBjL(i) , i = 1; 2:L(i)(a) = �L(i)c (a) + L(i)c (a)� \ L;



536 YU. L. SACHKOV� real components of L(i), i = 1; 2:L(i)r =X��L(i)(a) j a 2 Sp(i)r ; Ima � 0	:Note that the subalgebras L(1) and L(2) are ideals of L, so they are (adB)-invariant, and the restrictions adBjL(1) and adBjL(2) are well de�ned.In the following lemma we collect several simple statements about de-composition of the subalgebras L(1) and L(2) into sums of root spaces andeigenspaces of the adjoint operator adB.Lemma 2.1.(1) L(i) =P��L(i)(a) j a 2 Sp(i); Ima � 0	, i = 1; 2,(2) Sp(2) � Sp(1), Sp(2)r � Sp(1)r ,(3) L(2)(a) � L(1)(a) for any a 2 Sp(2),(4) L(2)r � L(1)r ,(5) Sp(2) � Sp(1) + Sp(1).Proof. Is obtained by the standard linear-algebraic arguments. In item (5)Jacobi's identity is additionally used.Consider the quotient operator]adB : L(1)=L(2) ! L(1)=L(2)de�ned as follows:̂(adB)(X + L(2)) = (adB)X + L(2) 8X 2 L(1):Analogously for a 2 Sp(1) we de�ne the quotient operator in the quotientroot space: ^adB(a) : L(1)(a)=L(2)(a)! L(1)(a)=L(2)(a);^(adB(a))(X + L(2)(a)) = (adB)X + L(2)(a) 8X 2 L(1)(a);and its complexi�cation:^adcB(a) : L(1)c (a)=L(2)c (a)! L(1)c (a)=L(2)c (a);^(adcB(a))(X + L(2)c (a)) = (adcB)X + L(2)c (a) 8X 2 L(1)c (a):De�nition 1. Let a 2 Sp(1). We denote by j (a) the geometric mul-tiplicity of the eigenvalue a of the operator ^adcB(a) in the vector spaceL(1)c (a)=L(2)c (a).



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 537Remarks.(a) For a 2 Sp(1) the number j (a) is equal to the number of Jordanblocks of the operator ^adB(a) in the space L(1)(a)=L(2)(a).(b) If an eigenvalue a 2 Sp(1) is simple, then j (a) = 0 for a 2 Sp(2) andj (a) = 1 for a 2 Sp(1) n Sp(2).Suppose that L = L(1) �RB (this assumption will be justi�ed by Theo-rem 1 below). Then by Lemma 2.1L = RB� L(1) = RB�X��L(1)(a) j a 2 Sp(1); Ima � 0	;that is why any element X 2 L can uniquely be decomposed as follows:X = XB +X�X(a) j a 2 Sp(1); Ima � 0	; XB 2 RB; X(a) 2 L(1)(a):We will consider such decomposition for the uncontrolled vector �eld A ofthe system �: A = AB +X�A(a) j a 2 Sp(1); Ima � 0	:We denote by]A(a) the canonical projection of the vector A(a) 2 L(1)(a)onto the quotient space L(1)(a)=L(2)(a).De�nition 2. Let L = L(1) �RB, a 2 Sp(1), and j (a) = 1. We say thata vector A has the zero a-top if]A(a) 2 ( ^adB(a) � a Id)(L(1)(a)=L(2)(a)):In the opposite case we say that A has a nonzero a-top. We use the corres-ponding notations: top (A; a) = 0 or top (A; a) 6= 0.Remark. Geometrically, if a vector A has a nonzero a-top, then the vector]A(a) has a nonzero component corresponding to the highest adjoined vectorin the (single) Jordan chain of the operator ^adB(a). Due to nonuniquenessof the Jordan base, this component is nonuniquely determined, but its prop-erty to be zero is basis-independent.De�nition 3. A pair of complex numbers (�; �), Re� � Re �, is calledan N -pair of eigenvalues of the operator adB if the following conditionshold:(1) �; � 2 Sp(1),(2) L(2)(�) 6�P� [L(1)(a); L(1)(b)] j a; b 2 Sp(1),Re a; Re b =2 [Re�; Re�]	,(3) L(2)(�) 6�P� [L(1)(a); L(1)(b)] j a; b 2 Sp(1),Re a; Re b =2 [Re�; Re�]	.



538 YU. L. SACHKOVRemarks.(a) In other words, to generate the both root spaces L(2)(�) and L(2)(�)for an N -pair (�; �), we need at least one root space L(1)() withRe  2 [�; �]. The name is explained by the fact that N -pairs canNOT be overcome by the extension process described in Lemma4.2:they are the strongest obstacle to controllability under the necessaryconditions of Theorem 1.(b) The property of absence of the real N -pairs will be used to formulatesu�cient controllability conditions in Theorem 2. In some genericcases this property can be veri�ed by Lemma 4.3.3. Necessary controllability conditionsx 3.1. Main theorem and known results. It turns out that control-lability on simply connected Lie groups G with G 6= G(1) is a very strongproperty: it imposes many restrictions both on the group G and on thesystem �.Theorem 1. Let a Lie group G be simply connected and its Lie algebraL satisfy the condition L 6= L(1). If a system � is controllable, then:(1) dimL(1) = dimL� 1,(2) B =2 L(1),(3) L(2)r = L(1)r ,(4) Sp(2)r = Sp(1)r ,(5) Sp(1)r � Sp(1) + Sp(1),(6) j (a) � 1 for all a 2 Sp(1),(7) top (A; a) 6= 0 for all a 2 Sp(1) for which j (a) = 1.The notations j (a) and top (A; a) used in Theorem 1 are explained inDe�nitions 1 and 2 in Sec. 2.Remarks.(a) The �rst condition is a characterization of the state space G butnot of the system �. It means that no single-input system � =fA + uB g can be controllable on a simply connected Lie group Gwith dimG(1) < dimG � 1. That is, to control on such a group,one has to increase the number of inputs. There is a general lowerestimate m > dimG � dimG(1) for the number of the controlledvector�elds B1; : : : ; Bm necessary for controllability of the multi-input system (3) on a simply connected group G [18].(b) Conditions (3){(7) are nontrivial only for Lie algebras L with L(2) 6=L(1) (in particular, for solvable noncommutative L). If L(2) = L(1),then these conditions are obviously satis�ed.



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 539(c) The third condition means that j (a) = 0 for all a 2 Sp(1)r , that iswhy condition (6) is nontrivial only for a 2 Sp(1)c .(d) By the same reason, in condition 7 the inclusion a 2 Sp(1) can bechanged by a 2 Sp(1)c . Note that if j (a) = 0, then by the formalDe�nition 2 the vector A has the zero a-top.(e) The fourth and �fth conditions are implied by the third one but areeasier to verify. The simple (and strong) \arithmetic" necessarycontrollability condition (5) can be veri�ed by a single glance atspectrum of the operator adBjL(1) .(f) For solvable L under conditions (1), (2) the spectrumSp(1) = Sp(adBjL(1) )is the same for all B =2 L(1) modulo homotheties. Then conditions(3){(5) depend on L but not on B.(g) For the case of simple spectrum of the operator adBjL(1) the ne-cessary controllability conditions take respectively the more simpleform:Corollary 1. Let a Lie group G be simply connected and its Lie algebraL satisfy the condition L 6= L(1). Suppose that the spectrum Sp(1) is simple.If a system � is controllable, then:(1) dimL(1) = dimL� 1,(2) B =2 L(1),(3) Sp(2)r = Sp(1)r ,(4) Sp(1)r � Sp(1) + Sp(1),(5) A(a) 6= 0 for all a 2 Sp(1) n Sp(2).Theorem 1 and Corollary 1 will be proved in Subsec. 3.3.Remark. Now we discuss the condition L(1) 6= L essential for this workand motivated by its initial focus | solvable Lie algebras L. Consider aLevi decomposition L = R�s S; R = radL:It is well known (see, e.g., [20], Theorem 3.14.1) that the Levi decompositionof the derived subalgebra is thenL(1) = [L;R]�s S; [L;R] = radL(1):This means that L(1) 6= L () [L; radL] 6= radL:If a Lie algebra L is semisimple (i.e., radL = 0), then obviously L(1) = L.The converse is generally not true (although this is asserted by [21], Sec. 87,Corollary 3). For example, for the Lie algebra R3�s so(3) (which is the Lie



540 YU. L. SACHKOValgebra of the Lie group of motions of the three-space) its derived subalgebracoincides with the algebra itself. (This example was kindly indicated to theauthor by A.A. Agrachev).The main tools to obtain the necessary controllability conditions givenin Theorem 1 is the rank controllability condition and the hypersurfaceprinciple.The system � is said to satisfy the rank controllability condition if theLie algebra generated by � coincides with L:Lie (�) = Lie (A;B) = L:Proposition 1. (Theorem 7.1, [2]). The rank controllability conditionis necessary for controllability of a system � on a group G.Generally, the attainable set A lies (and has a nonempty interior, whichis dense in A) in the connected subgroup of G corresponding to the Liealgebra Lie (A;B).The hypersurface principle is formulated for the system � as follows:Proposition 2. (Corollary 3.2, [18]). Let a Lie group G be simply con-nected, A;B 2 L, and let the Lie algebra L have a codimension one subal-gebra containing B. Then the system � = A + RB is not controllable onG.The sense of this proposition is that under the hypotheses stated thereexists a codimension one subgroup of the group G which separates G intotwo disjoint parts, is tangent to the �eld B, and is intersected by the �eldA in one direction only. Then the attainable set A lies \to one side" of thissubgroup.Notice that the property of absence of a codimension one subalgebra ofL containing B is su�cient for controllability of � on a Lie group G withcocompact radical; if G is additionally simply connected, this condition isalso su�cient (Corollary 12.6, [17]).x 3.2. Preliminary lemmas. First we obtain several conditions su�cientfor existence of codimension one subalgebras of a Lie algebra L containinga vector B 2 L.Lemma 3.1. Suppose that L(1)+RB 6= L. Then there exists a codimen-sion one subalgebra of L containing B.Proof. Denote by l the vector space L(1)+RB. We have [l; l] � L(1) � l, thatis why l is a subalgebra; any vector space containing l is a subalgebra of Ltoo. Since l 6= L, there exists a codimension one subspace l1 of L containingl. Then l1 is the required codimension one subalgebra of L containingB.



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 541Lemma 3.2. Let L(1) � RB = L. If L(2)r 6= L(1)r , then there exists acodimension one subalgebra of L containing B.Proof. If L(1)r 6= L(2)r , then there exists a real eigenvalue a0 2 Sp(1)r suchthat L(1)(a0) 6= L(2)(a0). Letfv1 + L(2)(a0); : : : ; vp + L(2)(a0)g; p = dim(L(1)(a0)=L(2)(a0));be a Jordan base of the operator ^adB(a0):^adB(a0)(vi + L(2)(a0)) = (a0vi + vi+1) + L(2)(a0); i = 1; : : : ; p� 1; (4)^adB(a0)(vp + L(2)(a0)) = a0vp + L(2)(a0): (5)(We suppose, for simplicity, that the eigenvalue a0 of the operator ^adB(a0)is geometrically simple, i.e., matrix of this operator is a single Jordan block;for the general case of several Jordan blocks the changes of the proof areobvious.)Consider the vector spacel1 = span(v2; : : : ; vp) � L(2)(a0):It follows from (4), (5) that the space l1 is (adB)-invariant. Additionally,we have dim l1 = dimL(1)(a0)� 1.Then we de�ne the vector spacesl2 = l1 �X�fL(1)(a) j a 2 Sp(1); a 6= a0; Ima � 0 g;l3 = l2 �RB: (6)First, dim l2 = dimL(1) � 1, that is whydim l3 = dimL(1) = dimL� 1: (7)Second, L(1)(a0) � l1 � L(2)(a0), hence,L(1) � l2 � L(2): (8)Third, the space l2 is (adB)-invariant. That is why, by virtue of (6) and(8), we obtain the chain[l3; l3] = [l2; B] + [l2; l2] � l2 + [L(1); L(1)] = l2 + L(2) = l2 � l3:Hence, l3 is the required subalgebra of L: it has codimension one (see (7))and contains the vector B (see (6)).In the following three lemmas we obtain conditions su�cient for violationof the rank controllability condition, i.e., necessary for controllability.



542 YU. L. SACHKOVLemma 3.3. Suppose that B =2 L(1) and let there exist a vector subspacel1 � L such that the following relations hold :(1) L(2) � l1 � L(1),(2) l1 6= L(1),(3) A 2 RB� l1,(4) (adB)l1 � l1.Then Lie (A;B) 6= L.Proof. By condition (1),[l1; l1] � [L(1); L(1)] = L(2) � l1;i.e., l1 is a Lie subalgebra.Consider the vector space l = RB � l1. We have (in view of condition(4)) [l; l] � (adB)l1 + [l1; l1] � l1 � l;so l is a Lie subalgebra too.By condition (3) we have Lie (A;B) � l, and condition (2) implies l 6= L.Hence, Lie (A;B) 6= L.Lemma 3.4. Let L = RB�L(1). If j (a0) > 1 for some a0 2 Sp(1), thenLie (A;B) 6= L.Proof. Consider the case of the complex a0 2 Sp(1)c �rst. By the condi-tion j (a0) > 1, the quotient operator ^adcB(a0) has at least two cyclicspaces V;W � L(1)c (a0)=L(2)c (a0). That is, there are two Jordan chainsfv1; : : : ; vpg, fw1; : : : ; wqg, p; q > 0, such thatV = span(v1; : : : ; vp); W = span(w1; : : : ; wq);and in these bases matrices of the operators ^adcB(a0)jV and ^adcB(a0)jWare the Jordan blocks0BBBBBB@ a0 0 � � � 0 01 a0 � � � 0 0... . . . . . . ... ...0 0 .. . a0 00 0 � � � 1 a0 1CCCCCCA| {z }p ; 0BBBBBB@ a0 0 � � � 0 01 a0 � � � 0 0... . . . . . . ... ...0 0 .. . a0 00 0 � � � 1 a0 1CCCCCCA :| {z }q (9)(Obviously, we can assume that the complex conjugate bases fv1; : : : ; vpgand fw1; : : : ; wqg form Jordan chains of the operator ^adcB(a0) in the com-plex conjugate spaces V ;W � L(1)c (a0)=L(2)c (a0).)



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 543Notice that( ^adcB(a0)) span(vi; : : : ; vp) � span(vi; : : : ; vp); i = 1; : : : ; p; (10)( ^adcB(a0)) span(wj; : : : ; wq) � span(wj; : : : ; wq); j = 1; : : : ; q: (11)For the direct sumL(1)c (a0)=L(2)c (a0) = V �W � (other cyclic spaces of ^adcB(a0)) (12)consider the decompositionÂ(a0) = (Av1v1 + : : :+ Avpvp) + (Aw1w1 + : : :+ Awqwq) ++ (components in other cyclic spaces of ^adcB(a0)): (13)We can assume thatAv1 = 0 or Aw1 = 0 in decomposition (13): (14)This will be proved at the end of this proof. Now suppose that condition (14)holds and, for de�niteness, Aw1 = 0. That is whyÂ(a0) 2 ~l := V � span(w2; : : : ; wq) � (other cyclic spaces of ^adcB(a0));dim~l = dim(L(1)c (a0)=L(2)c (a0)) � 1;and, in view of (10), (11), ( ^adcB(a0)) ~l � ~l:Now let l � L(1)c (a0) be the canonical preimage of the space ~l. Obviously,A(a0) 2 l;dim l = dimL(1)c (a0)� 1;(adcB) l � l;L(1)c (a0) � l � L(2)c (a0):Then we pass to reali�cation:A(a0) 2 lr := (l + l) \ L � L(1)(a0);dim lr = dimL(1)(a0)� 2;(adB) lr � lr ;L(1)(a0) � lr � L(2)(a0):



544 YU. L. SACHKOVFinally, for the space l1 := lr �P�fL(1)(a) j a 2 Sp(1); a 6= a0; Ima � 0 gwe obtain A 2 RB� l1;dim l1 = dimL(1) � 2;(adB) l1 � l1;L(1) � l1 � L(2):So all conditions of Lemma 3.3 are satis�ed, and Lie (A;B) 6= L modulo theunproved condition (14).To prove this condition, suppose that Av1 6= 0 and Aw1 6= 0 in decom-position (13). In view of symmetry between V and W , we can assume thatp = dimV > q = dimW . De�ne the new basis in V :~vi = vi + Aw1Av1 wi for 1 � i � q; ~vi = vi for q < i � p:It is easy to see that f~v1; : : : ; ~vpg is a basis of V , and Aw1 = 0 in decompo-sition (13) for the new basis f~v1; : : : ; ~vpg and the old basis fw1; : : : ; wqg.Now we show that the new basis is a Jordan one.If 1 � i < q, then� ^adcB(a0)�~vi = � ^adcB(a0)�vi + Aw1Av1 � ^adcB(a0)�wi == (a0vi + vi+1) + Aw1Av1 (a0wi + wi+1) == a0�vi + Aw1Av1 wi�+�vi+1 + Aw1Av1 wi+1� = a0~vi + ~vi+1:If i = q and p > q, then� ^adcB(a0)�~vq = � ^adcB(a0)�vq + Aw1Av1 � ^adcB(a0)�wq == (a0vq + vq+1) + Aw1Av1 a0wq == a0�vq + Aw1Av1 wq�+ vq+1 = a0~vq + ~vq+1:If i = q and p = q, then� ^adcB(a0)�~vq = � ^adcB(a0)�vq + Aw1Av1 � ^adcB(a0)�wq == a0vq + Aw1Av1 a0wq = a0�vq + Aw1Av1 wq� = a0~vq:



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 545And if q < i < p, then� ^adcB(a0)�~vi = � ^adcB(a0)�vi = a0vi + vi+1 = a0~vi + ~vi+1:Finally, if i = p > q, then� ^adcB(a0)�~vp = � ^adcB(a0)�vp = a0vp = a0~vp:So f~v1; : : : ; ~vpg is a Jordan basis for ^adcB(a0)jV , and Aw1 = 0 in decom-position (13), as was claimed.So the lemma is proved for the case of the complex eigenvalue a0.And if a0 is real, then the proof is analogous and easier: there is no needin complexi�cation and further reali�cation.Lemma 3.5. Let L = RB�L(1). Suppose that j (a0) = 1 and top (A; a0)= 0 for some eigenvalue a0 2 Sp(1). Then Lie (A;B) 6= L.Proof. The Jordan base of the operator ^adcB(a0) consists of one Jordanchain span(v1; : : : ; vk) = L(1)c (a0)=L(2)c (a0);and moreover, in the decompositionÂ(a0) = Av1v1 + : : :+ Avkvkwe have Av1 = 0 since( ^adcB(a) � a0 Id)(L(1)c (a0)=L(2)c (a0)) = span(v2; : : : ; vk):Then in the same way as in Lemma 3.4 we denote by l the preimage of thespace span(v2; : : : ; vk) under the projection L(1)c (a0) ! L(1)c (a0)=L(2)c (a0),and by l the complex conjugate to l in Lc. Then the spacel1 = �(l + l) \ L� �X��L(1)(a) j a 2 Sp(1); a 6= a0; Ima � 0	satis�es all hypotheses of Lemma 3.3, that is why Lie (A;B) 6= L.x 3.3. Proofs of the necessary controllability conditions.Proof of Theorem 1. Suppose that the system � is controllable on the groupG. Items (1) and (2). If dimL(1) 6= dimL�1 or B 2 L(1), then L(1)+RB 6=L. It follows from Lemma3.1 and the hypersurface principle (Proposition 2)that � is not controllable. This contradiction proves items (1) and (2), andallows to assume below in the proof that L(1) �RB = L.Item (3). If L(2)r 6= L(1)r , then it follows from Lemma 3.2 and the hyper-surface principle that � is not controllable.Item (4) follows immediately from item (3).



546 YU. L. SACHKOVItem (5). From the previous item we have Sp(1)r = Sp(2)r . But Sp(2)r �Sp(2) � Sp(1) + Sp(1) (see Lemma 2.1, (6)), consequently, Sp(1)r � Sp(1) +Sp(1).Items (6), (7) follow from Lemmas 3.4, 3.5 and from the rank controlla-bility condition (Proposition 1).Proof of Corollary 1. If the spectrum Sp(1) is simple, then L(1)(a) = L(a)for all a 2 Sp(1), and dimL(1)(a) = 1 or 2 for a 2 Sp(1)r or Sp(1)c respectively.Further, L(2)r = L(1)r is equivalent to Sp(2)r = Sp(1)r , and top (A; a) 6= 0 i�A(a) 6= 0, a 2 Sp(1). Now Corollary 1 follows immediately from Theo-rem 1. 4. Sufficient controllability conditionsx 4.1. Main results. Under the necessary assumptions of Theorem 1, wecan give wide su�cient controllability conditions. Notice that the assump-tion of simple connectedness can now be removed. So the below su�cientconditions are completely algebraic; this is in contrast with the geometricassumption (the �niteness of center of G) essential for the su�cient control-lability conditions for simple and semi-simple Lie groups G [4].Theorem 2. Suppose that the following conditions are satis�ed for a Liealgebra L and a system �:(1) dimL(1) = dimL� 1,(2) B =2 L(1),(3) L(2)r = L(1)r ,(4) dimLc(a) = 1 for all a 2 Sp(1)c ,(5) top (A; a) 6= 0 for all a 2 Sp(1)c ,(6) the operator adBjL(1) has no N -pairs of real eigenvalues.Then the system � is controllable on any Lie group G with the Lie algebraL.The notation top (A; a) and the notion of N -pair used in Theorem 2 areexplained in De�nitions 2 and 3 in Sec. 2.Remarks. (a) Conditions (1){(3) are necessary for controllability in thecase of a simply connected G 6= G(1) (by Theorem 1).(b) Conditions (4) and (5) are close to the necessary conditions (6) and(7) of Theorem 1 respectively. Notice that the fourth condition means thatall complex eigenvalues of adBjL(1) are geometrically simple.(c) Conditions (2) and (5) are open, i.e., they are preserved under smallperturbations of A and B.



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 547(d) The most restrictive of conditions (1){(6) is the last one. It can beshown that the smallest dimension of L(1) in which this condition is satis-�ed and preserved under small perturbations of spectrum of adBjL(1) forsolvable L is (6). This can be used to obtain a classi�cation of control-lable systems � on solvable Lie groups G with small-dimensional derivedsubgroups G(1).(e) The technically complicated condition (6) can be changed by moresimple and more restrictive one, and su�cient conditions can be given as inCorollary 2 below.(f) Under the additional assumption of simplicity of the spectrum Sp(1)the su�cient controllability conditions take the even more simple form pre-sented in Corollary 3 below.Corollary 2. Suppose that the following conditions are satis�ed for aLie algebra L and a system �:(1) dimL(1) = dimL� 1,(2) B =2 L(1),(3) L(2)r = L(1)r ,(4) dimLc(a) = 1 for all a 2 Sp(1)c ,(5) top (A; a) 6= 0 for all a 2 Sp(1)c ,(6) Sp(1)r = ;, or Sp(1) � fRe z > 0g, or Sp(1) � fRe z < 0g.Then the system � is controllable on any Lie group G with the Lie algebraL.Corollary 3. Suppose that the following conditions are satis�ed for aLie algebra L and a system �:(1) dimL(1) = dimL� 1,(2) B =2 L(1),(3) the spectrum Sp(1) is simple,(4) Sp(2)r = Sp(1)r ,(5) A(a) 6= 0 for all a 2 Sp(1)c ,(6) Sp(1)r = ;, or Sp(1) � fRe z > 0g, or Sp(1) � fRe z < 0g.Then the system � is controllable on any Lie group G with the Lie algebraL.Theorem 2 and Corollaries 2, 3 will be proved in Subsec. 4.4.x 4.2. Lie saturation. To prove the above su�cient conditions we usethe notion of the Lie saturation of a right-invariant system introduced byV. Jurdjevic and I. Kupka. Now we recall the basic de�nition and propertiesnecessary for us (see details in [4], pp. 163{165).



548 YU. L. SACHKOVGiven a right-invariant system � � L on a Lie group G, its Lie saturationLS(�) � L is de�ned as follows:LS(�) = Lie (�) \ �X 2 L j exp(tX) 2 clA 8t 2 R+	:LS(�) is the largest (with respect to inclusion) system having the sameclosure of the attainable set as �.Properties of Lie saturation:(1) � � LS(�),(2) LS(�) is a convex closed cone in L,(3) if �X, �Y 2 LS(�), then �[X;Y ] 2 LS(�),(4) if �X, Y 2 LS(�), then exp(s adX)Y 2 LS(�) for all s 2 R,(5) controllability condition:if LS(�) = L, then � is controllable. (15)x 4.3. Preliminary lemmas. In this section we assume that L 6= L(1)(this condition holds, e.g., for solvable L). In view of Theorem 1, we supposeadditionally that dimL(1) = dimL� 1 and B =2 L(1).First we present a necessary technical lemma.Lemma 4.1. Let �; �; � 2 R, � 6= 0. ThenlimT!+1 1T 2TZT (1 + � cos(�t))��(t) dt = (0 for j�j 6= �;(�=2) Id for j�j = �:limT!+1 1T 2TZT (1 + � sin(�t))��(t) dt = (0 for j�j 6= �;�(�=2)J for � = ��:Proof. Is obtained by the direct computation.Now we prove the proposition that plays the central role in obtaining oursu�cient controllability conditions (Theorem 2). It is analogous to item (a)of Proposition 11, [4].Lemma 4.2. Let C 2 LS(�) \ L(1). Suppose that for any a 2 Sp(1)c thefollowing conditions hold :(1) dimLc(a) = 1,(2) top (C; a) 6= 0 or L(1)(a) � LS(�).Suppose additionally that for the numberr = maxfRe a j a 2 Sp(1); C(a) 6= 0 g(or r = minfRe a j a 2 Sp(1); C(a) 6= 0 g)



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 549we have r =2 Sp(1) or C(r) = 0. ThenLS(�) �X�L(1)(a) j a 2 Sp(1); Re a = r; a 6= r 	:Proof. For simplicity suppose thatSp(1) \ fRe z = r; z 6= r g = f a; a; b; bg; (16)where a = r + p�1�, b = r +p�1 �, � 6= �, �; � > 0. If there are morethan two pairs of complex conjugate eigenvalues at the line fRe z = r g,the proof is analogous; if there are less than two pairs, then the proof isobviously simpli�ed.So we haveL(1) = L(1)(a) � L(1)(b)� L(1)(r)��X�fL(1)(c) j c 2 Sp(1); Re c < r; Imc � 0 g (17)(notice that if r =2 Sp(1), then L(1)(r) = f0g by de�nition), and, respectively,C = C(a) + C(b) +X�C(c) j c 2 Sp(1); Re c < r; Imc � 0	:For any element D 2 L, nonnegative function g(t), and natural numberp consider the limitI(D; g; p) := limT!+1 1T 2TZT g(t)erttp�1 exp(t adB)D dt:It follows from the properties of the cone LS(�) (see Subsec. 4.2) that ifD 2LS(�) and the limit I(D; g; p) exists, then I(D; g; p) 2 LS(�). Moreover, ifv(t) 2 LS(�) for all t 2 R, thenI(D; g; p; v) := limT!+1 1T 2TZT g(t)tp�1 �exp(t adB)Dert � v(t)� dt 2 LS(�)if the limit exists.Introduce the notationCa(t) = exp(t adB)C(a); (18)Cb(t) = exp(t adB)C(b); (19)C<r(t) = exp(t adB)XfC(c) j c 2 Sp(1); Re c < r; Imc � 0 g: (20)



550 YU. L. SACHKOVNotice thatI(C; g; p) = limT!+1 1T 2TZT g(t)erttp�1 (Ca(t) +Cb(t) + C<r(t)) dt:For any bounded nonnegative function g(t) and any p 2 N we haveg(t)erttp�1C<r(t) = O(e�"tt1�p+d); t! +1;where " = minf r � Re c j c 2 Sp(1); Re c < r g > 0, and d is equal to thesize of the maximal Jordan block of the operator adcBjL(1)c correspondingto the eigenvalues c 2 Sp(1) with Re c < r. That is whylimT!+1 1T 2TZT g(t)erttp�1C<r(t) dt = 0:Consequently,I(C; g; p) = limT!+1 1T 2TZT g(t)erttp�1 (Ca(t) + Cb(t)) dt 2 LS(�) (21)if the limit exists.Now we choose the bases fx1; y1; : : : ;xk; yk g and f z1; w1; : : : ; zl; wl g inthe spaces L(1)(a) and L(1)(b) in which matrices of the operators adBjL(1)(a)and adBjL(1)(b) are the Jordan blocks0BBBBBB@ Mr;� 0 � � � 0 0Id Mr;� � � � 0 0... . . . . . . ... ...0 0 .. . Mr;� 00 0 � � � Id Mr;� 1CCCCCCA ;0BBBBBB@ Mr;� 0 � � � 0 0Id Mr;� � � � 0 0... . . . . . . ... ...0 0 .. . Mr;� 00 0 � � � Id Mr;� 1CCCCCCA ;



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 551where a = r+p�1�, b = r+p�1 �. In the bases fx1; y1; : : : ;xk; yk g andf z1; w1; : : : ; zl; wl g we haveC(a) = (Cx1 ; Cy1; : : : ;Cxk; Cyk)0 = (CX1 ; : : : ;CXk)0;C(b) = (Cz1 ; Cw1; : : : ;Czl; Cwl)0 = (CZ1; : : : ;CZl)0;where Xi = (xi; yi)0, CXi = (Cxi ; Cyi)0 2 R2, i = 1; : : : ; k, and Zi =(zi; wi)0, CWi = (Czi ; Cwi)0 2 R2, i = 1; : : : ; l (the prime denotes transposi-tion of vectors and matrices). Then in the basefx1; y1; : : : ;xk; yk; z1; w1; : : : ; zl; wl gof the space L(1)(a) � L(1)(b) we haveCa(t) + Cb(t)ert = 0BBBBBBBBBBBBBB@ ��(t)CX1��(t)(tCX1 + CX2)...��(t)� tk�1(k�1)!CX1 + tk�2(k�2)!CX2 + : : :+ CXk���(t)CZ1��(t)(tCZ1 +CZ2)...��(t)� tl�1(l�1)!CZ1 + tl�2(l�2)!CZ2 + : : :+CZl� 1CCCCCCCCCCCCCCA :(22)Let k > l (if k � l, then the below argument can easily be modi�ed).(A) Now we show that span(xk; yk) � LS(�).According to the hypotheses of this lemma, we have L(1)(a) � LS(�)or top (C; a) 6= 0. If L(1)(a) � LS(�), then span(xk; yk) � LS(�). Thatis why we suppose below that top (C; a) 6= 0, which means in the basefx1; y1; : : : ;xk; yk g that CX1 6= 0.Set g(t) = 1 + � cos(�t) (g(t) = 1 + � sin(�t)), j�j = �, j�j � 1. Takinginto account (21), (22), and Lemma 4.1, we obtainI(C; g; k) = limT!+1 1T 2TZT g(t)erttk�1 (Ca(t) + Cb(t)) dt == 1(k � 1)! (0; 0; : : : ; 0;MCX1; 0; 0; : : : ; 0)0 2 LS(�); (23)where M = (�=2) Id for g(t) = 1 + � cos(��t); (24)M = �(�=2)J for g(t) = 1 + � sin(��t): (25)



552 YU. L. SACHKOVBy virtue of the fact that the convex conic hull of vectors (23) for thematrices M of the form (24) and (25), j�j � 1, is the plane span(xk; yk), weobtain span(xk; yk) � LS(�).(B) We take v(t) 2 LS(�) equal to�0; : : : ; 0; ��(t)� tk�1(k � 1)!CX1 + tk�2(k � 2)!CX2 + : : :+CXk� ; 0; : : : ; 0�0 ;i.e., to the component of vector (22) in the plane span(xk; yk), and repeatthe limit passage described in (A) replacing I(C; g; k) with I(C; g; k� 1; v),and obtain span(xk�1; yk�1) � LS(�).(C) We repeat process (B) with I(C; g; p; v), where v(t) is the componentof vector (22) in the plane span(xp; yp), and p is decreasing from k� 2 untill + 1 and obtain the inclusion span(xl+1; yl+1; : : : ;xk; yk) � LS(�).(D) We apply process (C) with p = l and using the functions g(t) ofthe form 1 + � cos(�t), 1 + � sin(�t) for j�j = � and j�j = � and obtainspan(xl; yl; zl; wl) � LS(�).(E) We decrease p and repeat procedure (D) until p = 1 to obtainL(1)(a) � L(1)(b) == span(x1; y1; z1; w1; : : : ;xl; yl; zl; wl;xl+1; yl+1; : : : ;xk; yk) � LS(�):In view of (16), the proof of the lemma is completed.We can give several su�cient conditions for an element B not to havereal N -pairs of eigenvalues. These conditions can be veri�ed simply by thepicture of spectrum of the operator adBjL(1) in the complex plane. We needthem to obtain Corollary 2.Lemma 4.3. Suppose that B =2 L(1) and L(1)r = L(2)r . Then any one ofthe following conditions is su�cient for the operator adBjL(1) not to havereal N -pairs of eigenvalues:(1) Sp(1)r = ;,(2) Sp(1) � fRe z > 0g,(3) Sp(1) � fRe z < 0g.Proof. The �rst case (Sp(1)r = ;) is obvious as there are no real eigenvaluesat all.Case 2. Let (�; �) be a real N -pair, 0 < � � �. We haveL(2)(�) � L(2) = [L(1); L(1)] =Xf [L(1)(a); L(1)(b)] j a; b 2 Sp(1) g:Jacobi's identity implies that [L(1)(a); L(1)(b)] � L(1)(a+ b), and the spacesL(1)(c), c 2 Sp(1), form a direct sum, that is whyL(2)(�) �Xf [L(1)(a); L(1)(b)] j a; b 2 Sp(1); a+ b = �g: (26)



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 553From the conditions a+ b = � and Re a > 0, Re b > 0 we obtain Re a < �,Re b < �. That is why (26) givesL(2)(�) �Xf [L(1)(a); L(1)(b)] j a; b 2 Sp(1); Re a;Re b < � g:This contradicts item (2) of De�nition 3.Case 3 is considered analogously.x 4.4. Proofs of the su�cient controllability conditions.Proof of Theorem 2. We show that LS(�) � L(1).Introduce the following numbers and sets:n = minfRe a j a 2 Sp(1); L(1)(a) 6� LS(�) g; (27)m = maxfRe a j a 2 Sp(1); L(1)(a) 6� LS(�) g; (28)N = f a 2 Sp(1) j Re a = n; L(1)(a) 6� LS(�) g;M = f a 2 Sp(1) j Re a = m; L(1)(a) 6� LS(�) g:Suppose that LS(�) 6� L(1), then �1 < n � m < +1 and N 6= ;,M 6= ;.Recall that we have the following decomposition of the vector A corres-ponding to root subspaces of the operator adBjL(1) :A = AB +XfA(a) j a 2 Sp(1); Ima � 0 g:De�ne the elementA1 = A �AB �XfA(a) j a 2 Sp(1); Re a > m or Re a < n; Ima � 0 g:Notice that A1 2 LS(�) since all terms in the right-hand side belong toLS(�). In addition, we have A1 2 L(1). Consider the decompositionA1 =XfA1(a) j a 2 Sp(1); Ima � 0 g:For any a 2 Sp(1) we haveRe a 2 [n;m]) A1(a) = A(a);Re a =2 [n;m]) A1(a) = 0:According to condition 6 of this theorem, the pair of real numbers (n;m)is not an N -pair. That is why at least one of conditions (1){(3) of De�ni-tion 3 is violated. Now we consider these cases separately and come to acontradiction.(1) Let condition (1) of De�nition 3 be violated, i.e., n 62 Sp(1) or m 62Sp(1). Suppose, for de�niteness, that m 62 Sp(1).



554 YU. L. SACHKOVApply Lemma 4.2 with C = A1 and r = m. Then we haveLS(�) �XfL(1)(a) j a 2 Sp(1); Re a = m; a 6= m g ==XfL(1)(a) j a 2 Sp(1); Re a = m g;which is a contradiction to (28).If n 62 Sp(1), we come to a contradiction with (27) analogously. That iswhy case (1) is impossible.(2) Let now n;m 2 Sp(1) and let condition (2) of De�nition 3 be violated,i.e.,L(2)(n) �Xf [L(1)(�); L(1)(�)] j �; � 2 Sp(1); Re�;Re� =2 [n;m] g:But for Re�;Re� =2 [n;m] we have L(1)(�); L(1)(�) � LS(�) (by de�nitions(27) and (28)), consequently, L(2)(n) � LS(�). According to hypotheses ofthis theorem, L(1)(n) = L(2)(n), that is whyL(1)(n) � LS(�): (29)Consider the vector A2 = A1 � A1(n). We have A2 2 LS(�) \ L(1) andA2(n) = 0. Now we apply Lemma 4.2 with C = A2 and r = n and obtainLS(�) �XfL(1)(a) j a 2 Sp(1); Re a = n; a 6= n g:Then, by virtue of (29), we haveLS(�) �XfL(1)(a) j a 2 Sp(1); Rea = n g;which is a contradiction with (27). That is why case (2) is impossible, andcondition (2) of De�nition 3 cannot be violated.(3) We prove analogously that condition (3) of De�nition 3 cannot beviolated as well.Hence, all three conditions of De�nition 3 hold, and (n;m) is a real N -pairof eigenvalues. This is a contradiction with condition (6) of this theorem.That is why LS(�) � L(1). But L = RB � L(1) and RB � LS(�). SoLS(�) = L, and � is controllable by the controllability condition (15).Proof of Corollary 2 follows immediately from Theorem 2 and Lemma 4.3.Proof of Corollary 3 is obvious in view of Corollary 2.



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 5555. Examples and applicationsx 5.1. Metabelian groups. Solvable Lie algebras L having the derivedseries of length 2: L � L(1) � L(2) = f0g;are called metabelian. A Lie group with a metabelian Lie algebra is alsocalled metabelian.Our previous results make it possible to obtain controllability conditionsfor metabelian Lie groups.Theorem 3. Let G be a metabelian Lie group. Then the following con-ditions are su�cient for controllability of a system � on G:(1) dimL(1) = dimL� 1,(2) B =2 L(1),(3) Sp(1)r = ;,(4) dimLc(a) = 1 for all a 2 Sp(1)c ,(5) top (A; a) 6= 0 for all a 2 Sp(1)c .If the group G is simply connected, then conditions (1){(5) are also neces-sary for controllability of the system � on G.The notation top (A; a) used in Theorem 3 is explained in De�nition 2 ofSec. 2.Proof. The su�ciency follows from Corollary 2.In order to prove the necessity for the simply connected G suppose that� is controllable.Conditions (1) and (2) follow then from items (1) and (2) of Theorem 1.Condition (3) follows from item (3) of Theorem 1 and from the metabelianproperty of G: L(1)r = L(2)r � L(2) = f0g:Condition (4). For any a 2 Sp(1)c we have L(2)(a) = f0g, that is whyj (a) is equal to geometric multiplicity of the eigenvalue a of the operatoradBjL(1)(a), i.e., to dimLc(a). By item (6) of Theorem 1, we have j (a) = 1,that is why dimLc(a) = 1.Condition (5). For any a 2 Sp(1)c we have j (a) = 1, then, by item (7) ofTheorem 1, we obtain top (A; a) 6= 0.Example. Let l be a �nite-dimensional real Lie algebra acting linearly ina �nite-dimensional real vector space V . Consider their semidirect productL = V �s l. It is a subalgebra of the Lie algebra of a�ne transformationsof the space V since L � V �s gl (V ). If l is Abelian, then L is metabelian:L(1) = lV �s f0g; L(2) = f0g:



556 YU. L. SACHKOVIn the following subsection we study in detail a particular case when l isone-dimensional.x 5.2. Matrix group. Now we apply the controllability conditions fromthe previous subsection to some particular metabelian matrix group. Tobegin with we describe this group.Let V be a real �nite-dimensional vector space, dimV = n, and M alinear operator in V . The required metabelian Lie algebra is the semi-directproduct L(M ) = V �s RM(compare with the example at the end of the previous subsection).Now we choose and �x a base in V , and denote the matrix of the operatorM in this base by the same letter M . Then L(M ) can be represented asthe subalgebra of gl (n+ 1;R) generated by the following matrices:x = � M 00 0 � ; yi = Ei;n+1; i = 1; : : : ; n:(Recall that Eij is the n� n matrix with the only unit entry in the ith lineand the jth raw.) Obviously, we haveL = span(x; y1; : : : ; yn); dimL = n+ 1;L(1) = span(y1; : : : ; yn); dimL(1) = n;L(2) = f0g:Notice also that [yi; yj] = 0 for all i; j = 1; : : : ; n and M is the matrix ofthe adjoint operator adxjL(1) in the base f y1; : : : ; yn g. In the sequel weconsider the Lie algebra L(M ) � gl (n+1;R) in this matrix representation.Let G(M ) be the connected Lie subgroup of GL(n+ 1;R) correspondingto L(M ). The group G(M ) can be parametrized by the matricesg(t; s) = � exp(Mt) s0 1 � ; t 2 R; s 2 Rn:It is a semidirect product:G = Rn
s G1; G1 = f exp(Mt) j t 2 Rg:The group G(M ) is not simply connected i� the one-parameter subgroup G1is periodic, which occurs i� the matrixM has purely imaginary commensu-rable spectrum. More precisely, we say that a set of numbers (b1; : : : ; bn) 2Rn is commensurable if(b1; : : : ; bn) = r � (k1; : : : ; kn) for some r 2 R; (k1; : : : ; kn) 2Zn:



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 557And the group G(M ) is not simply connected i�Sp(M ) � p�1 �R;the set Im(Sp(M )) is commensurable: � (30)Before studying controllability conditions for the group G(M ) we presentan auxiliary proposition, which translates the Kalman condition (equivalentboth to controllability and to rank controllability condition for linear sys-tems _x = Ax + ub, x 2 Rn, u 2 R) into the language of eigenvalues ofthe matrix A and of components of the vector b in the corresponding rootspaces). We will apply this proposition below to reformulate our controlla-bility conditions for right-invariant and bilinear systems.Lemma 5.1. Let A be a real n � n matrix, b 2 Rn. Then the Kalmancondition rank (b; Ab; : : : ; An�1b) = n (31)is equivalent to the following conditions:(1) the matrix A has a geometrically simple spectrum,(2) top (b; �) 6= 0 for any eigenvalue � 2 Sp(A).By analogy with De�nition 2 in Sec. 2, we say that top (b; �) 6= 0 if thecomponent b(�) of the vector b in the root space Rn(�) corresponding tothe eigengalue � satis�es the conditionb(�) =2 (A � � Id)Rn(�);i.e., the vector b(�) has a nonzero component corresponding to the highestadjoined vector in the (single) Jordan chain of the operator A correspondingto �.To prove Lemma 5.1, we cite the followingProposition 3. (Hautus Lemma, [22], Lemma 3.3.7.) Let A be a com-plex n � n matrix, b 2 Cn . Then the Kalman condition (31) is equivalentto the condition rank (� � Id�A; b) = n 8 � 2 Sp(A): (32)Proof of Lemma 5.1. In view of Proposition 3, we prove that condition (32)is equivalent to conditions (1), (2) of Lemma 5.1.First, we suppose that all eigenvalues of A are real; otherwise we passto complexi�cation. Second, the Kalman condition (31) preserves under



558 YU. L. SACHKOVchanges of base in Rn. That is why we assume that the matrix A is in theJordan normal form:A = 0B@Ji1(�1) � � � 0... . . . ...0 � � � Jik(�k)1CA ; f�1; : : : ; �kg = Sp(A);Jil(�l) = 0BBBBBB@�l 0 � � � 0 01 �l � � � 0 0... . . . . . . ... ...0 0 .. . �l 00 0 � � � 1 �l1CCCCCCA| {z }il ; l = 1; : : : ; k:Then the n� (n + 1) matrix in condition (32) is represented as�(�) := (� � Idn�A; b) == 0B@� � Idi1 �Ji1 (�1) � � � 0 b(�1)... . . . ... ...0 � � � � � Idik �Jik (�k) b(�k)1CA ; (33)where b(�l), l = 1; : : : ; k, denotes projection of the vector b onto the rootspace of the matrix A corresponding to the eigenvalue �l.Necessity. We assume that rank�(�) = n for all � 2 Sp(A) and proveconditions (1), (2) of Lemma 5.1.1. If spectrum of A is not geometrically simple, then �i = �j for somei 6= j. Then the matrix �(�i) has two zero columns, and rank�(�i) < n.2. Suppose that the vector b has the zero �-top for some � 2 Sp(A); forde�niteness, let top (b; �1) = 0. Then the �rst component of b in the chosenJordan base equals to zero, and the �rst raw of the matrix �(�1) is zero.Hence rank�(�1) < n.Su�ciency. If conditions (1), (2) of Lemma 5.1 hold, then it is easy tosee from representation (33) that all matrices �(�l), l = 1; : : : ; k, have nlinearly independent columns and condition (32) is satis�ed.Now we obtain controllability conditions for the universal covering Ĝ(M )and for the group G(M ) itself.Theorem 4. Let M be an n � n matrix, G = Ĝ(M ), L = L(M ). Asystem � = A + RB � L is controllable on G if and only if the followingconditions hold :(1) the matrix M has a purely complex geometrically simple spectrum,(2) B =2 L(1),



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 559(3) top (A; �) 6= 0 for all � 2 Sp(M ).For the group G(M ) conditions (1){(3) are su�cient for controllability; ifconditions (30) are violated, then (1){(3) are equivalent to controllability onG(M ).The notation top (A; �) used in Theorem 4 is explained in De�nition 2 inSec. 2.Remark. By Lemma 5.1, conditions (1){(3) of the above theorem areequivalent to the following ones:(1) the matrix M has a purely complex spectrum,(2) B =2 L(1),(3) span(B; (adB)A; : : : ; (adB)n�1A) = L.Proof of Theorem 4. Theorem 3 (see Subsec. 5.1) is applicable to the groupG = Ĝ(M ), and condition (1) of Theorem 3 is satis�ed.Decompose the vector B 2 L using the base of L:B = Bxx+By1y1 + : : :+ Bynyn:B =2 L(1) is equivalent to Bx 6= 0. Moreover, in view of the metabelianproperty of L,Sp(1) = Sp(adBjL(1) ) = Bx � Sp(adxjL(1)) = Bx � Sp(M ):By virtue of Theorem 3, the system � is controllable on G if and only ifthe following conditions hold:(1) B =2 L(1),(2) Sp(M ) \R= ;,(3) the matrix M has a geometrically simple spectrum,(4) top (A; �) 6= 0 for all � 2 Sp(M ).Now the proposition of the current theorem for Ĝ(M ) follows.For G(M ), controllability is implied by controllability on its univer-sal covering Ĝ(M ). And if conditions (30) are violated, then G(M ) =Ĝ(M ).Let now conditions (30) be satis�ed. Then the group G(M ) is a semi-direct product of the vector group Rn and the one-dimensional compactgroup G1. But controllability conditions on such semi-direct products wereobtained by B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet [6]: if thecompact group has no �xed nonzero points in the vector group (which is justthe case), then the controllability is equivalent to the rank controllabilitycondition (Theorem 1, [6]).



560 YU. L. SACHKOVSo we have complete controllability conditions of systems of the form� = A+RB on the group G(M ) and its simply connected covering Ĝ(M ).In the simply connected case (i.e., when conditions (30) are violated) wehave Theorem 4, and otherwise the theorem of B. Bonnard, V. Jurdjevic,I. Kupka, and G. Sallet [6] works.x 5.3. Bilinear system. Now we apply the controllability conditions forthe group G(M ) and study global controllability of the bilinear system_X = uAX + b; X 2 Rn; u 2 R; (�)where A is a constant real n � n matrix and b 2 Rn.Theorem 5. The system � is globally controllable on Rn if and only ifthe following conditions hold :(1) the matrix A has a purely complex spectrum,(2) span(b; Ab; : : : ; An�1b) = Rn.Remark. By Lemma 5.1, conditions (1){(2) of this theorem can equiva-lently be formulated as follows:(1) the matrix A has a purely complex geometrically simple spectrum,(2) top (b; �) 6= 0 for all � 2 Sp(A).Proof of Theorem 5. We use the hypotheses of this theorem in the equiva-lent form given in the above remark.Su�ciency. Consider the bilinear system_Y = AY + uBY; Y = (X; 1)0 2 Rn+1; u 2 R; (�)where A = � 0 b0 0 � ; B = � A 00 0 �are (n + 1) � (n + 1) matrices. It is easy to see that the system � isglobally controllable on Rn i� the system � is globally controllable in then-dimensional a�ne plane(Rn; 1)0 = fY = (X; 1)0 2 Rn+1 j X 2 Rng:Consider the matrix Lie algebra L(A) and the corresponding Lie groupG(A) described in the previous subsection. We have A;B 2 L(A), and � =A+RB � L(A) is a right-invariant system on the group G(A). Theorem 4ensures that under hypotheses (1), (2) of the current theorem the system� is controllable on the group G(A). But the group G(A) acts transitivelyin the plane (Rn; 1)0, and the bilinear system � is the projection of theright-invariant system � from the group G(A) onto the plane (Rn; 1)0. Thatis why controllability of � on G(A) implies controllability of � on (Rn; 1)0.Thus � is globally controllable on Rn.



CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS 561Necessity. Assume that � is globally controllable on Rn.(1a) First we show that the matrix A has no real eigenvalues. Supposethere is at least one eigenvalue a 2 Sp(A) \R. We choose a Jordan basef e1; : : : ; en g of the matrix A and denote by fx1; : : : ; xn g the correspon-ding coordinates in Rn. Let ek denote the maximum order root vectorcoresponding to the eigenvalue a:(A� a Id)kek = aek + "ek+1; " = 1 or 0;and k is the maximal possible integer. Then the system � implies_xk = uaxk + bk;where bk is the kth coordinate of the vector b in the base f e1; : : : ; en g.Now it is obvious that at least one of the half-spaces fxk � 0 g, fxk � 0 gis positive invariant for the system �, i.e., this system is not controllable.(1b) Now we show that the spectrum Sp(A) is geometrically simple. Sup-pose that for some (complex) eigenvalue � 2 Sp(A) there are at least twolinearly independent eigenvectors. Then we apply the same transformationof Jordan chains as in Lemma3.4 to obtain the zero component of the vectorb in the two-dimensional subspace of Rn spanned by the pair of the highestorder root vectors of the matrix A (see conditions (13), (14)). Now if xk, ykare the coordinates in Rn in the transformed Jordan base corresponding tothe above-mentioned two-dimensional subspace, then the system � yields_xk = u(�xk + �yk);_yk = u(��xk + �yk);where � = Re�, � = Im�. Hence it follows that the codimension twosubspace fxk = yk = 0 g is (both positive and negative) invariant for thesystem �, and so it is not controllable.(2) Finally, we show that the vector b has a nonzero �-top for any eigen-value � 2 Sp(A). If this is not the case, we choose any Jordan chain in theroot space corresponding to �, apply the argument from item 1.b) above,and show that � is not controllable.The necessity and su�ciency are now completely proved.x 5.4. The Euclidean group in two dimensions. It is interesting toconsider the work of the above general theory for the visual three-dimensionalcase.Let G = G(J ) = E(2) be the Euclidean group of motions of the planeR2. E(2) is connected but not simply connected. It can be represented asthe group of 3� 3 matrices of the formg(t; s1; s2) = 0@ cos t � sin t s1sin t cos t s20 0 1 1A ;



562 YU. L. SACHKOVwhere � cos t � sin tsin t cos t � 2 SO(2) for t 2 R; � s1s2 � 2 R2:The corresponding matrix Lie algebra L is spanned by the matricesx = 0@ 0 �1 01 0 00 0 0 1A ; y = 0@ 0 0 00 0 �10 0 0 1A ; z = 0@ 0 0 10 0 00 0 0 1A :Consider the system � = A + RB on gE(2) | the universal covering ofE(2). A complete characterization of controllability of � on gE(2) is derivedfrom Theorem 4.Theorem 6. The system � is controllable on gE(2) if and only if thevectors A, B are linearly independent and B =2 span(y; z).Let us compare the controllability conditions for gE(2) with the followingconditions for E(2) derived from Theorem 1, [6]:Theorem 7. The system � is controllable on E(2) if and only if thevectors A, B are linearly independent and span(A;B) 6� span(y; z).Finally, Theorem 5 gives the following geometrically clear proposition.Theorem 8. The system_X = uAX + b; X; b 2 R2; u 2 Ris controllable on the plane R2 if and only if :(1) the matrix A has a purely complex spectrum,(2) b 6= 0.Acknowledgment. The author thanks Professor G�erard Jacob and Labo-ratoire d'Informatique Fondamentale de Lille, Universit�e Lille I, where thispaper was started, for hospitality and excellent conditions for work. Theauthor is also grateful to Professor A.A. Agrachev for valuable discussionsof the results presented in this work.
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