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CONTROLLABILITY OF RIGHT-INVARIANT SYSTEMS
ON SOLVABLE LIE GROUPFPS

YU.L. SACHKOV

ABSTRACT. We study controllability of right-invariant control sys-
tems I' = A 4+ RB on Lie groups. Necessary and sufficient control-
lability conditions for Lie groups not coinciding with their derived
subgroup are obtained in terms of the root decomposition correspon-
ding to the adjoint operator ad B. As an application, right-invariant
systems on metabelian groups and matrix groups, and bilinear sys-
tems are considered.

1. INTRODUCTION

Control systems with a Lie group as a state space are studied in the
mathematical control theory since the early 1970-ies.

R. W. Brockett [1] considered applied problems leading to control systems
on matrix groups and their homogeneous spaces; e.g., a model of DC to DC
conversion and the rigid body control raise control problems on the group of
rotations of the three-space SO(3) and on the group SO(3) x R3 respectively.
The natural framework for such problems are matrix control systems of the
form

m

i(t) = Ae(t)+ Y wit)Bix(t), wi(t) € R, (1)
i=1
where #(t) and A, Bj,..., By are n x n matrices. There was estab-

lished the basic rank controllability test for homogeneous (A = 0) systems:
such systems are controllable iff the Lie algebra generated by the matrices
By, ..., By has the full dimension. This test was specified for the groups of
matrices with positive determinant GL4(n,R), the group of matrices with
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determinant one SL(n,R), the group of symplectic matrices Sp(n), and the
group of orthogonal matrices with determinant one SO(n). Some controlla-
bility conditions for nonhomogeneous matrix systems were also obtained.

The first systematic mathematical study of control systems on Lie groups
was fulfilled by V. Jurdjevic and H.J. Sussmann [2]. They noticed that the
passage from the matrix system (1) to the more general right-invariant
system

B(0) = A@) + Y wOB(a(W), o) €G, ut) R,  (2)
i=1
where A, By, ..., By, are right-invariant vectorfields on a Lie group G, “in

no essential way affects the nature of the problem.” The basic properties

of the attainable set (the semi-group property, path-connectedness, rela-
tion with the associated Lie subalgebras determined by the vectorfields A,
By, ..., Bp) were established. The rank controllability test was proved for
system (2) in the homogeneous case and in the case of a compact group G.
Sufficient controllability conditions for other cases were also given.

V. Jurdjevic and I. Kupka [4] introduced a systematic tool for studying
controllability on Lie groups. For the control system (2) presented in the
form of the polysystem

r:{A+iui3i|uieR}cL (3)
i=1

(where L is the Lie algebra of the group G) they considered its Lie saturation
LS(T) — the largest system equivalent to I'. Controllability of the system T
on (i is equivalent to LS(T') = L, and a general technique for verification of
this equality was proposed. (This technique is outlined in Subsec. 4.2 and
used in Subsecs. 4.3, 4.4 below.) In [4] sufficient controllability conditions
for the single-input systems I' = { A + uB } were obtained for simple and
semi-simple groups G with the use of this technique. They were given
in terms of the root decomposition of the algebra L corresponding to the
adjoint operator ad B.

In their preceding paper V. Jurdjevic and I. Kupka [3] presented the
enlargement technique for systems on matrix groups G C GL(n,R) and
obtained sufficient controllability conditions for G = SL(n,R) and G =
GL+ (TL, R) .

These results for SL(n,R) and GL4 (n,IR) were generalized by J.P. Gau-
thier and G. Bornard [5].

B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet [6] obtained a cha-
racterization of controllability on a Lie group which is a semidirect product
of a vector space and a compact group which acts linearly on the vector
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space. The case G = R"®; SO(n) was applied to the study of Serret—Frenet
moving frames.

The results of [4] for simple and semi-simple Lie groups were general-
ized in a series of papers by J.P. Gauthier, I. Kupka, and G. Sallet [7],
R.El Assoudi and J. P. Gauthier [9], [10], F. Silva Leite and P.E. Crouch [8]:
analogous controllability conditions were obtained for classical Lie groups
with the use of the Lie saturation technique and the known structure of real
simple and semi-simple Lie algebras.

In contrast to this “simple” progress, invariant systems on solvable groups
seem not to be studied in the geometric control theory at all until 1993.
Then a complete solution of the controllability problem for simply connected
nilpotent groups G was given by V. Ayala Bravo and L. San Martin [11].
Some results on controllability of (not right-invariant) systems on Lie groups
analogous to linear systems on RR™ were obtained by V. Ayala Bravo and
J. Tirao [12].

Several results on controllability of right-invariant systems were obtained
within the framework of the Lie semigroups theory [13], [14]: for nilpotent
groups by J. Hilgert, K. H. Hofmann, and J.D. Lawson [15], for reduc-
tive groups by J. Hilgert [16]. For Lie groups G with cocompact radical,
J.D. Lawson [17] proved that controllability of a system T' C L follows from
nonexistence of a half-space in L bounded by a Lie subalgebra and contain-
ing ['; if GG is additionally simply connected, this condition is also necessary
for controllability. This result generalizes controllability conditions for com-
pact groups [2], nilpotent groups [15], and for semidirect products of vector
groups and compact groups [6].

In [18] the author characterized controllability of hypersurface right-inva-
riant systems, i.e., of systems T of the form (3) with the codimension one Lie
subalgebra generated by the vectorfields By, ..., By,. This gave a necessary
controllability condition for simply connected groups — the hypersurface
principle; see its formulation for single-input systems I' in Proposition 2
below. In its turn, the hypersurface principle was applied and there was
obtained a controllability test for simply connected solvable Lie groups GG
with Lie algebra L satisfying the additional condition: for all X € L the
adjoint operator ad X has real spectrum.

The aim of this paper is to give convenient controllability conditions of
single-input systems I' for a wide class of Lie groups including solvable ones;
more precisely, for Lie groups not coinciding with their derived subgroups.

The structure of this paper is as follows.

We state the problem and introduce the notation in Sec. 2.

In Sec. 3 we give the necessary controllability condition for simply con-
nected groups G not coinciding with their derived subgroup G(1) (Theorem 1
and Corollary 1). These propositions are proved in Subsec. 3.3 after the
preparatory work in Subsec. 3.2. The main tools are the rank controllability
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condition (Proposition 1) and the hypersurface principle (Proposition 2).

Sec. 4 is devoted to sufficient controllability conditions for the groups
G # G, We present the main sufficient results in Subsec. 4.1. Then
we recall the Lie saturation technique in Subsec. 4.2 and prove preliminary
lemmas in Subsec. 4.3. The main results (Theorem 2 and Corollaries 2, 3)
are proved in Subsec. 4.4.

In Sec. b we consider several applications of our results. Controllability
conditions for metabelian groups are obtained in Subsec. 5.1. Then con-
trollability conditions for some subgroup of the group of motions of the Eu-
clidean space are studied in detail (Subsec. 5.2) and are applied to bilinear
systems (Subsec. 5.3). Finally, the clear small-dimensional version of this
theory for the group of motions of the two-dimensional plane is presented
in Subsec 5.4.

A preliminary version of the below results was stated in [19].

2. PROBLEM STATEMENT AND DEFINITIONS

Let GG be a connected Lie group, L its Lie algebra (i.e., the Lie algebra
of right-invariant vector fields on &), and A, B any elements of L. The
single-input affine right-invariant control system on G is a subset of L of
the form

'={A+uB|ueR}.

The attainable set A of the system T is the subsemigroup of G generated
by the set of the one-parameter semigroups

{exp(tX) | X €T, 1€ Ry},

The system I 1s called controllable if A = G.

To see the relation of these notions with the standard system-theoretical
ones, let us write the right-invariant vector fields A and B as A(xz) and
B(z), x € G. Then the system T' can be written in the customary form

B(t) = Ax(t)) + u(t)B(z(1)), u(t)€R, z(t)€G.

The attainable set A is then the set of points of the state space GG reachable
from the identity element of the group G for any nonnegative time. The
system I 1s controllable iff any point of G can be reached along trajectories
of this system from the identity element of the group G. By right-invariance
of the fields A(x), B(x), the identity element in the previous sentence can
be changed by an arbitrary one.

Our aim is to characterize controllability of the system I' in terms of the
Lie group G and the right-invariant vector fields A and B.

Now we introduce the notation we will use in the sequel.

For any subset { C L we denote by Lie (!) the Lie subalgebra of L gen-
erated by {. Closure of a set M is denoted by cl M. The signs @ and
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Z@ denote direct sums of vector spaces; ®g and ®s stand for semidirect
products of Lie algebras and Lie groups correspondingly.

We denote by Id the identity operator or the identity matrix of appro-
priate dimension,

0 -1 cosat —sinat r —a
J_<1 0)’ Ua(t)_<sinat cos at )’ Mr’a_<a r )
for t, a, r € R. The square matrix with all zero entries except one unit in

the ¢th raw and the jth column is denoted by FE;;.
Now we introduce the notation connected with eigenvalues and eigenspa-

ces of the adjoint operator ad B in L:

e the derived subalgebra and the second derived subalgebra:
LW=1r,1], L®=[m 0]

e the complexifications of L and L), i =1, 2:

bl

L.=L®C, LW =10 gC

c

(the tensor products over R),
e the adjoint representations and operators:

ad : L — End(L), (ad B)X = [B,X] VX €L,

ade : Le = End(Le), (ad. B)X = [B,X] VX € L,

o spectra of the operators ad By, i = 1,2:
Sp™ = {a € C|Ker(ade B|,(» — ald) # {0} },
e real and complex eigenvalues of the operators ad B|; ¢y, i = 1,2:
Spi? =sp Nk, spl) =Spl\ R,
e complex eigenspaces of ad. B|L£1):
L¢(a) = Ker(ad, B|L£1) —ald),
e real eigenspaces of ad B|;a):
L(a) = (Le(a) + Lo(@) N L,

e complex root subspaces of ad. B|L(,), 1=1,2:

L) (a) = UR_, Ker(ad, Bl @ —a 1)V,

e real root subspaces of ad Bl ¢y, 1= 1,2:

19(a) = (L0(a) + L9 @) N L.
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e real components of L), i =1,2:

Z {L |a€Sp£),Ima>0}

Note that the subalgebras L) and L(?) are ideals of L, so they are (ad B)-
invariant, and the restrictions ad B|;) and ad B|j (=) are well defined.

In the following lemma we collect several simple statements about de-
composition of the subalgebras L(1) and L(?) into sums of root spaces and
eigenspaces of the adjoint operator ad B.

Lemma21

(1) LO =S¥ 10 (a) |a € SpV, Ima >0}, i=1,2,
(2) sp® c spY, Sp()CSp()
(3)L)()CL )(a) for any a € Sp¥,
(4) L >cL5«),
(5) Sp¥ c sp + spth.

Proof. Ts obtained by the standard linear-algebraic arguments. In item (5)
Jacobi’s identity is additionally used. [O

Consider the quotient operator
adB : LW/ o [/
defined as follows:
(ad B)(X + L) = (ad B)X + L) vX € LY.

Analogously for a € Sp(l) we define the quotient operator in the quotient
root space:

ad B(a) : LY (a)/L? (a) » LV (a)/ L) (a),
(ad B(a))(X + L?(a)) = (ad B)X + L?(a) ¥X € LW (a),

and its complexification:

——

ade B(a) = LM (a)/L8(a) = LV (a) /L) (a),

c c

(ade B(a))(X + L& (a)) = (ade B)X + L (a) YX € LY (a).
Definition 1. Let « € Sp("). We denote by j (a) the geometric mul-

tiplicity of the eigenvalue a of the operator ad. B(a) in the vector space

L (a)/ L (a).
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Remarks.
(a) For a € Sp") the number j (a) is equal to the number of Jordan

——

blocks of the operator ad B(a) in the space L) (a)/L(*)(a).
(b) If an eigenvalue a € Sp™M) is simple, then j (a) =0 forae€ Sp® and
jl@)=1fora€ Spt\ sp®.
Suppose that L = L(Y 3 RB (this assumption will be justified by Theo-
rem 1 below). Then by Lemma 2.1

@
L=RBa LY =RBg Z {L(l)(a) | a € Sp™M Ima >0 },
that is why any element X € L can uniquely be decomposed as follows:
X=Xp+)» {X(a)|aeSpV, Ima>0}, XpeRB, X(a) € LW (a).

We will consider such decomposition for the uncontrolled vector field A of
the system I':

A:AB—i—Z{A(a) | a e SpV, Ima>0}.

We denote by Z(\El/) the canonical projection of the vector A(a) € L1 (a)
onto the quotient space L(l)(a)/L(z)(a).

Definition 2. Let L = L) &R B, a € Sp'V, and j (a) = 1. We say that
a vector A has the zero a-top if

——

Aa) € (ad B(a) — aId)(L™M) (a) /L) (a)).

In the opposite case we say that A has a nonzero a-top. We use the corres-
ponding notations: top (4, a) = 0 or top (A4, a) # 0.

Remark. Geometrically, if a vector A has a nonzero a-top, then the vector

A(a) has a nonzero component corresponding to the highest adjoined vector
in the (single) Jordan chain of the operator ad B(a). Due to nonuniqueness

of the Jordan base, this component is nonuniquely determined, but its prop-
erty to be zero is basis-independent.

Definition 3. A pair of complex numbers (o, 3), Rea < Re g, is called
an N-pair of eigenvalues of the operator ad B if the following conditions

hold:
(1) a8 esp,
(2) L0(a) ¢ S{ LM (a), LI B)] | a,b e Sp,
Rea, Reb ¢ [Rea;Ref] },
(3) L)) ¢ S{ILM (a), LO(®)] | a,b € 5P,
Rea, Reb ¢ [Rea;Refd] }.
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Remarks.

(a) In other words, to generate the both root spaces L(Z)(oz) and L(® (8)
for an N-pair («, 3), we need at least one root space LM (y) with
Re~ € [a; 8]. The name is explained by the fact that N-pairs can
NOT be overcome by the extension process described in Lemma4.2:
they are the strongest obstacle to controllability under the necessary
conditions of Theorem 1.

(b) The property of absence of the real N-pairs will be used to formulate
sufficient controllability conditions in Theorem 2. In some generic
cases this property can be verified by Lemma 4.3.

3. NECESSARY CONTROLLABILITY CONDITIONS

§ 3.1. Main theorem and known results. It turns out that control-
lability on simply connected Lie groups G with G # GW is a very strong
property: it imposes many restrictions both on the group G and on the
system I'.

Theorem 1. Let a Lie group G be simply connected and its Lie algebra
L satisfy the condition L #+ LW If a system T is controllable, then:

(1) dim L™ =dim L — 1,

(2) B¢ LW,

(3) LY = LY,

(4) Spi* = spit),

(5) sp™), c sp™ +pl,

(6) j(a) <1 foralla € Spth,

(7) top (A,a) #0 forall a € SpM) for which ] (a) =1.

The notations j(a) and top (A4, a) used in Theorem 1 are explained in
Definitions 1 and 2 in Sec. 2.

Remarks.

(a) The first condition is a characterization of the state space G but
not of the system I'. It means that no single-input system I' =
{ A+ uB} can be controllable on a simply connected Lie group G
with dimG(") < dim G — 1. That is, to control on such a group,
one has to increase the number of inputs. There is a general lower
estimate m > dimG — dim G(") for the number of the controlled
vectorfields By, ..., By, necessary for controllability of the multi-
input system (3) on a simply connected group G [18].

(b) Conditions (3)—(7) are nontrivial only for Lie algebras I with L(?) £
LW (in particular, for solvable noncommutative L). If L® = )
then these conditions are obviously satisfied.
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(c) The third condition means that j(a) = 0 for all a € Spﬁl), that is
why condition (6) is nontrivial only for a € Spﬁl).

(d) By the same reason, in condition 7 the inclusion a € Sp(l) can be
changed by a € Spﬁl). Note that if j(a) = 0, then by the formal
Definition 2 the vector A has the zero a-top.

(€) The fourth and fifth conditions are implied by the third one but are
easier to verify. The simple (and strong) “arithmetic” necessary
controllability condition (5) can be verified by a single glance at
spectrum of the operator ad Bl ).

(f) For solvable L under conditions (1), (2) the spectrum
Spt) = Sp(ad Blp)

is the same for all B ¢ L") modulo homotheties. Then conditions
(3)-(5) depend on L but not on B.

(g) For the case of simple spectrum of the operator ad B|y ) the ne-
cessary controllability conditions take respectively the more simple
form:

Corollary 1. Let a Lie group G be simply connected and its Lie algebra

L satisfy the condition L # LU, Suppose that the spectrum Sp(l) 15 stmple.
If a system I' is controllable, then:

(1) dim L(* > =dimlL -1,

(2) B ¢ Le
(3) Spr —Spf~ ),
(4) spf" ¢ spt) + splh),
(5) ( )¢0foralla€Sp \ Sp?

Theorem 1 and Corollary 1 will be proved in Subsec. 3.3.

Remark. Now we discuss the condition L(Y) # I essential for this work
and motivated by its initial focus — solvable Lie algebras L. Consider a
Levi decomposition

L=R®sS, R=radl.

Tt is well known (see, e.g., [20], Theorem 3.14.1) that the Levi decomposition
of the derived subalgebra is then

LW =[L,Rl @ S, [L,R]=radL®).
This means that
V£ < |[LradL] #rad L.

If a Lie algebra L is semisimple (i.e., rad L = 0), then obviously L) = L.
The converse is generally not true (although this is asserted by [21], Sec. 87,
Corollary 3). For example, for the Lie algebra R3 &g so(3) (which is the Lie
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algebra of the Lie group of motions of the three-space) its derived subalgebra
coincides with the algebra itself. (This example was kindly indicated to the
author by A. A. Agrachev).

The main tools to obtain the necessary controllability conditions given
in Theorem 1 is the rank controllability condition and the hypersurface
principle.

The system I' is said to satisfy the rank controllability condition if the
Lie algebra generated by I' coincides with L:

Lie (T') = Lie (A, B) = L.

Proposition 1. (Theorem 7.1, [2]). The rank controllability condition
1s necessary for controllability of a system I' on a group G.

Generally, the attainable set A lies (and has a nonempty interior, which
is dense in A) in the connected subgroup of @ corresponding to the Lie
algebra Lie (A, B).

The hypersurface principle is formulated for the system I' as follows:

Proposition 2. (Corollary 3.2, [18]). Let a Lie group G be simply con-
nected, A, B € L, and let the Lie algebra L have a codimension one subal-
gebra containing B. Then the system I' = A + R B is not controllable on
G.

The sense of this proposition is that under the hypotheses stated there
exists a codimension one subgroup of the group GG which separates GG into
two disjoint parts, is tangent to the field B, and is intersected by the field
A in one direction only. Then the attainable set A lies “to one side” of this
subgroup.

Notice that the property of absence of a codimension one subalgebra of
L containing B is sufficient for controllability of I' on a Lie group G with
cocompact radical; if G 1s additionally simply connected, this condition is

also sufficient (Corollary 12.6, [17]).

§ 3.2. Preliminary lemmas. First we obtain several conditions sufficient
for existence of codimension one subalgebras of a Lie algebra L containing
a vector B € L.

Lemma 3.1. Suppose that L'V +R B # L. Then there exists a codimen-
ston one subalgebra of L containing B.

Proof. Denote by [ the vector space LV +R B. We have [I,{] ¢ L(Y) C [, that
is why [ is a subalgebra; any vector space containing [ is a subalgebra of L
too. Since | # L, there exists a codimension one subspace [; of L containing
. Then l; is the required codimension one subalgebra of L containing B. [
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Lemma 3.2. Let LU 9 RB = L. If Lﬁ?) + LE«l), then there erists a
codimension one subalgebra of L containing B.

Proof. If Lg«l) + LE«z), then there exists a real eigenvalue ay € Spﬁl) such
that L(l)(ao) + L(Z)(ao). Let

{o1+ L (ao), ... v, + L'P(ag)}, p=dim(L™ (ap)/ L (ap)),

be a Jordan base of the operator ad B(ap):

——

ad B(ao)(vi + L (a0)) = (aovi + vig1) + L'P(ag), i=1,...,p—1,

——

ad B(ao) (v, + L™ (a0)) = aov, + L' (ag). (5)

(We suppose, for simplicity, that the eigenvalue ag of the operator ad B(ag)
is geometrically simple, i.e., matrix of this operator is a single Jordan block;
for the general case of several Jordan blocks the changes of the proof are
obvious.)

Consider the vector space

li = span(va,...,v,) & L(Z)(ao).
It follows from (4), (5) that the space {3 is (ad B)-invariant. Additionally,
we have dim{; = dimL(l)(ao) —1.
Then we define the vector spaces
b=4a Y (20() [aesp™), a#ap ma> 0},
l3=1®oRB. (6)
First, diml, = dim L) — 1, that is why
dimls = dim LY = dim L — 1. (7)
Second, LM (ap) D {1 D L3 (ag), hence,
A Y WA (8)

Third, the space I3 is (ad B)-invariant. That is why, by virtue of (6) and
(8), we obtain the chain

[13, 13] = [12, B] + [12, 12] Cls+ [L(l), L(l)] =5+ L(Z) =15 Cls.

Hence, I3 is the required subalgebra of L: it has codimension one (see (7))
and contains the vector B (see (6)). O

In the following three lemmas we obtain conditions sufficient for violation
of the rank controllability condition, i.e., necessary for controllability.
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Lemma 3.3. Suppose that B ¢ L) and let there exist a vector subspace
LCL such that the following relations hold:
(1) L® ¢ 11 c LW,
(2) 11 7é L4
(3) AeRB 69 l,
(4) (ad B)l; C &4.
Then Lie (A, B) # L.

Proof. By condition (1),
) [, 2] = L& iy,

i.e., 1 1s a Lie subalgebra.
Consider the vector space | = RB & [;. We have (in view of condition
(4))
[l,l] C (adB)h + [11,11] cli C l,
so ! is a Lie subalgebra too.
By condition (3) we have Lie (A, B) C {, and condition (2) implies ! # L.
Hence, Lie (A4,B) # L. O

Lemma 3.4. Let L =RB& LW, Ifj(ag) > 1 for some ag € SpM), then
Lie (A, B) £ L.

Proof. Consider the case of the complex ag € Spﬁl) first. By the condi-

tion j(ag) > 1, the quotient operator ad. B(ag) has at least two cyclic

spaces VW C I5S ( )/L ( o). That is, there are two Jordan chains
{v1,...,vp}, {wr, ..., we}, p,¢ > 0, such that

V =span(vi,...,v,), W =span(w,...,w,),
and in these bases matrices of the operators ad. B(ag)|v and ad. B(ag)|w
are the Jordan blocks

a 0 -+ 0 0 a 0 -+ 0 0

1 a -+ 0 0 1 a -+ 0 0
. - . . ©

0 0 ag 0 0 0 ag 0

0 0 1 ag 0 0 1 ag

P q

(Obviously, we can assume that the complex conjugate bases {71,...,7,}
and {1, ..., Wy} form Jordan chains of the operator ad, B(@g) in the com-

plex conjugate spaces V, W C I5S (ao)/L ( 0).)
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Notice that

(ade B(ao)) span(vs, ..., vp) C span(vs,...,vp), i=1,...,p, (10
(ade B(ap)) span(w;, ..., wy) C span(w;, ... ,wy), j=1,...,¢. (11)
For the direct sum

Lﬁl)(ao)/Lﬁz)(ao) =V & W & (other cyclic spaces of ad, B(ag)) (12)

consider the decomposition

Alao) = (Ap o1 + ...+ Ay, vp) + (Aw,wi + .. 4 Ay wy) + (13)

+ (components in other cyclic spaces of ad, B(ag)).
We can assume that
Ay, =0 o0r Ay, = 0in decomposition (13). (14)

This will be proved at the end of this proof. Now suppose that condition (14)
holds and, for definiteness, A,, = 0. That is why

—— ——

A(ag) € [:=V& span(ws, ... ,w,) @ (other cyclic spaces of ad. B(ao)),
dim{ = dim(L (a0) /L (ap)) — 1,
and, in view of (10), (11),

P

(ad, B(ap))l C L.
Now let [ C Lﬁl)(ao) be the canonical preimage of the space . Obviously,

A(ao) el,

dim! = dim LM (ag) — 1,

(ad. B)! C I,
LM (ag) D 1> L (ap).

Then we pass to realification:
Alag) €1, = (1 + )N L C LW (ap),

dim?, = dim L™ (a) — 2,

(ad B)I, C 1,
LM (ag) D1, D L (ap).
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Finally, for the space Iy := [, ® Z@{ LW(a) |a € SpM a # ag, Ima > 0}
we obtain
AeRBdI,
diml; = dim LM — 2,
(ad B)l; C 1y,
IO RN WA

So all conditions of Lemma 3.3 are satisfied, and Lie (A, B) # L modulo the
unproved condition (14).

To prove this condition, suppose that A,, # 0 and A,, # 0 in decom-
position (13). In view of symmetry between V and W, we can assume that
p=dimV > ¢ = dimW. Define the new basis in V:

U=+ —Law; for 1<i<ygq, v, =v; for ¢g<1<p.
Ay, - = -
It is easy to see that {1,...,0,} is a basis of V, and A,, = 0 in decompo-
sition (13) for the new basis {¢1,...,%,} and the old basis {w1, ..., wg}.

Now we show that the new basis 1s a Jordan one.
If 1 <i<gq, then

(e Blao)) s = (acle Blag))vs + 5 (ad. Blao)) s =
A,

A
= ag (Ui —+ ﬁwi) + (vi-l—l —+ ﬁwiﬂ) = ag¥; + Vi41.

If i = g and p > ¢, then

o o Awl o

(ade B(ao)) g = (ade B(ao))vg +

w
= (a0vq + vg41) + ——aowy =
U1

Auw, R
= agp (vq + A—wq) + Vg1 = AoUgq + Vgt1-
If i = g and p = ¢, then

o o Awl o

(ade B(ao)) g = (ade B(ao))v, +

Aw,

= apvq +
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And if ¢ < 7 < p, then
(adc B(ao))ﬁi = (adc B(ao))vi = agV; + vip1 = aol; + Viy1-
Finally, if ¢ = p > ¢, then

—~— e

(adc B(ao))ﬁp = (adc B(ao))vp = apv, = dplp.

So {t1,...,0p} is a Jordan basis for ad. B(ap)|v, and A,, = 0 in decom-
position (13), as was claimed.

So the lemma is proved for the case of the complex eigenvalue ag.

And if ag 1s real, then the proof is analogous and easier: there is no need
in complexification and further realification. [J

Lemma 3.5. Let L = RB® LY. Suppose that j (ao) = 1 and top (A, ag)
= 0 for some eigenvalue ag € Sp'!). Then Lie (A, B) # L.

P

Proof. The Jordan base of the operator ad. B(ag) consists of one Jordan
chain

span(vy, ..., vg) = Lﬁl)(ao)/Lﬁz)(ao),
and moreover, in the decomposition

——

Aag) = Avv1 + ..+ Av v

we have A4,, = 0 since

——

(ad, B(a) — ao Id) (LM (ag) /L (a0)) = span(vs, . .. , vg).

Then in the same way as in Lemma 3.4 we denote by [ the preimage of the
space span(va, ... ,vg) under the projection L&l)(ao) — L&l)(ao)/Lﬁz)(ao),

and by [ the complex conjugate to [ in L.. Then the space
- 57
L=(+0)NL) @Z {L(l)(a) laesSpV), a#ap, Ima > 0}
satisfies all hypotheses of Lemma 3.3, that is why Lie (4, B) # L. O

§ 3.3. Proofs of the necessary controllability conditions.

Proof of Theorem 1. Suppose that the system I is controllable on the group
G.

Ttems (1) and (2). If dim L) £ dim L—1 or B € L) then L) + R B +£
L. Tt follows from Lemma 3.1 and the hypersurface principle (Proposition 2)
that T is not controllable. This contradiction proves items (1) and (2), and
allows to assume below in the proof that L(Y) @ RB = L.

Ttem (3). If % + Lg«l), then it follows from Lemma 3.2 and the hyper-
surface principle that I' is not controllable.

Ttem (4) follows immediately from item (3).
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Ttem (5). From the previous item we have Spﬁl) = Spﬁz). But Spﬁz) C
Sp® c sptM) + sptV) (see Lemma 2.1, (6)), consequently, Spfal) c sptM 4+
Sp(l).

Ttems (6), (7) follow from Lemmas 3.4, 3.5 and from the rank controlla-
bility condition (Proposition 1). O

Proof of Corollary 1. If the spectrum Sp'") is simple, then LW (a) = L(a)
for all a € Sp(l), and dim L(l)(a) =lor2forae Spﬁl) or Spﬁl) respectively.
Further, Lﬁ?) = Lg«l) is equivalent to Spﬁz) = Spﬁl), and top (A, a) # 0 iff
Ala) # 0, a € Sp(l). Now Corollary 1 follows immediately from Theo-
rem 1. [

4. SUFFICIENT CONTROLLABILITY CONDITIONS

§ 4.1. Main results. Under the necessary assumptions of Theorem 1, we
can give wide sufficient controllability conditions. Notice that the assump-
tion of simple connectedness can now be removed. So the below sufficient
conditions are completely algebraic; this is in contrast with the geometric
assumption (the finiteness of center of G) essential for the sufficient control-
lability conditions for simple and semi-simple Lie groups G [4].

Theorem 2. Suppose that the following conditions are satisfied for a Lie
algebra L and a system T

(1) dim L) —dimL—l,

) B L0
() 1 =1Y,

(4) dlmL (a) =1 foralae Spﬁl),
(5) top (4, a) £ 0 for all a € SpM,

5
(6
Then the system ' 1s controllable on any Lie group G with the Lie algebra
L.

) the operator ad B|pa) has no N-pairs of real eigenvalues.

The notation top (A, @) and the notion of N-pair used in Theorem 2 are
explained in Definitions 2 and 3 in Sec. 2.

Remarks. (a) Conditions (1)—(3) are necessary for controllability in the
case of a simply connected G # G(1) (by Theorem 1).

(b) Conditions (4) and (5) are close to the necessary conditions (6) and
(7) of Theorem 1 respectively. Notice that the fourth condition means that
all complex eigenvalues of ad B|; ) are geometrically simple.

(c) Conditions (2) and (5) are open, i.e., they are preserved under small
perturbations of A and B.
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(d) The most restrictive of conditions (1)—(6) is the last one. Tt can be
shown that the smallest dimension of L(!) in which this condition is satis-
fied and preserved under small perturbations of spectrum of ad B|;a) for
solvable L is (6). This can be used to obtain a classification of control-
lable systems I' on solvable Lie groups G with small-dimensional derived
subgroups G(1).

(e) The technically complicated condition (6) can be changed by more
simple and more restrictive one, and sufficient conditions can be given as in
Corollary 2 below.

(f) Under the additional assumption of simplicity of the spectrum Sp(l)
the sufficient controllability conditions take the even more simple form pre-
sented in Corollary 3 below.

Corollary 2. Suppose that the following conditions are satisfied for a

Lie algebra L and a system T':

(1) dim L > =dimZL -1,

(2) B¢ LY,
3) L =Y,
(4) dimL.(a) =1 for all a € Spﬁl),
(5) top( ,a) ¢0f0r allaESp£ ),

(6) SpM =0, or Spt) € {Rez >0}, or Sp™) C {Rez < 0}.
Then the system ' 1s controllable on any Lie group G with the Lie algebra
L.

Corollary 3. Suppose that the following conditions are satisfied for a

Lie algebra L and a system T':

(1) dim L(* > =dimlL -1,

(2) B¢ LU
(3) the spectrum Sp'M) is simple,
(4) sp{* =spV,
(5) ( )#0f0ralla€8p£),
(6) SpM =0, or Spt) € {Rez >0}, or Sp™) C {Rez < 0}.

Then the system ' 1s controllable on any Lie group G with the Lie algebra
L.

Theorem 2 and Corollaries 2, 3 will be proved in Subsec. 4.4.

§ 4.2. Lie saturation. To prove the above sufficient conditions we use
the notion of the Lie saturation of a right-invariant system introduced by
V. Jurdjevic and I. Kupka. Now we recall the basic definition and properties
necessary for us (see details in [4], pp. 163-165).
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Given a right-invariant system I' C L on a Lie group &, its Lie saturation

LS(T) C L is defined as follows:
LS(I)=Lie(I)N{X € L |exp(tX) €clA VteRy}.

LS(T) is the largest (with respect to inclusion) system having the same
closure of the attainable set as I'.
Properties of Lie saturation:

(1) T C LS(F),

(2) LS(T) is a convex closed cone in L,

(3) if £X, £Y € LS(T), then +[X, Y] € LS(T'),

(4) if £X, Y € LS(T), then exp(sad X)Y € LS(T) for all s € R,

(5)

controllablhty condition:

if LS(T') = L, then T is controllable. (15)

§ 4.3. Preliminary lemmas. In this section we assume that L # L)
(this condition holds, e.g., for solvable ). In view of Theorem 1, we suppose
additionally that dim L(!) =dim L — 1 and B ¢ L")

First we present a necessary technical lemma.

Lemma 4.1. Let n,u, A€ R, A #0. Then

27T
g o for |ul # A,
Llim fT/(l + ncos(pt))or(t) dt = {(U/Q) Id  for |ul=A
i 0 for |pul #A
. . _ or |u )
T1—1>I-II—100 TT/(I + nsin(ut))ox(t) dt = {i(U/Q)J for p==£A

Proof. Is obtained by the direct computation. [

Now we prove the proposition that plays the central role in obtaining our
sufficient controllability conditions (Theorem 2). It is analogous to item (a)
of Proposition 11, [4].

Lemma 4.2. Let C € LS(T') N LY. Suppose that for any a € Sp't) the
following conditions hold:

(1) dim L¢(a) =1,
(2) top (C,a) # 0 or LW (a) C LS(T).

Suppose additionally that for the number
r=max{Rea|a e SpY, C(a)#0}
(or r =min{Rea | a € Sp, C(a) #0})
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we have r ¢ SpY) or C(r) = 0. Then
DZ{L |a€Sp()Rea:r,a¢r}.
Proof. For simplicity suppose that
ﬂ{Rez_rz;é Y={a,ab,b}, (16)

where a = r+v/—la, b =r+/—13, a # 3, a,3 > 0. If there are more
than two pairs of complex conjugate eigenvalues at the line { Rez = r},
the proof is analogous; if there are less than two pairs, then the proof is
obviously simplified.

So we have

LM = 1M(a) @ L<1>(b) & LY (r) &
@Z {L |c€Sp() Rec < r,Ime> 0} (17)
(notice that if r ¢ Sp™M, then L) (r) = {0} by definition), and, respectively,
C=C(a —I—Z{C |c€Sp)Rec<r,IchO}.
For any element D € L, nonnegative function g(¢), and natural number

p consider the limit

27T

— pm L9
I(D,g,p) = T1_1>I_|I_1Oo T/ origp—1 exp(tad B)D dt.
T

It follows from the properties of the cone LS(T") (see Subsec. 4.2) that if D €
LS(T) and the limit I(D, g, p) exists, then I(D,g,p) € LS(T'). Moreover, if
v(t) € LS(T') for all t € R, then

2T
. 1 [ g(t) {exp(tad B)D
10,0 = tim [ 45 (SRR ) e nsir)
T
if the limit exists.
Introduce the notation
Cy(t) = exp(t ad B)C(a), (18)
Cy(t) = exp(tad B)C(b), (19)

Cer(t) = exp(tad B) Z{ Cle) | ceSp, Ree < r,Ime >0}
(20)
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Notice that

27T
. 1 gt
1C.g = tim 1 [ 20,0+ + Ocr )t
T

For any bounded nonnegative function g(¢) and any p € N we have

t
eii%cq(t) =O(e " Pt 1 5 too,

where ¢ = min{r — Rec | ¢ € SpM Ree < 7} > 0, and d is equal to the
size of the maximal Jordan block of the operator ad. B|L(1) corresponding

to the eigenvalues ¢ € Sp(l) with Rec < r. That is why

7 "

. q(t _

T1—1>I-|I—1c>o T / e”tp—lcq(t) dt=0.
T

Consequently,
27
I(C,g,p) = lim l/ g(t) (Ca(t) + Cp(t)) dt € LS(T) (21)
T Totoo T J ertgp—1
T
if the limit exists.
Now we choose the bases { #1,y1; ... ;2k, yr } and {z1,w1;... 2z, w }in

the spaces L") (a) and LY (b) in which matrices of the operators ad Bl (a)
and adB|L(1)(b) are the Jordan blocks

Mpo 0 o 0 0
Id My, -~ 0 0
0 0 Mpo 0
0 0 Id M,
M.g 0 0 0
Id Mg 0 0
0 0 . Mg 0

0 0 - I My
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where a = r++/—1a, b=r++/—173. In the bases { x1,y1;...; 2k, yx } and

{z1,w1;...; 2, w } we have

Cla) = (Cay, Cys o5

. xkacyk)/:(cxl;"';CXk)/’
C(b) = (Cs,,Cuys - - !

C
C.,,Cw)) = (Czy5...;Cz,),

where X; = (z;,4), Cx, = (Cp,,Cy,) € R% i = 1,... k, and Z; =

(zi,w;)', Cw, = (Cs,,Cy,) € R% i =1,... 1 (the prime denotes transposi-
tion of vectors and matrices). Then in the base

{@1,y;. s @h, Uk 21, w15 .5 2, W}

of the space L) (a) @ LM (b) we have

O (t)CXl
O (t) (tCXl + CXQ)

-1

Calt) + Co(1) 7a(t) (ﬁ(fxl + G Cxa o F ka)
ert o5(t)Cz,
o5(t)(tCz, +Cz,)

tl_l tl_2

Uﬁ(t) (WCZI + mCZ2 4+ ...+ CZ;)

Let k > (if k£ <, then the below argument can easily be modified).

(A) Now we show that span(zg, yx) C LS(T).

According to the hypotheses of this lemma, we have L(V)(a) C LS(T)
or top (C,a) # 0. If LU(a) C LS(T), then span(zy,yx) C LS(T). That
is why we suppose below that top (C,a) # 0, which means in the base
{Z1,y1;. .. %k, yx } that Cx, #0.

Set g(t) = 1+ ncos(ut) (9(t) =1+ nsin(pt)), |u| = o, [n] < 1. Taking
into account (21), (22), and Lemma 4.1, we obtain

27T

T | g(t) _
I(Caga k) - T1—1>I-|I—100 T/ W(C@(t) + Cb(t)) dt =
T
1
= '(0;0;...;O;MC’XI;O;O;...;O)’ELS(F),
(k—1)! (23)
where
M= (n/2)Id for g(t) =14 ncos(tat), (24)

M =+(n/2)] for g¢(t) =1+ psin(Fat). (25)
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By virtue of the fact that the convex conic hull of vectors (23) for the
matrices M of the form (24) and (25), |n| < 1, is the plane span(zy, yi), we
obtain span(zy, yi) C LS(T).

(B) We take v(t) € LS(T) equal to

th=1 k=2 /

(0, ,O,Ua(t) (mCXl + MC)Q +~~~+CXk) , 0,0 ,0) ,
i.e., to the component of vector (22) in the plane span(xy, ys ), and repeat
the limit passage described in (A) replacing I(C, g, k) with I(C, g,k — 1, v),
and obtain span(z,_1,yx—1) C LS(T).

(C) We repeat process (B) with I(C, ¢, p, v), where v(t) is the component
of vector (22) in the plane span(z,,y,), and p is decreasing from & — 2 until
[+ 1 and obtain the inclusion span(z;y1, Yi41;--- 5%k, i) C LS(T).

(D) We apply process (C) with p = [ and using the functions g(¢) of
the form 1 4+ ncos(At), 1+ psin(At) for |A| = « and |A] = 7 and obtain
span(z;, yi; 21, wy) C LS(T).

(E) We decrease p and repeat procedure (D) until p = 1 to obtain

L(l)(a) @ L(l)(b) —
= Span (1, Y1; 21, Wis - -« 5 T, Yi5 20 W T 1, Yit1s - - - 5 Tk, Yk) C LS(L).
In view of (16), the proof of the lemma is completed. O

We can give several sufficient conditions for an element B not to have
real N-pairs of eigenvalues. These conditions can be verified simply by the
picture of spectrum of the operator ad B|; ) in the complex plane. We need
them to obtain Corollary 2.

Lemma 4.3. Suppose that B ¢ LMY and Lg«l) = Lﬁ?). Then any one of
the following conditions is sufficient for the operator ad B|; )y not to have
real N -pairs of eigenvalues:

(1) spi") =4,
(2) SpY C {Rez > 0},
(3) SpV C {Rez < 0}.

Proof. The first case (Sp
at all.
Case 2. Let (o, f) be a real N-pair, 0 < a < 5. We have

L®(a) € £® = (L0, L0] = ST{LD (), LOB)] | a,b € Sp .

£1) = {}) is obvious as there are no real eigenvalues

Jacobi’s identity implies that [L(") (a), L) (5)] € L) (a +b), and the spaces
L(l)(c), cE Sp(l), form a direct sum, that is why

LO(a) > A1LD(a), LY B)] | a,beSp™), a+b=a}.  (26)
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From the conditions ¢ + b = a and Rea > 0, Reb > 0 we obtain Rea < «,
Reb < «. That is why (26) gives

LO(a) > {12 (a), LI ()] | a,b € Sp'™), Rea,Reb < a}.

This contradicts item (2) of Definition 3.
Case 3 is considered analogously. O

§ 4.4. Proofs of the sufficient controllability conditions.
Proof of Theorem 2. We show that LS(T) D L(1).

Introduce the following numbers and sets:
n=min{Rea|a e Sp, LM (a) ¢ LS(T)}, (27)
m =max{Rea | a e Sp), LM (a) ¢ LS(T) }, (28)
N={aeSpY |Rea=n, LM (a) ¢ LS(I')},
M ={aeSpV) |Rea=m, LV (a) ¢ LS(I)}.
Su}q)}pose that LS(I') 2 LY, then —co < n < m < +oo and N # 0,

Recall that we have the following decomposition of the vector A corres-
ponding to root subspaces of the operator ad Bl q):

A= Ap —|—Z{A(a) |aeSp™ Ima>0}.
Define the element
Aq :A—AB—Z{A(aHaESp(l), Rea > mor Rea < n, Ima >0}.

Notice that A; € LS(T') since all terms in the right-hand side belong to
LS(T). In addition, we have A; € L), Consider the decomposition

A = Z{ Ai(a) |a e Sp™Y, Ima >0},
For any a € Sp(l) we have

Rea € [n;m] = A1(a) = A(a),
Rea ¢ [n;m] = A1(a) = 0.

According to condition 6 of this theorem, the pair of real numbers (n, m)
is not an N-pair. That is why at least one of conditions (1)—(3) of Defini-
tion 3 1s violated. Now we consider these cases separately and come to a
contradiction.

(1) Let condition (1) of Definition 3 be violated, i.e., n ¢ Sp™M or m ¢
Sp(l). Suppose, for definiteness, that m ¢ Sp(l).
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Apply Lemma 4.2 with €' = A; and » = m. Then we have

LS(T) D Z{L(l)(a) |laeSp), Rea=m,a#m} =
=Y {1W(a)|a€Sp"), Rea=m},

which is a contradiction to (28).

Ifné¢ Sp(l), we come to a contradiction with (27) analogously. That is
why case (1) is impossible.

(2) Let now n,m € Sp™") and let condition (2) of Definition 3 be violated,
le.,

L@ (m) <Y LD, LY )] [ A, € Spt), Re A, Rep ¢ [n;m] }.

But for Re A\, Re u ¢ [n; m] we have LX), LY () € LS(T) (by definitions
(27) and (28)), consequently, L) (n) C LS(T). According to hypotheses of
this theorem, L) (n) = L(?)(n), that is why

LW (n) C LS(T). (29)

Consider the vector A2 = A1 — A1(n). We have A, € LS(T') N LW and
Az(n) = 0. Now we apply Lemma 4.2 with C' = A5 and r = n and obtain

LS(T) D Z{ LD(a)|aeSp™, Rea=n,a#n}.
Then, by virtue of (29), we have
LS(T) > Z{ LW(a) |ae SpM, Rea=n},

which is a contradiction with (27). That is why case (2) is impossible, and
condition (2) of Definition 3 cannot be violated.

(3) We prove analogously that condition (3) of Definition 3 cannot be
violated as well.

Hence, all three conditions of Definition 3 hold, and (n, m) is a real N-pair
of eigenvalues. This is a contradiction with condition (6) of this theorem.
That is why LS(T) > L. But L = RB@ LM and RB C LS(T). So
LS(T) = L, and T is controllable by the controllability condition (15). O

Proof of Corollary 2 follows immediately from Theorem 2 and Lemma 4.3.
|
Proof of Corollary 3 is obvious in view of Corollary 2. O
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5. EXAMPLES AND APPLICATIONS

§ 5.1. Metabelian groups. Solvable Lie algebras I having the derived
series of length 2:

Lo W5 = oy,

are called metabelian. A Lie group with a metabelian Lie algebra is also
called metabelian.

Our previous results make it possible to obtain controllability conditions
for metabelian Lie groups.

Theorem 3. Let G be a metabelian Lie group. Then the following con-
ditions are sufficient for controllability of a system I' on G
(1) dim L™ =dim L — 1,
(2) B¢ LY,
(3) spt) =10,
(4) dimL.(a) =1 for all a € Spﬁl),
(5) top (A,a) #0 forall a € Spﬁl).

If the group G is simply connected, then conditions (1)—(5) are also neces-
sary for controllability of the system I' on (.

The notation top (A, a) used in Theorem 3 is explained in Definition 2 of
Sec. 2.

Proof. The sufficiency follows from Corollary 2.
In order to prove the necessity for the simply connected G suppose that
I' is controllable.
Conditions (1) and (2) follow then from items (1) and (2) of Theorem 1.
Condition (3) follows from item (3) of Theorem 1 and from the metabelian
property of G:
LW =1® cr1® = {o0}.

Condition (4). For any a € Spﬁl) we have L(?)(a) = {0}, that is why
j(a) is equal to geometric multiplicity of the eigenvalue a of the operator
ad B|L(1)(a), i.e., to dim L¢(a). By item (6) of Theorem 1, we have j(a) = 1,
that is why dim L.(a) = 1.

Condition (5). For any a € Spﬁl) we have j(a) = 1, then, by item (7) of

Theorem 1, we obtain top (A4,a) 0. O

Example. Let ! be a finite-dimensional real Lie algebra acting linearly in
a finite-dimensional real vector space V. Consider their semidirect product
L =V @sl. Tt is a subalgebra of the Lie algebra of affine transformations
of the space V since L C V &g gl (V). If [ is Abelian, then L is metabelian:

LM =1v e, {0}, L® ={o0}.
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In the following subsection we study in detail a particular case when [ is
one-dimensional.

§ 5.2, Matrix group. Now we apply the controllability conditions from
the previous subsection to some particular metabelian matrix group. To
begin with we describe this group.

Let V be a real finite-dimensional vector space, dimV = n, and M a
linear operator in V. The required metabelian Lie algebra is the semi-direct
product

L(M)=V & RM

(compare with the example at the end of the previous subsection).

Now we choose and fix a base in V', and denote the matrix of the operator
M in this base by the same letter M. Then L(M) can be represented as
the subalgebra of gl (n + 1,R) generated by the following matrices:

M 0 .
$:< 0 O)a yi:Ei,n-I-laZ:la"'an'

(Recall that E;; is the n x n matrix with the only unit entry in the ith line
and the jth raw.) Obviously, we have

L =span(z;y1,...,yn), dimL =n+1,
LW = span(yi, ..., Yn), dim L) = n,

L ={0}.
Notice also that [y;,y;] = 0 forall i,j = 1,...,n and M is the matrix of
the adjoint operator ad #|; ) in the base {y1,...,y, }. In the sequel we

consider the Lie algebra L(M) C gl (n+ 1,1R) in this matrix representation.
Let G(M) be the connected Lie subgroup of GL(n + 1,IR) corresponding
to L(M). The group G(M) can be parametrized by the matrices

Mt
g(t,s):(eXp(O ) i), teR, secR"

It is a semidirect product:
G=R"®sG1, Gy={exp(Mt)|teR}.

The group G(M) is not simply connected iff the one-parameter subgroup G
is periodic, which occurs iff the matrix M has purely imaginary commensu-
rable spectrum. More precisely, we say that a set of numbers (b1,...,b,) €
R™ is commensurable if

(b1,...,bn) =7 (k1,... ky) forsomereR, (ki,..., k,) €Z".
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And the group G(M) is not simply connected iff

Sp(M) C /-1 - IR, } (30)

the set Im (Sp(M)) is commensurable.

Before studying controllability conditions for the group G/(M) we present
an auxiliary proposition, which translates the Kalman condition (equivalent
both to controllability and to rank controllability condition for linear sys-
tems # = Az + ub, » € R” u € R) into the language of eigenvalues of
the matrix A and of components of the vector b in the corresponding root
spaces). We will apply this proposition below to reformulate our controlla-
bility conditions for right-invariant and bilinear systems.

Lemma 5.1. Let A be a real n x n matriz, b € R™. Then the Kalman
condition

rank (b, Ab, ... A" 71b) =n (31)

15 equivalent to the following conditions:

(1) the matriz A has a geometrically simple spectrum,

(2) top (b, A) # 0 for any eigenvalue A € Sp(A).

By analogy with Definition 2 in Sec. 2, we say that top (b, A) # 0 if the
component b(A) of the vector b in the root space R™(A) corresponding to
the eigengalue A satisfies the condition

b(A) ¢ (A — ALdJR"(N),

i.e., the vector b(A) has a nonzero component corresponding to the highest
adjoined vector in the (single) Jordan chain of the operator A corresponding
to A.

To prove Lemma 5.1, we cite the following

Proposition 3. (Hautus Lemma, [22], Lemma 3.3.7.) Let A be a com-
plex n x n matriz, b € C". Then the Kalman condition (31) is equivalent
to the condition

rank (A-Id—A4,0) =n V X € Sp(A). (32)

Proof of Lemma 5.1. In view of Proposition 3, we prove that condition (32)
is equivalent to conditions (1), (2) of Lemma 5.1.

First, we suppose that all eigenvalues of A are real; otherwise we pass
to complexification. Second, the Kalman condition (31) preserves under
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changes of base in R”. That is why we assume that the matrix A is in the
Jordan normal form:

Jil(Al) 0
A0 0 O
1 N 0 O
Ji () = Col=1,... .k
0 0 A0
0 0 1 N

Then the n x (n 4+ 1) matrix in condition (32) is represented as

6(N) = (A-1d, —A,b) =

ATdy, =T, (M) - 0 b(A1)
0 c NIy =i (%) B(AR) (33)
where b(N\;), I = 1,...,k, denotes projection of the vector b onto the root

space of the matrix A corresponding to the eigenvalue ;.

Necessity. We assume that rank ¢(A) = n for all A € Sp(A) and prove
conditions (1), (2) of Lemma 5.1.

1. If spectrum of A is not geometrically simple, then A; = A; for some
i # j. Then the matrix ¢(A;) has two zero columns, and rank ¢(A;) < n.

2. Suppose that the vector b has the zero A-top for some A € Sp(A); for
definiteness, let top (b, A1) = 0. Then the first component of b in the chosen
Jordan base equals to zero, and the first raw of the matrix ¢(A;) is zero.
Hence rank ¢(A1) < n.

Sufficiency. If conditions (1), (2) of Lemma 5.1 hold, then it is easy to
see from representation (33) that all matrices ¢(N), [ = 1,... k&, have n
linearly independent columns and condition (32) is satisfied. [

——

Now we obtain controllability conditions for the universal covering G/(M)
and for the group G(M) itself.

——

Theorem 4. Let M be an n X n matriz, G = G(M), L = L(M). A
system ' = A4+ RB C L s controllable on G if and only if the following
conditions hold:

(1) the matriz M has a purely complex geometrically simple spectrum,

(2) B¢ LW,
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(3) top (A, A) # 0 for all X € Sp(M).
For the group G(M) conditions (1)—(3) are sufficient for controllability; if

conditions (30) are violated, then (1)—(3) are equivalent to controllability on

G(M).

The notation top (A, A) used in Theorem 4 is explained in Definition 2 in
Sec. 2.

Remark. By Lemma 5.1, conditions (1)—(3) of the above theorem are
equivalent to the following ones:

(1) the matrix M has a purely complex spectrum,
(2) B¢ LY,
(3) span(B, (ad B)A, ..., (ad B)"~1A) = L.

Proof of Theorem 4. Theorem 3 (see Subsec. 5.1) is applicable to the group

——

(G = G(M), and condition (1) of Theorem 3 is satisfied.
Decompose the vector B € L using the base of L:

B=DBx+By,yh+...4+ By, Yn.

B ¢ LW is equivalent to B, # 0. Moreover, in view of the metabelian
property of L,

SpY) = Sp(ad B|,()) = B, - Sp(ad z|,1)) = B, - Sp(M).

By virtue of Theorem 3, the system I is controllable on G if and only if
the following conditions hold:
(1) B¢ LW,
(2) Sp(M) N =1,
(3) the matrix M has a geometrically simple spectrum,
(4) top (A, A) # 0 for all A € Sp(M).

Now the proposition of the current theorem for G(M) follows.
For G(M), controllability is implied by controllability on its univer-

sal covering G(M). And if conditions (30) are violated, then G(M) =

——

G(M). O

Let now conditions (30) be satisfied. Then the group G(M) is a semi-
direct product of the vector group R” and the one-dimensional compact
group (1. But controllability conditions on such semi-direct products were
obtained by B. Bonnard, V. Jurdjevic, I. Kupka, and G. Sallet [6]: if the
compact group has no fixed nonzero points in the vector group (which is just
the case), then the controllability is equivalent to the rank controllability
condition (Theorem 1, [6]).
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So we have complete controllability conditions of systems of the form

I' = A+ RB on the group G(M) and its simply connected covering G(M).
In the simply connected case (i.e., when conditions (30) are violated) we
have Theorem 4, and otherwise the theorem of B. Bonnard, V. Jurdjevic,

I. Kupka, and G. Sallet [6] works.

§ 5.3. Bilinear system. Now we apply the controllability conditions for
the group G(M) and study global controllability of the bilinear system

X =uAX +b, XeR” ueR, (%)
where A is a constant real n x n matrix and b € R™.
Theorem 5. The system X is globally controllable on R™ if and only if
the following conditions hold:
(1) the matriz A has a purely complex spectrum,
(2) span(b, Ab, ... A"71h) = R".
Remark. By Lemma 5.1, conditions (1)—(2) of this theorem can equiva-
lently be formulated as follows:
(1) the matrix A has a purely complex geometrically simple spectrum,

(2) top (b, A) # 0 for all A € Sp(A4).

Proof of Theorem 5. We use the hypotheses of this theorem in the equiva-
lent form given in the above remark.
Sufficiency. Consider the bilinear system

Y =AY 4 uBY, Y =(X,1) eR"! ueR, )

=(00) 7= 0)

are (n + 1) x (n + 1) matrices. It is easy to see that the system ¥ is
globally controllable on IR”™ iff the system X is globally controllable in the
n-dimensional affine plane

(B",1) = {Y = (X,1) e ™' | X € B"}.

where

Consider the matrix Lie algebra L(A) and the corresponding Lie group
G(A) described in the previous subsection. We have A, B € L(A), and T =
A+RBC L(A) is a right-invariant system on the group G(A). Theorem 4
ensures that under hypotheses (1), (2) of the current theorem the system
T is controllable on the group G(A). But the group G(A) acts transitively
in the plane (R™ 1)/, and the bilinear system % is the projection of the
right-invariant system T' from the group G(A) onto the plane (R”, 1)’. That
is why controllability of T' on G(A) implies controllability of 3 on (R", 1)".
Thus X is globally controllable on R”.
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Necessity. Assume that ¥ is globally controllable on R”.

(1a) First we show that the matrix A has no real eigenvalues. Suppose
there is at least one eigenvalue a € Sp(A) NIR. We choose a Jordan base
{e1,...,e, } of the matrix A and denote by {z1,...,z, } the correspon-
ding coordinates in R”. Let e; denote the maximum order root vector
coresponding to the eigenvalue a:

(A— aId)kek =aeg + cepy1, e€=1or0,
and k is the maximal possible integer. Then the system X implies
T = uaxy + by,

where by is the kth coordinate of the vector b in the base {ey,..., e, }.
Now it is obvious that at least one of the half-spaces {@ >0}, {2 <0}
1s positive invariant for the system X, i.e., this system is not controllable.
(1b) Now we show that the spectrum Sp(A) is geometrically simple. Sup-
pose that for some (complex) eigenvalue A € Sp(A) there are at least two
linearly independent eigenvectors. Then we apply the same transformation
of Jordan chains as in Lemma 3.4 to obtain the zero component of the vector
b in the two-dimensional subspace of R” spanned by the pair of the highest
order root vectors of the matrix A (see conditions (13), (14)). Now if zx, v
are the coordinates in R™ in the transformed Jordan base corresponding to
the above-mentioned two-dimensional subspace, then the system X yields

= u(azg + Pyr),
Y = u(=Pry+ayk),
where & = ReA, § = ImA. Hence it follows that the codimension two

subspace {#; = yx = 0} is (both positive and negative) invariant for the
system X, and so it 18 not controllable.

(2) Finally, we show that the vector b has a nonzero A-top for any eigen-
value A € Sp(A). If this is not the case, we choose any Jordan chain in the
root space corresponding to A, apply the argument from item 1.b) above,
and show that X is not controllable.

The necessity and sufficiency are now completely proved. [J

§ 5.4. The Euclidean group in two dimensions. It is interesting to
consider the work of the above general theory for the visual three-dimensional
case.

Let G = G(J) = E(2) be the Euclidean group of motions of the plane
R2 E(2) is connected but not simply connected. It can be represented as
the group of 3 x 3 matrices of the form

cost —sint sy
g(t,s1,82) = | sint cost s

0 0 1
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where

sint  cost 5

( cost —sint ) €SO(2) for t € B, ( 21 ) cR2

The corresponding matrix Lie algebra L is spanned by the matrices

0 -1 0 0 0 O 0 0 1
r = 1 0 0], y= 0 0 -1 , 2= 0 0 0

0 0 0 0 0 O 0 0 0
Consider the system I' = A +RB on ]5(5) — the universal covering of

E(2). A complete characterization of controllability of T on E(2) is derived
from Theorem 4.

Theorem 6. The system T is controllable on E(2) if and only if the
vectors A, B are linearly independent and B ¢ span(y, z).

Let us compare the controllability conditions for E(2) with the following
conditions for E(2) derived from Theorem 1, [6]:

Theorem 7. The system T is controllable on E(2) if and only if the
vectors A, B are linearly independent and span(A, B) ¢ span(y, z).

Finally, Theorem 5 gives the following geometrically clear proposition.

Theorem 8. The system
X=uAX+b, X,beR?’ uweR

is controllable on the plane R? if and only if:

(1) the matriz A has a purely complex spectrum,

(2) b 0.
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