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Extremal trajectories in a nilpotent
sub-Riemannian problem on the Engel group

A. A. Ardentov and Yu. L. Sachkov

Abstract. On the Engel group a nilpotent sub-Riemannian problem is
considered, a 4-dimensional optimal control problem with a 2-dimensional
linear control and an integral cost functional. It arises as a nilpotent
approximation to nonholonomic systems with 2-dimensional control in
a 4-dimensional space (for example, a system describing the navigation
of a mobile robot with trailer). A parametrization of extremal trajectories
by Jacobi functions is obtained. A discrete symmetry group and its fixed
points, which are Maxwell points, are described. An estimate for the cut
time (the time of the loss of optimality) on extremal trajectories is derived
on this basis.
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§ 1. Introduction

This paper is concerned with the analysis of a nilpotent sub-Riemannian problem
on the Engel group, a 4-dimensional optimal control problem with a 2-dimensional
linear control and an integral performance functional. Nilpotent sub-Riemannian
problems are fundamental for sub-Riemannian geometry since they provide a local
quasi-homogeneous approximation to general sub-Riemannian problems (see [1]–[4]).
For instance, a nilpotent sub-Riemannian problem on the 3-dimensional Heisenberg
group (see [5]) is a cornerstone of the entire sub-Riemannian geometry. Invariant
sub-Riemannian problems on Lie groups have intensively been investigated through
the last 10 years by means of geometric control theory (see [6]–[12]).

The invariant sub-Riemannian problem on the Engel group has several important
properties which underline its special role in sub-Riemannian geometry. First, this
is the simplest sub-Riemannian problem with nontrivial abnormal extremal trajec-
tories (it is known that in 3-dimensional contact problems abnormal extremal tra-
jectories are constant [13]). Second, this problem projects onto the sub-Riemannian
problem in the Martinet flat case [14], so the problem on the Engel group is the
simplest invariant sub-Riemannian problem on a nilpotent Lie group with nonsub-
analytic sub-Riemannian sphere. Third, the vector distribution in this problem
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is not 2-generating [15]: the growth vector (2, 3, 4) of this problem has length 3.
So, in particular, it is the simplest sub-Riemannian problem lacking the property
of interlacing of conjugate points and Maxwell points, which is characteristic for
sub-Riemannian problems with 2-generating distributions.

The invariant problem on an Engel group is important for applications, for
instance, in robotics since it gives a nilpotent approximation for the system describ-
ing the navigation of a mobile robot with trailer in the plane or on a 2-dimensional
surface (see [2] and [16]).

For all these reasons the importance of investigations of the invariant sub-
Riemannian problem on the Engel group is beyond all doubt. In our paper we use in
this problem new methods of geometric control theory, which have proved to be suc-
cessful in the recent work concerned with the Euler elastic problem [17], [18], the nil-
potent sub-Riemannian problem with growth vector (2, 3, 5) [9], a sub-Riemannian
problem on the group of plane motions [12] and the problem of rolling a sphere over
the plane [10].

The structure of this paper is as follows. In § 2 we set the problem and discuss
its statement. In § 3 we apply Pontryagin’s maximum principle to the problem, and
in § 4 and § 5 find a parametrization of extremal trajectories; in particular, in § 5
we describe the exponential map providing a parametrization for all the extremal
trajectories. In § 6 we describe discrete symmetries of the exponential map and
in § 7 investigate the corresponding Maxwell points, which are fixed points of these
symmetries. On this basis, in Theorem 3 we establish the central result of the paper,
an upper estimate for the cut time on extremal trajectories (when the trajectory
loses the property of being optimal).

§ 2. Setting the optimal control problem

We look at the following optimal control problem:

q̇ =


ẋ
ẏ
ż
v̇

 = u1


1
0

−y
2

0

 + u2


0
1
x

2
x2 + y2

2

 , q ∈ R4, u ∈ R2, (2.1)

with the boundary conditions

q(0) = q0 = (x0, y0, z0, v0), q(t1) = q1 = (x1, y1, z1, v1) (2.2)

and performance functional

l =
∫ t1

0

√
u2

1 + u2
2 dt→ min, (2.3)

where the point q = (x, y, z, v) ∈ R4 = M determines the state of the system,
u = (u1, u2) is the control, and the terminal time t1 is fixed.
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We introduce our notation for the vector fields multiplying the controls on the
right-hand side of (2.1):

X1 =
(

1, 0,−y
2
, 0

)T

, X2 =
(

0, 1,
x

2
,
x2 + y2

2

)T

,

and find the commutators of these fields:

X3 = [X1, X2] =
∂X2

∂q
X1 −

∂X1

∂q
X2 = (0, 0, 1, x)T ,

X4 = [X1, X3] =
∂X3

∂q
X1 −

∂X1

∂q
X3 = (0, 0, 0, 1)T .

At each point q ∈ R4 the vector fields X1(q), . . . , X4(q) are linearly independent,
so by the Rashevskǐı-Chow theorem (see [15]) the system (2.1) is completely con-
trollable in R4 (that is, any points q0, q1 ∈ M can be connected by a trajectory of
the system).

The fields X1 and X2 generate the 4-dimensional nilpotent Lie algebra

Lie(X1, X2) = span(X1, X2, X3, X4)

with the following multiplication table:

[X1, X2] = X3, [X1, X3] = X4, [X1, X4] = [X2, X3] = [X2, X4] = 0.

It is called the Engel algebra [1]. We can introduce a group structure (law of
multiplication) in R4, making a Lie group of R4, so that X1, . . . , X4 become basic
left-invariant fields on this Lie group. It is easy to see that this law of multiplication
has the form


x1

y1
z1
v1

×


x2

y2
z2
v2

 =


x1 + x2

y1 + y2

z1 + z2 +
x1y2 − x2y1

2
v1 + v2 +

y1y2
2

(y1 + y2) + x1z2 +
x1y2

2
(x1 + x2)

 .

The space R4 endowed with this group structure is called the Engel group.
Problem (2.1)–(2.3) is a left-invariant sub-Riemannian problem on the Engel

group for the sub-Riemannian structure on R4 defined by the fields X1 and X2

as an orthonormal basis. It is known [19] that any two invariant nonholonomic
sub-Riemannian problems on the Engel group can be transformed into one another
by Lie group homomorphisms of the Engel group, so (2.1)–(2.3) is a concrete model
for all the problems in this class.

Since the problem is invariant under left translations of the Engel group, we can
assume that the origin is the identity element of the group q0 = (x0, y0, z0, v0) =
(0, 0, 0, 0).

It is easy to see that (2.1)–(2.3) is equivalent to the following geometric problem.
Let (x0, y0), (x1, y1) ∈ R2 be points in the plane connected by a curve γ0 ⊂ R2. Let
S ∈ R and let l ⊂ R2 be a line. Join the points (x0, y0) and (x1, y1) by a shortest
curve γ ⊂ R2 such that γ0 and γ together bound a region of area S in the plane
such that its centre of mass lies on l.
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§ 3. Pontryagin’s maximum principle

The existence of optimal trajectories in problem (2.1)–(2.3) is provided by Fil-
ippov’s theorem (see [15]). It follows from the Cauchy-Schwarz inequality that
minimizing the sub-Riemannian length (2.3) is equivalent to minimizing the action∫ t1

0

u2
1 + u2

2

2
dt→ min . (3.1)

We obtain the optimal control problem (2.1), (2.2), (3.1), and apply to it Pontrya-
gin’s maximum principle (see [20] or [15]). Let us introduce the vector of costate
variables ψ = (ψ0, ψ1, ψ2, ψ3, ψ4) and the Hamiltonian

H(ψ, q, u) = ψ0
u2

1 + u2
2

2
+ ψ1u1 + ψ2u2 + ψ3

xu2 − yu1

2
+ ψ4

x2 + y2

2
u2.

From Pontryagin’s maximum principle for this Hamiltonian we obtain a Hamilton-
ian system for the costate variables:

ψ̇1 = −Hx = −ψ3
u2

2
− ψ4xu2, ψ̇2 = −Hy = ψ3

u1

2
− ψ4yu2, ψ̇3 = ψ̇4 = 0,

the maximum condition

max
u∈R2

H
(
ψ(t), q̂(t), u

)
= H

(
ψ(t), q̂(t), û(t)

)
, ψ0 6 0, (3.2)

where û(t), q̂(t) is the optimal process, and the condition

ψ(t) ̸= 0

of the nontriviality of the costate variables.

§ 4. Abnormal extremal trajectories

We shall investigate the abnormal case ψ0 = 0. From the maximum condi-
tion (3.2) we obtain

Hu1 = ψ1 − ψ3
y

2
= 0, (4.1)

Hu2 = ψ2 + ψ3
x

2
+ ψ4

x2 + y2

2
= 0. (4.2)

We see from (4.1) that

0 = ψ̇1 − ψ3
u2

2
= −u2(ψ3 + ψ4x),

and in a similar way, from (4.2) we obtain

0 = ψ̇2 + ψ3
u1

2
+ ψ3(xu1 + yu2) = u1(ψ3 + ψ4x).

We can assume that u2
1 + u2

2 = 1, so that ψ3 + ψ4x = 0. If ψ4 = 0, then ψ3 = 0
and therefore ψ = 0, in contradiction with the nontriviality of the costate variables.
Hence ψ4 ̸= 0; this gives us the equations for extremal curves in the abnormal case:

x = 0, y = ±t, z = 0, v = ± t
3

6
. (4.3)

The projection of these curves onto the (x, y)-plane gives a straight line.
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§ 5. Normal extremal trajectories

5.1. A normal Hamiltonian system. Now we look at the normal case ψ0 = −1.
It follows from the maximum condition (3.2) that Hu1 = 0 and Hu2 = 0. Hence

u1 = ψ1 − ψ3
y

2
, u2 = ψ2 + ψ3

x

2
+ ψ4

x2 + y2

2
.

Let hi = ⟨ψ,Xi⟩ be the Hamiltonians corresponding to the basis vector fields Xi

in the tangent space TqM and linear on the fibres of the cotangent space T ∗M :

h1 = ψ1 − ψ3
y

2
, h2 = ψ2 + ψ3

x

2
+ ψ4

x2 + y2

2
, h3 = ψ3 + ψ4x,

h4 = ψ4.

Differentiating them while taking account of the Hamiltonian system of the maxi-
mum principle we obtain

ḣ1 = −h2h3, ḣ2 = h1h3, ḣ3 = h1h4, ḣ4 = 0.

Limiting ourselves to the level surface
{
H = 1

2 (h2
1 + h2

2) = 1
2

}
we go over to the

coordinate system (θ, c, α) on this surface:

h1 = cos
(
θ +

π

2

)
, h2 = sin

(
θ +

π

2

)
, h3 = c, h4 = α.

In the variables (θ, c, α, x, y, z, v) the Hamiltonian system of the Pontryagin max-
imum principle assumes the following form in the normal case:

θ̇ = c, (5.1)
ċ = −α sin θ, (5.2)
α̇ = 0, (5.3)
ẋ = − sin θ, (5.4)
ẏ = cos θ, (5.5)

ż =
x cos θ + y sin θ

2
, (5.6)

v̇ = cos θ
x2 + y2

2
. (5.7)

Note that the subsystem for the costate variables reduces to the pendulum equa-
tion

θ̈ = −α sin θ, α = const. (5.8)

So the projections of extremal curves onto the (x, y)-plane are Euler elastics, sta-
tionary configurations of an elastic rod in the plane (see [17], [18], [21]–[23]).

In the pendulum equation the parameter α has the following physical meaning:

α =
g

L
,
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Figure 1. The pendulum (5.8)

for α > 0.
Figure 2. The pendulum (5.8)

for α < 0.

where g is the gravitational acceleration and L is the length of the pendulum. Thus
if α = 0, then the pendulum moves in weightlessness; for α > 0 the gravity force is
pointing downwards (Fig. 1); and for α < 0 it is pointing upwards (Fig. 2).

5.2. Partitioning the initial cylinder C. Let us introduce the energy integral
of the pendulum (5.8):

E =
h2

3

2
− h2h4 =

c2

2
− α cos θ ∈ [−|α|,+∞), Ė = h3ḣ3 − ḣ2h4 = 0.

The family of normal extremal trajectories can be parametrized by points in the
cylinder

C = T ∗q0
M ∩

{
H =

1
2

}
= {(h1, h2, h3, h4) ∈ R4 | h2

1 + h2
2 = 1}

= {(θ, c, α) | θ ∈ S1, c, α ∈ R}.

We partition C into subsets corresponding to different types of pendulum tra-
jectories:

C =
7⋃

i=1

Ci, Ci ∩ Cj = ∅, i ̸= j, λ = (θ, c, α),

C1 = {λ ∈ C | α ̸= 0, E ∈ (−|α|, |α|)},

C2 = {λ ∈ C | α ̸= 0, E ∈ (|α|,+∞)},

C3 = {λ ∈ C | α ̸= 0, E = |α|, c ̸= 0},

C4 = {λ ∈ C | α ̸= 0, E = −|α|},

C5 = {λ ∈ C | α ̸= 0, E = |α|, c = 0},

C6 = {λ ∈ C | α = 0, c ̸= 0},

C7 = {λ ∈ C | α = c = 0}.

The sets Ci, i = 1, . . . , 5, are further subdivided into subsets depending on the sign
of α:

C+
i = Ci ∩ {α > 0}, C−i = Ci ∩ {α < 0}, i ∈ {1, . . . , 5}.
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In addition, C6, C±2 and C±3 are subdivided into connected components depend-
ing on the sign of c:

C6+ = C6 ∩ {c > 0}, C6− = C6 ∩ {c < 0},
C±i+ = C±i ∩ {c > 0}, C±i− = C±i ∩ {c < 0}, i ∈ {2, 3}.

Figure 3. Partitioning C

for α > 0.
Figure 4. Partitioning C

for α < 0.

We give the partitioning of a section of the cylinder {λ ∈ C | α = const ̸= 0} in
Fig. 3 (for α > 0) and Fig. 4 (for α < 0).

5.3. Elliptic coordinate system. To calculate extremal trajectories from the
subsets C1, C2 and C3 we introduce coordinates (ϕ, k, α) in which the subsystem
for the costate variables (5.1)–(5.3) is straightened out. Such coordinate systems
were used in [9], [17], [10] and [12], in investigations of several related optimal
control problems in which the subsystem for the costate variables of Pontryagin’s
maximum principle reduces to the pendulum equation.

In the domain C+
1 ,

k =

√
E + α

2α
=

√
c2

4α
+ sin2 θ

2
∈ (0, 1),

sin
θ

2
= k sn(

√
αϕ), cos

θ

2
= dn(

√
αϕ),

c

2
= k

√
α cn(

√
αϕ),

ϕ ∈ [0, 4K].

In the domain C+
2 we set

k =

√
2α

E + α
=

1√
c2/(4α) + sin2(θ/2)

∈ (0, 1),

sin
θ

2
= sgn c sn

√
αϕ

k
, cos

θ

2
= cn

√
αϕ

k
,

c

2
= sgn c

√
α

k
dn
√
αϕ

k
,

ϕ ∈ [0, 2kK], ψ =
ϕ

k
.
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On C+
3 ,

k = 1,

sin
θ

2
= sgn c tanh(

√
αϕ), cos

θ

2
=

1
cosh(

√
αϕ)

,
c

2
= sgn c

√
α

cosh(
√
αϕ)

,

ϕ ∈ (−∞,+∞).

Here and throughout, sn, cn, dn and E are Jacobi elliptic functions (see [24]).
On C−1 , C−2 and C−3 we introduce new coordinate systems as follows:

ϕ(θ, c, α) = ϕ(θ − π, c,−α), (5.9)
k(θ, c, α) = k(θ − π, c,−α). (5.10)

Immediate differentiation shows that in these coordinates the subsystem for the
costate variables (5.1)–(5.3) takes the following form:

ϕ̇ = 1, k̇ = 0, α̇ = 0,

so that it has solutions

ϕ(t) = ϕt = ϕ+ t, k = const, α = const. (5.11)

5.4. Parametrization of extremal trajectories with λ ∈
⋃3

i=1 Ci in the
case α = 1. Let α = 1. From the definition of the variables ϕ and k we obtain
the following parametrization of the θt-components of extremal trajectories.

If λ ∈ C+
1 , then

sin θt = 2k snϕt dnϕt, cos θt = 1− 2k2 sn2 ϕt.

If λ ∈ C+
2 , then

sin θt = 2 sgn c snψt cnψt, cos θt = cn2 ψt − sn2 ψt, ψt =
ϕ+ t

k
.

If λ ∈ C+
3 , then

sin θt = 2 sgn c
tanhϕt

coshϕt
, cos θt =

1− sh2 ϕt

cosh2 ϕt

.

Integrating (5.4)–(5.7) we obtain a parametrization for extremal trajectories in
the case α = 1.

If λ ∈ C1, then

xt = 2k(cnϕt − cnϕ),
yt = 2(E(ϕt)− E(ϕ))− t,

zt = 2k
(

snϕt dnϕt − snϕdnϕ− yt

2
(cnϕt + cnϕ)

)
,

vt =
y3

t

6
+ 2k2 cn2 ϕyt − 4k2 cnϕ(snϕt dnϕt − snϕdnϕ) + 2k2

(
2
3

cnϕt dnϕt snϕt

− 2
3

cnϕdnϕ snϕ+
1− k2

3k2
t+

2k2 − 1
3k2

(E(ϕt)− E(ϕ))
)
.
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If λ ∈ C2, then

xt =
2 sgn c
k

(dnψt − dnψ),

yt =
k2 − 2
k2

t+
2
k

(E(ψt)− E(ψ)),

zt = −xtyt

2
− 2 sgn cdnψ

k
yt + 2 sgn c(cnψt snψt − cnψ snψ),

vt =
4
k

(
1
3

cnψt dnψt snψt −
1
3

cnψ dnψ snψ − 1− k2

3k3
t− k2 − 2

6k2
(E(ψt)− E(ψ))

)
+
y3

t

6
+

2yt

k2
dn2 ψ − 4

k
dnψ(cnψt snψt − cnψ snψ),

ψ =
ϕ

k
, ψt =

ψ + t

k
.

If λ ∈ C3, then

xt = 2 sgn c
(

1
coshϕt

− 1
coshϕ

)
,

yt = 2(tanhϕt − tanhϕ)− t,

zt = −xtyt

2
− 2 sgn c

coshϕ
yt + 2 sgn c

(
tanhϕt

coshϕt
− tanhϕ

coshϕ

)
,

vt =
2
3

(
tanhϕt − tanhϕ+ 2

tanhϕt

cosh2 ϕt

− 2
tanhϕ
cosh2 ϕ

)
+
y3

t

6
+

2yt

cosh2 ϕ
− 4

coshϕ

(
tanhϕt

coshϕt
− tanhϕ

coshϕ

)
.

5.5. Parametrization of extremal trajectories with λ ∈
⋃3

i=1 Ci in the
general case of α ̸= 0. We obtain a parametrization of extremal trajectories in
the general case from the formulae for the special case α = 1 using symmetries of
the Hamiltonian system (5.1)–(5.7).

5.5.1. The case α > 0. System (5.1)–(5.7) possesses the symmetry (of dilation
type)

(θ, c, α, x, y, z, v, t) 7→
(
θ,

c√
α
, 1,
√
αx,

√
αy, αz, α3/2v,

√
αt

)
,

which transforms the variables ϕ and k as follows:

(ϕ, k, α) 7→ (
√
αϕ, k, 1).

Hence extremal trajectories of the case α > 0 can be expressed as follows in terms
of extremal trajectories of the case α = 1 (which we calculated in § 5.4):

(xt, yt, zt, vt)(ϕ, k, α) =
(
x√αt√
α
,
y√αt√
α
,
z√αt

α
,
v√αt

α3/2

)
(
√
αϕ, k, 1).
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5.5.2. The case α < 0. The Hamiltonian system (5.1)–(5.7) has the symmetry (of
reflection type)

(θ, c, α, x, y, z, v, t) 7→ (θ − π, c,−α,−x,−y, z,−v, t),

which does not change the values of ϕ and k (see (5.9) and (5.10)). Hence extremal
trajectories of the case α < 0 can be expressed as follows in terms of extremal
trajectories of the case α > 0:

(xt, yt, zt, vt)(ϕ, k, α) = (−xt,−yt, zt,−vt)(ϕ, k,−α).

5.5.3. The general case of α ̸= 0. We set σ =
√
|α| and s1 = sgnα. Bearing in

mind the results established in the previous subsections we obtain the following
expression for extremal trajectories:

(xt, yt, zt, vt)(ϕ, k, α) =
(
s1
σ
xσt,

s1
σ
yσt,

1
σ2
zσt,

s1
σ3
vσt

)
(σϕ, k, 1). (5.12)

This gives us parametrizations of extremal trajectories in the general case.
If λ ∈ C1, then

xt =
2kσ
α

(cn(σϕt)− cn(σϕ)),

yt =
2σ
α

(E(σϕt)− E(σϕ))− sgnαt,

zt =
2k
|α|

(
sn(σϕt) dn(σϕt)− sn(σϕ) dn(σϕ)− σkyt

2α
(
cn(σϕt) + cn(σϕ)

))
,

vt =
y3

t

6
+

2k2

|α|
cn2(σϕ)yt −

4k2

σα
cn(σϕ)

(
sn(σϕt) dn(σϕt)− sn(σϕ) dn(σϕ)

)
+

2k2

σα

(
2
3

cn(σϕt) dn(σϕt) sn(σϕt)−
2
3

cn(σϕ) dn(σϕ) sn(σϕ) +
1− k2

3k2
σt

+
2k2 − 1

3k2
(E(σϕt)− E(σϕ))

)
.

If λ ∈ C2, then

xt =
2σ sgn c
αk

(dn(σψt)− dn(σψ)),

yt =
k2 − 2
k2

sgnαt+
2σ
αk

(E(σψt)− E(σψ)),

zt = −xtyt

2
− 2σ sgn cdn(σψ)

αk
yt +

2 sgn c
|α|

(
cn(σψt) sn(σψt)− cn(σψ) sn(σψ)

)
,

vt =
4

σαk

(
1
3

cn(σψt) dn(σψt) sn(σψt)−
1
3

cn(σψ) dn(σψ) sn(σψ)

− 1− k2

3k3
σt− k2 − 2

6k2
(E(σψt)− E(σψ))

)
+
y3

t

6
+

2yt

|α|k2
dn2(σψ)

− 4
σαk

dn(σψ)
(
cn(σψt) sn(σψt)− cn(σψ) sn(σψ)

)
.
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If λ ∈ C3, then

xt =
2σ sgn c

α

(
1

cosh(σϕt)
− 1

cosh(σϕ)

)
,

yt =
2σ
α

(tanh(σϕt)− tanh(σϕ))− sgnαt,

zt = −xtyt

2
− 2σ sgn c
α cosh(σϕ)

yt + 2
sgn c
|α|

(
tanh(σϕt)
cosh(σϕt)

− tanh(σϕ)
cosh(σϕ)

)
,

vt =
2

3σα

(
tanh(σϕt)− tanh(σϕ) + 2

tanh(σϕt)
cosh2(σϕt)

− 2
tanh(σϕ)
cosh2(σϕ)

)
+
y3

t

6

+
2yt

|α| cosh2 ϕ
− 4
σα cosh(σϕ)

(
tanh(σϕt)
cosh(σϕt)

− tanh(σϕ)
cosh(σϕ)

)
.

5.6. Parametrization of extremal trajectories for C4, C5 and C6. If λ∈C4,
then θ̇ = 0, cos θ = sgnα and the Hamiltonian system is easy to integrate:

xt = 0, yt = t sgnα, zt = 0, vt =
t3

6
sgnα.

For λ ∈ C5 we have cos θ = − sgnα, so that

xt = 0, yt = −t sgnα, zt = 0, vt = − t
3

6
sgnα.

Let λ ∈ C6; then α = 0 and c ̸= 0. Hence θ̈t = 0, so that θt = ct + θ, where
c = const and θ = const. This gives us

xt =
cos(ct+ θ)− cos θ

c
, yt =

sin(ct+ θ)− sin θ
c

, zt =
ct− sin(ct)

2c2
,

vt = −2c cos θt− 4 sin(ct+ θ) + sin(2ct+ θ)
4c3

.

For λ ∈ C7 we have α = c = 0 and θt ≡ θ = const, so that

xt = −t sin θ, yt = t cos θ, zt = 0, vt =
t3

6
cos θ.

Note that normal extremal trajectories of the cases C4 and C5 coincide with the
abnormal trajectories in (4.3), so the latter are not strictly abnormal.

If the pendulum (5.8) oscillates with subcritical energy E < |α| (the case C1),
then the elastics (xt, yt) have inflection points and are said to be inflection elastics
(Figs. 5–7). If it rotates with supercritical energy E > |α| (the case C2), then they
have no inflection points and are called noninflection elastics (Fig. 8). Finally, if
a pendulum moves with critical energy E = |α| (the case C3), then the correspond-
ing elastic is said to be critical (Fig. 9). For a pendulum rotating in weightlessness
(the case C6), the projections of extremal trajectories onto the (x, y)-planes are cir-
cles. For a pendulum at rest (the cases C4, C5 and C7) these projections are straight
lines.
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Figure 5. An inflection elastic. Figure 6. An inflection elastic.

Figure 7. An inflection elastic. Figure 8. A noninflection elastic.

Figure 9. A critical elastic.

5.7. The exponential map. The family of all extremal trajectories is described
by the exponential map

Exp: C × R+ →M, Exp(λ, t) = qt,

λ = (θ, c, α) ∈ C, t ∈ R+, qt ∈M.

It takes a pair (λ, t) consisting of the initial value of the vector of costate variables
λ ∈ C and time t ∈ R+ to the terminal point of the corresponding extremal
trajectory qt. In the previous subsections we obtained explicit expressions for the
exponential map in terms of elementary and Jacobi functions.

Now we investigate discrete symmetries of the exponential map and on their
basis find estimates for the cut time on extremal trajectories.
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§ 6. Discrete symmetries of the exponential map

6.1. Reflections of the pendulum direction field. The subsystem (5.1)–(5.3)
for the constate variables of the normal Hamiltonian system reduces to the pen-
dulum equation (5.8). Obviously, the following reflections εi preserve the direction
field of this system:

ε1 : (θ, c, α) 7→ (θ,−c, α), ε2 : (θ, c, α) 7→ (−θ, c, α),

ε3 : (θ, c, α) 7→ (−θ,−c, α), ε4 : (θ, c, α) 7→ (θ + π, c,−α),

ε5 : (θ, c, α) 7→ (θ + π,−c,−α), ε6 : (θ, c, α) 7→ (−θ + π, c,−α),

ε7 : (θ, c, α) 7→ (−θ + π,−c,−α).

The reflection ε1, ε2, ε5 and ε6 reverse time on trajectories, while ε3, ε4 and
ε7 respect the direction of time. These reflections generate the symmetry group of
a parallelepiped, G = {Id, ε1, ε2, ε3, ε4, ε5, ε6, ε7}, with multiplication table shown
in Table 1; we do not write out the entries below the main diagonal because G is
an Abelian group.

Table 1. Multiplication in the group G

ε1 ε2 ε3 ε4 ε5 ε6 ε7

ε1 Id ε3 ε2 ε5 ε4 ε7 ε6

ε2 Id ε1 ε6 ε7 ε4 ε5

ε3 Id ε7 ε6 ε5 ε4

ε4 Id ε1 ε2 ε3

ε5 Id ε3 ε2

ε6 Id ε1

ε7 Id

6.2. Reflections of trajectories of the pendulum equation. The action of
the symmetries εi extends to the set of trajectories (with indicated direction of time)
of the pendulum equation (5.8). Consider a smooth curve

γ = {(θs, cs, α) | s ∈ [0, t]}

in the phase space of the pendulum, S1 × R2. We define the action of reflections
on such curves (Fig. 10) as follows:

Figure 10. Reflections of trajectories of the pendulum.
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ε1 : γ 7→ γ1 = {(θ1s , c1s, α1) | s ∈ [0, t]} = {(θt−s,−ct−s, α) | s ∈ [0, t]},
ε2 : γ 7→ γ2 = {(θ2s , c2s, α2) | s ∈ [0, t]} = {(−θt−s, ct−s, α) | s ∈ [0, t]},
ε3 : γ 7→ γ3 = {(θ3s , c3s, α3) | s ∈ [0, t]} = {(−θs,−cs, α) | s ∈ [0, t]},
ε4 : γ 7→ γ4 = {(θ4s , c4s, α4) | s ∈ [0, t]} = {(θs + π, cs,−α) | s ∈ [0, t]},
ε5 : γ 7→ γ5 = {(θ5s , c5s, α5) | s ∈ [0, t]} = {(θt−s + π,−ct−s,−α) | s ∈ [0, t]},
ε6 : γ 7→ γ6 = {(θ6s , c6s, α6) | s ∈ [0, t]} = {(−θt−s + π, ct−s,−α) | s ∈ [0, t]},
ε7 : γ 7→ γ7 = {(θ7s , c7s, α7) | s ∈ [0, t]} = {(−θs + π,−cs,−α) | s ∈ [0, t]}.

Lemma 1. The reflections εi, i = 1, . . . , 7, transform trajectories of the pendulum
equation (5.8) into trajectories.

Proof. This can be verified by direct differentiation. For example, for ε4 and ε7 we
obtain

d

ds
θ4s =

d

ds
(θs + π) = θ̇s = c4s,

d

ds
c4s =

d

ds
cs = ċs = −α sin θs = α4 sin(θ4s + π) = −α4 sin θ4s ,

d

ds
θ7s =

d

ds
(−θs + π) = −θ̇s = −cs = c7s,

d

ds
c7s =

d

ds
(−cs) = −ċs = α sin θs = −α7 sin(−θ7s + π) = −α7 sin θ7s .

Now from the ‘vertical’ subsystem (5.1)–(5.3) we can extend the action of the
εi to solutions of the full Hamiltonian system of Pontryagin’s maximum principle
(5.1)–(5.7)

θ̇s = cs, ċs = −α sin θs, α̇ = 0, q̇s = − sin θsX1(qs) + cos θsX2(qs)

in the following fashion:

εi :
{
(θs, cs, α, qs) | s ∈ [0, t]

}
7→

{
(θi

s, c
i
s, α

i, qi
s) | s ∈ [0, t]

}
. (6.1)

The action of reflections on the curves (θs, cs, α) has already been explicitly
described in this subsection. Below we calculate the action of reflections on the
elastics (xs, ys) and on the end-points of geodesics qt.

6.3. Reflections of Euler elastics. Let qs = (xs, ys, zs, vs), s ∈ [0, t], be a geo-
desic and let

qi
s = (xi

s, y
i
s, z

i
s, v

i
s), s ∈ [0, t], i = 1, . . . , 7,

be its εi-images. We shall describe the action of reflections on the elastics (xs, ys).
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Figure 11. Reflections of Euler elastics.

Lemma 2. The reflections εi, i = 1, . . . , 7, transform the elastics (xs, ys) as fol-
lows :

x1
s = xt − xt−s, y1

s = yt − yt−s,

x2
s = xt−s − xt, y2

s = yt − yt−s,

x3
s = −xs, y3

s = ys,

x4
s = −xs, y4

s = −ys,

x5
s = xt−s − xt, y5

s = yt−s − yt,

x6
s = xt − xt−s, y6

s = yt−s − yt,

x7
s = xs, y7

s = −ys.

Proof. Using direct integration, for instance, for ε6 we verify that

x6
s =

∫ s

0

(− sin(−θt−r + π)) dr = −
∫ t−s

t

(− sin θp) dp = xt − xt−s,

y6
s =

∫ s

0

cos(−θt−r + π) dr =
∫ t−s

t

cos θp dp = yt−s − yt.

The action of the symmetries εi on elastics has the following geometric interpre-
tations (Fig. 11):

ε1 is the reflection of the elastic in its chord (the line segment connecting its
end-points);
ε3 is the reflection of the elastic in the y-axis;
ε4 is the reflection of the elastic in the origin;
ε7 is the reflection of the elastic in the x-axis;

other symmetries can be expressed as composites of the ones above, with the help
of the multiplication table (see Table 1).
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6.4. Reflections of the terminal points of geodesics.

Lemma 3. The reflections εi, i = 1, . . . , 7, take the terminal points of the geodesics
qt = (xt, yt, zt, vt) to the terminal points of the geodesics qi

t = (xi
t, y

i
t, z

i
t, v

i
t) as

follows :

x1
t = xt, y1

t = yt, z1
t = −zt, v1

t = vt − xtzt,

x2
t = −xt, y2

t = yt, z2
t = zt, v2

t = vt − xtzt,

x3
t = −xt, y3

t = yt, z3
t = −zt, v3

t = vt,

x4
t = −xt, y4

t = −yt, z4
t = zt, v4

t = −vt,

x5
t = −xt, y5

t = −yt, z5
t = −zt, v5

t = −vt + xtzt,

x6
t = xt, y6

t = −yt, z6
t = zt, v6

t = −vt + xtzt,

x7
t = xt, y7

t = −yt, z7
t = −zt, v7

t = −vt.

Proof. Lemma 2 gives us expressions for xi
t and yi

t. The expressions for the other
variables are obtained by integration. For example, for ε1 we have

z1
t =

1
2

∫ t

0

(x1
sẏ

1
s + y1

s ẋ
1
s) ds =

1
2

∫ t

0

(
(xt − xt−s)ẏ1

s − (yt − yt−s)ẋ1
s

)
ds = −zt,

v1
t =

1
2

∫ t

0

ẏ1
s

(
(x1

s)
2 + (y1

s)2
)
ds

=
ytx

2
t

2
+
y3

t

2
− xt

∫ t

0

xsẏs ds− yt

∫ t

0

ysẏs ds+ vt

=
ytx

3
t

2
− xt

2

∫ t

0

(
(xsys)· + (xsẏs − ysẋs)

)
ds+ vt = vt − xtzt.

For the other reflections εi the proof is similar.

6.5. Reflections as symmetries of the exponential map. We define the
action of the reflections εi on the domain of the exponential map C × R+ as
the restriction of the action on the initial points of the pendulum trajectories defined
in § 6.2:

εi : C × R+ → C × R+, εi(θ, c, α, t) = (θi, ci, αi, t),

(θ1, c1, α1) = (θt,−ct, α),

(θ2, c2, α2) = (−θt, ct, α),

(θ3, c3, α3) = (−θ,−c, α),

(θ4, c4, α4) = (θ + π, c,−α),

(θ5, c5, α5) = (θt + π,−ct,−α),

(θ6, c6, α6) = (−θt + π, ct,−α),

(θ7, c7, α7) = (−θ + π,−c,−α).
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The action of the reflections ε on the image M of the exponential map will be
defined as the action on the terminal points of geodesics (see Lemma 3):

εi : M →M, εi(q) = εi(x, y, z, v) = qi = (xi, yi, zi, vi), (6.2)

(x1, y1, z1, v1) = (x, y,−z, v − xz), (6.3)

(x2, y2, z2, v2) = (−x, y, z, v − xz), (6.4)

(x3, y3, z3, v3) = (−x, y,−z, v), (6.5)

(x4, y4, z4, v4) = (−x,−y, z,−v), (6.6)

(x5, y5, z5, v5) = (−x,−y,−z,−v + xz), (6.7)

(x6, y6, z6, v6) = (x,−y, z,−v + xz), (6.8)

(x7, y7, z7, v7) = (x,−y,−z,−v). (6.9)

Since the actions of the εi on the domain C × R+ and the image M of the
exponential map are induced by the actions of the reflections (6.1) on trajectories
of the Hamiltonian system, we have the following result.

Proposition 1. For each i = 1, . . . , 7 the reflection εi is a symmetry of the expo-
nential map in the following sense:

εi ◦ Exp(θ, c, α, t) = Exp ◦ εi(θ, c, α, t), (θ, c, α) ∈ C, t ∈ R+.

§ 7. Maxwell points

A point qt in a sub-Riemannian geodesic is called a Maxwell point if there exists
another extremal trajectory q̃s ̸≡ qs for which q̃t = qt, t > 0. It is known that
a geodesic cannot be optimal past a Maxwell point (see [9]). In this section we
calculate the Maxwell points corresponding to some reflections εi. On this basis
we derive estimates for the cut time along extremal trajectories

tcut(λ) = sup
{
t > 0 | Exp(λ, s) is optimal for s ∈ [0, t]

}
.

In the domain of Exp we introduce the Maxwell sets corresponding to the sym-
metries εi:

MAXi =
{
(λ, t) ∈ C × R+ | λi ̸= λ,Exp(λi, t) = Exp(λ, t)

}
,

λ = (θ, c, α), λi = (θi, ci, αi) = εi(λ).
(7.1)

7.1. Fixed point of symmetries in the image of the exponential map. By
Proposition 1 the equality Exp(λi, t) = Exp(λ, t) in the definition (7.1) of MAXi

is equivalent to εi(qt) = qt. The following description of fixed points of the reflec-
tions εi in the image of the exponential map immediately follows from the definition
(6.2)–(6.9) of the action of reflections on M .
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Lemma 4.

1) ε1(q) = q ⇐⇒ z = 0;

2) ε2(q) = q ⇐⇒ x = 0;

3) ε3(q) = q ⇐⇒ x2 + z2 = 0;

4) ε4(q) = q ⇐⇒ x2 + y2 + v2 = 0;

5) ε5(q) = q ⇐⇒ x2 + y2 + z2 + v2 = 0;

6) ε6(q) = q ⇐⇒ y2 + (2v − xz)2 = 0;

7) ε7(q) = q ⇐⇒ y2 + z2 + v2 = 0.

The equalities εi(q) = q describe R4 submanifolds of dimension from 3 through 0
of the state space. In this paper we content ourselves with investigating submani-
folds of the maximum dimension 3 (corresponding to the Maxwell sets MAX1 and
MAX2). We investigate lower-dimensional submanifolds elsewhere.

7.2. Fixed points of symmetries in the domain of the exponential map.
In this subsection we calculate the solutions of the equations λi = λ essential for the
description of the Maxwell sets MAXi (for i = 1, 2); see (7.1). Here and throughout,
in Ci × R+ we use the new variables defined as follows:

(λ, t) ∈ (C1 ∪ C3)× R+ =⇒ τ = σ
ϕ+ ϕt

2
, p =

σt

2
,

(λ, t) ∈ C2 × R+ =⇒ τ = σ
ϕ+ ϕt

2k
, p =

σt

2k
.

Proposition 2. For (λ, t) ∈ C × R+ denote εi(λ, t) = (λi, t). Then

1) λ1 = λ ⇐⇒

{
cn τ = 0 for λ ∈ C1,

is impossible for λ ∈ C2 ∪ C3 ∪ C6;

2) λ2 = λ ⇐⇒


sn τ = 0 for λ ∈ C1,

sn τ cn τ = 0 for λ ∈ C2,

τ = 0 for λ ∈ C3,

2θ + ct = 2πn for λ ∈ C6.

Proof. We only prove 1) since the proof of 2) is similar.
By the definition of the action of reflections on the domain of the exponential

map (§ 6.5), λ1 = λ is tantamount to the equalities θ = θt and c = −ct.
If λ ∈ C2 ∪ C3 ∪ C6, then c keeps sign along trajectories of the pendulum (5.8),

so the equality c = −ct is impossible.
If λ ∈ C1, then by the definition of the elliptic coordinates (§ 5.3){

θ = θt,

c = −ct
⇐⇒

{
sn(σϕ) = sn(σϕt),
cn(σϕ) = − cn(σϕt)

⇐⇒ cn τ = 0.

In the last transition we have used addition formulae for Jacobi functions (see [24]).
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7.3. A general description of the Maxwell sets corresponding to the
reflections ε1 and ε2. The results of the previous two subsections can be sum-
marized as follows.

Theorem 1. Let (λ, t) ∈
⋃3

i=1(Ci × R+) and qt = Exp(λ, t). Then

1) (λ, t) ∈ MAX1 ⇐⇒

{
zt = 0, cn τ ̸= 0 for λ ∈ C1,

zt = 0 for λ ∈ C2 ∪ C3;

2) (λ, t) ∈ MAX2 ⇐⇒


xt = 0, sn τ ̸= 0 for λ ∈ C1,

xt = 0, sn τ cn τ ̸= 0 for λ ∈ C2,

xt = 0, τ ̸= 0 for λ ∈ C3.

7.4. A complete description of the Maxwell sets corresponding to the
reflections ε1 and ε2. In this subsection we describe the roots on extremal tra-
jectories of the equations xt = 0 and zt = 0. To do this we use the following expan-
sions obtained on the basis of the expressions for extremal trajectories obtained
previously (§§ 5.5, 5.6) and addition formulae for Jacobi functions.

If λ ∈ C1, then

xt = −4kσ
α

dn p sn p dn τ sn τ
∆

, ∆ = 1− k2 sn2 p sn2 τ > 0, (7.2)

zt =
4k
|α|

fz(p) cn τ
∆

, fz(p) = dn p sn p+ (p− 2 E(p)) cn p. (7.3)

If λ ∈ C2, then

xt = −4σ sgn c
αk

cn p sn p cn τ sn τ
∆

, (7.4)

zt = −4 sgn c
|α|k2

gz(p) dn τ
∆

, (7.5)

gz(p) = ((k2 − 2)p+ 2 E(p)) dn p− k2 sn p sn p. (7.6)

If λ ∈ C3, then

xt =
8σ sgn c

α

cosh p cosh τ
cosh(2p) + cosh(2τ)

, (7.7)

zt =
8 sgn c
|α|

cosh τ(p cosh p− sh p)
cosh(2p) + cosh(2τ)

. (7.8)

If λ ∈ C6, then

xt =
cos(ct+ θ)− cos θ

c
, (7.9)

zt =
ct− sin(ct)

2c2
. (7.10)

The zeros of fz(p) and gz(p) are described in [9]. In Proposition 2.1 in [9] it is
shown that all the positive zeros of fz(p, k) have the following form:

p1
z < p2

z < · · · < pn
z < · · · , pn

z (k) ∈ (−K + 2Kn,K + 2Kn), n ∈ N,
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where K(k) is the complete elliptic integral of the 1st kind. In Proposition 3.1 in [9]
it was shown that gz(p) has no positive zeros. In view of this, from Theorem 1 and
the expansions (7.2)–(7.10) we extract the following description of the Maxwell sets
corresponding to the reflections ε1 and ε2 (we set Ni = Ci × R+).

Theorem 2.

1) MAX1 ∩N1 = {(λ, t) ∈ N1 | p = pn
z (k), n ∈ N, cn(τ) ̸= 0};

2) MAX1 ∩N2 = MAX1 ∩N3 = MAX1 ∩N6 = ∅;

3) MAX2 ∩N1 = {(λ, t) ∈ N1 | p = 2Kn, n ∈ N, sn(τ) ̸= 0};
4) MAX2 ∩N2 = {(λ, t) ∈ N2 | p = Kn, n ∈ N, sn(τ) cn(τ) ̸= 0};
5) MAX2 ∩N3 = ∅;

6) MAX2 ∩N6 = {(λ, t) ∈ N6 | tc = 2πn, θ ̸= πk, n, k ∈ Z}.

7.5. Limit points of the Maxwell set. Let us introduce a subset of the closure
of the Maxwell set:

CMAX =
{

(λ, t) ∈ N | ∃ {λn, tn}, {λ′n, tn} ⊂ N :

λn ̸= λ′n, Exp(λn, tn) = Exp(λ′n, tn), lim
n→∞

λn = lim
n→∞

λ′n = λ
}
.

In Proposition 5.1 in [9] is was shown that if (λ, t) ∈ CMAX, then the point

qt = Exp(λ, t)

is conjugate (to q0) on the extremal trajectory qs = Exp(λ, s) and the trajectory is
not optimal for s > t.

Lemma 5.

1) If (λ, t) ∈ N1, p = pn
z , n ∈ N, cn τ = 0, then (λ, t) ∈ CMAX;

2) if (λ, t) ∈ N1, p = 2Kn, n ∈ N, sn τ = 0, then (λ, t) ∈ CMAX;
3) if (λ, t) ∈ N2, p = Kn, n ∈ N, sn τ cn τ = 0, then (λ, t) ∈ CMAX;
4) if (λ, t) ∈ N6, tc = 2πn, θ = πk, n, k ∈ Z, then (λ, t) ∈ CMAX.

Proof. We only prove 1) since the other proofs are similar. We fix n ∈ N and
consider sequences of points {(λ±m, tm) | m ∈ N} such that

p±m = pn
z , τ±m = τ ± 1

m
.

Then
λ+

m ̸= λ−m, lim
m→∞

λ+
m = lim

m→∞
λ−m = λ.

Moreover,
(λ−m, t) = ε1(λ+

m, t), z+
m(t) = z−m(t) = 0.
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Hence it follows from Lemma 4 that

Exp(λ−m, t) = Exp(λ+
m, t), m ∈ N,

so that (λ, t) ∈ CMAX.

7.6. An estimate for the cut time. We introduce a function t1MAX : C →
(0,+∞]:

λ ∈ C1 =⇒ t1MAX =
min(2p1

z, 4K)
σ

,

λ ∈ C2 =⇒ t1MAX =
2Kk
σ

,

λ ∈ C6 =⇒ t1MAX =
2π
|c|
,

λ ∈ C3 ∪ C4 ∪ C5 ∪ C7 =⇒ t1MAX = +∞.

Theorem 2 and Lemma 5 yield the following global estimate for the cut time on
extremal trajectories.

Theorem 3. For each λ ∈ C

tcut(λ) 6 t1MAX(λ). (7.11)

An analysis of the global structure of the exponential map shows that the esti-
mate (7.11) is not sharp; however, with its help we can reduce the sub-Riemannian
problem on the Engel group to systems of equations of the following form:

qt(λ) = q1, t ∈ (0, t1MAX(λ)];

this is similar to the Euler elastic problem (see [25]). Thanks to this a software pro-
gram calculating approximately the global solution to the sub-Riemannian problem
on the Engel group can be designed, which can be used for a program of approximate
solution of the control problem for general nonlinear systems with 2-dimensional
control in a 4-dimensional space. These undertakings are the subject of a forth-
coming paper.

§ 8. Conclusion

In this paper we have looked at the nilpotent sub-Riemannian problem on the
Engel group. For this problem

• we have calculated the extremal trajectories;
• we have described the symmetries of the exponential map and the corres-

ponding Maxwell points;
• we have obtained a global upper estimate for the cut time on extremal tra-

jectories.
In the future we are intending to investigate the optimality of extremal trajec-

tories and to design a program for calculating optimal trajectories in the sub-
Riemannian problem on the Engel group; relying on the method of nonlinear
approximation we shall also apply our results to the control problem for general
non-linear systems with 2-dimensional control in a 4-dimensional space.
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pp. 1–78.

[3] A.A. Agrachev and A. V. Sarychev, “Filtrations of a Lie algebra of vector fields
and nilpotent approximation of controlled systems”, Dokl. Akad. Nauk SSSR 295:4
(1987), 777–781; English transl. in Soviet Math. Dokl. 36:1 (1988), 104–108.

[4] H. Hermes, “Nilpotent and high-order approximations of vector field systems”,
SIAM Rev. 33:2 (1991), 238–264.

[5] A.M. Vershik and V.Ya. Gershkovich, “Nonholonomic dynamical systems,
geometry of distributions and variational problems”, Dynamical systems – 7,
Sovrem. Probl. Mat. Fund. Naprav., vol. 16, VINITI, Moscow 1987, pp. 5–85;
English transl. in Encyclopaedia Math. Sci., vol. 16, Springer-Verlag, Berlin 1994,
pp. 1–81.

[6] U. Boscain and F. Rossi, “Invariant Carnot-Carathéodory metrics on S3, SO(3),
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