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Abstract We consider the sub-Riemannian length minimization problem on the group of motions of pseudo

Euclidean plane that form the special hyperbolic group SH(2). The system comprises of left invariant vector

�elds with 2-dimensional linear control input and energy cost functional. We apply the Pontryagin Maximum

Principle to obtain the extremal control input and the sub-Riemannian geodesics. A change of coordinates

transforms the vertical subsystem of the normal Hamiltonian system into the mathematical pendulum. In suitable

elliptic coordinates the vertical and the horizontal subsystems are integrated such that the resulting extremal

trajectories are parametrized by the Jacobi elliptic functions. Qualitative analysis reveals that the projections

of normal extremal trajectories on the xy-plane have cusps and in�ection points. The vertical subsystem being

a generalized pendulum admits re�ection symmetries that are used to obtain a characterization of the Maxwell

strata.
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1 Introduction

Sub-Riemannian geometry deals with the study of smooth manifolds M that are endowed with a vector dis-

tribution ∆ and a smoothly varying positive de�nite quadratic form. The distribution ∆ is a subbundle of the

tangent bundle TM and the quadratic form allows measuring distance between any two points in M [1],[2],[3].

Other names that appear in literature for sub-Riemannian Geometry are Carnot-Carathéodory geometry [4],

Non-holonomic Riemannian geometry [5] and Singular Riemannian geometry [6]. The aim of de�ning and solving

the sub-Riemannian problem is to �nd the optimal curves between two given points on the sub-Riemannian man-

ifold M such that the sub-Riemannian length between the points is minimized [2],[3]. Sub-Riemannian problems

occur widely in nature and technology [2],[7] and have therefore been extensively studied via the geometric control
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methods on various Lie groups such as the Heisenberg group [5],[6],[8], S3, SL(2), SU(2) [9], SE(2) [10],[11],[12],

the Engel group [13], the Solvable group SOLV− [14], and also in [15],[16]. Among the physical systems that de-

scribe sub-Riemannian problems and on which Geometric control methods have been successfully applied one can

�nd parking of cars, rolling bodies on a plane without sliding, motion planning and control of robots, satellites,

vision, quantum mechanical systems and even �nance [2],[7].

We consider the sub-Riemannian problem on the group of motions of the Pseudo-Euclidean plane which is

a subspace of the pseudo Euclidean space [17]. The motions of pseudo Euclidean plane described in Section 3.1

form a 3-dimensional Lie group known as the special hyperbolic group SH(2) [18]. The optimal control problem

comprises a system of left invariant vector �elds with 2-dimensional linear control input and energy cost functional.

The group SH(2) gives one of the Thurston's 3-dimensional geometries [19] and the study of sub-Riemannian

problem on SH(2) bears signi�cance in the program of complete study of all the left-invariant sub-Riemannian

problems on 3-dimensional Lie groups following the classi�cation in terms of the basic di�erential invariants [20].

Notice that equivalent sub-Riemannian problem was considered in [14] on the Lie group SOLV−. However,
the parametrization of sub-Riemannian geodesics obtained in [14] is far from being complete. This paper seeks

the rigorous scheme of analysis developed in [10],[13],[15] for parametrization and qualitative analysis of the

extremal trajectories. The corresponding results are insightful, in simpler form owing primarily to the use of

simpler elliptic coordinates and allow further analysis on global and local optimality of geodesics. The paper

is organized as follows. We begin with a short overview of sub-Riemannian geometry in Section 2. We present

detailed account of problem statement in Section 3 covering a description of the Lie group SH(2) and the sub-

Riemannian problem on SH(2). In Section 4 we apply the Pontryagin Maximum Principle to obtain the normal

Hamiltonian system. In Section 5 we present the computation of the Hamiltonian �ow in the elliptic coordinates

and the qualitative analysis of the projections of the extremal trajectories on the xy-plane. Section 6 pertains to

the re�ection symmetries of the vertical and horizontal subsystem. In Section 7 we utilize results from re�ection

symmetries of the Hamiltonian system to state the generalized conditions for the Maxwell strata. Sections 8 and

9 pertain to the future work and the conclusion respectively.

2 Sub-Riemannian Geometry

2.1 Sub-Riemannian Manifold

A Sub-Riemannian space/manifold is a generalization of a Riemannian manifold. It comprises of a manifold M

of dimension n, a smooth vector distribution ∆ with constant rank m ≤ n, and a Riemannian metric g de�ned

on ∆. It is denoted as a triple (M,∆, g). The distribution ∆ on M is a smooth linear subbundle of the tangent

bundle TM . Intuitively, the motion on a sub-Riemannian manifold is restricted along the paths that are tangent

to the horizontal subspaces or the admissible directions of motion are constrained to the horizontal subspaces

∆q, q ∈M [21], [22].

2.2 Sub-Riemannian Distance

A horizontal curve in a sub-Riemannian manifold (M,∆, g) is a Lipschitzian curve γ : I ⊂ R → M such that

γ̇(t) ∈ ∆γ(t) for almost all t ∈ I. The length of γ is given as:

length(γ) =

�

I

√
gγ(t)(γ̇(t), γ̇(t))dt,

where gγ(t) is the inner product in ∆γ(t) [3]. The sub-Riemannian distance between two points p, q ∈ M is the

length of the shortest curve joining p to q:

d(p; q) = inf

{
length(γ) :

γ is horizontal curve

γ joins p to q

}
.

2.3 Sub-Riemannian Problem

The problem of �nding horizontal curves γ from the initial state q0 to the �nal state q1 with the shortest sub-

Riemannian length is called the sub-Riemannian problem [3], [23]. Suppose that there exists a set of smooth



Sub-Riemannian Problem on Group SH(2) 3

vector �elds f1, . . . , fm on M whose values ∀q ∈M form an orthonormal frame of the Euclidean space (∆q, gq).
Sub-Riemannian minimizers are the solutions of the following optimal control problem on M :

q̇ =
m∑
i=1

ui(t)fi(q), q ∈M, (u1, · · · , um) ∈ Rm,

q(0) = q0, q(t1) = q1,

l =

� t1

0

√√√√ m∑
i=1

u2i dt→ min .

If (∆, g) is a left-invariant sub-Riemannian structure on a Lie group, then it has a global orthonormal frame of

left-invariant vector �elds. Moreover, one can take the initial point q0 = Id, the identity element of the Lie group.

3 Problem Statement

3.1 The Group SH(2) of Motions of Pseudo Euclidean Plane

The following presentation is motivated from [18] and is presented here for the sake of completeness. The group

SH(2) can be represented by 3× 3 matrices:

M = SH(2) =


 cosh z sinh z x

sinh z cosh z y
0 0 1

 | x, y, z ∈ R

 .

The Lie group SH(2) comprises of three basis one-parameter subgroups given as:

w1(t) =

 cosh t sinh t 0
sinh t cosh t 0
0 0 1

 , w2(t) =

 1 0 t
0 1 0
0 0 1

 , w3(t) =

 1 0 0
0 1 t
0 0 1

 ,

where t ∈ R. The basis for the Lie algebra sh(2) = TIdSH(2) are the tangent matrices Ai =
dwi(t)
dt |t=0 to the

subgroups of the Lie group SH(2). Ai are given as:

A1 =

 0 1 0
1 0 0
0 0 0

 , A2 =

 0 0 1
0 0 0
0 0 0

 , A3 =

 0 0 0
0 0 1
0 0 0

 .

The Lie algebra is thus:

L = TIdM = sh(2) = span {A1, A2, A3} .

The multiplication rule for L is [A,B] = AB−BA. Therefore, the Lie bracket for sh(2) is given as [A1, A2] = A3,

[A1, A3] = A2 and [A2, A3] = 0. It is trivial to see that the Lie group SH(2) represents isometries of pseudo

Euclidean plane.

3.2 Sub-Riemannian Problem on SH(2)

Consider the following sub-Riemannian problem on SH(2):

q̇ = u1f1(q) + u2f2(q), q ∈M = SH(2), (u1, u2) ∈ R2, (3.1)

q(0) = Id, q(t1) = q1, (3.2)

l =

� t1

0

√
u21 + u22 dt→ min, (3.3)

f1(q) = qA2, f2(q) = qA1. (3.4)

In terms of the classi�cation of the left-invariant sub-Riemannian structures on 3D Lie groups [20], the canonical

frame on M is given as:

f1(q), f2(q), f0(q) = qA3,

[f1, f0] = 0, [f2, f0] = f1, [f2, f1] = f0.

By [20], the sub-Riemannian structure:

(M,∆, g), ∆ = span{f1, f2}, g(fi, fj) = δij ,
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is unique up to rescaling, left invariant contact sub-Riemannian structure on SH(2). Here δij is the Kronecker

delta. In the coordinates (x, y, z), the basis vector �eld are given as:

f1(q) = cosh z
∂

∂x
+ sinh z

∂

∂y
,

and

f2(q) =
∂

∂z
.

Therefore (3.1) may be written as:  ẋ

ẏ

ż

 =

 cosh z
sinh z
0

u1 +

 0
0
1

u2. (3.5)

By the Cauchy-Schwarz inequality,

(l(u))2 =

 t1�

0

√
u21 + u22dt

2

≤ t1

t1�

0

(u21 + u22)dt,

moreover, the inequality turns into an equality i� u21+u
2
2 ≡ constant. Thus the sub-Riemannian length functional

minimization problem (3.3) is equivalent to the problem of minimizing the following energy functional with �xed

t1 [22]:

J =
1

2

t1�

0

(u21 + u22)dt→ min . (3.6)

3.3 Controllability and Existence of Solutions

System (3.1) has full rank because f0(q)=[f2(q), f1(q)]=qA3. The Lie algebra of the distribution Lq∆ is given

as:

Lq∆ = span{f1(q), f2(q),−f0(q)} = TqSH(2) ∀q ∈ SH(2).

Hence by Rashevsky-Chow's theorem, system (3.1) is completely controllable [24],[25]. Existence of optimal

trajectories for the optimal control problem (3.1)-(3.4) follows from Filippov's theorem [10],[21].

4 Pontryagin Maximum Principle for the Sub-Riemannian Problem on SH(2)

We write the PMP form for (3.1),(3.2),(3.6) using the coordinate free approach described in [21]. Consider the

control dependent Hamiltonian for PMP corresponding to the vector �elds f1(q) and f2(q):

hνu(λ) = 〈λ, u1f1(q) + u2f2(q)〉+
ν

2
(u21 + u22), q = π(λ), λ ∈ T ∗M. (4.1)

Let hi(λ) = 〈λ, fi(q)〉 be the Hamiltonians corresponding to the basis vector �elds fi. Then (4.1) can be written

as:

hνu(λ) = u1h1(λ) + u2h2(λ) +
ν

2
(u21 + u22), u ∈ R2, ν ∈ R, λ ∈ T ∗M. (4.2)

Now PMP for the optimal control problem is given by using Theorem 12.3 [21] as:

Theorem 4.1 Let ũ(t) be an optimal control and let q̃(t) be the associated optimal trajectory for t ∈ [0, t1].
Then, there exists a nontrivial pair:

(ν, λt) 6= 0, ν ∈ R, λt ∈ T ∗q̃(t)M, π(λt) = q̃(t),

where ν ∈ {−1, 0} is a number and λt is a Lipschitzian curve for which the following conditions hold for almost

all times t ∈ [0, t1]:

λ̇t =
−→
h νũ(t)(λt), (4.3)

hνũ(t)(λt) = max
u∈R2

hνu(λt), (4.4)

where
−→
h νũ(t)(λt) is the Hamiltonian vector �eld on T ∗M corresponding to the Hamiltonian function hνũ(t).
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4.1 Extremal Trajectories

Extremal trajectories comprise of the abnormal extremal trajectories for ν = 0 and normal extremal trajectories

for ν = −1. Since the structure is 3-dimensional contact, hence there are no nontrivial abnormal trajectories

[10],[26]. We now consider the normal extremal trajectories. The Hamiltonian (4.2) in this case can be written

as:

h−1
u (λ) = u1h1(λ) + u2h2(λ)−

1

2

(
u21 + u22

)
, u ∈ R2. (4.5)

Using the maximization condition of PMP, the trajectories of the normal Hamiltonian satisfy the equalities:

∂h−1
u

∂u
=

(
h1 − u1
h2 − u2

)
= 0 =⇒ u1 = h1, u2 = h2.

Normal extremals are the trajectories of Hamiltonian system λ̇ =
−→
H (λ), λ ∈ T ∗M , with the maximized

Hamiltonian H = 1
2

(
h21 + h22

)
≥ 0. Speci�cally, for the non-constant normal extremals H > 0. Note that the

Hamiltonian function in the normal case is homogeneous w.r.t. h1, h2 and therefore we consider its trajectories

for the level surface H = 1
2 . The phase cylinder containing the initial covector λ in this case is:

C = T ∗q0M ∩
{
H(λ) =

1

2

}
=
{
(h1, h2, h0) ∈ R3 | h21 + h22 = 1

}
. (4.6)

Di�erentiating hi w.r.t. the Hamiltonian vector �eld we get:

ḣ1 = {H,h1} =
{
1

2

(
h21 + h22

)
, h1

}
= h2 {h2, h1} = h2h0,

ḣ2 = {H,h2} =
{
1

2

(
h21 + h22

)
, h2

}
= h1 {h1, h2} = −h1h0,

ḣ0 = {H,h0} =
{
1

2

(
h21 + h22

)
, h0

}
= h1 {h1, h0}+ h2 {h2, h0} = h1h2.

Hence, the complete Hamiltonian system in the normal case is given as:
ḣ1
ḣ2
ḣ0
ẋ

ẏ

ż

 =


h2h0
−h1h0
h1h2

h1 cosh z
h1 sinh z

h2

 . (4.7)

Introduce the following coordinate:

h1 = cosα, h2 = sinα. (4.8)

Then, the vertical subsystem is given as:

α̇ = −h0, ḣ0 =
1

2
sin 2α.

Let us introduce another change of coordinates:

γ = 2α ∈ 2S1 = R/4πZ, c = −2h0 ∈ R. (4.9)

Then, (
γ̇

ċ

)
=

(
c

− sin γ

)
, (4.10)

which represents the double covering of a mathematical pendulum. Hence the vertical subsystem of the normal

Hamiltonian system (4.7) is a standard pendulum.

5 Parametrization of Extremal Trajectories

5.1 Hamiltonian System

The Hamiltonian system for the normal trajectories was given in (4.7). Under the transformations introduced in

(4.8)-(4.9), the horizontal subsystem can be written as: ẋ

ẏ

ż

 =

h1 cosh z
h1 sinh z

h2

 =

 cos γ2 cosh z
cos γ2 sinh z

sin γ
2

 . (5.1)
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Fig. 1 Decomposition of the Initial Cylinder and the Connected Subsets

5.2 Decomposition of the Initial Cylinder

Following the techniques employed in [10], the decomposition of phase cylinder C proceeds as follows. The total

energy integral E of the pendulum obtained in (4.10) is given as:

E =
c2

2
− cos γ = 2h20 − h21 + h22, E ∈ [−1,+∞).

The total energy E of the pendulum is a constant of motion for the Hamiltonian vector �eld
−→
H . The initial

cylinder (4.6) may be decomposed into the following subsets based upon the pendulum energy that correspond

to various pendulum trajectories:

C =
5⋃
i=1

Ci,

where,

C1 = {λ ∈ C |E ∈ (−1, 1)},
C2 = {λ ∈ C |E ∈ (1,∞)},
C3 = {λ ∈ C |E = 1, c 6= 0},
C4 = {λ ∈ C |E = −1, c = 0} = {(γ, c) ∈ C | γ = 2πn, c = 0}}, n ∈ N,
C5 = {λ ∈ C |E = 1, c = 0} = {(γ, c) ∈ C | γ = 2πn+ π, c = 0}}, n ∈ N.

Continuing the approach taken in [10] the subsets Ci may be further decomposed as:

C1 = ∪1i=0C
i
1, Ci1 = {(γ, c) ∈ C1 | sgn(cos(γ/2)) = (−1)i},

C2 = C+
2 ∪ C

−
2 , C±2 = {(γ, c) ∈ C2 | sgn c = ±1},

C3 = ∪1i=0(C
i+
3 ∪ C

i−
3 ), Ci±3 = {(γ, c) ∈ C3 | sgn(cos(γ/2)) = (−1)i, sgn c = ±1},

C4 = ∪1i=0C
i
4, Ci4 = {(γ, c) ∈ C | γ = 2πi, c = 0},

C5 = ∪1i=0C
i
5, Ci5 = {(γ, c) ∈ C | γ = 2πi+ π, c = 0}.

In all of the above i = 0, 1. The decomposition of the initial cylinder C is depicted in Figure 1.

5.3 Elliptic Coordinates

Employing the approach developed in [10],[13] we transform the system in terms of elliptic coordinates (ϕ, k) on
the domain ∪3i=1Ci ⊂ C. Note that ϕ is the reparametrized time of motion and k is the reparametrized energy

of the pendulum. Correspondingly, we describe the system and the extremal trajectories in terms of the Jacobi

elliptic functions sn(ϕ, k), cn(ϕ, k), dn(ϕ, k), am(ϕ, k), and E(ϕ, k) =
� ϕ
0
dn2(t, k)dt. Detailed description of the

Jacobi elliptic functions may be found in [27].
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5.3.1 Case 1 : λ = (ϕ, k) ∈ C1

k =

√
E + 1

2
=

√
sin2 γ

2
+
c2

4
∈ (0, 1), (5.2)

sin
γ

2
= s1k sn(ϕ, k), s1 = sgn

(
cos

γ

2

)
, (5.3)

cos
γ

2
= s1dn(ϕ, k), (5.4)

c

2
= k cn(ϕ, k), ϕ ∈ [0, 4K(k)]. (5.5)

Proposition 5.1 In elliptic coordinates, the �ow of the vertical subsystem recti�es.

Proof Using (5.2), we get k̇ = 0 since Ė = 0. Using (5.5), the derivatives of elliptic functions de�ned in [27] and

taking into account that k̇ = 0,

ċ

2
= k

d

dϕ
cn(ϕ, k).

dϕ

dt
,

− sin γ = −2k sn(ϕ, k)dn(ϕ, k)ϕ̇,

thus we have,

ϕ̇ =
sin γ

2k sn(ϕ, k).dn(ϕ, k)
. (5.6)

Now using (5.3),(5.4):

sin
γ

2
cos

γ

2
= s1k sn(ϕ, k).s1dn(ϕ, k),

sin γ = 2k sn(ϕ, k).dn(ϕ, k).

Thus (5.6) becomes:

ϕ̇ = 1.

�

5.3.2 Case 2 : λ = (ϕ, k) ∈ C2

k =

√
2

E + 1
=

√
1

sin2 γ
2 + c2

4

∈ (0, 1), (5.7)

sin
γ

2
= s2sn

(
ϕ

k
, k
)
, s2 = sgn(c), (5.8)

cos
γ

2
= cn

(
ϕ

k
, k
)
, (5.9)

c

2
=
s2
k
dn
(
ϕ

k
, k
)
, ϕ ∈ [0, 4kK(k)] . (5.10)

5.3.3 Case 3 : λ = (ϕ, k) ∈ C3

k = 1, (5.11)

sin
γ

2
= s1s2 tanhϕ, s1 = sgn

(
cos

γ

2

)
, s2 = sgn(c), (5.12)

cos
γ

2
= s1/ coshϕ, (5.13)

c

2
= s2/ coshϕ, ϕ ∈ (−∞,∞). (5.14)

Using the procedure outlined for the Case 1, it can be proved that in the coordinates (ϕ, k), the �ow of the

pendulum recti�es for Cases 2 and 3 as well.

5.4 Integration of the Vertical Subsystem

Since the �ow of vertical subsystem recti�es in the elliptic coordinates, therefore, the vertical subsystem is trivially

integrated as ϕt = t+ ϕ and k = constant, where ϕ is the value of ϕt at t = 0.



8 Yasir Awais Butt, Yuri L. Sachkov, Aamer Iqbal Bhatti

5.5 Integration of the Horizontal Subsystem

In the following we consider integration of the horizontal subsystem (5.1) for Cases 1-3 noted above. Assuming

zero initial state, i.e., x(0) = y(0) = z(0) = 0 since q0 = Id.

5.5.1 Case 1 : λ = (ϕ, k) ∈ C1

Theorem 5.1 Extremal trajectories in Case 1 are parametrized as follows:

xt
yt
zt

 =


s1
2

[(
w + 1

w(1−k2)

)
[E(ϕt)− E(ϕ)] +

(
k

w(1−k2)
− kw

)
[snϕt − snϕ]

]
1
2

[(
w − 1

w(1−k2)

)
[E(ϕt)− E(ϕ)]−

(
k

w(1−k2) + kw
)
[snϕt − snϕ]

]
s1 ln [(dnϕt − kcnϕt).w]

 (5.15)

where w = 1
dnϕ−kcnϕ .

Proof From (5.1) consider ż = sin γ
2 = s1k sn(ϕ, k). The solution to this ODE can be written as:

zt =

ϕt�

ϕ

s1k snϕdϕ.

Using the integration formulas for the Jacobi elliptic functions [28], we have:

zt = s1 ln(dnϕt − kcnϕt)− s1 ln(dnϕ− kcnϕ).

Let lnw = − ln(dnϕ− kcnϕ), w = 1
dnϕ−kcnϕ , then:

zt = s1 ln[(dnϕt − kcnϕt).w].

From (5.1) now consider,

ẋ = cos
γ

2
cosh z = s1dnϕt cosh (s1 ln [(dnϕt − kcnϕt).w]) ,

ẋ =
s1
2

(
w.dn2ϕt − kw.dnϕtcnϕt +

dnϕt
(dnϕt − kcnϕ)t.w

)
.

This can be integrated as:

xt =
s1
2

w ϕt�

ϕ

dn2ϕtdϕt − kw
ϕt�

ϕ

dnϕtcnϕtdϕt +
1

w

ϕt�

ϕ

dn2ϕt + kcnϕtdnϕt
dn2ϕt − k2cn2ϕt

dϕt

 .
Now using the standard identities of the elliptic functions, the result of integration can be written as:

xt =
s1
2

[(
w +

1

w (1− k2)

)
[E(ϕt)− E(ϕ)] +

(
k

w (1− k2)
− kw

)
[snϕt − snϕ]

]
.

From (5.1) now consider,

ẏ = cos
γ

2
sinh z = s1dnϕt sinh(s1 ln[(dnϕt − kcnϕ)t.w]),

ẏ = dnϕt sinh(ln[(dnϕt − kcnϕt).w]).

The integration follows the same pattern as described above and hence �nal result of integration of ẏ can be

written as:

yt =
1

2

[(
w − 1

w (1− k2)

)
[E(ϕt)− E(ϕ)]−

(
k

w (1− k2)
+ kw

)
[snϕt − snϕ]

]
.

�



Sub-Riemannian Problem on Group SH(2) 9

5.5.2 Case 2 : λ = (ϕ, k) ∈ C2

Theorem 5.2 Extremal trajectories in Case 2 are parametrized as follows:

xt =
1

2

(
1

w(1− k2)
− w

)[
E(ψt)− E(ψ)− k′2(ψt − ψ)

]
+

1

2

(
kw +

k

w(1− k2)

)
[snψt − snψ] ,

yt = −
s2
2

(
1

w(1− k2)
+ w

)[
E(ψt)− E(ψ)− k′2(ψt − ψ)

]
+
s2
2

(
kw − k

w(1− k2)

)
[snψt − snψ] ,

zt = s2 ln[(dnψt − kcnψt).w], (5.16)

where w = 1
dnψ−kcnψ .

Proof Consider the horizontal system (5.1) for Case 2 (5.7)-(5.10) and substitute ψ = ϕ
k and ψt =

ϕt

k = ψ + t
k .

The proof of integration then follows from the procedure outlined in Case 1. �

5.5.3 Case 3 : λ = (ϕ, k) ∈ C3

Theorem 5.3 Extremal trajectories in Case 3 are parametrized as follows:xt
yt
zt

 =

 s1
2

[
1
w (ϕt − ϕ) + w (tanhϕt − tanhϕ)

]
s2
2

[
1
w (ϕt − ϕ)− w (tanhϕt − tanhϕ)

]
−s1s2 ln[w sechϕt]

 (5.17)

where w = coshϕ.

Proof Consider the horizontal system (5.1) for Case 3 (5.11)-(5.14):

ż = sin
γ

2
= s1s2 tanhϕ,

zt = −s1s2[ln(sechϕt)− ln(sechϕ)].

Let − ln(sechϕ) = lnw, w = coshϕ, then:

zt = −s1s2 ln[w sechϕt].

From (5.1) now consider,

ẋ = cos
γ

2
cosh z = s1sechϕ cosh (−s1s2 ln[w sechϕ]) ,

ẋ =
s1sechϕ

2

[
eln[w sechϕ] + e− ln[w sechϕ]

]
,

ẋ =
s1sechϕ

2

[
1 + w2sech2ϕ

w sechϕ

]
,

xt =
s1
2

[
1

w
(ϕt − ϕ) + w (tanhϕt − tanhϕ)

]
.

From (5.1) now consider,

ẏ = cos
γ

2
sinh z = s1sechϕ sinh (−s1s2 ln[w sechϕ]) ,

ẏ =
−s2 sechϕ

2
[eln[w sechϕ] − e− ln[w sechϕ]],

ẏ =
−s2 sechϕ

2

[
w sechϕ− [w sechϕ]−1

]
,

yt =
s2
2

[
1

w
(ϕt − ϕ)− w(tanhϕt − tanhϕ)

]
.

�
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5.6 Integration of the Horizontal Subsystem - The Degenerate Cases

In the following we present integration of the horizontal subsystem in the degenerate cases, i.e., λ ∈ C4 and

λ ∈ C5.

5.6.1 Case 4 : λ ∈ C4

Theorem 5.4 Extremal trajectories in Case 4 are parametrized as follows:xt
yt
zt

 =

 sgn
(
cos γ2

)
t

0
0

 . (5.18)

Proof

ż = sin
γ

2
= sin

(
2nπ

2

)
= 0,

zt = 0.

Therefore,

ẋ = cos
γ

2
cosh z = cos

(
2nπ

2

)
= sgn

(
cos

γ

2

)
,

xt = sgn
(
cos

γ

2

)
t.

Now,

ẏ = cos
γ

2
sinh z = cos

(
2nπ

2

)
sinh(0) = 0,

yt = 0.

�

5.6.2 Case 5 : λ ∈ C5

Theorem 5.5 Extremal trajectories in Case 5 are parametrized as follows:xt
yt
zt

 =

 0
0

sgn
(
sin γ

2

)
t

 . (5.19)

Proof

ż = sin
γ

2
= sin

(
π + 2nπ

2

)
= sgn

(
sin

γ

2

)
,

zt = sgn
(
sin

γ

2

)
t.

Now,

ẋ = cos
γ

2
cosh z = cos

(
π + 2nπ

2

)
cosh z = 0,

xt = 0.

Similarly,

ẏ = cos
γ

2
sinh z = cos

(
π + 2nπ

2

)
sinh z = 0,

yt = 0.

�
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5.7 Qualitative Analysis of Projections of Extremal Trajectories on xy-Plane

The standard formula for the curvature of a plane curve (x(t), y(t)) is given as [29]:

κ =
ẋÿ − ẍẏ

(ẋ2 + ẏ2)
3
2

. (5.20)

Using (4.7),(5.20) curvature of projections (x(t), y(t)) of extremal trajectories of the Hamiltonian system (4.7) is

given as:

κ =
sin γ

2

cos γ2 (cosh 2z)
3
2

.

The curves have in�ection points when sin γ
2 = 0 and cusps when cos γ2 = 0. We see that all the curves

(x(t), y(t)) have in�ection points for λ ∈ ∪3i=1Ci but only for λ ∈ C2 the curves have cusps. The resulting

trajectories (x(t), y(t)) are shown in Figures 2, 3, 4. In degenerate Case 4, i.e., λ ∈ C4, the extremal trajectories

qt are Riemannian geodesics in the plane {z = 0}. The curve (x(t), y(t)) is a straight line on the x-axis. In Case

5, i.e., λ ∈ C5, the curve (x(t), y(t)) is just the initial point (0, 0) for {x = y = 0}. For non-zero initial conditions
x(0) = Wx, y(0) = Wy, the motions of the pseudo Euclidean plane are only hyperbolic rotations whereas the

translations along x-axis and y-axis are zero. The resulting trajectory is a quarter circle as t → ∞ in the right

sector of the unit hyperbola that is classically used to represent the pseudo Euclidean plane [30].

Fig. 2 Cuspless Trajectories, λ ∈ C1

Fig. 3 Trajectories with Cusps, λ ∈ C2

6 Discrete Symmetries and Maxwell Strata

We now analyze symmetries in the vertical subsystem of the normal Hamiltonian system (4.7) to obtain a

characterization of the Maxwell points. The analysis and organization of this section is based on the description

of the Maxwell strata given in [10], [13], [15],[31] with corresponding results for the problem under consideration.
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Fig. 4 Critical Trajectories, λ ∈ C3

6.1 Symmetries of the Vertical Subsystem

6.1.1 Re�ection Symmetries in the Vertical Subsystem

Since the vertical subsystem of the Hamiltonian system is a mathematical pendulum (4.10), we exploit the

re�ection symmetries in the phase cylinder of the pendulum to compute the discrete symmetries of the exponential

mapping. The re�ection symmetries in the phase portrait of a standard pendulum are given as:

ε1 : (γ, c)→ (γ,−c),

ε2 : (γ, c)→ (−γ, c),

ε3 : (γ, c)→ (−γ,−c),

ε4 : (γ, c)→ (γ + 2π, c),

ε5 : (γ, c)→ (γ + 2π,−c),

ε6 : (γ, c)→ (−γ + 2π, c),

ε7 : (γ, c)→ (−γ + 2π,−c).

(6.1)

Symmetries (6.1) form a symmetry groupG of parallelepiped with composition as group operation and εi being the

elements of the group. The symmetries ε3, ε4, ε7 preserve the direction of time, however, symmetries ε1, ε2, ε5, ε6

reverse the direction of time [10]. As it is evident, symmetries where re�ection about both axes of phase portrait

occurs preserve the direction of time and others reverse the direction of time.

6.1.2 Re�ections of Trajectories of the Pendulum

Proposition 4.1 from [10] gives the transformations that result in re�ection of the phase portrait of pendulum

and is reproduced here for sake of completeness.

Proposition 6.1 Re�ections (6.1) in the phase portrait of pendulum (4.10) are continued to the mappings εi

that transform trajectories δs = (γs, cs) of the pendulum into the trajectories δis = (γis, c
i
s) as follows:

εi : δ = {(γs, cs)|s ∈ [0, t]} 7−→ δi = {(γis, cis)|s ∈ [0, t]}, i = 1, . . . , 7, (6.2)

where,

δ1 : (γ1s , c
1
s) = (γt−s,−ct−s),

δ2 : (γ2s , c
2
s) = (−γt−s, ct−s),

δ3 : (γ3s , c
3
s) = (−γs,−cs),

δ4 : (γ4s , c
4
s) = (γs + 2π, cs),

δ5 : (γ5s , c
5
s) = (γt−s + 2π,−ct−s),

δ6 : (γ6s , c
6
s) = (−γt−s + 2π, ct−s),

δ7 : (γ7s , c
7
s) = (−γs + 2π,−cs).

(6.3)
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Fig. 5 Re�ections εi : δ → δi of trajectories of pendulum [10]

For the instant of time s = t/2, the re�ections of extremal trajectories {(γs, cs)} 7→ {(γis, cis)} given by (6.3)

reduce to the re�ections of points {(γ, c)} 7→ {(γi, ci)} given by (6.1). In this sense we write in Proposition 6.1

that the re�ections are continued to the mappings εi. For proof see Proposition 4.1 [10]. Mappings (6.2) are

shown in Figure 5.

6.2 Symmetries of the Horizontal Subsystem

6.2.1 Re�ections of Normal Extremals

We now compute re�ections of the normal extremals qs via the exponential mapping of the vertical subsystem.

The canonical projection π projects covectors from the cotangent bundle T ∗M to the manifold M , i.e., π : λ ∈
T ∗M 7→ q ∈ M . The corresponding exponential map Exp : N → M of the arc-length parametrized normal

extremal trajectories for N = C ×R+ is given as:

Exp(ν) = Exp(λ, s) = π ◦ es
−→
H (λ) = π(λs) = qs,

where ν = (λ, s) ∈ N and λs = (γs, cs, qs) is the solution to the Hamiltonian system (4.10),(5.1). We analyze

the re�ections of the normal extremal trajectories of the horizontal subsystem corresponding to the re�ection

symmetries of the vertical subsystem. Action of the group G on the normal extremals is de�ned as:

εi : {λs | s ∈ [0, t]} 7→ {λis | s ∈ [0, t]}, i = 1, . . . , 7. (6.4)

The action εi of the group G on the vertical subsystem results in the re�ection of trajectories of pendulum (6.3).

The action of G on the horizontal subsystem, i.e., the trajectories qis is described as follows:

Proposition 6.2 The image qis = (xis, y
i
s, z

i
s) of the normal extremal trajectory qs = (xs, ys, zs), s ∈ [0, t] under

the action of re�ections εi (6.4) is given as:

(1) z1s = zt − zt−s,

x1s = cosh zt[xt − xt−s]− sinh zt[yt − yt−s],

y1s = sinh zt[xt − xt−s]− cosh zt[yt − yt−s].

(2) z2s = −[zt − zt−s],

x2s = cosh zt[xt − xt−s]− sinh zt[yt − yt−s],

y2s = − sinh zt[xt − xt−s] + cosh zt[yt − yt−s].

(3) z3s = −zs,

x3s = xs,

y3s = −ys.

(4) z4s = −zs,

x4s = −xs,

y4s = ys.
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(5) z5s = −[zt − zt−s],

x5s = − cosh zt[xt − xt−s] + sinh zt[yt − yt−s],

y5s = sinh zt[xt − xt−s]− cosh zt[yt − yt−s].

(6) z6s = zt − zt−s,

x6s = − cosh zt[xt − xt−s] + sinh zt[yt − yt−s],

y6s = − sinh zt[xt − xt−s] + cosh zt[yt − yt−s].

(7) z7s = zs,

x7s = −xs,

y7s = −ys.

Proof : Case 1 - Action of ε1 : (γs, cs, qs) 7→ (γ1s , c
1
s , q

1
s) = (γt−s,−ct−s, q1s)

ż1s = sin
γ1s
2
,

z1s =

s�

0

sin
γ1r
2
dr =

s�

0

sin
γt−r
2

dr = −

 t−s�

t

sin
γp
2
dp

 = zt − zt−s. (6.5)

Similarly,

ẋ1s = cos
γ1s
2

cosh z1s ,

x1s =

s�

0

cos
γ1r
2

cosh z1rdr

=

s�

0

cos
γt−r
2

cosh(zt − zt−r)dr

= −
t−s�

t

cos
γp
2
(cosh zt cosh zp − sinh zt sinh zp)dp

= cosh zt[xt − xt−s]− sinh zt[yt − yt−s], (6.6)

and

ẏ1s = cos
γ1s
2

sinh z1s ,

y1s =

s�

0

cos
γ1r
2

sinh z1rdr

=

s�

0

cos
γt−r
2

sinh(zt − zt−r)dr

= −
t−s�

t

cos
γp
2
(sinh zt cosh zp − cosh zt sinh zp)dp

= sinh zt[xt − xt−s]− cosh zt[yt − yt−s]. (6.7)

Proof of all other cases is similar. �
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6.2.2 Re�ections of Endpoints of Extremal Trajectories

Let us now consider the transformation of endpoints of extremal trajectories resulting from action of the re�ections

εi in the state space M :

εi : qt → qit.

It can be readily seen from Proposition 6.2 that the point qit depends only on the endpoint qt and not on the

whole trajectory {qs|s ∈ [0, t]}. This is required to calculate the boundary conditions in the description of Maxwell

strata corresponding to the re�ection of extremal trajectories.

Proposition 6.3 The action of re�ections on endpoints of extremal trajectories can be de�ned as εi : q 7→ qi,

where q = (x, y, z) ∈M, qi = (xi, yi, zi) ∈M and,

(x1, y1, z1) = (x cosh z − y sinh z, x sinh z − y cosh z, z),

(x2, y2, z2) = (x cosh z − y sinh z, −x sinh z + y cosh z, −z),

(x3, y3, z3) = (x, −y, −z),

(x4, y4, z4) = (−x, y, −z), (6.8)

(x5, y5, z5) = (−x cosh z + y sinh z, x sinh z − y cosh z, −z),

(x6, y6, z6) = (−x cosh z + y sinh z, −x sinh z + y cosh z, z),

(x7, y7, z7) = (−x, −y, z).

Proof : Substitute s = t and (x0, y0, z0) = (0, 0, 0) in Proposition 6.2. �

Notice that Proposition 6.3 de�nes the action of re�ections in the image of the exponential mapping.

6.3 Re�ections as Symmetries of the Exponential Mapping

Here we calculate explicit formulas for initial values of trajectories of the pendulum corresponding to the re�ec-

tions. These will be useful in characterizing the �xed points of the re�ections in the preimage of the exponential

map. The action of re�ection in the preimage of exponential mapping is de�ned as:

εi : N → N, εi : ν = (λ, t) = (γ, c, t) 7→ νi = (λi, t) = (γi, ci, t),

where (γ, c) are the trajectories of the pendulum with initial conditions (γ0, c0) and (γi, ci) are the re�ections

of the trajectories with initial conditions (γi0, c
i
0). The following proposition (a reproduction of Proposition 4.4

[10]) gives explicit formulas for (γi, ci).

Proposition 6.4 Let ν = (λ, t) = (γ, c, t) ∈ N, νi = (λi, t) = (γi, ci, t) ∈ N . Then,

(γ1, c1) = (γt,−ct),

(γ2, c2) = (−γt, ct),

(γ3, c3) = (−γ,−c),

(γ4, c4) = (γ + 2π, c),

(γ5, c5) = (γt + 2π,−ct),

(γ6, c6) = (−γt + 2π, ct),

(γ7, c7) = (−γ + 2π,−c).

(6.9)

Proof Substitute s = 0 in Proposition 6.1. �

Equations (6.8) give the explicit formulas for re�ection of endpoints of the extremal trajectories in the image

of exponential map, whereas, equations (6.9) give explicit formulas for the action of re�ections εi on the initial

points of the extremals in the preimage of the exponential mapping. The actions in M and N are both induced

by re�ections εi on extremals. Therefore it follows that the re�ections εi for i = 1, . . . , 7, are symmetries of the

exponential map.

Proposition 6.5 For any ν ∈ N and i = 1, . . . , 7, we have εi ◦ Exp(ν) = Exp ◦ εi(ν).
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7 Maxwell Strata Corresponding to the Re�ections

7.1 Maxwell Points and Maxwell Sets

The theory of Maxwell points is well known see e.g. [10], [13], [15],[16]. In optimal control theory they signify

the points where the competing extremal trajectories with the same cost functional cross each other. S. Jacquet

proved that for an analytic problem, a trajectory cannot be optimal after a Maxwell point [32]. Hence, they are

important in the study of optimal trajectories. The set of all Maxwell points is called Maxwell Set. Let us consider

a Maxwell set MAXi, i = 1, . . . , 7 resulting from re�ections εi:

MAXi =
{
ν = (λ, t)∈N | λ 6= λi, Exp(λ, t) = Exp(λi, t)

}
. (7.1)

The corresponding Maxwell set in the image of the exponential mapping is de�ned as:

Maxi = Exp(MAXi) ⊂M.

If ν = (λ, t) ∈ MAXi, then qt = Exp(ν) ∈ Maxi is a Maxwell point along the trajectory qs = Exp(λ, s). Here
we use the fact that if λ 6= λi, then Exp(λ, s) 6≡ Exp(λi, s).

7.2 Fixed Points of Re�ections in the Image of Exponential Map

Since there are discrete symmetries of the exponential mapping, the idea is to exploit these symmetries and �nd

the points where the trajectories arising out of symmetries meet the normal extremal trajectory q = (x, y, z).
These points form the Maxwell set corresponding to the re�ection symmetries. Consider the following functions:

R1 = y cosh
z

2
− x sinh z

2
, R2 = x cosh

z

2
− y sinh z

2
. (7.2)

Consider x, y in hyperbolic coordinates:

x = ρ coshχ, y = ρ sinhχ.

Thus R1 and R2 read as:

R1 = ρ sinhχ cosh
z

2
− ρ coshχ sinh z

2
= ρ sinh(χ− z

2
),

R2 = ρ coshχ cosh
z

2
− ρ sinhχ sinh z

2
= ρ cosh(χ− z

2
).

Proposition 7.1 Fixed points of the re�ections εi : q 7→ qi are given by the following conditions:

(1) q1 = q ⇐⇒R1(q) = 0,

(2) q2 = q ⇐⇒z = 0,

(3) q3 = q ⇐⇒y = 0, z = 0,

(4) q4 = q ⇐⇒x = 0, z = 0,

(5) q5 = q ⇐⇒x = y = z = 0,

(6) q6 = q ⇐⇒R2(q) = 0,

(7) q7 = q ⇐⇒x = 0, y = 0.

Proof We prove only Case (1): q1 = q. The proof for all other cases is similar. From (6.8), x1 = x is equivalent

to:

x cosh z − y sinh z = x,

which is equivalent to,

R1 sinh
z

2
= 0. (7.3)

Similarly, y1 = y is equivalent to:

R1 cosh
z

2
= 0. (7.4)

Eqs (7.3),(7.4) imply that R1 = 0. Hence case (1) of Proposition 7.1 is proved. �
It can be observed readily that Maxi for i = 3, 4, 5, 7 form 0 or 1 dimensional manifolds contained in

2-dimensional manifolds formed by Maxi for i = 1, 2, 6. Thus we consider only the 2-dimensional Maxwell sets.
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7.3 Fixed Points of the Re�ections in the Preimage of the Exponential Map

In the previous section we considered the �xed points of re�ections in M directly characterizing the Maxwell sets

containing points where q = qi. We now consider the �xed points in the preimage of the exponential map, i.e.,

the solutions to the equations λ = λi for the proper characterization of the Maxwell points. We use the following

coordinates in the phase cylinder of the pendulum for further analysis:

τ =
1

2
(ϕt + ϕ) , p =

t

2
when ν = (λ, t) ∈ N1 ∪N3,

τ =
1

2k
(ϕt + ϕ) , p =

t

2k
when ν = (λ, t) ∈ N2. (7.5)

Proposition 7.2 Fixed points of the re�ections εi, i = 1, 2, 6, in the preimage of the exponential map are given

as:

(1) λ1 = λ⇔ cnτ = 0, λ ∈ C1,

(2) λ2 = λ⇔
{
snτ = 0, λ ∈ C1 ∪ C2

τ = 0, λ ∈ C3

}
,

(3) λ6 = λ⇔ cnτ = 0, λ ∈ C2.

Proof Case 1 - λ1 = λ. It follows from Proposition 6.4 that if λ ∈ C1, then λ
i ∈ C1. Using Proposition 6.4,

λ1 = λ⇐⇒ γt = γ, −ct = c. (7.6)

Using elliptic coordinates (5.2)-(5.5) we have:

sin
γ

2
= s1k snϕ =⇒ sin

γt
2

= s1k snϕt =⇒ sin
γ

2
= s1k snϕt =⇒ snϕt = snϕ. (7.7)

cos
γ

2
= s1dnϕ =⇒ cos

γt
2

= s1dnϕt =⇒ cos
γ

2
= s1dnϕt =⇒ dnϕt = dnϕ. (7.8)

c

2
= k cnϕ =⇒ ct

2
= k cnϕt =⇒ −c

2
= k cnϕt =⇒ cnϕt = −cnϕ. (7.9)

Now from [28],

cnτ = cn
ϕt + ϕ

2
= ±

√
cn(ϕt + ϕ) + dn(ϕt + ϕ)

1 + dn(ϕt + ϕ)
,

Consider cn(ϕt + ϕ) + dn(ϕt + ϕ),

cn(ϕt + ϕ) + dn(ϕt + ϕ) =
cnϕtcnϕ− snϕtsnϕdnϕtdnϕ

1− k2sn2ϕtsn2ϕ
+

dnϕtdnϕ+ k2snϕtsnϕcnϕtcnϕ

1− k2sn2ϕtsn2ϕ
,

Using (7.7)-(7.9):

cn(ϕt + ϕ) + dn(ϕt + ϕ) =
−cn2ϕ− sn2ϕdn2ϕ+ dn2ϕ+ k2sn2ϕcn2ϕ

1− k2sn2ϕtsn2ϕ
,

=
−cn2ϕ+ dn2ϕ

(
1− sn2ϕ

)
+
(
1− dn2ϕ

)
cn2ϕ

1− k2sn2ϕtsn2ϕ
,

=
−
(
1− dn2ϕ

)
cn2ϕ+

(
1− dn2ϕ

)
cn2ϕ

1− k2sn2ϕtsn2ϕ
,

=⇒ cnτ = 0. (7.10)

For λ ∈ C±2 , we have λ1 ∈ C∓2 because c inverses sign. Thus λ = λ1 is impossible. Similarly if λ ∈ Ci±3 , we have

λ1 ∈ Ci∓3 , i = 0, 1 because c and γ are both inverted in sign. Hence λ = λ1 is impossible.

The proof for all other cases is similar. �
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7.4 General Description of Maxwell Strata Generated by Re�ections

Propositions 7.1 and 7.2 give the multiple points in the image and �xed points in the preimage of the exponential

map respectively. We now collate the results from these propositions to give general conditions under which points

q ∈M form part of the Maxwell sets.

Proposition 7.3 For ν = (λ, t) ∈ ∪3i=1Ni and q = (x, y, z) = Exp (ν),

(1) ν ∈MAX1 ⇔
{
R1(q) = 0, cnτ 6= 0 for λ ∈ C1,

R1(q) = 0, for λ ∈ C2 ∪ C3.

}
(2) ν ∈MAX2 ⇔

{
z = 0, snτ 6= 0 λ ∈ C1 ∪ C2,

z = 0, τ 6= 0 λ ∈ C3.

}
(3) ν ∈MAX6 ⇔

{
R2(q) = 0, cnτ 6= 0 λ ∈ C2,

R2(q) = 0, λ ∈ C1 ∪ C3.

}
Proof Apply Propositions 7.1 and 7.2.

8 Future Work

The most natural extension of this work is the complete description of Maxwell strata and computation of the

conjugate and cut loci. To this end the methods developed in [10],[11], [16], [33] appear most relevant and shall be

employed. Complete description of Maxwell strata entails computation of roots of the functions Ri(q) (7.2). This
shall also give the global bound on the cut time for sub-Riemannian problem on SH(2). Description of the global

structure of exponential map and optimal synthesis is the ultimate goal to be addressed in the entire research on

SH(2).

9 Conclusion

The group of motions of the pseudo Euclidean plane SH(2) as an abstract algebraic structure has its own

signi�cance and sub-Riemannian problem on SH(2) is important in the entire program of study of 3-dimensional

Lie groups. In this paper we have obtained the complete parametrization of extremal trajectories in terms of the

Jacobi elliptic functions and described the nature of projections of extremal trajectories on xy-plane. We used

re�ection symmetries of the vertical and horizontal subsystem to obtain the general description of Maxwell strata.

The sub-Riemannian problem on SH(2) and the corresponding results are analogous to the sub-Riemannian

problem and the associated results on SE(2) [10]. The extremal trajectories in both problems are parametrized

by same elliptic coordinates (ϕ, k) and the computed Hamiltonian �ow is given in terms of Jacobi elliptic functions.

Similarly, in both problems the Maxwell sets Maxi form a 2-dimensional manifold though for di�erent re�ection

symmetries εi. Our ongoing work on the computation of bounds of the �rst Maxwell time and the �rst conjugate

time in sub-Riemannian problem on SH(2) shall enable us to draw parallels with the corresponding results on

SE(2) and allow us to explore any symmetry that might exist between the sub-Riemannian problem on SH(2)
and on SE(2).
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