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CONTROLLABILITY OF HYPERSURFACE AND
SOLVABLE INVARIANT SYSTEMS

YU.L. SACHKOV

ABSTRACT. This paper deals with affine invariant control systems on
Lie groups. Controllability conditions for hypersurface systems and
for systems on solvable simply connected Lie groups are obtained. A
lower bound of the number of controlled vector fields necessary to
achieve controllability on simply connected Lie groups is given.

1. INTRODUCTION

In this paper we study controllability properties of invariant control sys-
tems on Lie groups. The basic controllability results for these systems
were obtained by Jurdjevic and Sussmann [1]. Jurdjevic and Kupka [2]
introduced a method of Lie saturation and applied it to obtain sufficient
controllability conditions for invariant systems on simple and semisimple
Lie groups. See also papers by Gauthier and Bornard [3], Silva Leite and
Crouch [4], El Assoudi and Gauthier [5]. For recent results on controllabi-
lity of invariant systems on Lie groups see, e.g., the papers by Bravo and
Martin [6], Lovric [7], Ayala and Tirao [8], Enos [9], Sachkov [10], [11].

The structure of this paper is as follows.

In Sec. 2 the basic definitions are recalled, the problem is state, and the
main results of the paper are presented.

In Sec. 3 the hypersurface invariant systems are studied. Invariant hy-
persurface systems were studied by Bravo and Martin; in [6] these authors
give a criterion for controllability of a hypersurface invariant system under
the additional condition that the Lie algebra generated by the controlled
vector fields is ideal. This result is generalized and a controllability test for
a general hypersurface invariant system is given. This test is applied then
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to obtain the necessary controllability conditions for invariant systems on
simply connected Lie groups.

In Sec. 4 a controllability test for affine invariant systems on some sub-
class of simply connected solvable Lie groups is proved. Then a lower bound
of the number of controlled vector fields is obtained which is necessary for
achieving controllability on a simply connected Lie group.

Finally, in Sec. 5 two examples and some generalizations of the results
presented in this paper are discussed.

2. NOTATION, DEFINITIONS, AND THE MAIN RESULTS

Suppose that G is a connected Lie group, L is its Lie algebra, and A,
By, ..., By are right-invariant vector fields on G, i.e., A, By,..., By, € L.
The affine invariant system on G is a subset of L of the form

r= {A—l—ZuiBi | Vi E}R}.
i=1
The attainable set A for the system I is a subsemigroup of (G generated by
the set { exp(tX) | X €T, t eRy } The system I is said to be controllable
if A =G

The aim of this paper is to characterize the controllability of the system I'
in terms of the Lie group G, Lie algebra L, and vector fields A, By, ..., By,

For any subset { C L, we denote by Lie (I) the Lie algebra generated by
l.

We denote by Ly the Lie algebra Lie (By,..., By), and by Gy the cor-
responding connected subgroup of G.

For any C € L and a € G we denote by C(a) the value of the right-
invariant vector field C' at the point a, and {(a) = {X(a) | X el } for any
lCL.

The closure of the set P is denoted by P. If M is a smooth manifold and
a € M, we denote by T, M the tangent space of M at a.

We will consider derived series of the Lie algebra L:

L) — [L,L], L2 — [L(l)’L(l)]’

The main results of the paper are as follows.

Theorem 1. Suppose that Ly has codimension one wn L.
(1) If Gy is closed in G, then T is controllable iff A ¢ Log and G/Go = S*.
(2) If Gy is not closed in G, then T is controllable iff A ¢ Lg.

Theorem 1 generalizes the similar criterion obtained by Bravo and Mar-
tin under the additional assumption that Lg is an ideal of L ([6], Proposi-
tion 3.3).
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Theorem 2. Let G be simply connected and solvable, and all operators
adx, x € L, have only real eigenvalues. Then I' is controllable iff Lo = L.

Theorem 2 is a generalization of the similar result of Bravo and Martin
for nilpotent systems ([6], Theorem 3.6).

3. HYPERSURFACE SYSTEMS

The affine system I is called a hypersurface if the Lie subalgebra L has
codimension one in L.

In this section we prove Theorem 1 which gives a controllability test
for hypersurface invariant systems. This theorem is applied then to ob-
tain the necessary controllability conditions for invariant systems on simply
connected Lie groups (Corollaries 3.1-3.3).

3.1. Preliminary lemmas. Suppose that the Lie algebra Ly has codi-
mension one in L and the subgroup Gy is closed in G. Then the right coset
space (/G is a smooth manifold, and the projection 7 is given by

m: G — G/Go, 7 a— Goa.

For a € G we will consider the corresponding differential 7, and pull-back
T

7T*|a :ToG = Tr)G/Go, 7T*|a :T;(G)G/GO%TZG.
The manifold /Gy is one-dimensional, and therefore it is either S or R,
(To be more precise, G/Gy is diffeomorphic to S or R, but this simplifica-
tion is not essential.) We will denote by 7 a differential form on G/Gy coin-
ciding with dy in the case (/G = S and with dz in the case G/Gy = R,
Then 7*7 is a differential form on G which will be denoted by w.

Lemma 3.1. Let dimLg = dimL — 1 and Gy = Gy. Then Kerw|, =
Lo(a) for any a € G.

Proof. First of all, it is easy to see that
Va € G, Ker my|q = To(Goa) = Lo(a). (1)
Then we consider the diagram

wa

T,G — R

TowG/Gy % R

Tala

This diagram is commutative, i.e.,

w|a:7'|ﬂ(a)o7r*|a. (2)
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But the space TW(G)G/GO 1s one-dimensional and that is why T|ﬂ-(a) 1s an
isomorphism. So, in view of (2), we have

Kerw|, = Ker m4q-
And then it follows from (1) that Kerw|, = Lo(a). O

Lemma 3.2. Suppose that dim Ly = dimL — 1, Gy = Go, and A ¢ Lg.
Then either w(X(a)) > 0 for alla € G, X € T or w(X(a)) < 0 for all
acG, Xel.

Proof. Consider the function ® : G x L — R defined as follows:
Yae G, X €L, @(a,X):w(X(a)).

Note that @ is continuous on &G x L. To prove this lemma, we have to show
that ® has a constant sign on G x I
First we show that

VaeG, BeLy, ®a,B)=0. (3)

Take any @ € GG and B € Ly. We have B(a) € Lg(a). By Lemma 3.1,
B(a) € Ker w|,, and relation (3) is proved.
Now we show that

VaeG, Xel,  ®(a,X)#0. (4)

Let ae Gand X € I'. Then X = A + Zzn:l u; B; for some real uy, ..., Up,
and therefore

®(a, X) =w (A(a) +>° uiBi(a)) = w(A(a)).

i=1
(We used here relation (3).) Next, A € Lg, and therefore A(a) ¢ Lo(a).
Then, by Lemma 3.1, we have w(A(a)) # 0. Inequality (4) is proved.

Thus @ i1s a continuous function which is nonvanishing on the arcwise
connected set G x I'. That is why ® has a constant signon G x I'. O

Lemma 3.3. Suppose that p € A. Then
(1) Gop - Aa _
(2) exp(tA)p € A for allt > 0.

Proof. (1) easily follows from Lemma 6.4 [1], and (2) is obvious. O

Lemma 3.4. Let dim Ly = dimL — 1, Gy = Gy, G/Gy = S', and
A¢ Ly. Then A=G.
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Proof. According to Lemma 3.2, w(A(a)) has the same sign for all « € G.
We will suppose that w (A(a)) > 0 for all a € G. (In the case of the negative
sign the proof is similar.)

We will show that m(A) = S*. Suppose that w(A) # S*.

(a) The attainable set A is arcwise connected (see [1], Lemma 4.4), and
that is why m(A) is arcwise connected too. Furthermore, the identity el-
ement ¢ € G belongs to A, and, hence m(e) = 0 € St belongs to m(A).
Thus 7(A) is a proper arcwise connected subset of the circle S containing
0. That is why it 1s an interval of the form

= |amin; amax| (5)

m(4)
for some numbers amin < 0 < @max, ¥max — Omin < 27, where | stands for
one of the brackets, [ or ].

(b) Choose any point p € 7~ (amax). Now we shall show that p € A.
It 1s easy to see that apmay > 0 and that there exists ¢ > 0 such that
(amax_g; amax) C F(A) Take any a € (amax_g; amax)~ We have o € W(A),
and therefore there exists a point ¢ € 771 (a) [V A. By Lemma 3.3, Gogq C A.
But Gog = 7~ !(«), and so we have proved that

e > 0 Voo € (max — €; Omax), ﬂ_l(a) C A. (6)

Let V C G be any neighborhood of the point p. The projection 7 is
an open map, and that is why 7(V) C 5! is a neighborhood of the point
7(p) = max. Therefore there exists a point

o € (amax — €; Omax) ﬂ (V).
On the one hand, @ € (max — €; ¥max), and therefore (by (6)) we have
o) CA. (7)
On the other hand, o € n(V), and therefore

ﬂ_l(a)ﬂV;é@. (8)

Then it follows from (7) and (8) that V (VA # (. We have proved that any
neighborhood of the point p intersects A. That is why p € A.

(c) Now we come to a contradiction by showing that the set m(A) contains
numbers arbitrarily close to apax and greater than oy ax.

Consider the curves a(t) = exp(At)p and a(t) = ﬂ(a(t)). We have p € A,
and therefore (by Lemma 3.3)

{a(t)|t>0} CE. )
Furthermore, we have

&(0) = (d/dt)|,_,m(exp(At)p) = m(A(p))-
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But w(A(p)) >0, 1e., dgp(ﬂ'*(A(p))) > 0. That is why «(t) is increasing in
the neighborhood of ¢ = 0. Therefore there exist §g > 0 and t; > 0 suc_h
that a(tg) = amax + 6. In view of (9), we have {a(t) |0 <t < to} C A.

But 7(A) C w(A), and therefore

m({a(t) |0<t<ty})=[0;amax+ o] C 7(A).
5

It contradicts (5). This contradiction shows that

m(A) =S, (10)

Now we shall show that A = G. We choose a point z € G. In view of (10),
there exists a point y € Gz [ A. Tt follows from Lemma 3.3 that Goy C A.
But Goy = Goz, and therefore Gox C A. Since x € G is arbitrary, we have
A=G. O

Let us recall that the rank controllability condition (see [1]) for the inva-
riant system I' has the form

Lie (I') = L.

For a hypersurface system this condition can easily be verified due to the
following statement.

Lemma 3.5. Let dimLg = dim L — 1. Then the rank controllability
condition for T holds iff A ¢ L.

Proof. Tf A ¢ Lo, then L = Lo @R A and Lie (T') = L. And if A € Ly, then
Lie(I) = Lo £ L. [

Lemma 3.6. If the rank controllability condition for I' is satisfied and
the attainable set A is dense in G, then ' s controllable.

Proof. If the rank controllability condition for I' holds, then the connected
subgroup of G, corresponding to Lie algebra Lie (T'), coincides with G, and
then the statement follows immediately from Lemma 6.3 [1]. O

3.2. Proof of Theorem 1. Now we use the results of the previous sub-
section and prove Theorem 1.

Proof. The rank controllability condition is necessary for controllability ([1],
Theorem 7.1), and therefore, by Lemma 3.5, the condition A ¢ Ly is neces-
sary in both cases (1) and (2).

Case 1. Let Gy = Gy.
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The necessity of G/Go = S'. The closed subgroup Go has codimension
one in ¢, and so dim G/Gy = 1. That is why either G/Gy =R or G/Gy =
St If G/Go = R, then Lemma 3.2 implies that the projection 7 : G — R
is a monotone function along all trajectories of the system I'. Tt contradics
the controllability of I', and therefore G /Gy = S*.

Sufficiency. Let A ¢ Lq and /G = S*.

The rank controllability condition is satisfied by Lemma 3.5. By Lem-
ma 3.4, the attainable set A is dense in (G. And then it follows from
Lemma 3.6 that I' is controllable.

Case 2. Let Gy # Gy.

Sufficiency. We denote Gy by H. It is easy to see that H is an abstract
subgroup of GG. But H is closed in (7, and therefore 1t is a Lie subgroup
of (G. Furthermore, GGy is connected, and therefore H is connected. We
denote the Lie algebra of H by L(H). We have Gy C H C (i, and therefore
Lo C L(H) C L. But Ly has codimension one in L, and therefore either
L(H) = Lo or L(H) = L. If L(H) = Lo, then H = Gy, which contradics
the nonclosedness of Gy. Thus L(H) = L and H is a connected subgroup
of G with the Lie algebra L. That is why H = G, ie., Go = G. But
A D Gy (it is exactly the statement of [1], Lemma 6.4), and therefore we
have A = G. The rank controllability condition is satisfied (see Lemma 3.5),
and it follows from Lemma 3.6 that I' is controllable. O

3.3. The necessary conditions for simply connected Lie groups. In
this subsection we use Theorem 1 and obtain the necessary controllability
conditions for affine invariant systems on simply connected Lie groups.

Corollary 3.1. Suppose that G s simply connected and Ly has codimen-
ston one in L. Then I' is not controllable.

Proof. If G 1s simply connected, then its codimension one subgroup Gy is
closed. Furthermore, G is simply connected, and that is why G/Gy is simply
connected too. Thus G/Gy = R, and it follows from Theorem 1 that T is
not controllable. []

Corollary 3.2. Let G be simply connected. Suppose that there exists a
codimension one subalgebral of I containing Lo. Then I is not controllable.

Proof. The system I' can be extended to an affine system of the form

m k
FIZ{A+ZUiBi+ Z UZBZ|VZUZER},
i=1

i=m+1

where Byy1, ..., Bg complement By, ..., By, to a basis of the subalgebra
l. By Corollary 3.1, the system I'; is not controllable, and therefore T' is
not controllable too. [
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Corollary 3.3. Let G be simply connected and its Lie algebra L satisfy
the following condition:

()

any subalgebra ly C L, Iy # L, is contained
m some codimension one subalgebra ls.

Then the affine system T on G is controllable iff Lo = L.

Proof. Tt is well known (see [1], Corollary 7.4), that Ly = L is sufficient for
the controllability of I'.

If Ly # L, then, by condition (x), we can find a codimension one subalge-
bra ! C L such that Ly C [. Then [ satisfies the conditions of Corollary 3.2
and I is not controllable. O

4. SOLVABLE SYSTEMS

In this section we prove Theorem 2 and obtain a lower estimate of a
number of controlled vector fields necessary for controllability on a simply
connected Lie group (Theorem 3).

4.1. Codimension one subalgebras.

Lemma 4.1. [If L is solvable and all operators adx, x € L, have only
real eigenvalues, then for any subalgebra i C L, Iy # L, there exists a
subalgebra ls C L such that Iy Cls and dimis = dimly + 1.

Proof. Consider the representation
p:lh = End(L/l),
defined as follows:
Veeli,vel, ple)v+l)=1[xv]+1,
where p is the quotient representation of the adjoint representation
ad : {; = End(L).

All operators p(x), « € l1, have only real eigenvalues, [; being a solvable
Lie algebra, and therefore, by Lie’s theorem, the complexification of p has
a common eigenvector. The corresponding eigenvalue is real, and therefore
we can find a real common eigenvector v+1{; € Lfly, v ¢ [y, for all operators
plz), © € ly:

Veel, p@)v+h) =[x, v]+h=Ae)v+l, Alx)eR. (11)
Consider the linear space

ly =11 + span(v).
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It follows from (11) that
[11, U] C 12,

and therefore [5 1s a Lie algebra. Obviously, we have I C ls and diml; =
diml; +1. O

Lemma 4.2. [If L is solvable and all operators adx, x € L, have only
real eigenvalues, then condition (%) holds.

Proof. We use Lemma 4.1 iteratively and find that any subalgebra { C L,
[ # L, is contained in the chain of subalgebras [ =1y C 1, C ... Cl.—1 C
l, = L, such that

dimlyy; = dimly +1 Vk=0,...,r— 1.

Then [,_; i1s the codimension one subalgebra containing the Lie algebra

. O

We say that the Lie algebra L has a flag of ideals if there exist ideals I,
Ip—1,...,I1, Ip in L such that

L=1,>,_12...05hL DI ={0}

and

dml, =k Vk=0,1,... p.

Lemma 4.3. Let L have a flag of ideals. Then

(1) L is solvable,

(2) all operators ad x, x € L, have only real eigenvalues,
(3) any subalgebra | C L has a flag of ideals.

Proof. Let L=1, D> I,_1 D ...D I1 D Iy = {0} be a flag of ideals.
(1) For the derived series we have

¥ c I, Yek=0,1,...,p.

That is why L) = {0}, i.e., L is solvable.
(2) We choose a base e1,...,e, in L such that

Iy =span(ey,...,ex) Yk=0,1,...,p.
I, are ideals in L, and therefore
adl‘([k)CIk Ve e L.

All operators ad &, z € L, have triangular matrices in the above base. That
i1s why all eigenvalues of ad #, © € L, are real.
(3) Consider the linear spaces Ji, k = 0,1,...,p, defined as

szzﬂfk.
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We have

[Lak) =L 2] € L[ L) UL L] 1) Ik = i,

where Jy are ideals in {, and [ = J, D J,_1 D ... D J1 D Jo = {0}. We
have

dim Jiy41 —dimJ, =1 or 0 Vk=2,...,p— 1.

Thus, to obtain a flag of ideals in [, it is sufficient to exclude from the
sequence {J} all ideals Jj for which the above difference is equal to 0. O

4.2. Proof of Theorem 2. Now the proof of Theorem 2 follows immedi-
ately from Corollary 3.3 and Lemma 4.2.
Theorem 2 and Lemma 4.3 imply the following

Corollary 4.1. Let G be a simply connected solvable Lie group and its
Lie algebra L have a flag of ideals. Then T' 1s controllable on G ff Ly = L.

Remark. Any nilpotent Lie algebra has a flag of ideals, and therefore
the above controllability criterion applies to systems on simply connected
nilpotent Lie groups.

4.3. Quotient systems. Let h be an ideal of L and H be the corres-
ponding connected subgroup of G. Suppose that H is closed, and so G/H
is a Lie group. We denote the projection from G onto G/H by 7 and its
differential by m,. We can correctly define the projection of the system I'
onto G/H:
ﬂ*(F):{ﬂ'*v|v€F} C L/h.

Note that the controllability of the system I' on G implies the controllability
of the system 7, (') on G/H.

The derived subalgebra L) is an ideal of L and for simply connected G
its derived subgroup GV is closed. The above construction and Theorem 2
allow us to give the following necessary controllability condition.

Theorem 3. Let G be simply connected. If the system I 1s controllable,
then

(1) 7(Lo) = L/L),

(2) m > dim L — dim L),

Proof. (1) The Lie algebra L/ L(Y) is commutative, and therefore it obviously
satisfies condition (). If T' is controllable on G, then m,(T') is controllable
on G/GW. Then it follows from Theorem 2 that m.(Lo) = L/LY).

(2) The subalgebra 7, (Lg) is commutative and is spanned by vectors
T B1, ..., T By, and therefore

m > dim(m,(Lo)) = dim(L/LM) = dim L —dim LY. O
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Remark. This theorem implies that invariant systems on a simply con-
nected Lie group G with nontrivial G/G(") essentially differ from general
nonlinear systems. It is well known that generically m = 2 is sufficient
for global controllability. But Proposition 2 of Theorem 3 gives a lower

bound (dim G//G(M)) for the number of controlled vector fields By, ..., By,
necessary to achieve controllability on simply connected G'.

5. EXAMPLES

Example 1. Let G = T(n) be the Lie group of all n x n upper trian-
gular matrices with positive diagonal entries. T(n) is connected, simply
connected, and solvable. Tts Lie algebra L = t(n) consists of all n x n upper
triangular matrices. The derived subalgebra L(!) consists of all strictly up-
per triangular matrices, and L/L(") is the Lie algebra of all diagonal n x n
matrices.

By Theorem 2, the affine system T is controllable on T(n) if and only
if Ly = L, and, by Theorem 3, the controllability of T' on T(n) can be
achieved with no less than n controlled vector fields. This lower estimate
is exact. For example, the system I' = {A +> 0 uiBi | Viu €R } with
B; = Eji+Eijy1fori=1,...,n—1and B, = E,, is controllable on T(n).
Really, it is easy to see that Lie (By,..., By) = t(n).

(E;; denotes the n x n matrix with (E;;)r = dixd;1.)

Example 2. Let G = E(2) be the Euclidean group of motions of R
E(2) is connected but not simply connected. Tt can be represented by 3 x 3
matrices of the form

cin ciz b b
Co1 C22 bz s C = (C”) c SO(?), b= ( bl ) € RZ,
0 0 1 :

where C'is arotation matrix and b is a translation vector. The corresponding
matrix Lie algebra L is spanned by the matrices A1 = F13, As = Es3, and
A3 = Esy — E19. We have L(V) = span(A;p, A2) and L2 = {0}; therefore,

L 1s solvable.

Consider the invariant system I' = { Al +udslueR }

Now we shall use the Lie saturation technique introduced by Jurdjevic
and Kupka and show that the system T is controllable on E(2). (See [2] for
definitions and details.) The Lie saturate of T' will be denoted by LS(T').

We have Aj,+As € LS(T); that is why exp(sad Az)A; € LS(T) for
any s € R. But exp(sad Az)4; = (coss)A; + (sins)Az. Consequently,
span(Ay, A2) C LS(T); therefore, LS(T') = L. Thus T is controllable on
E(2).

Obviously, I' can also be considered as an invariant system on the simply
connected covering group of E(2). The above proof of controllability of T on
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E(2) is purely algebraic; i.e., it does not use any global geometric properties
of E(2). That is why T is controllable on the simply connected covering
group of E(2) as well.

The spectrum of the operator ad A3 consists of £¢ and 0. Therefore this
example shows that the assumption of reality of the spectrum in Theorem 2
is essential. Detailed controllability conditions for invariant systems on
solvable Lie groups without this assumption can be obtained with the use
of the necessary conditions given in 3.3 and the Lie saturation technique.
These results will be published in our forthcoming paper.
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