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56 YU. L. SACHKOVto obtain the necessary controllability conditions for invariant systems onsimply connected Lie groups.In Sec. 4 a controllability test for a�ne invariant systems on some sub-class of simply connected solvable Lie groups is proved. Then a lower boundof the number of controlled vector �elds is obtained which is necessary forachieving controllability on a simply connected Lie group.Finally, in Sec. 5 two examples and some generalizations of the resultspresented in this paper are discussed.2. Notation, definitions, and the main resultsSuppose that G is a connected Lie group, L is its Lie algebra, and A,B1; : : : ; Bm are right-invariant vector �elds on G, i.e., A;B1; : : : ; Bm 2 L.The a�ne invariant system on G is a subset of L of the form� = �A+ mXi=1 uiBi j 8i ui 2 R�:The attainable set A for the system � is a subsemigroup of G generated bythe set � exp(tX) j X 2 �; t 2 R+	. The system � is said to be controllableif A = G.The aim of this paper is to characterize the controllability of the system �in terms of the Lie group G, Lie algebra L, and vector �elds A, B1; : : : ; Bm.For any subset l � L, we denote by Lie (l) the Lie algebra generated byl. We denote by L0 the Lie algebra Lie (B1; : : : ; Bm), and by G0 the cor-responding connected subgroup of G.For any C 2 L and a 2 G we denote by C(a) the value of the right-invariant vector �eld C at the point a, and l(a) = �X(a) j X 2 l 	 for anyl � L.The closure of the set P is denoted by P . If M is a smooth manifold anda 2M , we denote by TaM the tangent space of M at a.We will consider derived series of the Lie algebra L:L(1) = �L;L�; L(2) = �L(1); L(1)�; : : :The main results of the paper are as follows.Theorem 1. Suppose that L0 has codimension one in L.(1) If G0 is closed in G, then � is controllable i� A =2 L0 and G=G0 = S1.(2) If G0 is not closed in G, then � is controllable i� A =2 L0.Theorem 1 generalizes the similar criterion obtained by Bravo and Mar-tin under the additional assumption that L0 is an ideal of L ([6], Proposi-tion 3.3).



CONTROLLABILITY OF HYPERSURFACE 57Theorem 2. Let G be simply connected and solvable, and all operatorsadx, x 2 L, have only real eigenvalues. Then � is controllable i� L0 = L.Theorem 2 is a generalization of the similar result of Bravo and Martinfor nilpotent systems ([6], Theorem 3.6).3. Hypersurface systemsThe a�ne system � is called a hypersurface if the Lie subalgebra L0 hascodimension one in L.In this section we prove Theorem 1 which gives a controllability testfor hypersurface invariant systems. This theorem is applied then to ob-tain the necessary controllability conditions for invariant systems on simplyconnected Lie groups (Corollaries 3.1{3.3).3.1. Preliminary lemmas. Suppose that the Lie algebra L0 has codi-mension one in L and the subgroup G0 is closed in G. Then the right cosetspace G=G0 is a smooth manifold, and the projection � is given by� : G! G=G0; � : a 7! G0a:For a 2 G we will consider the corresponding di�erential �� and pull-back��: ����a : TaG! T�(a)G=G0; ����a : T��(a)G=G0 ! T�aG:The manifold G=G0 is one-dimensional, and therefore it is either S1 or R.(To be more precise, G=G0 is di�eomorphic to S1 or R, but this simpli�ca-tion is not essential.) We will denote by � a di�erential form on G=G0 coin-ciding with d' in the case G=G0 = S1 and with dx in the case G=G0 = R.Then ��� is a di�erential form on G which will be denoted by !.Lemma 3.1. Let dimL0 = dimL � 1 and G0 = G0. Then Ker !ja =L0(a) for any a 2 G.Proof. First of all, it is easy to see that8a 2 G; Ker ��ja = Ta(G0a) = L0(a): (1)Then we consider the diagramTaG !ja�! R??y��jaT�(a)G=G0 �j�(a)�! RThis diagram is commutative, i.e.,!ja = � j�(a) � ��ja: (2)



58 YU. L. SACHKOVBut the space T�(a)G=G0 is one-dimensional and that is why � j�(a) is anisomorphism. So, in view of (2), we haveKer !ja = Ker ��ja:And then it follows from (1) that Ker !ja = L0(a).Lemma 3.2. Suppose that dimL0 = dimL � 1, G0 = G0, and A =2 L0.Then either !(X(a)) > 0 for all a 2 G, X 2 � or !(X(a)) < 0 for alla 2 G, X 2 �.Proof. Consider the function � : G� L! R de�ned as follows:8a 2 G; X 2 L; �(a;X) = !�X(a)�:Note that � is continuous on G�L. To prove this lemma, we have to showthat � has a constant sign on G� �.First we show that8a 2 G; B 2 L0; �(a;B) = 0: (3)Take any a 2 G and B 2 L0. We have B(a) 2 L0(a). By Lemma 3.1,B(a) 2 Ker !ja, and relation (3) is proved.Now we show that8a 2 G; X 2 �; �(a;X) 6= 0: (4)Let a 2 G and X 2 �. Then X = A+Pmi=1 uiBi for some real u1; : : : ; um,and therefore �(a;X) = !�A(a) + mXi=1 uiBi(a)� = !�A(a)�:(We used here relation (3).) Next, A =2 L0, and therefore A(a) =2 L0(a).Then, by Lemma 3.1, we have !�A(a)� 6= 0. Inequality (4) is proved.Thus � is a continuous function which is nonvanishing on the arcwiseconnected set G� �. That is why � has a constant sign on G� �.Lemma 3.3. Suppose that p 2 A . Then(1) G0p � A ,(2) exp(tA)p 2 A for all t � 0.Proof. (1) easily follows from Lemma 6.4 [1], and (2) is obvious.Lemma 3.4. Let dimL0 = dimL � 1, G0 = G0, G=G0 = S1, andA =2 L0. Then A = G.



CONTROLLABILITY OF HYPERSURFACE 59Proof. According to Lemma 3.2, !�A(a)� has the same sign for all a 2 G.We will suppose that !�A(a)� > 0 for all a 2 G. (In the case of the negativesign the proof is similar.)We will show that �(A ) = S1. Suppose that �(A ) 6= S1.(a) The attainable set A is arcwise connected (see [1], Lemma 4.4), andthat is why �(A ) is arcwise connected too. Furthermore, the identity el-ement e 2 G belongs to A , and, hence �(e) = 0 2 S1 belongs to �(A ).Thus �(A ) is a proper arcwise connected subset of the circle S1 containing0. That is why it is an interval of the form�(A ) = j�min;�maxj (5)for some numbers �min � 0 � �max, �max � �min � 2�, where j stands forone of the brackets, [ or ].(b) Choose any point p 2 ��1(�max). Now we shall show that p 2 A .It is easy to see that �max > 0 and that there exists " > 0 such that(�max�";�max) � �(A ). Take any � 2 (�max�";�max). We have � 2 �(A ),and therefore there exists a point q 2 ��1(�)T A . By Lemma 3.3, G0q � A .But G0q = ��1(�), and so we have proved that9" > 0 8� 2 (�max � ";�max); ��1(�) � A : (6)Let V � G be any neighborhood of the point p. The projection � isan open map, and that is why �(V ) � S1 is a neighborhood of the point�(p) = �max. Therefore there exists a point� 2 (�max � ";�max)\�(V ):On the one hand, � 2 (�max � ";�max), and therefore (by (6)) we have��1(�) � A : (7)On the other hand, � 2 �(V ), and therefore��1(�)\V 6= ;: (8)Then it follows from (7) and (8) that V T A 6= ;. We have proved that anyneighborhood of the point p intersects A . That is why p 2 A .(c) Now we come to a contradiction by showing that the set �(A ) containsnumbers arbitrarily close to �max and greater than �max.Consider the curves a(t) = exp(At)p and �(t) = ��a(t)�. We have p 2 A ,and therefore (by Lemma 3.3)� a(t) j t � 0	 � A : (9)Furthermore, we have_�(0) = (d=dt)��t=0��exp(At)p� = ���A(p)�:



60 YU. L. SACHKOVBut !�A(p)� > 0, i.e., d'���(A(p))� > 0. That is why �(t) is increasing inthe neighborhood of t = 0. Therefore there exist �0 > 0 and t0 > 0 suchthat �(t0) = �max + �0. In view of (9), we have � a(t) j 0 � t � t0 	 � A .But �(A ) � �(A ), and therefore��� a(t) j 0 � t � t0 	� = � 0;�max + �0 � � �(A ) :It contradicts (5). This contradiction shows that�(A ) = S1: (10)Now we shall show that A = G. We choose a point x 2 G. In view of (10),there exists a point y 2 G0xT A . It follows from Lemma 3.3 that G0y � A .But G0y = G0x, and therefore G0x � A . Since x 2 G is arbitrary, we haveA = G.Let us recall that the rank controllability condition (see [1]) for the inva-riant system � has the form Lie (�) = L:For a hypersurface system this condition can easily be veri�ed due to thefollowing statement.Lemma 3.5. Let dimL0 = dimL � 1. Then the rank controllabilitycondition for � holds i� A =2 L0.Proof. If A =2 L0, then L = L0 �RA and Lie (�) = L. And if A 2 L0, thenLie (�) = L0 6= L.Lemma 3.6. If the rank controllability condition for � is satis�ed andthe attainable set A is dense in G, then � is controllable.Proof. If the rank controllability condition for � holds, then the connectedsubgroup of G, corresponding to Lie algebra Lie (�), coincides with G, andthen the statement follows immediately from Lemma 6.3 [1].3.2. Proof of Theorem 1. Now we use the results of the previous sub-section and prove Theorem 1.Proof. The rank controllability condition is necessary for controllability ([1],Theorem 7.1), and therefore, by Lemma 3.5, the condition A =2 L0 is neces-sary in both cases (1) and (2).Case 1. Let G0 = G0.



CONTROLLABILITY OF HYPERSURFACE 61The necessity of G=G0 = S1. The closed subgroup G0 has codimensionone in G, and so dim G=G0 = 1. That is why either G=G0 = R or G=G0 =S1. If G=G0 = R, then Lemma 3.2 implies that the projection � : G ! Ris a monotone function along all trajectories of the system �. It contradicsthe controllability of �, and therefore G=G0 = S1.Su�ciency. Let A =2 L0 and G=G0 = S1.The rank controllability condition is satis�ed by Lemma 3.5. By Lem-ma 3.4, the attainable set A is dense in G. And then it follows fromLemma 3.6 that � is controllable.Case 2. Let G0 6= G0.Su�ciency. We denote G0 by H. It is easy to see that H is an abstractsubgroup of G. But H is closed in G, and therefore it is a Lie subgroupof G. Furthermore, G0 is connected, and therefore H is connected. Wedenote the Lie algebra of H by L(H). We have G0 � H � G, and thereforeL0 � L(H) � L. But L0 has codimension one in L, and therefore eitherL(H) = L0 or L(H) = L. If L(H) = L0, then H = G0, which contradicsthe nonclosedness of G0. Thus L(H) = L and H is a connected subgroupof G with the Lie algebra L. That is why H = G, i.e., G0 = G. ButA � G0 (it is exactly the statement of [1], Lemma 6.4), and therefore wehave A = G. The rank controllability condition is satis�ed (see Lemma 3.5),and it follows from Lemma 3.6 that � is controllable.3.3. The necessary conditions for simply connected Lie groups. Inthis subsection we use Theorem 1 and obtain the necessary controllabilityconditions for a�ne invariant systems on simply connected Lie groups.Corollary 3.1. Suppose that G is simply connected and L0 has codimen-sion one in L. Then � is not controllable.Proof. If G is simply connected, then its codimension one subgroup G0 isclosed. Furthermore, G is simply connected, and that is why G=G0 is simplyconnected too. Thus G=G0 = R, and it follows from Theorem 1 that � isnot controllable.Corollary 3.2. Let G be simply connected. Suppose that there exists acodimension one subalgebra l of L containing L0. Then � is not controllable.Proof. The system � can be extended to an a�ne system of the form�1 = �A+ mXi=1 uiBi + kXi=m+1 uiBi j 8i ui 2 R�;where Bm+1; : : : ; Bk complement B1; : : : ; Bm to a basis of the subalgebral. By Corollary 3.1, the system �1 is not controllable, and therefore � isnot controllable too.



62 YU. L. SACHKOVCorollary 3.3. Let G be simply connected and its Lie algebra L satisfythe following condition:any subalgebra l1 � L; l1 6= L; is containedin some codimension one subalgebra l2: � (�)Then the a�ne system � on G is controllable i� L0 = L.Proof. It is well known (see [1], Corollary 7.4), that L0 = L is su�cient forthe controllability of �.If L0 6= L, then, by condition (�), we can �nd a codimension one subalge-bra l � L such that L0 � l. Then l satis�es the conditions of Corollary 3.2and � is not controllable. 4. Solvable systemsIn this section we prove Theorem 2 and obtain a lower estimate of anumber of controlled vector �elds necessary for controllability on a simplyconnected Lie group (Theorem 3).4.1. Codimension one subalgebras.Lemma 4.1. If L is solvable and all operators adx, x 2 L, have onlyreal eigenvalues, then for any subalgebra l1 � L, l1 6= L, there exists asubalgebra l2 � L such that l1 � l2 and dim l2 = dim l1 + 1.Proof. Consider the representation� : l1 ! End(L=l1);de�ned as follows:8x 2 l1; v 2 L; �(x)(v + l1) = [x; v] + l1;where � is the quotient representation of the adjoint representationad : l1 ! End(L):All operators �(x), x 2 l1, have only real eigenvalues, l1 being a solvableLie algebra, and therefore, by Lie's theorem, the complexi�cation of � hasa common eigenvector. The corresponding eigenvalue is real, and thereforewe can �nd a real common eigenvector v+ l1 2 L=l1, v =2 l1, for all operators�(x), x 2 l1:8x 2 l1 �(x)(v + l1) = [x; v] + l1 = �(x)v + l1; �(x) 2 R: (11)Consider the linear space l2 = l1 + span(v):



CONTROLLABILITY OF HYPERSURFACE 63It follows from (11) that [l1; v] � l2;and therefore l2 is a Lie algebra. Obviously, we have l1 � l2 and dim l2 =dim l1 + 1.Lemma 4.2. If L is solvable and all operators adx, x 2 L, have onlyreal eigenvalues, then condition (�) holds.Proof. We use Lemma 4.1 iteratively and �nd that any subalgebra l � L,l 6= L, is contained in the chain of subalgebras l = l0 � l1 � : : : � lr�1 �lr = L, such thatdim lk+1 = dim lk + 1 8k = 0; : : : ; r� 1:Then lr�1 is the codimension one subalgebra containing the Lie algebral. We say that the Lie algebra L has a 
ag of ideals if there exist ideals Ip,Ip�1; : : : ; I1, I0 in L such thatL = Ip � Ip�1 � : : :� I1 � I0 = f0gand dimIk = k 8k = 0; 1; : : : ; p:Lemma 4.3. Let L have a 
ag of ideals. Then(1) L is solvable,(2) all operators adx, x 2 L, have only real eigenvalues,(3) any subalgebra l � L has a 
ag of ideals.Proof. Let L = Ip � Ip�1 � : : : � I1 � I0 = f0g be a 
ag of ideals.(1) For the derived series we haveL(k) � Ip�k 8k = 0; 1; : : : ; p:That is why L(p) = f0g, i.e., L is solvable.(2) We choose a base e1; : : : ; ep in L such thatIk = span(e1; : : : ; ek) 8k = 0; 1; : : : ; p:Ik are ideals in L, and thereforeadx (Ik) � Ik 8x 2 L:All operators adx, x 2 L, have triangular matrices in the above base. Thatis why all eigenvalues of adx, x 2 L, are real.(3) Consider the linear spaces Jk, k = 0; 1; : : : ; p, de�ned asJk = l\ Ik:



64 YU. L. SACHKOVWe have�l; Jk� = �l; l\ Ik� � �l; l�\�l; Ik� � l\�L; Ik� � l\ Ik = Jk;where Jk are ideals in l, and l = Jp � Jp�1 � : : : � J1 � J0 = f0g. Wehave dimJk+1 � dimJk = 1 or 0 8k = 2; : : : ; p� 1:Thus, to obtain a 
ag of ideals in l, it is su�cient to exclude from thesequence fJkg all ideals Jk for which the above di�erence is equal to 0.4.2. Proof of Theorem 2. Now the proof of Theorem 2 follows immedi-ately from Corollary 3.3 and Lemma 4.2.Theorem 2 and Lemma 4.3 imply the followingCorollary 4.1. Let G be a simply connected solvable Lie group and itsLie algebra L have a 
ag of ideals. Then � is controllable on G i� L0 = L.Remark. Any nilpotent Lie algebra has a 
ag of ideals, and thereforethe above controllability criterion applies to systems on simply connectednilpotent Lie groups.4.3. Quotient systems. Let h be an ideal of L and H be the corres-ponding connected subgroup of G. Suppose that H is closed, and so G=His a Lie group. We denote the projection from G onto G=H by � and itsdi�erential by ��. We can correctly de�ne the projection of the system �onto G=H: ��(�) = � ��v j v 2 �	 � L=h:Note that the controllability of the system � on G implies the controllabilityof the system ��(�) on G=H.The derived subalgebra L(1) is an ideal of L and for simply connected Gits derived subgroup G(1) is closed. The above construction and Theorem 2allow us to give the following necessary controllability condition.Theorem 3. Let G be simply connected. If the system � is controllable,then(1) ��(L0) = L=L(1),(2) m � dimL � dimL(1).Proof. (1) The Lie algebra L=L(1) is commutative, and therefore it obviouslysatis�es condition (�). If � is controllable on G, then ��(�) is controllableon G=G(1). Then it follows from Theorem 2 that ��(L0) = L=L(1).(2) The subalgebra ��(L0) is commutative and is spanned by vectors��B1; : : : ; ��Bm, and thereforem � dim(��(L0)) = dim(L=L(1)) = dimL � dimL(1):



CONTROLLABILITY OF HYPERSURFACE 65Remark. This theorem implies that invariant systems on a simply con-nected Lie group G with nontrivial G=G(1) essentially di�er from generalnonlinear systems. It is well known that generically m = 2 is su�cientfor global controllability. But Proposition 2 of Theorem 3 gives a lowerbound (dimG=G(1)) for the number of controlled vector �elds B1; : : : ; Bmnecessary to achieve controllability on simply connected G.5. ExamplesExample 1. Let G = T(n) be the Lie group of all n � n upper trian-gular matrices with positive diagonal entries. T(n) is connected, simplyconnected, and solvable. Its Lie algebra L = t(n) consists of all n�n uppertriangular matrices. The derived subalgebra L(1) consists of all strictly up-per triangular matrices, and L=L(1) is the Lie algebra of all diagonal n� nmatrices.By Theorem 2, the a�ne system � is controllable on T(n) if and onlyif L0 = L, and, by Theorem 3, the controllability of � on T(n) can beachieved with no less than n controlled vector �elds. This lower estimateis exact. For example, the system � = �A +Pni=1 uiBi j 8i ui 2 R	 withBi = Eii+Ei;i+1 for i = 1; : : : ; n�1 and Bn = Enn is controllable on T(n).Really, it is easy to see that Lie (B1; : : : ; Bn) = t(n).(Eij denotes the n� n matrix with (Eij)kl = �ik�jl.)Example 2. Let G = E(2) be the Euclidean group of motions of R2.E(2) is connected but not simply connected. It can be represented by 3� 3matrices of the form0@ c11 c12 b1c21 c22 b20 0 1 1A ; C = (cij) 2 SO(2); b = � b1b2 � 2 R2;where C is a rotation matrix and b is a translation vector. The correspondingmatrix Lie algebra L is spanned by the matrices A1 = E13, A2 = E23, andA3 = E21 � E12. We have L(1) = span(A1; A2) and L(2) = f0g; therefore,L is solvable.Consider the invariant system � = �A1 + uA3 j u 2 R	:Now we shall use the Lie saturation technique introduced by Jurdjevicand Kupka and show that the system � is controllable on E(2). (See [2] forde�nitions and details.) The Lie saturate of � will be denoted by LS(�).We have A1;�A3 2 LS(�); that is why exp(s adA3)A1 2 LS(�) forany s 2 R. But exp(s adA3)A1 = (cos s)A1 + (sin s)A2. Consequently,span(A1; A2) � LS(�); therefore, LS(�) = L. Thus � is controllable onE(2).Obviously, � can also be considered as an invariant system on the simplyconnected covering group of E(2). The above proof of controllability of � on
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