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It turns out that system (1) has invariant orthants i� the matrices Bi,i = 1; : : : ;m, are diagonal and the �eld Ax has invariant orthants. The searchof these orthants is based upon two ideas. First, it is common knowledge thatthe positive orthant Rn+ is positive invariant for the �eld Ax i� all o�-diagonalentries of the matrix A are nonnegative. Second, if the �eld Ax has an in-variant orthant, then successive changes of coordinates (x1; : : : ; xi; : : : ; xn) 7!(x1; : : : ;�xi; : : : ; xn) in Rn map this orthant onto Rn+. During this process wecan keep track of signs of entries aij of the matrix A and obtain conditionsof existence of invariant orthants in terms of sign combinations of aij. Theseconditions can conveniently be expressed in terms of some graph �(A) that cor-responds to the matrix A. An analogous method was applied by M. Hirsch [4]for studying limit properties of trajectories of dynamical systems.This work has the following structure. In Sec. 2 we describe construction ofthe graph �(A) for a sign-symmetric matrix A and the theorem of M. Hirschthat yields some combinatorial properties of such graphs. Then we presentand proof a constructive version of this result | Theorem 2. In Sec. 3 weobtain conditions of existence of positive (negative) invariant orthants for the�eld Ax (Theorems 3, 4) in terms of the graph �(A). In the generic casewhen all o�-diagonal entries of the matrix A are nonzero, there are more simpletests (Theorem 5, this is a correction of the earlier author's results [13]). InSec. 4 these results are applied to obtain the main propositions of the work |tests of existence of invariant orthants for system (1). In Sec. 5 we discuss therelation of the results obtained with the conjecture of V. Jurdjevic and I. Kupkaon noncontrollability of the single-input system _x = Ax + uBx in the case ofsymmetric matrices A and B.Now we give some of the notation and de�nitions used in the sequel.The set of indices �n = f� = (�1; : : : ; �n) j �i = �1 8i = 1; : : : ; n g willbe used for parametrization of orthants, i.e., sets of the form Rn� = fx =(x1; : : : ; xn) 2 Rn j xi�i � 0 8i = 1; : : : ; n g.A subset of the state space is called positive (negative) invariant for a vector�eld or a control system if all trajectories of the �eld or the system starting inthis set (resp., its complement) do not leave it (resp., its complement) for allpositive moments of time. A control system is called globally controllable if anypoints of its state space can be connected by a trajectory of the system (in thepositive direction).Remark. A system is globally controllable i� it has neither positive nor neg-ative invariant sets (except the trivial ones | the whole state space and theempty set). Thus conditions of existence of nontrivial invariant sets are su�-cient conditions of global noncontrollability.2



2 Sign-symmetric matrices and their graphsDe�nition. An n � n matrix A = (aij) is called sign-symmetric if aijaji � 0for all i; j = 1; : : : ; n.The role of this de�nition for this work is explained by Corollary 1 in thenext section.Construction. (M. Hirsch [4]) For any sign-symmetric n � n matrix A weconstruct the graph �(A) by the following rule. The graph �(A) has n vertices1; 2; : : :; n. Its vertices i; j, i 6= j, are connected by the edge (i; j) i� at least oneof the numbers aij; aji is nonzero. Throughout the paper we take into accountonly edges that connect distinct vertices of the graph �(A); self loops are thusexplicitly excluded from consideration. Every edge (i; j) is marked by the sign+ or � : if aij � 0 and aji � 0, then the sign + is applied, and if aij � 0and aji � 0, then we apply � (there can be no other combinations of signs byvirtue of sign-symmetry of A). The marked edges are called positive or negativedepending on the sign + or � . For the graph �(A) we de�ne the followingfunction s(i; j), i; j = 1; : : : ; n, i 6= j : s(i; j) = 0 if the vertices i; j are notconnected by an edge in �(A), s(i; j) = 1 for the positive, and s(i; j) = �1 forthe negative edge (i; j) in the graph �(A).De�nition. A loop (i.e., a closed path composed of edges) of a graph is calledeven (odd) if it contains an even (resp. odd) number of negative edges. A graphis said to satisfy the even-loop property if all its loops are even.Remark. A loop (i1; i2; : : : ; ik; ik+1 = i1) in the graph �(A) is even if and onlyif s(i1; i2)s(i2; i3) : : : s(ik; i1) = 1.Theorem 1 (M. Hirsch [4]) If a graph � satis�es the even-loop property, thenthere is a subset V of the set of its vertices such that:a) any negative edge of the graph � has exactly one vertex in V ;b) any positive edge of the graph � has either 0 or 2 vertices in V .In [4] an algorithm of construction of the set V is presented as well.Below in Theorem 2 we obtain a version of Theorem 1 that gives an explicitmethod of construction of the set V and evaluates the number of such sets fora �xed graph �. Our argument does not formally use Theorem 1 and may beconsidered as a new proof of this theorem.De�nition. Let a graph � satisfy the even-loop property and be connected (i.e.,any two vertices of � can be connected by a path of its edges), and let v be anyvertex of �. A vertex of the graph � is called even (odd) with respect to v ifit can be connected with v by a path containing even (resp. odd) number ofnegative edges. The set of even (odd) with respect to v vertices will be denotedby V +v (resp. V �v ). 3



Remarks. 1) Parity of a vertex p with respect to a vertex v does not dependon a path connecting p and v: the number of negative edges in di�erent pathsconnecting p and v have the same parity since � satis�es the even-loop property.2) By connectedness of the graph �, any its vertex is either even or oddwith respect to v, i.e., the set of all vertices of � can be represented in the formV +v [ V �v , and in view of the previous remark, V +v \ V �v = ;.3) For any vertex p of the graph �p 2 V +v ) V +p = V +v ; V �p = V �v ;p 2 V �v ) V +p = V �v ; V �p = V +v ;since for p 2 V +v parities with respect to p and v coincide one with another, andfor p 2 V �v a point even with respect to p is odd with respect to v, and viceversa.Theorem 2 Let a graph � satisfy the even-loop property.1. If � is connected, then there are exactly two distinct subsets V of the setof all its vertices that satisfy conditions a), b) of Theorem 1. They havethe form V +v and V �v , where v is any vertex of �.2. If � is not connected and has c connected components, then there are 2cways of choice of the set V by independent construction in every connectedcomponent as in item 1.Proof. Let the graph � be connected and v any its vertex.We show that the both sets V +v , V �v satisfy conditions a), b) of Theorem 1.Indeed, vertices of every negative edge have distinct parities with respect to v,hence one of them is contained in V +v , and another in V �v . And vertices ofevery positive edge have the same parity with respect to v and consequentlyboth belong either to V +v or to V �v . Thus both sets V +v , V �v satisfy conditionsof Theorem 1.Now we show that there are no other such sets. Let V be any such set. IfV = ;, then all edges of � are positive, hence V �v = ; = V . That is why supposethat V 6= ; and choose any vertex p 2 V . By properties a), b) of Theorem 1,all vertices of � even with respect to p are contained in V , and all vertices oddwith respect to p do not belong to V , i.e., V = V +p . By remark 3) before thistheorem, V +p = V +v or V �v . Thus any set V that satis�es conditions a), b) ofTheorem 1 is equal to V +v or V �v .The statement of the theorem for a connected graph � is proved, and for adisconnected one it is obvious. 24



3 Invariant orthants of linear vector �eldsThe following test of invariance of an orthant was proved in [13].Lemma 1 Let � = (�1; : : : ; �n) 2 �n, and let A be an n � n matrix. Theorthant Rn� is positive (negative) invariant for the vector �eld Ax if and only ifaij�i�j � 0 (resp. � 0) 8i 6= j: (2)Corollary 1 If the �eld Ax has a positive or negative invariant orthant, thenthe matrix A is sign-symmetric.Proof. By virtue of (2), aij�i�jaji�j�i = aijaji�2i�2j = aijaji � 0: 2Corollary 2 If there is an orthant positive and negative invariant for a �eldBx, then the matrix B is diagonal.Proof. Let B = (bij); choose any i 6= j, i; j = 1; : : : ; n, and show thatbij = 0. By virtue of Lemma 1, we have bij�i�j � 0 and bij�i�j � 0, i.e.,bij�i�jbij�i�j = b2ij�2i�2j = b2ij � 0, whence bij = 0. 2Construction. Assume that a graph � satis�es the even-loop property and Vis any subset of the set of its vertices that satis�es conditions a), b) of The-orem 1. Then the index of the graph � corresponding to the set V is the set� = (�1; : : : ; �n) 2 �n de�ned as follows: �i = +1 if i =2 V and �i = �1 if i 2 V .Remark. The index is determined both by the graph � and by the set V .Theorem 2 shows that for a connected graph there are exactly two indices (dis-tinguished by the common multiplier �1). For a disconnected graph with cconnected components there are 2c distinct indices, each being chosen indepen-dently for every connected component of �.Theorem 3 Let A be a sign-symmetric n�n matrix. The �eld Ax has positiveinvariant orthants i� its graph �(A) satis�es the even-loop property. Then pos-itive invariant orthants are Rn�, where � is any index of the graph �(A); theirnumber is equal to 2c, where c is the number of connected components of thegraph �(A).Proof. Necessity. Suppose that the �eld Ax has a positive invariant orthantRn� , � = (�1; : : : ; �n) 2 �n. By Lemma 1, then inequalities (2) hold, that is whysgn aij = �i�j or 0: (3)Choose any loop (i1; i2; : : : ; ik; ik+1 = i1) in the graph �(A). Any pair of vertices(il; il+1), l = 1; : : : ; k, is connected by an edge in �(A), that is why s(il ; il+1) 6= 05



(the function s(i; j) that determines sign of the edge (i; j) was de�ned at thebeginning of Sec. 2). Taking into account (3), we obtain s(il ; il+1) = �il�il+1 ,l = 1; : : : ; k. Consequently,s(i1; i2)s(i2; i3) : : : s(ik; i1) = �i1�i2�i2�i3 : : :�ik�i1 = �2i1�2i2 : : : �2ik = 1;i.e., the loop (i1; i2; : : : ; ik; i1) is even.Su�ciency. Suppose that the graph �(A) satis�es the even-loop property,V is the subset of the set of its vertices de�ned in Theorem 1, and � is thecorresponding index. We show that the orthant Rn� is positive invariant for the�eld Ax. By virtue of Lemma 1, it is su�cient to prove inequalities (2).Choose any pair (i; j), i 6= j, i; j = 1; : : : ; n.If the vertices i; j are not connected by an edge in the graph �(A), thenaij = 0 and condition (2) holds.Let the vertices i; j be connected by a positive edge. By the construction of�(A), this means that aij � 0. Further, the positive edge (i; j) has either zeroor two vertices in the set V . By de�nition of the index �, if i =2 V , j =2 V , then�i = �j = 1; and if i 2 V , j 2 V , then �i = �j = �1. In any case �i�j = 1, andcondition (2) holds.Finally, suppose that the vertices i; j are connected by a negative edge. First,aij � 0. And second, the negative edge (i; j) has exactly one vertex in the setV . If i 2 V , j =2 V , then �i = �1, �j = 1; and if i =2 V , j 2 V , then �i = 1,�j = �1. That is why always �i�j = �1, and inequality (2) holds in this caseas well.Consequently, the orthant Rn� is positive invariant for the �eld Ax. Thesu�ciency is proved. The formula 2c for the number of invariant orthants followsfrom Theorem 2. 2Remark. An orthant Rn� is negative invariant for the �eld Ax i� it is positiveinvariant for the �eld �Ax. Thus we obtainTheorem 4 Let A be a sign-symmetric n�n matrix. The �eld Ax has negativeinvariant orthants i� the graph �(�A) of the opposite matrix �A satis�es theeven-loop property. Then negative invariant orthants are Rn�, where � is anyindex of the graph �(�A); their number is equal to 2c, where c is the number ofconnected components of the graph �(�A) (or, which is the same, of the graph�(A)).Example 1. Let A = (aij) be any 4� 4 matrix of the form0BB@ � + 0 ++ � + 00 + � �+ 0 � � 1CCA ;6



i.e., a12; a21; a14; a41; a23; a32 > 0, a34; a43 < 0, a13 = a31 = a24 = a42 = 0, anddiagonal entries are arbitrary. The corresponding graph �(A) is given at Fig. 1.The only loop (1; 2; 3; 4) is negative in both graphs �(A) and �(�A). That iswhy the �eld Ax has no invariant orthants (this may also be veri�ed by directinspection of 16 orthants in R4).rr rr++ + �1 42 3Fig. 1 ������@@@@@@rr rrr+� + �+ +� �1 52 43Fig. 2Example 2. Let A = (aij) be any 5� 5 matrix of the form0BBBB@ � � + 0 +� � � + 0+ � � � +0 + � � �+ 0 + � � 1CCCCA ;i.e., a13; a31; a15; a51; a24; a42; a35; a53 > 0, a12; a21; a23; a32; a34; a43; a45; a54 <0, a14 = a41 = a25 = a52 = 0, and diagonal entries are arbitrary. The graph�(A) is given at Fig. 2; it satis�es the even-loop property. To construct the setV choose the vertex v = 3. Then V = V +v = f1; 3; 5g, and � = (+;�;+;�;+) isthe corresponding index of the graph �(A). The �eld Ax has positive invariantorthants:R5� = f (x1; : : : ; x5) 2 R5 j x1 � 0; x2 � 0; x3 � 0; x4 � 0; x5 � 0 gand the opposite oneR5�� = f (x1; : : : ; x5) 2 R5 j x1 � 0; x2 � 0; x3 � 0; x4 � 0; x5 � 0 g:The graph �(A) is connected, that is why there are no other positive invariantorthants.The graph �(�A) has odd loops (e.g., (1; 2; 3)), that is why the �eld Ax hasno negative invariant orthants.Remark. Example 1 shows that conditions of Lemma 4.1 [13] should be cor-rected. This lemma states (in terms of the current work) that the �eld Ax haspositive invariant orthants i� the graph of the sign-symmetric matrix A has noodd loops of length three. For arbitrary sign-symmetric matrices A veri�cation7



of loops of length three only is insu�cient: in Example 1 the obstruction forexistence of invariant orthants is a loop of length four. But it turns out thatstatement of Lemma 4.1 [13] is valid in generic case: if all o�-diagonal entriesof the matrix A are nonzero (see condition (4) below), then it is su�cient toverify loops of length three only. That is, the following proposition holds:Theorem 5 Let A = (aij) be a sign-symmetric n � n matrix withaij 6= 0 8i 6= j: (4)The �eld Ax has positive (negative) invariant orthants i� all loops of length threeof the graph �(A) (resp. of the graph �(�A)) are even, or, which is equivalent,aijajkaki > 0 (resp. < 0) 8i 6= j 6= k 6= i: (5)Proof. Condition (4) implies that any two vertices in the graph �(A) areconnected by an edge. We show that if all loops of length three are even, thenall loops of an arbitrary length are even. Choose any loop in the graph �(A)and represent it as a sum of loops of length three. The sum of even loops isan even loop since negative edges of summands either annihilate in pairs anddo not enter the sum (when they lie at adherent edges of the summands) orenter the sum (in the opposite case). Thus any loop in �(A) is even. Now thestatement of this theorem follows from Theorems 3, 4.It is obvious that under condition (4) a loop of length three (i; j; k) is evenif and only if aijajkaki > 0. For the graph �(�A) this inequality turns into(�aij)(�ajk)(�aki) = �aijajkaki > 0. 2Remark. Condition (4) may be changed by the weaker requirement that aij 6= 0or aji 6= 0 for any i 6= j. Then the inequalities aijajiaik > 0 (resp. < 0), whichcharacterize parity of the loop (i; j; k), should be changed by the inequalitiess(i; j)s(j; k)s(k; i) > 0 (resp. < 0) with the use of the function s(�; �) thatdetermines sign of edges.4 Invariant orthants of bilinear systemsLemma 2 If system (1) has a positive or negative invariant orthant, then thematrix A is sign-symmetric, and the matrices Bi, i = 1; : : : ;m, are diagonal.Proof. We show that an orthant positive (negative) invariant for system (1):1. is positive (resp. negative) invariant for the �eld Ax;2. both positive and negative invariant for any �eld Bix, i = 1; : : : ;m.8



Statement 1. For u1 = u2 = : : : = um � 0 trajectories of system (1) aretrajectories of the �eld Ax.Statement 2. For ui 6= 0 and all the rest u1 = u2 = : : : = um � 0 wehave Ax +Pmj=1 ujBjx = Ax + uiBix = (juijAx + sgnuiBix)=juij. A positive(negative) invariant orthant of the �eld Ax + uiBx is positive (resp. negative)invariant for the �eld juijAx+sgnuiBx. Passing to the limits ui ! +0, ui !�0and using continuous dependence of solution of a di�erential equation from theright-hand side, we obtain that the orthant under consideration is both positiveand negative invariant for the �eld Bix.Statements 1, 2 are proved, and by virtue of Corollaries 1, 2, this lemmafollows. 2Theorem 6 Let A;B1; : : : ; Bm be n � n matrices. System (1) has positive(negative) invariant orthants i� the following conditions are satis�ed:1. the matrix A is sign-symmetric;2. the matrices Bi, i = 1; : : : ;m, are diagonal;3. the graph �(A) (resp. �(�A)) satis�es the even-loop property.Then positive (negative) invariant orthants are Rn� , where � is any index ofthe graph �(A) (resp. �(�A)), and their number is equal to 2c, where c is thenumber of connected components of the graph �(A).Proof. Necessity. Items 1 and 2 follow from Lemma 2. Item 3 follows fromTheorems 3, 4.Su�ciency. All orthants in Rn are both positive and negative invariant forthe �elds Bix with the diagonal matrices Bi. Then the existence of invariantorthants and the formula for their number follow from Theorems 3, 4. 2Remarks. 1) If we assume in Theorem 6 that condition (4) holds, then byTheorem 5 we can restrict ourselves to veri�cation of evenness of loops of lengththree only, i.e., of inequalities (5).2) An index � of the graph �(A) is uniquely determined by a subset V ofthe set of vertices �(A) that satis�es conditions a), b) of Theorem 1. Theorem 2describes all such sets and gives a method of their construction. Thus we havea constructive method of enumeration of all invariant orthants.5 Symmetric matrices and controllabilityIn this section we discuss the relation of our results with the following conjectureproposed by V. Jurdjevic and I. Kupka [6].9



Conjecture. If the matrices A and B are symmetric, then the single-inputsystem _x = Ax+ uBx; x 2 Rn n f0g; u 2 R; (6)is not globally controllable in Rn n f0g.Remark. There is an orthogonal transformation of Rn that diagonalizes asymmetric matrix B; then a symmetric matrix A turns into a symmetric one.That is why we can assume in the conjecture of V. Jurdjevic and I. Kupka thatB is diagonal and A is symmetric.Results of the previous section easily imply that this conjecture holds indimensions 2 and 3: in fact, if A is sign-symmetric and B is diagonal, thensystem (6) has a positive or negative invariant orthant.Even for n = 4 there are symmetric matrices A for which the �eld Ax andsystem (6) have no invariant orthants (see Example 1). Here the question ofglobal controllability, i.e., of absence of any invariant sets, is left open. But forsymmetric matrices A with at least one of the graphs �(A), �(�A) satisfyingthe even-loop property the conjecture of V. Jurdjevic and I. Kupka is nowproved. However, in these cases not the symmetry but the sign-symmetry of Ais essential.Orthants are a very special kind of invariant domains for bilinear systems (6).But the following simple question seems to be open. Suppose thatB = diag (b1; : : : ; bn); bi 6= bj; i 6= j:Is it true that if system (6) has no invariant orthants and everywhere satis�esthe necessary Lie algebra rank controllability condition, then it has no invariantdomains at all, i.e., it is globally controllable in Rn n f0g? In dimension 2 theanswer is positive, but in greater dimensions it seems to be unknown.One may lift system (1) to Lie groups SL(n;R), GL+(n;R), or homogeneousspaces of these groups, and study its global controllability on these state spaces(see [3, 6, 14] for this approach). It is well known that noncontrollability of abilinear system on Rn n f0g implies noncontrollability on SL(n;R), GL+(n;R)and their homogeneous spaces. Thus for matrices A, B1; : : : ; Bm satisfyingconditions of Theorem 6 system (1) is not controllable on these Lie groups andtheir homogeneous spaces.Acknowledgment.The author wishes to thank Professor V. Jurdjevic for valuable comments andsuggestions on this work. The author is also grateful to Dr. Yu.R. Romanovskyfor bringing the results of the paper [4] to his attention.References[1] W.M. Boothby and E. Wilson, Determination of the transitivity of bilinearsystems, SIAM J. Control Optim. 20 (1982), 634{644.10
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