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Abstract. A characterization of n x n matrices A such that the corresponding
linear vector field Az has invariant orthants in R" is obtained. This result
is then applied to give necessary global controllability conditions for bilinear
systems.
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1 Introduction

Bilinear systems form the simplest class of nonlinear control systems. They
arise naturally as models in solving various applied problems (see, e.g., [2, 9]).
There is a variety of results on global controllability of bilinear systems: [1, 3,
5,6,7,8, 10, 11, 12, 13]; but this problem is far from complete solution.

In this paper we study conditions of existence of invariant orthants for bi-
linear systems

i =Ar+Y wBax, x€R'\{0}, weR, (1)
i=1
i.e., sufficient conditions for global noncontrollability of such systems. All in-

variant orthants are described, a constructive method of their enumeration is
given, and their number is evaluated.
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It turns out that system (1) has invariant orthants iff the matrices B;,
t =1,...,m, are diagonal and the field Az has invariant orthants. The search
of these orthants is based upon two ideas. First, it is common knowledge that
the positive orthant R} is positive invariant for the field Az iff all off-diagonal
entries of the matrix A are nonnegative. Second, if the field Az has an in-
variant orthant, then successive changes of coordinates (x1,...,2;,...,2,) —
(#1,..., =24, ..., 2y) in R" map this orthant onto )} . During this process we
can keep track of signs of entries a;; of the matrix A and obtain conditions
of existence of invariant orthants in terms of sign combinations of a;;. These
conditions can conveniently be expressed in terms of some graph T'(A) that cor-
responds to the matrix A. An analogous method was applied by M. Hirsch [4]
for studying limit properties of trajectories of dynamical systems.

This work has the following structure. In Sec. 2 we describe construction of
the graph T'(A) for a sign-symmetric matrix A and the theorem of M. Hirsch
that yields some combinatorial properties of such graphs. Then we present
and proof a constructive version of this result — Theorem 2. In Sec. 3 we
obtain conditions of existence of positive (negative) invariant orthants for the
field Az (Theorems 3, 4) in terms of the graph T'(A4). In the generic case
when all off-diagonal entries of the matrix A are nonzero, there are more simple
tests (Theorem 5, this is a correction of the earlier author’s results [13]). In
Sec. 4 these results are applied to obtain the main propositions of the work —
tests of existence of invariant orthants for system (1). In Sec. 5 we discuss the
relation of the results obtained with the conjecture of V. Jurdjevic and I. Kupka
on noncontrollability of the single-input system # = Az 4+ uBxz in the case of
symmetric matrices A and B.

Now we give some of the notation and definitions used in the sequel.

The set of indices X, = {0 = (01,...,00) | o = £1 Vi =1,...,n} will
be used for parametrization of orthants, i.e., sets of the form R} = {2 =
(T1,...,2n) ER" |2jo; >0Vi=1,...,n}.

A subset of the state space is called positive (negative) invariant for a vector
field or a control system if all trajectories of the field or the system starting in
this set (resp., its complement) do not leave it (resp., its complement) for all
positive moments of time. A control system is called globally controllable if any
points of its state space can be connected by a trajectory of the system (in the
positive direction).

Remark. A system is globally controllable iff it has neither positive nor neg-
ative invariant sets (except the trivial ones — the whole state space and the
empty set). Thus conditions of existence of nontrivial invariant sets are suffi-
cient conditions of global noncontrollability.



2 Sign-symmetric matrices and their graphs

Definition. An n x n matrix A = (a;;) is called sign-symmetric if a;;a;; > 0
foralle,7=1,...,n.

The role of this definition for this work is explained by Corollary 1 in the
next section.

Construction. (M. Hirsch [4]) For any sign-symmetric n x n matrix A we
construct the graph T'(A) by the following rule. The graph T'(A) has n vertices
1,2,...,n. Tts vertices i, j, i # j, are connected by the edge (4, j) iff at least one
of the numbers «a;;, a;; is nonzero. Throughout the paper we take into account
only edges that connect distinct vertices of the graph T'(A); self loops are thus
explicitly excluded from consideration. Every edge (7, ) is marked by the sign
+ or — : if a;; > 0 and aj; > 0, then the sign + is applied, and if a;; < 0
and a;; < 0, then we apply — (there can be no other combinations of signs by
virtue of sign-symmetry of A). The marked edges are called positive or negative
depending on the sign + or —. For the graph T'(4) we define the following
function s(4,j7), 4,7 = 1,...,n, @ # j : s(i,j) = 0 if the vertices 7,j are not
connected by an edge in T'(A), s(¢,j) = 1 for the positive, and s(i, j) = —1 for
the negative edge (4, 7) in the graph T'(A4).

Definition. A loop (i.e., a closed path composed of edges) of a graph is called
even (odd) if it contains an even (resp. odd) number of negative edges. A graph
is said to satisfy the even-loop property if all its loops are even.

Remark. A loop (i1,42,...,%, ik41 = é1) in the graph T'(A) is even if and only
if S(il, iz)S(iz, 23) . .S(ik, Zl) =1.

Theorem 1 (M. Hirsch [4]) If a graph T satisfies the even-loop property, then
there s a subset V of the set of its vertices such that:

a) any negative edge of the graph T has exactly one vertex in V;

b) any positive edge of the graph T has either 0 or 2 vertices in V.

In [4] an algorithm of construction of the set V is presented as well.

Below in Theorem 2 we obtain a version of Theorem 1 that gives an explicit
method of construction of the set V' and evaluates the number of such sets for
a fixed graph I'. Our argument does not formally use Theorem 1 and may be
considered as a new proof of this theorem.

Definition. Let a graph T satisfy the even-loop property and be connected (i.e.,
any two vertices of I' can be connected by a path of its edges), and let v be any
vertex of T'. A vertex of the graph T is called even (odd) with respect to v if
it can be connected with v by a path containing even (resp. odd) number of
negative edges. The set of even (odd) with respect to v vertices will be denoted

by V& (resp. V7).



Remarks. 1) Parity of a vertex p with respect to a vertex v does not depend
on a path connecting p and v: the number of negative edges in different paths
connecting p and v have the same parity since I satisfies the even-loop property.
2) By connectedness of the graph T', any its vertex is either even or odd
with respect to v, i.e., the set of all vertices of I' can be represented in the form
VF UV, and in view of the previous remark, V,;t NV~ = 0.
3) For any vertex p of the graph T'

pEVS = V=V V=V,
pEV, = Vi=Vr VT =V

since for p € V,* parities with respect to p and v coincide one with another, and
for p € V7 a point even with respect to p is odd with respect to v, and vice
versa.

Theorem 2 Let a graph I' satisfy the even-loop property.

1. If T is connected, then there are exactly two distinct subsets V' of the set
of all its vertices that satisfy conditions a), b) of Theorem 1. They have
the form V. and V7, where v is any vertex of T.

2. If T is not connected and has ¢ connected components, then there are 2°
ways of choice of the set V by independent construction in every connected
component as wn item 1.

Proof. Let the graph I' be connected and v any its vertex.

We show that the both sets V", V.~ satisfy conditions a), b) of Theorem 1.
Indeed, vertices of every negative edge have distinct parities with respect to v,
hence one of them is contained in V¥, and another in V7. And vertices of
every positive edge have the same parity with respect to v and consequently
both belong either to V& or to V7. Thus both sets V;*, V=~ satisly conditions
of Theorem 1.

Now we show that there are no other such sets. Let V be any such set. If
V = 0, then all edges of I are positive, hence V,~ = §§ = V. That is why suppose
that V # @ and choose any vertex p € V. By properties a), b) of Theorem 1,
all vertices of I' even with respect to p are contained in V', and all vertices odd
with respect to p do not belong to V', ie., V = Vp‘l'. By remark 3) before this
theorem, Vp‘l' = V;t or V7. Thus any set V that satisfies conditions a), b) of
Theorem 1 is equal to V¥ or V™.

The statement of the theorem for a connected graph T' is proved, and for a
disconnected one it is obvious. ad



3 Invariant orthants of linear vector fields
The following test of invariance of an orthant was proved in [13].

Lemma 1 Let ¢ = (01,...,05) € Xy, and let A be an n x n matriz. The
orthant R}, is positive (negative) invariant for the vector field Az if and only if

aijoio; > 0 (resp. <0) Vi#j. (2)

Corollary 1 If the field Ax has a positive or negative invariant orthant, then
the matriz A is sign-symmetric.

Proof. By virtue of (2), a;j0,05a;050; = aijajml»za]z» = ajjaj; > 0. a
Corollary 2 If there is an orthant positive and negative invariant for a field
Bz, then the matriz B is diagonal.

Proof. Let B = (b;;); choose any 1 # j, i,j = 1,...,n, and show that
b;; = 0. By virtue of Lemma 1, we have b;;0;0; > 0 and b;;050; < 0, e,
bjjo50;b;50;0; = b?jafo? = b?j < 0, whence b;; = 0. 0O
Construction. Assume that a graph I' satisfies the even-loop property and V/
is any subset of the set of its vertices that satisfies conditions a), b) of The-
orem 1. Then the index of the graph T' corresponding to the set V is the set
o= 1(01,...,0n) € Xy defined as follows: o; = +1ifi ¢ Vando; = —1ifi e V.

Remark. The index is determined both by the graph I' and by the set V.
Theorem 2 shows that for a connected graph there are exactly two indices (dis-
tinguished by the common multiplier —1). For a disconnected graph with ¢
connected components there are 2° distinct indices, each being chosen indepen-
dently for every connected component of I'.

Theorem 3 Let A be a sign-symmetric n x n matriz. The field Az has positive
invariant orthants iff its graph T'(A) satisfies the even-loop property. Then pos-
itive invariant orthants are Ry, where o is any index of the graph T(A); their
number is equal to 2°, where ¢ s the number of connected components of the

graph T(A).

Proof. Necessity. Suppose that the field Az has a positive invariant orthant
R, o= (01,...,0,) € X,. By Lemma 1, then inequalities (2) hold, that is why

sgna;; = o;0; or 0. (3)

Choose any loop (i1, 42, . .., ik, tg+1 = ¢1) in the graph T'(A). Any pair of vertices
(&1,4141), L = 1,.. ., k, is connected by an edge in T'(A), that is why s(¢;,441) £ 0



(the function s(i,j) that determines sign of the edge (¢, j) was defined at the
beginning of Sec. 2). Taking into account (3), we obtain s(i;, i141) = 04,04, ,
l=1,... k. Consequently,

s(i1,42)8(ia,3) ... s(ig, 91) = 04,045,041, 045 .. . 04,05, = 0'2»210'2»22 .. .O'ZZk =1,
i.e., the loop (i1,4a,..., 15, 41) is even.

Sufficiency. Suppose that the graph T'(A) satisfies the even-loop property,
V' is the subset of the set of its vertices defined in Theorem 1, and o is the
corresponding index. We show that the orthant R is positive invariant for the
field Az. By virtue of Lemma 1, it is sufficient to prove inequalities (2).

Choose any pair (¢,7), ¢t £ j,4,j=1,...,n.

If the vertices 7, are not connected by an edge in the graph T'(A), then
a;; = 0 and condition (2) holds.

Let the vertices ¢, j be connected by a positive edge. By the construction of
I'(A), this means that a;; > 0. Further, the positive edge (¢, j) has either zero
or two vertices in the set V. By definition of the index o, if i ¢ V, j ¢ V, then
op=0;=1andif: €V, j €V, then 0; = 0; = —1. In any case 0;0; = 1, and
condition (2) holds.

Finally, suppose that the vertices i, j are connected by a negative edge. First,
a;; < 0. And second, the negative edge (4, j) has exactly one vertex in the set
V.IfieV,j¢V, theno, =—-1,0; =1L;andif i ¢ V, j € V, then o; = 1,
o; = —1. That is why always o;0; = —1, and inequality (2) holds in this case
as well.

Consequently, the orthant R] is positive invariant for the field Az. The
sufficiency is proved. The formula 2° for the number of invariant orthants follows
from Theorem 2. ad

Remark. An orthant R} is negative invariant for the field Az iff it is positive
invariant for the field —Az. Thus we obtain

Theorem 4 Let A be a sign-symmetric n x n matriz. The field Az has negative
invariant orthants iff the graph T'(—A) of the opposite matriz —A satisfies the
even-loop property. Then negalive invariant orthants are RD where o is any
index of the graph T'(—A); their number is equal to 2°, where ¢ is the number of
connected components of the graph T'(—A) (or, which is the same, of the graph

T(A)).

Example 1. Let A = (a;;) be any 4 x 4 matrix of the form

* 4+ 0 +
4+ *x 4+ 0
0o + x — |’
+ 0 - =x



Le., a12,az1, @14, aa1, @23, azs > 0, asa, as3 < 0, a13 = az1 = aza = aqp = 0, and
diagonal entries are arbitrary. The corresponding graph T'(A) is given at Fig. 1.
The only loop (1,2,3,4) is negative in both graphs T'(A) and T'(—A). That is
why the field Az has no invariant orthants (this may also be verified by direct
inspection of 16 orthants in }R4).

2 + 3 2 + 4
+ - - N -
+ +
1 + 4 1 + 5
Fig. 1 Fig. 2

Example 2. Let A = (a;;) be any 5 X 5 matrix of the form

*x — 4+ 0 +
- x — 4+ 0
+ - x —- 4+ |,
0o + — *x -
+ 0 + = x

i.e., aiz,asi, ais, @51, @24, Ga2, a35, @53 > 0, @12, @21, as3, @32, A34, @43, a5, G54 <
0, a14 = as1 = az5 = asz = 0, and diagonal entries are arbitrary. The graph
T'(A) is given at Fig. 2; it satisfies the even-loop property. To construct the set
V choose the vertex v = 3. Then V = V;t = {1,3,5},and o = (+, —, +, —, +) is
the corresponding index of the graph T'(A). The field Az has positive invariant
orthants:

Rg:{(l‘l,...,l‘5)ER5|l‘120, ngo, l‘gZO, l‘4§0, 1‘520}
and the opposite one
REU:{(l‘l,...,l‘g,)E]Rs|l‘1§0, xQZO, l‘3§0, 1‘420, l‘5§0}

The graph T'(A) is connected, that is why there are no other positive invariant
orthants.
The graph T'(—A) has odd loops (e.g., (1,2, 3)), that is why the field Az has

no negative invariant orthants.

Remark. Example 1 shows that conditions of Lemma 4.1 [13] should be cor-
rected. This lemma states (in terms of the current work) that the field Az has
positive invariant orthants iff the graph of the sign-symmetric matrix A has no
odd loops of length three. For arbitrary sign-symmetric matrices A verification



of loops of length three only is insufficient: in Example 1 the obstruction for
existence of invariant orthants is a loop of length four. But it turns out that
statement of Lemma 4.1 [13] is valid in generic case: if all off-diagonal entries
of the matrix A are nonzero (see condition (4) below), then it is sufficient to
verify loops of length three only. That is, the following proposition holds:

Theorem 5 Let A = (a;;) be a sign-symmetric n X n matriz with
ai; 20 Vi#j. (4)

The field Ax has positive (negative) invariant orthants iff all loops of length three
of the graph T(A) (resp. of the graph T'(—A)) are even, or, which is equivalent,

aijaipag; > 0 (resp. <0) Vi£j# k£ (5)

Proof. Condition (4) implies that any two vertices in the graph T'(A) are
connected by an edge. We show that if all loops of length three are even, then
all loops of an arbitrary length are even. Choose any loop in the graph T'(A)
and represent it as a sum of loops of length three. The sum of even loops is
an even loop since negative edges of summands either annihilate in pairs and
do not enter the sum (when they lie at adherent edges of the summands) or
enter the sum (in the opposite case). Thus any loop in T'(A4) is even. Now the
statement of this theorem follows from Theorems 3, 4.

It is obvious that under condition (4) a loop of length three (4, j, k) is even
if and only if a;;a;5ar; > 0. For the graph I'(—A) this inequality turns into
(—aij)(—ajn)(—ak) = —a;jajrar; > 0. O

Remark. Condition (4) may be changed by the weaker requirement that a;; # 0
or aj; # 0 for any i # j. Then the inequalities a;;a;;a;5 > 0 (resp. < 0), which
characterize parity of the loop (4,7, k), should be changed by the inequalities
s(i,7)s(4, k)s(k,?) > 0 (resp. < 0) with the use of the function s(-,-) that
determines sign of edges.

4 Invariant orthants of bilinear systems

Lemma 2 If system (1) has a positive or negative invariant orthant, then the

matriz A 1s sign-symmetric, and the matrices B;, i = 1,...,m, are diagonal.

Proof. We show that an orthant positive (negative) invariant for system (1):
1. is positive (resp. negative) invariant for the field Ax;

2. both positive and negative invariant for any field Bz, ¢ =1,...,m.



Statement 1. For uy; = us = ... = u, = 0 trajectories of system (1) are
trajectories of the field Ax.

Statement 2. For w; # 0 and all the rest w3 = w2 = ... = uy, = 0 we
have Az + Z;n:l u;jBjz = Az + v; Biz = (Jui|Az + sgnu; Biz)/|u;|. A positive
(negative) invariant orthant of the field Az 4+ u; Bz is positive (resp. negative)
invariant for the field |u;| A2 +sgn u; Bz. Passing to the limits u; — 40, u; — —0
and using continuous dependence of solution of a differential equation from the
right-hand side, we obtain that the orthant under consideration is both positive
and negative invariant for the field B;z.

Statements 1, 2 are proved, and by virtue of Corollaries 1, 2, this lemma
follows. ad

Theorem 6 Let A, By,..., By be n x n matrices. System (1) has positive
(negative) invariant orthants iff the following conditions are satisfied:

1. the matriz A is sign-symmetric;
2. the matrices By, 1 = 1,...,m, are diagonal;
3. the graph T(A) (resp. T(—A)) satisfies the even-loop property.

Then positive (negative) invariant orthants are R, where ¢ is any index of
the graph T(A) (resp. T(—A)), and their number is equal to 2°, where ¢ is the
number of connected components of the graph T'(A).

Proof. Necessity. Items 1 and 2 follow from Lemma 2. Item 3 follows from
Theorems 3, 4.

Sufficiency. All orthants in R"™ are both positive and negative invariant for
the fields B;x with the diagonal matrices B;. Then the existence of invariant
orthants and the formula for their number follow from Theorems 3, 4. a

Remarks. 1) If we assume in Theorem 6 that condition (4) holds, then by
Theorem 5 we can restrict ourselves to verification of evenness of loops of length
three only, i.e., of inequalities (5).

2) An index o of the graph T'(A) is uniquely determined by a subset V' of
the set of vertices I'(A) that satisfies conditions a), b) of Theorem 1. Theorem 2
describes all such sets and gives a method of their construction. Thus we have
a constructive method of enumeration of all invariant orthants.

5 Symmetric matrices and controllability

In this section we discuss the relation of our results with the following conjecture
proposed by V. Jurdjevic and I. Kupka [6].



Conjecture. If the matrices A and B are symmetric, then the single-input
system

t=Av+uBz, z€R"\{0}, ueR, (6)
is not globally controllable in R™ \ {0}.

Remark. There is an orthogonal transformation of R"™ that diagonalizes a
symmetric matrix B; then a symmetric matrix A turns into a symmetric one.
That 1s why we can assume in the conjecture of V. Jurdjevic and I. Kupka that
B is diagonal and A is symmetric.

Results of the previous section easily imply that this conjecture holds in
dimensions 2 and 3: in fact, if A is sign-symmetric and B is diagonal, then
system (6) has a positive or negative invariant orthant.

Even for n = 4 there are symmetric matrices A for which the field Az and
system (6) have no invariant orthants (see Example 1). Here the question of
global controllability, 1.e., of absence of any invariant sets, is left open. But for
symmetric matrices A with at least one of the graphs T'(A4), T'(—A) satisfying
the even-loop property the conjecture of V. Jurdjevic and I. Kupka is now
proved. However, in these cases not the symmetry but the sign-symmetry of A
is essential.

Orthants are a very special kind of invariant domains for bilinear systems (6).
But the following simple question seems to be open. Suppose that

B =diag(b1,...,by), b #bj, i #j.

Is it true that if system (6) has no invariant orthants and everywhere satisfies
the necessary Lie algebra rank controllability condition, then it has no invariant
domains at all, i.e., it is globally controllable in R™ \ {0}? In dimension 2 the
answer is positive, but in greater dimensions it seems to be unknown.

One may lift system (1) to Lie groups SL(n,R), GL4(n,R), or homogeneous
spaces of these groups, and study its global controllability on these state spaces
(see [3, 6, 14] for this approach). Tt is well known that noncontrollability of a
bilinear system on R"™ \ {0} implies noncontrollability on SL(n,R), GL4 (n,R)
and their homogeneous spaces. Thus for matrices A, By,..., By, satisfying
conditions of Theorem 6 system (1) is not controllable on these Lie groups and
their homogeneous spaces.
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