Survey on Controllability of Invariant Systems on Solvable
Lie Groups

Yuri L. Sachkov

ABSTRACT. Known and new results on controllability of right-invariant sys-
tems on solvable Lie groups are presented and discussed. The main ideas
and technique used are outlined, illustrating examples are given. Some open
questions are suggested.

1. Introduction

Controllability properties of right-invariant systems on Lie groups have been
a subject of active research in the mathematical control theory during the last
25 years. This question is motivated both by important applications (mechanics,
geometry, bilinear systems) and by essential links with various branches of math-
ematics outside control theory (Lie groups and Lie algebras, differential geometry,
Lie semigroups, dynamical systems).

The problem was stated and the basic properties of right-invariant systems
and their reachable sets were established by R.W. Brockett [8], and V. Jurdjevic
and H.J. Sussmann [20]. Controllability theory for various classes of Lie groups
different from solvable ones was developed by V. Jurdjevic and H.J. Sussmann [20]
(compact Lie groups), V. Jurdjevic and I. Kupka [21, 22], J.P. Gauthier and
G. Bornard [11], J.P. Gauthier, I. Kupka and G. Sallet [12], R.El Assoudi and
J.P. Gauthier [2, 3], R.El Assoudi, J.P. Gauthier, and I. Kupka [4], F. Silva
Leite and P.E. Crouch [35], L. A.B. San Martin [33], L. A.B. San Martin and
P. A. Tonelli [34] (semisimple Lie groups), B. Bonnard, V. Jurdjevic, I. Kupka and
G. Sallet [7] (semidirect products of vector Lie groups with compact Lie groups),
J. Hilgert [14] (reductive Lie groups).

The aim of this paper is to describe the state of the art in controllability on solv-
able Lie groups: to cover all results published, outline the main ideas and techniques
used, and give illustrating examples. Notice that the case of solvable Lie groups is
incompletely covered by surveys and textbooks on control theory and Lie semigroup

theory (R.W. Brockett [9], G. Sallet [30, 32], A. A. Agrachev, S.V. Vakhrameev
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and R.V. Gamkrelidze [1], I. Kupka [24], J. Hilgert and K. H. Neeb [15], V. Jurd-
jevic [23]).

The structure of the paper 1s as follows. In Section 2 we introduce the general
notation and definitions. In Section 3 we consider an important special class of
solvable Lie groups — nilpotent ones. Subsection 3.1 is devoted to the control-
lability criterion for arbitrary right-invariant systems on a nilpotent Lie group by
J. Hilgert, K. H. Hofmann and J.D. Lawson [13]. In Subsection 3.2 we present and
discuss the controllability test for affine in control systems on simply connected
nilpotent Lie groups due to V. Ayala Bravo [6]. In Section 4 we present control-
lability conditions for Lie groups with cocompact radical; this class of Lie groups
includes all solvable Lie groups. This basic result is due to J. D. Lawson [25]. In
Section 5 we consider a subclass of solvable Lie groups called completely solvable
ones and a generalization of the controllability test of Subsection 3.2 from nilpotent
to completely solvable Lie groups. Section 6 is devoted to single-input systems on
Lie groups that differ from their derived subgroups; this class contains all solv-
able Lie groups. In Subsection 6.1 we give necessary and sufficient controllability
conditions for such systems. These results yield the characterization of controlla-
bility on metabelian Lie groups presented in Subsection 6.2. In Subsection 6.3 we
study right-invariant systems on a particular matrix metabelian Lie subgroup of
the group of affine transformations of the n-space, and in Subsection 6.4 we treat
bilinear systems in R™ that are projections of right-invariant systems on this matrix
group. Finally, in Section 7 we classify single-input controllable systems on simply
connected solvable Lie groups up to dimension 6, inclusive. The details on original
sources are collected in Section 8; no references to authors are made immediately
in the text. Some open questions related to the results presented are discussed in
Section 9.

2. Definitions and basic facts

Let G be a Lie group and L its Lie algebra (i.e., the Lie algebra of right-invariant
vector fields on ().

A right-invariant control system on G is an arbitrary subset I' C L. An im-
portant particular class of systems is formed by systems affine in control I' =
{A+35"" uiB; |u € R}, where A, By, ..., By, are some elements of L.

The attainable set A of a system I is the subsemigroup of G generated by the
set

exp(R4I) = {exp(tX) | X €T, t e Ry }.

A system T is called controllable if A = G.

The basic conditions necessary for controllability of a right-invariant system
[ on a Lie group G were given by V. Jurdjevic and H.J. Sussmann [20]: the Lie
group G should be connected and the system I' should satisfy the rank controllability
condition, i.e., the Lie algebra Lie(T") generated by the system I' must coincide with
the whole Lie algebra L. That is why these conditions may be assumed without loss
of generality. In particular, in the sequel all Lie groups are supposed connected.

The derwed series of a Lie algebra L is constructed as follows:

LW =0, 1], L® =W, LW, .. LW =20 =Y . ieN.

LU is the derived subalgebra of L, and the corresponding subgroup denoted by G()
is the derived subgroup of . The algebra L is called solvable if its derived series
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stabilizes at zero:
Lo>LW oL@ 5. o1 = {0}
for some N € N. Finally, a Lie group G is solvable if its Lie algebra L is solvable.

We denote topological closure and interior of a set M by cl M and int M re-
spectively.

3. Nilpotent Lie groups

In this section we present controllability conditions for right-invariant systems
on nilpotent Lie groups. Recall that a Lie algebra L is called nilpotent if its de-
scending central series

L(l) = [L,L], L(z) = [L,L(l)], RN L(i) = [L,L(i_l)], oo, TEN]
stabilizes at zero:
LDL(l) DL(Q) D...DL(N) = {0}
for some N € N. Any nilpotent Lie algebra is solvable since L(;y D LW i e N.
Another equivalent characterization of nilpotency of L is that all adjoint opera-

tors ad #, € L, are nilpotent and thus have zero spectrum (this is important in
Section 5).

3.1. Arbitrary systems. Controllability of a right-invariant system I' C L
on a nilpotent Lie group G is completely characterized in terms of the wedge, 1.e.,
the topologically closed convex cone W(I') C L generated by T'. Tt is standard that
I' and W (T') are controllable or noncontrollable simultaneously.

THEOREM 3.1. Let G be a nilpotent Lie group with Lie algebra L and let W
be a wedge in L which generates L as a Lie algebra. Then W is controllable on G
off one of the following conditions holds:

1. inty_w W N LM £,

2. intel(LW 4+ W) nexp(e) £ 0.

REMARK. Here intyy_yw W is the interior of the wedge W relative to the vector
space W — W generated by W, and e 1s the identity of the Lie group G.

The sufficiency in Theorem 3.1 1s based on the description of maximal open
subsemigroups S of nilpotent Lie groups in terms of their tangent objects

L(S)={ze L|exp(Ryx) Ccl(S)}.

An open subsemigroup S of a Lie group G is proper, i.e., S # G if and only if
e ¢ S. Hence the set of open subsemigroups in G is inductive, and any proper
subsemigroup is contained in a mazimal one.

THEOREM 3.2. Let G be a nilpotent Lie group and let S be a mazrimal open
proper subsemigroup of G. Then L(S) is a halfspace bounded by a hyperplane algebra
in L(G).

For necessity in Theorem 3.1, the Hahn-Banach theorem gives that W+ L1 is
contained in a halfspace in L; then exp (int (W + L(l))) 1S a proper open semigroup
of G, which implies that exp(1¥) is contained in a proper subsemigroup of G.

The controllability test of Theorem 3.1 is essentially nilpotent. This result is
false for the group SL(2,R); it also fails in the following solvable non-nilpotent
example.
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ExAMPLE. Let G be the (unique) two-dimensional connected simply connected
non-abelian Lie group, which is represented by the matrices

(5 1) 1e>00en)

The Lie group G is solvable but not nilpotent. Its Lie algebra has the form

L:{(S g)|a,b€R}.

Consider the following wedge in L:

a b
w={(2 8 Yieen oz},

Direct computations show that

@) ={ (5 1) 1e>0 20

which is a proper subsemigroup of G, thus W is not controllable on G. On the
other hand, it 1s easy to see that both conditions 1, 2 of Theorem 3.1 hold for the
wedge W in this example.

3.2. Affine systems. For right-invariant systems affine in control

(3.1) r:{A+ZuiBi|uieR}cL,

i=1
on simply connected nilpotent Lie groups there is a simple controllability criterion
in terms of the Lie subalgebra Ly of L generated by the non-drift vector fields:

Lo = Lie(Bl, N ,Bm),
and the connected subgroup Gy of G with Lie algebra Lg.

THEOREM 3.3. Let GG be a simply connected nilpotent Lie group. Then sys-
tem (3.1) is controllable on G iff Ly = L.

Sufficiency of the condition Ly = L for controllability of ' is a well-known fact
valid for arbitrary Lie groups (. So the essential part is necessity. Here the key
role is played by the necessary controllability conditions in terms of the notion of
a symplectic vector.

Consider the co-adjoint representation p* of the group i in the dual space
L* of L. For any covector A € L*, the co-adjoint orbit 85 of A by the p* action
0x = p&(A) is a smooth submanifold of L* diffeomorphic to the homogeneous space
G/ E\, where E) is the isotropy subgroup of A\, £y = {g € G | p;(A\) = A }. Further,
the system T' can be projected from G onto the homogeneous space G/FEy ~ 05, and
controllability of I' on G obviously implies controllability of its projection I'y on
G/E,. This leads to necessary controllability conditions in terms of the co-adjoint
representation.

DEFINITION. A € L* is called a symplectic vector for w € L if the co-adjoint
orbit 5 is not trivial and {w, 3y > 0 for all 5 € 6.

(We denote by (-, -} the pairing of a vector and covector.)
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THEOREM 3.4. If there is a vector field & € L belonging to the centralizer of
the subalgebra Lo such that the nonzero vector field [A, €] has a symplectic vector,
then system (3.1) cannot be controllable on G.

In fact, the existence of such vector field £ € L yields that the function
fe v Ox=R, B fe(B) == 8)

is strictly increasing on the trajectories of projection of I onto the co-adjoint orbit
@5. Indeed, the solution of the Cauchy problem ¢(¢t) = A(g(¢)), ¢(0) = go is given
by ¢(t) = exp(tA)go. Further, the function

h(t) = Ad (g(t)™!) = Ad (g5") o exp(~tad A)
has the derivative
h(t) = Ad (97') oexp(—tad A) o (—ad A) = — Ad (g(t)~!) o ad A.
Now for A € L* the co-adjoint action p* of the element ¢ € GG is determined by
£ (0 = Ad” (57) .

consequently, for any £ € L, A € L*

LIl = — e (V) = — (e Ad” (g()7) Y
= —%(Ad (g(t)_l) &N ={Ad (g(t)_l) oad A(&), A)

= (4], pgey(N)-

Thus if A is a symplectic vector for [A,¢], then f is increasing along co-adjoint
orbits of trajectories of the field A. If in addition ad & vanishes on the subalgebra
Lp, then the same holds for trajectories of the whole system I', which is impossible
for a controllable system.

Another important fact for necessity in Theorem 3.3 1s the following proposition
related to hypersurface systems, i.e., affine systems (3.1) with Ly a codimension one
subalgebra of L.

THEOREM 3.5. Let T' C L be an affine system (3.1) on G such that Ly is a
codimension one ideal of L.

1. If Gy is closed in G, then T is controllable iff A ¢ Ly and G/Gqy ~ S*.
2. If Gy is not closed in G, then T is controllable iff A ¢ Ly.

REMARK. In fact, the previous theorem holds without the assumption that Lg
is an ideal; this is important for a generalization of Theorem 3.3 to a subclass of
solvable Lie groups including nilpotent ones (see Section 5 below).

Now we outline the scheme of proof of necessity in Theorem 3.3. Suppose the
system I is controllable on the group (G. Then the theory of symplectic vectors im-
plies that the subalgebra Lg is an ideal of L. The rank condition for I' is satisfied:
Lie(T') = Lie(A, Lg) = L, hence Ly has codimension 0 or 1 in L. But the codi-
mension one case is impossible since then Theorem 3.5 yields G/Go ~ S*, which
contradicts simple connectedness of G. Thus Ly = L, and necessity in Theorem 3.3
follows.
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ExAMPLE. Let GG be the Heisenberg group of dimension 2p 4+ 1. It may be
represented as a subgroup of GL(p 4+ 2,IR) generated by the matrices

d+X;, [d+Y;, Z, i=1,...,p,

where
Xi=Fri1, Yi=FEiy1p12, i=1,...,p.

(Id denotes the identity matrix, and Ej; stands for the square matrix with all zero
entries except one unit in the i-th row and the j-th column.)
The Lie algebra L of (G is spanned by the matrices

Xia Yia Za izla"'apa
with the nonzero brackets
[XZaYZ]:Za Zzlaap

The Heisenberg group G is simply connected and nilpotent, hence Theorem 3.3
describes all controllable systems on G.

4. Lie groups with cocompact radical

Denote by Rad (G the radical of a Lie group (| i.e., the maximal solvable normal
subgroup of G. In this section we suppose that a Lie group GG has cocompact radical,
that is, the quotient group K = G/ Rad G is compact. This wide class of Lie groups
contains:

e solvable Lie groups (K = {e}),
e compact Lie groups,
e semidirect products of a vector space V with a compact Lie group (V C

Rad G).

The next theorem gives a Lie-algebraic description of controllability on such
Lie groups, complete in the simply connected case.

THEOREM 4.1. Suppose that G/ Rad G is compact, and let T C L be a system
satisfying the rank condition Lie(T') = L. IfT' is not contained in any half-space of
L with boundary a subalgebra, then T is controllable on GG. The converse holds if G
1s simply connected.

This result is a consequence of the following classification of maximal subsemi-
groups of Lie groups with cocompact radical.

DEFINITION. A subsemigroup M of G is called a mazimal subsemigroup of G
if the only subsemigroups containing M are M and G, and M is not a subgroup.

THEOREM 4.2. The mazimal subsemigroups M with non-empty interior of a
stimply connected Lie group G with G/ Rad G compact are in one-to-one corre-
spondence with their tangent objects L(M), and the latter are precisely the closed
half-spaces with boundary a subalgebra. Further, M is the semigroup generated by
exp(L(M)).

Theorem 4.1 follows from Theorem 4.2 since the attainable set of any noncon-
trollable right-invariant system I' C L, Lie(T') = L, is a proper subsemigroup of G
contained in some maximal subsemigroup with non-empty interior.
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5. Completely solvable Lie groups

In this section we suppose that T' is a system affine in control as in (3.1).

DEFINITION. A solvable Lie algebra L is called completely solvable if all adjoint
operators ad z, x € L, have real spectra. A Lie group is completely solvable if 1t has
completely solvable Lie algebra.

(Such Lie algebras and Lie groups are also called triangular over R or algebras,
resp. groups, of type (R) [36].)

The triangular group T(n) (see the example below) is completely solvable, as
well as any of its subgroups. Nilpotent Lie groups are completely solvable since
adjoint operators in nilpotent Lie algebras have zero spectrum. On the other hand,
e.g., the group of motions of the plane E(2) is solvable but not completely solvable

(the group E(2) and its simply connected covering E(2) are treated in Section 6.3).

It turns out that the controllability criterion for systems affine in control on
nilpotent Lie groups (Theorem 3.3) is valid for completely solvable Lie groups as
well.

THEOREM 5.1. Let G be a simply connected completely solvable Lie group.
Then system (3.1) is controllable on G iff Ly = L.

Theorem 5.1 is based on the following general characterization of controllability
for hypersurface systems.

THEOREM 5.2. Let T C L be an affine system (3.1) on G such that Ly is a
codimension one subalgebra of L.

1. If Gy is closed in G, then T is controllable iff A ¢ Ly and G/Gqy ~ S*.
2. If Gy is not closed in G, then T is controllable iff A ¢ Ly.

REMARK. Theorem 5.2 generalizes the analogous criterion of Theorem 3.5 with
the additional assumption that Lg is an 1deal of L.

Theorem 5.2 implies the following hypersurface principle — a general necessary
controllability condition for simply connected Lie groups.

THEOREM 5.3. Let G be simply connected. Suppose that there exists a codi-
mension one subalgebra l of L containing Ly. Then system (3.1) is not controllable.

The sense of this proposition is that if the codimension one subalgebra [ D Lg
exists, then attainable set of I' lies “to one side” of the connected codimension one
subgroup of (G corresponding to [: by simple connectedness of (&, this codimension
one subgroup separates ¢ into two disjoint parts.

Now we outline the proof of the controllability test of Theorem 5.1. Sufficiency
of Ly = L for controllability is obvious, while the necessity follows from Theorem 5.3
and the observation that any proper subalgebra of a completely solvable Lie algebra
L 1s contained in a codimension one subalgebra of L.

ExXAMPLE. Let GG = T(n) be the Lie group of all nxn upper triangular matrices
with positive diagonal entries. T(n) is connected, simply connected and completely
solvable. Its Lie algebra L consists of all n x n upper triangular matrices. By
Theorem 5.1, an affine system I' is controllable on G if and only if Ly = L. The
analogous result holds for any Lie subgroup of the triangular group T(n).
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6. Lie groups differing from their derived subgroups

Lie groups G which satisfy the condition G # G make up a wide class
containing solvable Lie groups. On the other hand, no semisimple Lie groups belong
to this class.

In this section we present controllability conditions for single-input systems

(61) F:{A+UB|UER}:A+RB

on such Lie groups.

Throughout this section we make the following assumptions:

1. L# LM,

2. the adjoint operator ad B|; ) has simple spectrum.

Notice that while the first assumption is obviously imposed by the class of Lie
groups under consideration, the second one is added for simplicity of exposition
and can be removed.

To formulate the results we need the following notation. Spectra of the adjoint
operators in the first and second derived subalgebras ad B|;u) and ad B|j ) are
denoted by Sp(l) and Sp(z) respectively. For any eigenvalue a € Sp(l) the eigenspace
of ad Bl ) corresponding to a is denoted by L(a). In view of simplicity of the
spectrum of ad B| (1, there is the following decomposition of the derived subalgebra
of L into a direct sum of one- and two-dimensional eigenspaces:

L0 =S L(a) [a € $p™), Tma > 0}
If B¢ L™ and dim L) = dim L — 1, then we have
L=mBe LM =RB&> {L)|ac s, Ima>0}
and the corresponding decomposition for a vector A € L:
A=Ap+ Z{A(a) € L(a) |aeSpM, Ima>0}.
(The signs @ and S°% above denote direct sums of vector spaces.)

6.1. Controllability conditions. There are restrictive necessary controlla-
bility conditions for single-input systems on simply connected Lie groups GG # a,

THEOREM 6.1. Let a Lie group G be simply connected and G # G If system
(6.1) is controllable, then:

1. dim LM =dim L — 1,

2. B¢ LW,

3. Sp(l) NR C Sp(z),

4. A(a) #0 for all a € Sp\ sp?.

Notice that controllability of (at least one) single-input system on a simply
connected Lie group G # G implies restriction 1, dim G = dim G — 1, on the
Lie group, not on the system. In fact, for solvable Lie algebras L restriction 3 of
Theorem 6.1 depends on L but not on the system (provided that conditions 1 and
2 hold). This restrictive force of necessary conditions of Theorem 6.1 is crucial
for classification of controllable systems on small-dimensional simply connected
solvable Lie groups in Section 7.

Theorem 6.1 is based on the rank controllability condition and the necessary
controllability condition of Theorem 5.3. The justification of the fact that these
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two results should be enough to give necessary controllability conditions on simply
connected solvable Lie groups is provided by the general controllability test for
simply connected Lie groups with cocompact radical of Theorem 4.1.

There are sufficient controllability conditions close to the previous necessary
ones in the case of simply connected Lie groups.

THEOREM 6.2. Suppose that the following conditions are satisfied for Lie alge-
bra L of a Lie group G and system (6.1):

1. dim LM =dim L — 1,

2. B¢ LW,

3. Sp(l) NR C Sp(z),

4. A(a) #£ 0 for all a € SpV\R.

5. SpMNRB =0 or Sp™ c {Rez > 0} or Sp™Y) c {Rez < 0}.
Then system (6.1) is controllable on G.

This theorem is obtained with the help of the Lie saturation technique in-
troduced by V. Jurdjevic and I. Kupka [22] (see also G. Sallet [31] and V. Ju-
rdjevic [23]): a sequence of increasing lower bounds of the tangent cone to the
attainability set at the identity is shown to stabilize at the whole Lie algebra L.

The above controllability conditions for Lie groups G # G yield complete de-
scription of controllability for several particular classes of Lie groups: metabelian
ones, some subgroups of the group of affine transformations of the n-space, and
small-dimensional simply connected solvable Lie groups. These results are pre-
sented in the following subsections and in Section 7.

6.2. Metabelian groups. Lie algebras L having derived series of length 2:
L> LW 1® =0},

are called metabelian. A Lie group with a metabelian Lie algebra is also called
metabelian.

A metabelian Lie algebra is obviously solvable. Thus results of the previous
subsection yield controllability conditions for metabelian Lie groups.

THEOREM 6.3. Let G be a metabelian Lie group. Then the following conditions
are sufficient for controllability of system (6.1) on G:

1. dim L™ =dimL — 1,

2. B¢ LW,

3. SpUNR =0,

4. A(a) #0 for any eigenvalue a € Spth.
If the group G s simply connected, then conditions 1 — 4 are also necessary for
controllability of system (6.1) on G.

6.3. Semidirect products. Let V be a real finite-dimensional vector space,
dimV = n, and M a nonzero linear operator in V. Consider the metabelian
Lie algebra L(M) which is the semidirect product of the abelian Lie algebra V
with the one-dimensional Lie algebra R M. This Lie algebra can be represented by
(n+ 1) X (n+ 1) matrices:

(6.2) LM@:{(%tS)HERJEE}CQW+LM.
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The connected Lie subgroup of GL(n + 1,IR) corresponding to L(M) is denoted
by G(M). Tt is the semidirect product of the vector Lie group R” with the one-
dimensional Lie group G; = {exp(M?) |t € R }. Elements of the group G(M) are

the matrices
exp(Mt) p
0 1

thus G(M) may be viewed as a subgroup of the group of affine transformations of
the n-space generated by the one-parameter group of automorphisms G; and all
translations p € R™. The group G(M) is not simply connected iff the one-parameter
subgroup (' is periodic, which obviously occurs iff

), telR, peR",

the matrix M 1s semisimple,

Sp(M) =rir - (ki,... k,) forsomer R, (ki,..., k,) €Z". }

If conditions (6.3) hold, then a controllability test on G(M) is given by the re-
sult of B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet [7] for Lie groups that are
semidirect products of vector spaces with compact Lie groups. Otherwise the con-
trollability test for simply connected metabelian Lie groups (Theorem 6.3) implies
the following.

(6.3)

THEOREM 6.4. Suppose that conditions (6.3) are violated. System (6.1) is con-
trollable on the group G(M) if and only if the following conditions hold:

1. Sp(M)N R =0,

2. B¢ LW,

3. span(B, A, (ad B)A, ... (ad B)"~1A) = L.

REMARK. Suppose that conditions (6.3) hold, i.e., the group G(M) is not sim-
ply connected. Then conditions 1-3 of the previous theorem are necessary and

——

sufficient for controllability of system (6.1) on G(M) — the simply connected cov-
ering of G(M). And for the group G(M) itself conditions 1-3 are then sufficient
for controllability.

EXAMPLE. Let GG = E(2) be the Euclidean group of motions of the plane RZ.
It can be represented as the group of 3 x 3 matrices of the form

cost —sint s
sint cost ss |,
0 0 1

with the rotation matrix and translation vector respectively

( cost —sint ) ESO(?) fort e®, ( 21 ) cR2

sint  cost 5

The corresponding matrix Lie algebra L is spanned by the matrices

0 -1 0 0 0 0 00 1
e=[1 0 o}, y={o0oo0o 1], z2=[0 0 0],
0 0 0 0 0 0 0 0 0

and has form (6.2):
0 -1
L_MM%<M_<1 0).
It is solvable (in fact, metabelian):

LM =span(y, z) D L = {0},
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but not completely solvable:
Sp(ad ) = {+4, 0}.

The Lie group E(2) = G(M) is connected but not simply connected, compare with
(6.3).
Consider the system T' = A4+ R B on E(2) — the simply connected covering of

E(2). A complete characterization of controllability of T on E(2) is derived from
the remark after Theorem 6.4:

THEOREM 6.5. System (6.1) is controllable on E(2) if and only if the vectors
A, B are linearly independent and B ¢ span(y, z).

Compare the controllability conditions for E(2) with the following conditions
for E(2) (derived from Theorem 1 [7]):

THEOREM 6.6. System (6.1) is controllable on E(2) if and only if the vectors
A, B are linearly independent and {A, B} ¢ span(y, z).

6.4. Bilinear systems. Global controllability conditions for bilinear systems
of the form
* = udz + b, reR" wuelkR, (%)
where A is a constant real n x n matrix and b € R”, are obtained with the help of
results for the matrix group of the previous subsection.
The system X may be rewritten as the following bilinear system in the hyper-
plane {z,4; = 1} C R**TL

- 0D (e o

with the matrices

— 0 b — A 0

A_<0 0),B—<0 O)EL(A).
Moreover, ¥/ is projection of the single-input right-invariant system I' = A+RB C
L(A) on the matrix group G(A) onto the hyperplane {z,,+1 = 1}. Hence controlla-
bility of T on G/(A) implies global controllability of ¥ in the hyperplane {z, 4+, = 1}
and thus global controllability of ¥ in R™.

On the other hand, necessary controllability conditions for ¥ can easily be

obtained by studying codimension 1 and 2 invariant spaces of this system in R”.
This gives the following controllability test for X:

THEOREM 6.7. The system X is globally controllable on R™ if and only if the
following conditions hold:

1. the matriz A has a purely complex spectrum,

2. span(b, Ab, ... K A"~1b) = R™.

7. Small-dimensional solvable Lie groups

Given a Lie algebra L, there is the “largest” connected Lie group G having Lie
algebra I — the simply connected one. All other connected Lie groups with Lie
algebra L are “smaller” than GG in the sense that they are quotients G/C, where
C' 1s a discrete subgroup of center of (G. A right-invariant system I' C L may thus
be considered on any of these groups, and the simply connected group G is the
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hardest among them to control. Hence given a right-invariant system I' on a Lie
group (or a homogeneous space of a Lie group) H, it is natural first to study its
controllability on the simply connected covering H of H. If T is controllable on f],
then it is obviously controllable on H (and on all its homogeneous spaces); in the
opposite case one should use particular geometric properties of H (e.g., existence of
periodic one-parameter subgroups) to verify controllability of T on H. Tt is obvious
and remarkable that controllability conditions on a simply connected Lie group G
should have a completely Lie-algebraic form: they are fully determined by the Lie
algebra L and its subset T' (see, e.g., Theorems 3.3, 5.1, 6.1, 6.3, 6.4).
This motivates the following definition.

DEFINITION. A system I' C L is called controllable if 1t is controllable on the
(unique) connected simply connected Lie group with Lie algebra L.

And the next definition makes sense at least for solvable Lie algebras in small
dimensions.

DEFINITION. A Lie algebra L is called controllable if there are A, B € L such
that the system I' = A + R B is controllable.

Indeed, it turns out that controllability conditions on solvable Lie groups (Sec-
tions 4 and 6) imply that for solvable small-dimensional Lie algebras L:

e existence of a controllable single-input system I' C L, i.e., controllability of
L, 1s a strong restriction on L;

e if L is controllable, then almost all pairs (A4, B) € L x L give rise to control-
lable systems I' = A + R B;

e controllability of a system I' C I depends primarily on L but not on I'.

Moreover, these results yield a complete description of controllability in small-
dimensional solvable Lie algebras presented in the following subsections.

Up to dimension 6 inclusive we describe all solvable Lie algebras L that are
controllable, and give controllability tests for single-input systems ' = A+ RB C L
(the only gap in this picture is the class Lg rv of six-dimensional Lie algebras not
completely studied).

The general “bird’s-eye view” of controllable small-dimensional solvable Lie
algebras is as follows:

dim L = 1: the (unique) Lie algebra is controllable;
dim L = 2: the two Lie algebras are noncontrollable;
dim L = 3: there is one family of controllable Lie algebras Ls(A), A € C\ R;
dim L = 4: there is one family of controllable Lie algebras L4(A), A € C\ R;
dim L = b: there are two families of controllable Lie algebras:

L. L5,I(/\a/i)a Ap€ C\R A #p, i,

2. L57[](/\), AE C\R,
dim L = 6: there are five families of controllable Lie algebras:

L. L6,I(/\a/i)a Ap€ C\R A # i,
Lorr(\ g, k), At € C\ R, Re X = Rep, A # g, j1, k € R\ {0},
Lorr(N k1), N € C\ (RUIR), k,l € R, k*+1* #0,
Lov A k1), A€ C\ (RUIR), kIl eR, k*+1*>#0,
Lev(A k), € C\ (RUIR), k,le R, k*+1*£0,
and one exceptional class L rv (bi), b € R\ {0}, containing both controllable
and noncontrollable Lie algebras.

Ot o QO N
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All controllable Lie algebras L are presented by a scheme in the complex plane C
containing eigenvalues of the adjoint operator ad B|; ), B € L'\ LM and arrows
between these eigenvalues describing Lie brackets between eigenvectors of the op-
erator ad B|; ) (these schemes are given at the very end of this section). Notice
that for solvable Lie algebras L with codimension one subalgebras L(1) (and only
such solvable Lie algebras may be controllable, see condition 1 of Theorem 6.1),
spectra of all adjoint operators ad B|; ), B € L\ LM are homothetic with respect
to the origin 0 € €, and the homothety equivalence class of spectra of ad B|; ),
B e L\ LW is determined not by B € L\ L") but by L itself (in fact, by the
isomorphism class of L).

Now we present the classification of controllability in small-dimensional solvable
Lie algebras. These results are obtained by virtue of controllability conditions of
Sections 4 and 6.

7.1. One-dimensional Lie algebras. The unique one-dimensional Lie alge-
bra is abelian and isomorphic to R.

THEOREM 7.1. The one-dimensional Lie algebra R s controllable.
A system I' = A+ RB C R is controllable iff B # 0.

7.2. Two-dimensional Lie algebras. There are two nonisomorphic two-
dimensional Lie algebras: abelian R?  and solvable non-abelian Sy = span(z, y),
(e, 9] =y

THEOREM 7.2. Both two-dimensional Lie algebras R? and So are not control-
lable.

7.3. Three-dimensional Lie algebras.

ConNsTRUCTION. The Lie algebra Lg(A), A € C\ R, Fig. 1.

Ls(A) = span(z, y, z),
—b .
aJd$|span(y,z) = ( Z a ) s A=a+ b1

~ The Lie algebra L3()) is schematically represented in Fig. 1 by the eigenvalues
A, A € C and realifications of the eigenvectors y, z € Lz(A) of the adjoint operator

ad l‘|span(y,z)~

THEOREM 7.3. A three-dimensional solvable Lie algebra is controllable iff it is
isomorphic to Lz(A), A € C\R.

THEOREM 7.4. Let L = Lz(A), A € C\ R, and let A,B € L. The system
I' = A+ RBC L is controllable iff the following conditions are satisfied:

1. B¢ LM,

2. the vectors A and B are linearly independent.

7.4. Four-dimensional Lie algebras.

ConNsTRUCTION. The Lie algebra Li(A), A € C\ R, Fig. 2.
L4(A) = span(x, Y, z, w)a

a —b 0
aJdl‘|spar‘1(y,z,w) = b a 0 s A=a+ bl,
0 0 Z2a

[y, 2] = w.
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The arrows in the schematic representation of the Lie algebra L4(A) in Fig. 2
mean that Lie bracket of the vectors y and z gives the vector w.

THEOREM 7.5. A four-dimensional solvable Lie algebra is controllable iff it is
isomorphic to Ly(A), A € C\R.

THEOREM 7.6. Let L = L4(A), A € C\ R, and let A,B € L. The system
I' = A+ RBC L is controllable iff the following conditions are satisfied:

1. B¢ LM,
2. A(\) £ 0.

7.5. Five-dimensional Lie algebras.

CoNSTRUCTION. The Lie algebra Ls r(A, p), A, p € C\ R, Fig. 3.

L5VI(Aa /’L) = span(x, Y, 2, u, U),

a —=b 0 0

b 0 0 . .
aJdl‘|spar‘1(y,z,u,v) = 0 8 e —d s A=a+ bl, H=c+ di.

0 0 d ¢

CoNsTRUCTION. The Lie algebra Ls rr(A), A € C\ R, Fig. 4.

LS,II(A) = Span($a Y, z,u, U),

a —=b 0 O

b a 0 0 .
aJdl‘|spar‘1(y,z,u,v) = 1 0 a —b s A=a+bi.

0 1 b a

The circles around the eigenvalues A, A in Fig. 4 mean that they have double
algebraic multiplicity. (Notice that according to the previous matrix their geometric
multiplicity is single.)

THEOREM 7.7. A five-dimensional solvable Lie algebra is controllable iff it is
isomorphic to Ls r(A, 1), A, p € C\R, A #£ p, it, or Ls ;1(A), A€ C\R.

THEOREM 7.8. Let L = L5 r(A, ), A, p € C\R, A # p, i, and let A,B € L.
The system I' = A+R B C L is controllable iff the following conditions are satisfied:

1. B¢ LM,
2. A(A) #0 and A(p) £ 0.

THEOREM 7.9. Let L = L5 11(A), A € C\ R, and let A,B € L. The system
I' = A+ RBC L is controllable iff the following conditions are satisfied:

1. B¢ LM,

2. top(A4,A) # 0.

REMARK. The notation top(A4,A) # 0 in Theorem 7.9 (and in Theorem 7.15
below) means that the vector A has a nonzero component corresponding to the
higher order root space of the operator ad B|; ) corresponding to its eigenvalue A.
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7.6. Six-dimensional Lie algebras.

CoNSTRUCTION. The Lie algebra Lg r(A, p), A, p € C\ R, Fig. 5.

L6VI(Aa /’L) = span(x, Y, %2, u,7, w)a

a —b 0 0 0
b a 0 0 0
adx|span(y,z,u,v,w) = 0 0 ¢ —d 0
0 0 d ¢ 0
0 0 0 0 2a

[y, 2] = w.

bl

A=a+bi, p=c+di,

15

ConNsTRUCTION. The Lie algebra Lg rr(A u, k), A, € C\ R, ReA = Rey,

k € R\ {0}, Fig. 6.

L6,II(Aa H, k) = Span($a Y, z,u,v, w)a

a —=b 0 O 0

b a 0 0 0
aJdl‘|spam(y,,z,u,v,w) = 0 0 a —d 0 )

0 0 d a O

0 0 0 0 2a

[ya Z] = w, [U,U] = kw.

A=a+bi, p=a+di,

CoNsTRUCTION. The Lie algebra Lg rrr(A k,{), A € C\ (RUIR), kI € R,

k2 +12 # 0, Fig. 7.

L6,III(Aa kal) = Span($a Y, z,u,v, w)a

a —b 0 0
b a 0 0
adl‘|span(y,z,u,v,w) = 0 0 3a —b
0 0 b 3a
0 0 0 0

[w,y] = ku+lv, [w,2]=—lu+kz.

[\]

o oo o

bl

A=a+ bi,

CoNsTRUCTION. The Lie algebra Le rv (A k1), A € C\ (RUIR), k,1 € R,

k2 +12 # 0, Fig. 8.

L6,IV(Aa kal) = Span($a Y, z,u,v, w)a

a —b 0 0
b «a 0 0
aJdl‘|span(y,,z,u,v,w) = 0 0 —a —=b
0 0 b —a
0 0 0 0

ly,v] = —[z,u] = kw, [y,u] =[z,v] = lw.

oo o oo

bl

A=a+ bi,
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CoNsTRUCTION. The Lie algebra Le v (A k,0), A € C\ (RUIR), k1 € R,
k2 +12 40, Fig. 9.

Ls v (A k1) =span(x,y, z,u, v, w),

a —=b 0 0 O

b a 0 0 O
aJdl‘|span(y,,z,u,v,w) = 1 0 a —b 0 , A=a+bi

0 1 & a« O

0 0 0 0 2a

ly, 2] = kw, [y,u] =[z,v] = lw.

ConNsTRUCTION. The class of Lie algebras Lg vr(bi), b € R\ {0}, Fig. 10.
A Lie algebra L belongs to the class Lg v (b7) if:

L = span(z,y, z,u, v, w),

LW = span(y, z, u, v, w),

Sp(ad z|p)) = {£bi,0},

both eigenvalues £b¢ have double algebraic multiplicity,
we LY.

The class Ls vy contains a lot of nonisomorphic Lie algebras in which multipli-
cation can not be described in detail as in Lie algebras Ls 1—Lg v.

THEOREM 7.10. Let a siz-dimensional solvable Lie algebra L not belong to the
class Lo vi(bi), b € R\ {0}. Then L is controllable iff it is isomorphic to one of
the following Lie algebras:

1. L (A p), A u€e CAR, A # pu, i;

Lorr(A\ 1, k), M, p € C\IR, Re X = Rept, X # p, ji, k € R\ {0};
L67][](/\,k’,l), AeC\ (RU iR), kleR, k2412 #0;

Lo v\ k1), A\€ C\ (RUIR), k,l € R, k* +1? £ 0;

Lev(A k), \€ C\ (RUIR), k,l € R, k* +1* £0.

THEOREM 7.11. Let L = Lo r(A p), A, p € C\R, A # u, i, and let A,B € L.
The system I' = A+R B C L is controllable iff the following conditions are satisfied:

1. B¢ LM,

2. A(A) #0 and A(p) £ 0.

THEOREM 7.12. Let L = Lg rr(A, i, k), A, p € C\ R, ReXA = Rep, A # 1, i,
k€ R\ {0}, and let A,B € L. The system T' = A+ RB C L is conirollable iff the
following conditions are satisfied:

1. B¢ LM,

2. A(A) #0 and A(p) £ 0.

THEOREM 7.13. Let L = L rrr(A k1), A € C\(RUiR), k,l € R, k*+1* £ 0,
and let A,B € L. The system I' = A +RB C L is controllable iff the following
conditions are satisfied:

1. B¢ LM,

2. A(A) #£0.

THEOREM 7.14. Let L = Lg v (A k1), A€ C\(RUIR), k,l € R, k*+1* £ 0,

and let A,B € L. The system I' = A +RB C L is controllable iff the following
conditions are satisfied:

O W N
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1. B¢ LM,
2. A(A) £ 0 and A(=X) # 0.

THEOREM 7.15. Let L = L v (A k1), A€ C\ (RUIR), k,l e R, k* +1* £0,

and let A,B € L. The system I' = A +RB C L is controllable iff the following
conditions are satisfied:

1. B¢ LM,
2. top(A4,A) # 0.

REMARK. The class Lgvr(bi), b € R\ {0}, contains both controllable and
noncontrollable Lie algebras.

Controllable solvable Lie algebras up to dimension 6:

z z
Fig. 1. Lz(\). Fig. 2. La()\), ReX =a.
Yy u
o A u ® A
o i
— ° ﬂ —

e A v ® A

z zZ v
Flg 3. L57[(/\,/,L). Flg 4. L57[](/\).

Fig. 5. Lg 1(A, i), Red=a. Fig. 6. Lg rr(A, i, k), ReA=Repu = a.
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3a+ b

Y A U
;:Qa
z A v

3a — b1

—a+ b1

a+ b1

—a — b1
v

a— b1
z

Flg 7. L67][](/\,k’,l), A=a+bi. Flg 8. L6ij(/\,k’,l), A=a+ b1

y u y|u
A @ bt
2a 0
w w
z v z|lw

Fig. 9. Loy (A, 1), Red = a. Fig. 10. Le v (bi).
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9. Questions and suggestions

In this section we present and discuss several challenging open questions related
to the results considered above.

9.1. The hypersurface principle. The hypersurface principle given by The-
orem 5.3, Section b, is a necessary controllability condition for an arbitrary simply
connected Lie group. If a simply connected Lie group has cocompact radical, then
this principle is also sufficient for controllability (Theorem 4.1, Section 4). Ts it
possible to extend the class of simply connected Lie groups with cocompact radical
so that the hypersurface principle remain a criterion of controllability?

9.2. Lie algebras hard to control. For any Lie group G and any system
affine in control ' = { A+ Y1" , w;B; | u; € R } on G controllability of the homo-
geneous part I'g = {Zzn:l uw; B; | u; € R} is sufficient for controllability of T on G.
We call a Lie algebra L hard to control if any affine in control system I' C L and
its homogeneous part T'g are simultaneously controllable or noncontrollable (on the
connected simply connected Lie group G corresponding to L). In Lie algebras L



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 19

hard to control the drift term A in an affine system I' C L does not help in control,
which is not the case for general Lie algebras.
There is the expanding chain of classes of Lie algebras hard to control:

abelian C nilpotent C completely solvable. (%)

The abelian case is obvious, the nilpotent one is Theorem 3.3, Subsection 3.2, and
the completely solvable one 1s Theorem 5.1, Section 5.

On the other hand, the Lie algebra of the group E(2) of motions of the plane
is solvable, not completely solvable and not hard to control (see the example in
Subsection 6.3).

Corollary 3.3 [26] states that all Lie algebras satisfying the following property:

any subalgebra { C L, | # L, is contained } (45
in a codimension one subalgebra of L
are included in the set of Lie algebras hard to control. The author does not know,
whether this inclusion is strict. (By Lemma 4.2 [26], completely solvable Lie alge-
bras satisfy property (**).)
Are there any Lie algebras hard to control not contained in chain (*)7 If yes,
can this chain be continued by any reasonable class of Lie algebras?

The theory of K.H. Hofmann on hyperplane subalgebras of Lie algebras [16,
17, 19] may be important for this question.

9.3. Small-dimensional groups. A complete and visual classification of con-
trollable systems might be obtained for small-dimensional groups with the help of
the known results for the following classes of groups: compact [20], semi-simple [21],
[22], [11], reductive [14], nilpotent [13], [6], and solvable [25], [26], [27], [28]. An
attempt in this direction was made in [29].

9.4. Solvable not simply connected Lie groups. The results of K. H. Hof-
mann on compact elements in solvable Lie algebras [18] might be applied in order to
understand controllability for solvable Lie groups without the assumption of simple
connectedness essential in Sections 5-7.

9.5. General groups. On the basis of the results listed in Subsection 9.3,
controllability theory for general Lie groups can be started synthesizing the “semi-
simple” and “solvable” theory via Levi decomposition (I. Kupka [24]).

9.6. Nilpotent and solvable manifolds. Controllability of projections of
right-invariant systems onto nilpotent and solvable manifolds can be studied via
application of the theory of flows on these manifolds [5]. This may be important
for studying local controllability of nonlinear systems via nilpotent approximations
(P.E. Crouch and C.I. Byrnes [10]).

9.7. Codimension one and two subalgebras. The solution of the control-
lability problem for completely solvable Lie groups (see Section 5) is based upon
the following fact: any proper subalgebra of a real completely solvable Lie algebra
is contained in a codimension one subalgebra. On the other hand, any proper sub-
algebra of a real solvable Lie algebra is included in some subalgebra of codimension
one or two.

This suggests the following approach to controllability on solvable Lie groups.
Project a system along the connected subgroup corresponding to the indicated
codimension one or two subalgebra. Then: 1) if this group is closed and normal,
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we obtain a right-invariant system on a one- or two-dimensional Lie group (such
systems are transparent); 2) if this subgroup is closed, we obtain a nonlinear system
on a one- or two-dimensional smooth manifold (such systems are tractable by the
nonlinear controllability theory); 3) and if this subgroup is not closed, then try to
apply and develop the theory of control systems on foliations.

The progress in this direction may be useful for the controllability theory on
general Lie groups (Subsection 9.5) as well.

9.8. Rank condition and hypersurface principle. The customary proce-
dure to show noncontrollability is either to show the violation of the rank con-
trollability principle [20] or to construct a (not necessarily smooth) hypersurface
in the state space of a system intersected by all trajectories of the system in one
direction only. For right-invariant systems on simply connected Lie groups with
cocompact radical such hypersurface can always be found among codimension one
subgroups (Section 4).

Does every full-rank noncontrollable right-invariant system have such codimen-
sion one subgroup? A positive answer will give a new method of obtaining sufficient
controllability conditions, and a negative one will give an example of a complex ob-
stacle to controllability.
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