
Survey on Controllability of Invariant Systems on SolvableLie GroupsYuri L. SachkovAbstract. Known and new results on controllability of right-invariant sys-tems on solvable Lie groups are presented and discussed. The main ideasand technique used are outlined, illustrating examples are given. Some openquestions are suggested. 1. IntroductionControllability properties of right-invariant systems on Lie groups have beena subject of active research in the mathematical control theory during the last25 years. This question is motivated both by important applications (mechanics,geometry, bilinear systems) and by essential links with various branches of math-ematics outside control theory (Lie groups and Lie algebras, di�erential geometry,Lie semigroups, dynamical systems).The problem was stated and the basic properties of right-invariant systemsand their reachable sets were established by R.W. Brockett [8], and V. Jurdjevicand H.J. Sussmann [20]. Controllability theory for various classes of Lie groupsdi�erent from solvable ones was developed by V. Jurdjevic and H. J. Sussmann [20](compact Lie groups), V. Jurdjevic and I. Kupka [21, 22], J. P. Gauthier andG. Bornard [11], J. P. Gauthier, I. Kupka and G. Sallet [12], R.El Assoudi andJ. P. Gauthier [2, 3], R.El Assoudi, J. P. Gauthier, and I. Kupka [4], F. SilvaLeite and P.E. Crouch [35], L.A. B. San Martin [33], L. A.B. San Martin andP.A. Tonelli [34] (semisimple Lie groups), B. Bonnard, V. Jurdjevic, I. Kupka andG. Sallet [7] (semidirect products of vector Lie groups with compact Lie groups),J. Hilgert [14] (reductive Lie groups).The aim of this paper is to describe the state of the art in controllability on solv-able Lie groups: to cover all results published, outline the main ideas and techniquesused, and give illustrating examples. Notice that the case of solvable Lie groups isincompletely covered by surveys and textbooks on control theory and Lie semigrouptheory (R.W. Brockett [9], G. Sallet [30, 32], A.A. Agrachev, S.V. Vakhrameev1991 Mathematics Subject Classi�cation. 93B05, 17B20.This work was partially supported by the Russian Foundation for Fundamental Research,projects No. 98-01-01028 and No. 97-1-1a/22. The author gratefully acknowledges the supportfrom the American Mathematical Society for participation in the Summer Research Institute onDi�erential Geometry and Control, June 30{July 18, 1997, Boulder CO, USA. The author is arecipient of the Russian State Scienti�c Stipend for 1997.1



2 YURI L. SACHKOVand R.V. Gamkrelidze [1], I. Kupka [24], J. Hilgert and K.H. Neeb [15], V. Jurd-jevic [23]).The structure of the paper is as follows. In Section 2 we introduce the generalnotation and de�nitions. In Section 3 we consider an important special class ofsolvable Lie groups | nilpotent ones. Subsection 3.1 is devoted to the control-lability criterion for arbitrary right-invariant systems on a nilpotent Lie group byJ. Hilgert, K.H. Hofmann and J.D. Lawson [13]. In Subsection 3.2 we present anddiscuss the controllability test for a�ne in control systems on simply connectednilpotent Lie groups due to V. Ayala Bravo [6]. In Section 4 we present control-lability conditions for Lie groups with cocompact radical; this class of Lie groupsincludes all solvable Lie groups. This basic result is due to J.D. Lawson [25]. InSection 5 we consider a subclass of solvable Lie groups called completely solvableones and a generalization of the controllability test of Subsection 3.2 from nilpotentto completely solvable Lie groups. Section 6 is devoted to single-input systems onLie groups that di�er from their derived subgroups; this class contains all solv-able Lie groups. In Subsection 6.1 we give necessary and su�cient controllabilityconditions for such systems. These results yield the characterization of controlla-bility on metabelian Lie groups presented in Subsection 6.2. In Subsection 6.3 westudy right-invariant systems on a particular matrix metabelian Lie subgroup ofthe group of a�ne transformations of the n-space, and in Subsection 6.4 we treatbilinear systems in Rn that are projections of right-invariant systems on this matrixgroup. Finally, in Section 7 we classify single-input controllable systems on simplyconnected solvable Lie groups up to dimension 6, inclusive. The details on originalsources are collected in Section 8; no references to authors are made immediatelyin the text. Some open questions related to the results presented are discussed inSection 9. 2. De�nitions and basic factsLet G be a Lie group and L its Lie algebra (i.e., the Lie algebra of right-invariantvector �elds on G).A right-invariant control system on G is an arbitrary subset � � L. An im-portant particular class of systems is formed by systems a�ne in control � =fA+Pmi=1 uiBi j u 2 Rg, where A, B1, : : : , Bm are some elements of L.The attainable set A of a system � is the subsemigroup of G generated by theset exp(R+�) = f exp(tX) j X 2 �; t 2 R+g:A system � is called controllable if A = G.The basic conditions necessary for controllability of a right-invariant system� on a Lie group G were given by V. Jurdjevic and H.J. Sussmann [20]: the LiegroupG should be connected and the system � should satisfy the rank controllabilitycondition, i.e., the Lie algebra Lie(�) generated by the system � must coincide withthe whole Lie algebra L. That is why these conditions may be assumed without lossof generality. In particular, in the sequel all Lie groups are supposed connected.The derived series of a Lie algebra L is constructed as follows:L(1) = [L;L]; L(2) = [L(1); L(1)]; : : : ; L(i) = [L(i�1); L(i�1)]; : : : ; i 2 N:L(1) is the derived subalgebra of L, and the corresponding subgroup denoted by G(1)is the derived subgroup of G. The algebra L is called solvable if its derived series



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 3stabilizes at zero: L � L(1) � L(2) � : : : � L(N) = f0gfor some N 2 N. Finally, a Lie group G is solvable if its Lie algebra L is solvable.We denote topological closure and interior of a set M by clM and intM re-spectively. 3. Nilpotent Lie groupsIn this section we present controllability conditions for right-invariant systemson nilpotent Lie groups. Recall that a Lie algebra L is called nilpotent if its de-scending central seriesL(1) = [L;L]; L(2) = [L;L(1)]; : : : ; L(i) = [L;L(i�1)]; : : : ; i 2 N;stabilizes at zero: L � L(1) � L(2) � : : : � L(N) = f0gfor some N 2 N. Any nilpotent Lie algebra is solvable since L(i) � L(i), i 2 N.Another equivalent characterization of nilpotency of L is that all adjoint opera-tors adx, x 2 L, are nilpotent and thus have zero spectrum (this is important inSection 5).3.1. Arbitrary systems. Controllability of a right-invariant system � � Lon a nilpotent Lie group G is completely characterized in terms of the wedge, i.e.,the topologically closed convex cone W (�) � L generated by �. It is standard that� and W (�) are controllable or noncontrollable simultaneously.Theorem 3.1. Let G be a nilpotent Lie group with Lie algebra L and let Wbe a wedge in L which generates L as a Lie algebra. Then W is controllable on Gi� one of the following conditions holds:1. intW�W W \ L(1) 6= ;,2. int cl(L(1) +W ) \ exp�1(e) 6= ;.Remark. Here intW�W W is the interior of the wedge W relative to the vectorspace W �W generated by W , and e is the identity of the Lie group G.The su�ciency in Theorem 3.1 is based on the description of maximal opensubsemigroups S of nilpotent Lie groups in terms of their tangent objectsL(S) = fx 2 L j exp(R+x) � cl(S) g:An open subsemigroup S of a Lie group G is proper, i.e., S 6= G if and only ife =2 S. Hence the set of open subsemigroups in G is inductive, and any propersubsemigroup is contained in a maximal one.Theorem 3.2. Let G be a nilpotent Lie group and let S be a maximal openproper subsemigroup of G. Then L(S) is a halfspace bounded by a hyperplane algebrain L(G).For necessity in Theorem 3.1, the Hahn-Banach theorem gives that W +L(1) iscontained in a halfspace in L; then exp �int �W + L(1)�� is a proper open semigroupof G, which implies that exp(W ) is contained in a proper subsemigroup of G.The controllability test of Theorem 3.1 is essentially nilpotent. This result isfalse for the group SL(2;R); it also fails in the following solvable non-nilpotentexample.



4 YURI L. SACHKOVExample. Let G be the (unique) two-dimensional connected simply connectednon-abelian Lie group, which is represented by the matrices�� x y0 1 � j x > 0; y 2 R� :The Lie group G is solvable but not nilpotent. Its Lie algebra has the formL = �� a b0 0 � j a; b 2 R� :Consider the following wedge in L:W = �� a b0 0 � j a 2 R; b � 0� :Direct computations show thatexp(R+W ) = �� x y0 1 � j x > 0; y � 0� ;which is a proper subsemigroup of G, thus W is not controllable on G. On theother hand, it is easy to see that both conditions 1, 2 of Theorem 3.1 hold for thewedge W in this example.3.2. A�ne systems. For right-invariant systems a�ne in control� = (A + mXi=1 uiBi j ui 2 R)� L;(3.1)on simply connected nilpotent Lie groups there is a simple controllability criterionin terms of the Lie subalgebra L0 of L generated by the non-drift vector �elds:L0 = Lie(B1; : : : ; Bm);and the connected subgroup G0 of G with Lie algebra L0.Theorem 3.3. Let G be a simply connected nilpotent Lie group. Then sys-tem (3:1) is controllable on G i� L0 = L.Su�ciency of the condition L0 = L for controllability of � is a well-known factvalid for arbitrary Lie groups G. So the essential part is necessity. Here the keyrole is played by the necessary controllability conditions in terms of the notion ofa symplectic vector.Consider the co-adjoint representation �� of the group G in the dual spaceL� of L. For any covector � 2 L�, the co-adjoint orbit �� of � by the �� action�� = ��G(�) is a smooth submanifold of L� di�eomorphic to the homogeneous spaceG=E�, where E� is the isotropy subgroup of �, E� = f g 2 G j ��g(�) = � g. Further,the system � can be projected fromG onto the homogeneous space G=E� ' ��, andcontrollability of � on G obviously implies controllability of its projection �� onG=E�. This leads to necessary controllability conditions in terms of the co-adjointrepresentation.Definition. � 2 L� is called a symplectic vector for w 2 L if the co-adjointorbit �� is not trivial and hw; �i > 0 for all � 2 ��.(We denote by h�; �i the pairing of a vector and covector.)



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 5Theorem 3.4. If there is a vector �eld � 2 L belonging to the centralizer ofthe subalgebra L0 such that the nonzero vector �eld [A; �] has a symplectic vector,then system (3:1) cannot be controllable on G.In fact, the existence of such vector �eld � 2 L yields that the functionf� : �� ! R; � 7! f�(�) = �h�; �iis strictly increasing on the trajectories of projection of � onto the co-adjoint orbit��. Indeed, the solution of the Cauchy problem _g(t) = A(g(t)), g(0) = g0 is givenby g(t) = exp(tA)g0. Further, the functionh(t) = Ad �g(t)�1� = Ad �g�10 � � exp(�t adA)has the derivative_h(t) = Ad �g�10 � � exp(�t adA) � (� adA) = �Ad �g(t)�1� � adA:Now for � 2 L� the co-adjoint action �� of the element g 2 G is determined by��g(�) = Ad� �g�1��;consequently, for any � 2 L, � 2 L�ddtf�(��g(t)(�)) = � ddth�; ��g(t)(�)i = � ddt h�;Ad� �g(t)�1��i= � ddthAd �g(t)�1� �; �i = hAd �g(t)�1� � adA(�); �i= h[A; �]; ��g(t)(�)i:Thus if � is a symplectic vector for [A; �], then f� is increasing along co-adjointorbits of trajectories of the �eld A. If in addition ad � vanishes on the subalgebraL0, then the same holds for trajectories of the whole system �, which is impossiblefor a controllable system.Another important fact for necessity in Theorem 3.3 is the following propositionrelated to hypersurface systems, i.e., a�ne systems (3.1) with L0 a codimension onesubalgebra of L.Theorem 3.5. Let � � L be an a�ne system (3:1) on G such that L0 is acodimension one ideal of L.1. If G0 is closed in G, then � is controllable i� A =2 L0 and G=G0 ' S1.2. If G0 is not closed in G, then � is controllable i� A =2 L0.Remark. In fact, the previous theorem holds without the assumption that L0is an ideal; this is important for a generalization of Theorem 3.3 to a subclass ofsolvable Lie groups including nilpotent ones (see Section 5 below).Now we outline the scheme of proof of necessity in Theorem 3.3. Suppose thesystem � is controllable on the group G. Then the theory of symplectic vectors im-plies that the subalgebra L0 is an ideal of L. The rank condition for � is satis�ed:Lie(�) = Lie(A;L0) = L, hence L0 has codimension 0 or 1 in L. But the codi-mension one case is impossible since then Theorem 3.5 yields G=G0 ' S1, whichcontradicts simple connectedness of G. Thus L0 = L, and necessity in Theorem 3.3follows.



6 YURI L. SACHKOVExample. Let G be the Heisenberg group of dimension 2p + 1. It may berepresented as a subgroup of GL(p+ 2;R) generated by the matricesId+Xi; Id+Yi; Z; i = 1; : : : ; p;where Xi = E1;i+1; Yi = Ei+1;p+2; i = 1; : : : ; p:(Id denotes the identity matrix, and Eij stands for the square matrix with all zeroentries except one unit in the i-th row and the j-th column.)The Lie algebra L of G is spanned by the matricesXi; Yi; Z; i = 1; : : : ; p;with the nonzero brackets [Xi; Yi] = Z; i = 1; : : : ; p:The Heisenberg group G is simply connected and nilpotent, hence Theorem 3.3describes all controllable systems on G.4. Lie groups with cocompact radicalDenote by RadG the radical of a Lie group G, i.e., the maximal solvable normalsubgroup ofG. In this section we suppose that a Lie groupG has cocompact radical,that is, the quotient group K = G=RadG is compact. This wide class of Lie groupscontains:� solvable Lie groups (K = feg),� compact Lie groups,� semidirect products of a vector space V with a compact Lie group (V �RadG).The next theorem gives a Lie-algebraic description of controllability on suchLie groups, complete in the simply connected case.Theorem 4.1. Suppose that G=RadG is compact, and let � � L be a systemsatisfying the rank condition Lie(�) = L. If � is not contained in any half-space ofL with boundary a subalgebra, then � is controllable on G. The converse holds if Gis simply connected.This result is a consequence of the following classi�cation of maximal subsemi-groups of Lie groups with cocompact radical.Definition. A subsemigroup M of G is called a maximal subsemigroup of Gif the only subsemigroups containing M are M and G, and M is not a subgroup.Theorem 4.2. The maximal subsemigroups M with non-empty interior of asimply connected Lie group G with G=RadG compact are in one-to-one corre-spondence with their tangent objects L(M ), and the latter are precisely the closedhalf-spaces with boundary a subalgebra. Further, M is the semigroup generated byexp(L(M )).Theorem 4.1 follows from Theorem 4.2 since the attainable set of any noncon-trollable right-invariant system � � L, Lie(�) = L, is a proper subsemigroup of Gcontained in some maximal subsemigroup with non-empty interior.



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 75. Completely solvable Lie groupsIn this section we suppose that � is a system a�ne in control as in (3.1).Definition. A solvable Lie algebra L is called completely solvable if all adjointoperators adx, x 2 L, have real spectra. A Lie group is completely solvable if it hascompletely solvable Lie algebra.(Such Lie algebras and Lie groups are also called triangular over Ror algebras,resp. groups, of type (R) [36].)The triangular group T(n) (see the example below) is completely solvable, aswell as any of its subgroups. Nilpotent Lie groups are completely solvable sinceadjoint operators in nilpotent Lie algebras have zero spectrum. On the other hand,e.g., the group of motions of the plane E(2) is solvable but not completely solvable(the group E(2) and its simply connected covering gE(2) are treated in Section 6.3).It turns out that the controllability criterion for systems a�ne in control onnilpotent Lie groups (Theorem 3.3) is valid for completely solvable Lie groups aswell.Theorem 5.1. Let G be a simply connected completely solvable Lie group.Then system (3:1) is controllable on G i� L0 = L.Theorem 5.1 is based on the following general characterization of controllabilityfor hypersurface systems.Theorem 5.2. Let � � L be an a�ne system (3:1) on G such that L0 is acodimension one subalgebra of L.1. If G0 is closed in G, then � is controllable i� A =2 L0 and G=G0 ' S1.2. If G0 is not closed in G, then � is controllable i� A =2 L0.Remark. Theorem 5.2 generalizes the analogous criterion of Theorem 3.5 withthe additional assumption that L0 is an ideal of L.Theorem 5.2 implies the following hypersurface principle | a general necessarycontrollability condition for simply connected Lie groups.Theorem 5.3. Let G be simply connected. Suppose that there exists a codi-mension one subalgebra l of L containing L0. Then system (3:1) is not controllable.The sense of this proposition is that if the codimension one subalgebra l � L0exists, then attainable set of � lies \to one side" of the connected codimension onesubgroup of G corresponding to l: by simple connectedness of G, this codimensionone subgroup separates G into two disjoint parts.Now we outline the proof of the controllability test of Theorem 5.1. Su�ciencyof L0 = L for controllability is obvious, while the necessity follows fromTheorem 5.3and the observation that any proper subalgebra of a completely solvable Lie algebraL is contained in a codimension one subalgebra of L.Example. Let G = T(n) be the Lie group of all n�n upper triangular matriceswith positive diagonal entries. T(n) is connected, simply connected and completelysolvable. Its Lie algebra L consists of all n � n upper triangular matrices. ByTheorem 5.1, an a�ne system � is controllable on G if and only if L0 = L. Theanalogous result holds for any Lie subgroup of the triangular group T(n).



8 YURI L. SACHKOV6. Lie groups di�ering from their derived subgroupsLie groups G which satisfy the condition G 6= G(1) make up a wide classcontaining solvable Lie groups. On the other hand, no semisimple Lie groups belongto this class.In this section we present controllability conditions for single-input systems� = fA+ uB j u 2 Rg= A +RB(6.1)on such Lie groups.Throughout this section we make the following assumptions:1. L 6= L(1),2. the adjoint operator adBjL(1) has simple spectrum.Notice that while the �rst assumption is obviously imposed by the class of Liegroups under consideration, the second one is added for simplicity of expositionand can be removed.To formulate the results we need the following notation. Spectra of the adjointoperators in the �rst and second derived subalgebras adBjL(1) and adBjL(2) aredenoted by Sp(1) and Sp(2) respectively. For any eigenvalue a 2 Sp(1) the eigenspaceof adBjL(1) corresponding to a is denoted by L(a). In view of simplicity of thespectrum of adBjL(1) , there is the following decomposition of the derived subalgebraof L into a direct sum of one- and two-dimensional eigenspaces:L(1) =X�fL(a) j a 2 Sp(1); Ima � 0 g:If B =2 L(1) and dimL(1) = dimL � 1, then we haveL = RB� L(1) = RB�X�fL(a) j a 2 Sp(1); Ima � 0 gand the corresponding decomposition for a vector A 2 L:A = AB +XfA(a) 2 L(a) j a 2 Sp(1); Ima � 0 g:(The signs � and P� above denote direct sums of vector spaces.)6.1. Controllability conditions. There are restrictive necessary controlla-bility conditions for single-input systems on simply connected Lie groups G 6= G(1).Theorem 6.1. Let a Lie group G be simply connected and G 6= G(1). If system(6:1) is controllable, then:1. dimL(1) = dimL� 1,2. B =2 L(1),3. Sp(1)\R� Sp(2),4. A(a) 6= 0 for all a 2 Sp(1) n Sp(2).Notice that controllability of (at least one) single-input system on a simplyconnected Lie group G 6= G(1) implies restriction 1, dimG(1) = dimG� 1, on theLie group, not on the system. In fact, for solvable Lie algebras L restriction 3 ofTheorem 6.1 depends on L but not on the system (provided that conditions 1 and2 hold). This restrictive force of necessary conditions of Theorem 6.1 is crucialfor classi�cation of controllable systems on small-dimensional simply connectedsolvable Lie groups in Section 7.Theorem 6.1 is based on the rank controllability condition and the necessarycontrollability condition of Theorem 5.3. The justi�cation of the fact that these



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 9two results should be enough to give necessary controllability conditions on simplyconnected solvable Lie groups is provided by the general controllability test forsimply connected Lie groups with cocompact radical of Theorem 4.1.There are su�cient controllability conditions close to the previous necessaryones in the case of simply connected Lie groups.Theorem 6.2. Suppose that the following conditions are satis�ed for Lie alge-bra L of a Lie group G and system (6:1):1. dimL(1) = dimL� 1,2. B =2 L(1),3. Sp(1)\R� Sp(2),4. A(a) 6= 0 for all a 2 Sp(1) nR.5. Sp(1)\R= ; or Sp(1) � fRe z > 0g or Sp(1) � fRe z < 0g.Then system (6:1) is controllable on G.This theorem is obtained with the help of the Lie saturation technique in-troduced by V. Jurdjevic and I. Kupka [22] (see also G. Sallet [31] and V. Ju-rdjevic [23]): a sequence of increasing lower bounds of the tangent cone to theattainability set at the identity is shown to stabilize at the whole Lie algebra L.The above controllability conditions for Lie groups G 6= G(1) yield complete de-scription of controllability for several particular classes of Lie groups: metabelianones, some subgroups of the group of a�ne transformations of the n-space, andsmall-dimensional simply connected solvable Lie groups. These results are pre-sented in the following subsections and in Section 7.6.2. Metabelian groups. Lie algebras L having derived series of length 2:L � L(1) � L(2) = f0g;are called metabelian. A Lie group with a metabelian Lie algebra is also calledmetabelian.A metabelian Lie algebra is obviously solvable. Thus results of the previoussubsection yield controllability conditions for metabelian Lie groups.Theorem 6.3. Let G be a metabelian Lie group. Then the following conditionsare su�cient for controllability of system (6:1) on G:1. dimL(1) = dimL� 1,2. B =2 L(1),3. Sp(1)\R= ;,4. A(a) 6= 0 for any eigenvalue a 2 Sp(1).If the group G is simply connected, then conditions 1 { 4 are also necessary forcontrollability of system (6:1) on G.6.3. Semidirect products. Let V be a real �nite-dimensional vector space,dimV = n, and M a nonzero linear operator in V . Consider the metabelianLie algebra L(M ) which is the semidirect product of the abelian Lie algebra Vwith the one-dimensional Lie algebra RM . This Lie algebra can be represented by(n+ 1)� (n + 1) matrices:L(M ) = �� Mt b0 0 � j t 2 R; b 2 Rn� � gl(n+ 1;R):(6.2)



10 YURI L. SACHKOVThe connected Lie subgroup of GL(n + 1;R) corresponding to L(M ) is denotedby G(M ). It is the semidirect product of the vector Lie group Rn with the one-dimensional Lie group G1 = f exp(Mt) j t 2 Rg. Elements of the group G(M ) arethe matrices � exp(Mt) p0 1 � ; t 2 R; p 2 Rn;thus G(M ) may be viewed as a subgroup of the group of a�ne transformations ofthe n-space generated by the one-parameter group of automorphisms G1 and alltranslations p 2 Rn. The group G(M ) is not simply connected i� the one-parametersubgroup G1 is periodic, which obviously occurs i�the matrix M is semisimple;Sp(M ) = ir � (k1; : : : ; kn) for some r 2 R; (k1; : : : ; kn) 2Zn: �(6.3)If conditions (6.3) hold, then a controllability test on G(M ) is given by the re-sult of B. Bonnard, V. Jurdjevic, I. Kupka and G. Sallet [7] for Lie groups that aresemidirect products of vector spaces with compact Lie groups. Otherwise the con-trollability test for simply connected metabelian Lie groups (Theorem 6.3) impliesthe following.Theorem 6.4. Suppose that conditions (6:3) are violated. System (6:1) is con-trollable on the group G(M ) if and only if the following conditions hold:1. Sp(M ) \ R= ;,2. B =2 L(1),3. span(B;A; (adB)A; : : : ; (adB)n�1A) = L.Remark. Suppose that conditions (6:3) hold, i.e., the group G(M ) is not sim-ply connected. Then conditions 1{3 of the previous theorem are necessary andsu�cient for controllability of system (6:1) on Ĝ(M ) | the simply connected cov-ering of G(M ). And for the group G(M ) itself conditions 1{3 are then su�cientfor controllability.Example. Let G = E(2) be the Euclidean group of motions of the plane R2.It can be represented as the group of 3� 3 matrices of the form0@ cos t � sin t s1sin t cos t s20 0 1 1A ;with the rotation matrix and translation vector respectively� cos t � sin tsin t cos t � 2 SO(2) for t 2 R; � s1s2 � 2 R2:The corresponding matrix Lie algebra L is spanned by the matricesx = 0@ 0 �1 01 0 00 0 0 1A ; y = 0@ 0 0 00 0 10 0 0 1A ; z = 0@ 0 0 10 0 00 0 0 1A ;and has form (6.2): L = L(M ); M = � 0 �11 0 � :It is solvable (in fact, metabelian):L(1) = span(y; z) � L(2) = f0g;



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 11but not completely solvable: Sp(adx) = f�i; 0g:The Lie group E(2) = G(M ) is connected but not simply connected, compare with(6.3).Consider the system � = A+RB on gE(2) | the simply connected covering ofE(2). A complete characterization of controllability of � on gE(2) is derived fromthe remark after Theorem 6.4:Theorem 6.5. System (6:1) is controllable on gE(2) if and only if the vectorsA, B are linearly independent and B =2 span(y; z).Compare the controllability conditions for gE(2) with the following conditionsfor E(2) (derived from Theorem 1 [7]):Theorem 6.6. System (6:1) is controllable on E(2) if and only if the vectorsA, B are linearly independent and fA;Bg 6� span(y; z).6.4. Bilinear systems. Global controllability conditions for bilinear systemsof the form _x = uAx+ b; x 2 Rn; u 2 R; (�)where A is a constant real n� n matrix and b 2 Rn, are obtained with the help ofresults for the matrix group of the previous subsection.The system � may be rewritten as the following bilinear system in the hyper-plane fxn+1 = 1g � Rn+1:ddt � x1 � = � 0 b0 0 �� x1 �+ u� A 00 0 �� x1 � ; � x1 � 2 Rn+1 (�0)with the matrices A = � 0 b0 0 � ; B = � A 00 0 � 2 L(A):Moreover, �0 is projection of the single-input right-invariant system � = A+RB �L(A) on the matrix group G(A) onto the hyperplane fxn+1 = 1g. Hence controlla-bility of � on G(A) implies global controllability of �0 in the hyperplane fxn+1 = 1gand thus global controllability of � in Rn.On the other hand, necessary controllability conditions for � can easily beobtained by studying codimension 1 and 2 invariant spaces of this system in Rn.This gives the following controllability test for �:Theorem 6.7. The system � is globally controllable on Rn if and only if thefollowing conditions hold:1. the matrix A has a purely complex spectrum,2. span(b; Ab; : : : ; An�1b) = Rn.7. Small-dimensional solvable Lie groupsGiven a Lie algebra L, there is the \largest" connected Lie group G having Liealgebra L | the simply connected one. All other connected Lie groups with Liealgebra L are \smaller" than G in the sense that they are quotients G=C, whereC is a discrete subgroup of center of G. A right-invariant system � � L may thusbe considered on any of these groups, and the simply connected group G is the



12 YURI L. SACHKOVhardest among them to control. Hence given a right-invariant system � on a Liegroup (or a homogeneous space of a Lie group) H, it is natural �rst to study itscontrollability on the simply connected covering eH of H. If � is controllable on eH,then it is obviously controllable on H (and on all its homogeneous spaces); in theopposite case one should use particular geometric properties of H (e.g., existence ofperiodic one-parameter subgroups) to verify controllability of � on H. It is obviousand remarkable that controllability conditions on a simply connected Lie group Gshould have a completely Lie-algebraic form: they are fully determined by the Liealgebra L and its subset � (see, e.g., Theorems 3.3, 5.1, 6.1, 6.3, 6.4).This motivates the following de�nition.Definition. A system � � L is called controllable if it is controllable on the(unique) connected simply connected Lie group with Lie algebra L.And the next de�nition makes sense at least for solvable Lie algebras in smalldimensions.Definition. A Lie algebra L is called controllable if there are A;B 2 L suchthat the system � = A +RB is controllable.Indeed, it turns out that controllability conditions on solvable Lie groups (Sec-tions 4 and 6) imply that for solvable small-dimensional Lie algebras L:� existence of a controllable single-input system � � L, i.e., controllability ofL, is a strong restriction on L;� if L is controllable, then almost all pairs (A;B) 2 L�L give rise to control-lable systems � = A+RB;� controllability of a system � � L depends primarily on L but not on �.Moreover, these results yield a complete description of controllability in small-dimensional solvable Lie algebras presented in the following subsections.Up to dimension 6 inclusive we describe all solvable Lie algebras L that arecontrollable, and give controllability tests for single-input systems � = A+RB � L(the only gap in this picture is the class L6;IV of six-dimensional Lie algebras notcompletely studied).The general \bird's-eye view" of controllable small-dimensional solvable Liealgebras is as follows:dimL = 1: the (unique) Lie algebra is controllable;dimL = 2: the two Lie algebras are noncontrollable;dimL = 3: there is one family of controllable Lie algebras L3(�), � 2 C nR;dimL = 4: there is one family of controllable Lie algebras L4(�), � 2 C nR;dimL = 5: there are two families of controllable Lie algebras:1. L5;I(�; �), �; � 2 C nR, � 6= �; ��,2. L5;II(�), � 2 C nR;dimL = 6: there are �ve families of controllable Lie algebras:1. L6;I(�; �), �; � 2 C nR, � 6= �; ��,2. L6;II(�; �; k), �; � 2 C nR, Re� = Re�, � 6= �; ��, k 2 Rn f0g,3. L6;III(�; k; l), � 2 C n (R[ iR), k; l 2 R, k2 + l2 6= 0,4. L6;IV (�; k; l), � 2 C n (R[ iR), k; l 2 R, k2 + l2 6= 0,5. L6;V (�; k; l), � 2 C n (R[ iR), k; l 2 R, k2 + l2 6= 0,and one exceptional class L6;IV (bi), b 2 Rnf0g, containing both controllableand noncontrollable Lie algebras.



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 13All controllable Lie algebras L are presented by a scheme in the complex plane Ccontaining eigenvalues of the adjoint operator adBjL(1) , B 2 L n L(1), and arrowsbetween these eigenvalues describing Lie brackets between eigenvectors of the op-erator adBjL(1) (these schemes are given at the very end of this section). Noticethat for solvable Lie algebras L with codimension one subalgebras L(1) (and onlysuch solvable Lie algebras may be controllable, see condition 1 of Theorem 6.1),spectra of all adjoint operators adBjL(1) , B 2 LnL(1), are homothetic with respectto the origin 0 2 C , and the homothety equivalence class of spectra of adBjL(1) ,B 2 L n L(1), is determined not by B 2 L n L(1) but by L itself (in fact, by theisomorphism class of L).Now we present the classi�cation of controllability in small-dimensional solvableLie algebras. These results are obtained by virtue of controllability conditions ofSections 4 and 6.7.1. One-dimensional Lie algebras. The unique one-dimensional Lie alge-bra is abelian and isomorphic to R.Theorem 7.1. The one-dimensional Lie algebra R is controllable.A system � = A +RB � R is controllable i� B 6= 0.7.2. Two-dimensional Lie algebras. There are two nonisomorphic two-dimensional Lie algebras: abelian R2, and solvable non-abelian S2 = span(x; y),[x; y] = y.Theorem 7.2. Both two-dimensional Lie algebras R2 and S2 are not control-lable.7.3. Three-dimensional Lie algebras.Construction. The Lie algebra L3(�), � 2 C nR, Fig. 1.L3(�) = span(x; y; z);adxjspan(y;z) = � a �bb a � ; � = a+ bi:The Lie algebra L3(�) is schematically represented in Fig. 1 by the eigenvalues�; �� 2 C and reali�cations of the eigenvectors y; z 2 L3(�) of the adjoint operatoradxjspan(y;z).Theorem 7.3. A three-dimensional solvable Lie algebra is controllable i� it isisomorphic to L3(�), � 2 C nR.Theorem 7.4. Let L = L3(�), � 2 C n R, and let A;B 2 L. The system� = A+RB � L is controllable i� the following conditions are satis�ed:1. B =2 L(1),2. the vectors A and B are linearly independent.7.4. Four-dimensional Lie algebras.Construction. The Lie algebra L4(�), � 2 C nR, Fig. 2.L4(�) = span(x; y; z; w);adxjspan(y;z;w) = 0@ a �b 0b a 00 0 2a 1A ; � = a+ bi;[y; z] = w:



14 YURI L. SACHKOVThe arrows in the schematic representation of the Lie algebra L4(�) in Fig. 2mean that Lie bracket of the vectors y and z gives the vector w.Theorem 7.5. A four-dimensional solvable Lie algebra is controllable i� it isisomorphic to L4(�), � 2 C nR.Theorem 7.6. Let L = L4(�), � 2 C n R, and let A;B 2 L. The system� = A+RB � L is controllable i� the following conditions are satis�ed:1. B =2 L(1),2. A(�) 6= 0.7.5. Five-dimensional Lie algebras.Construction. The Lie algebra L5;I(�; �), �; � 2 C nR, Fig. 3.L5;I(�; �) = span(x; y; z; u; v);adxjspan(y;z;u;v) = 0BB@ a �b 0 0b a 0 00 0 c �d0 0 d c 1CCA ; � = a+ bi; � = c+ di:Construction. The Lie algebra L5;II(�), � 2 C nR, Fig. 4.L5;II(�) = span(x; y; z; u; v);adxjspan(y;z;u;v) = 0BB@ a �b 0 0b a 0 01 0 a �b0 1 b a 1CCA ; � = a+ bi:The circles around the eigenvalues �, �� in Fig. 4 mean that they have doublealgebraic multiplicity. (Notice that according to the previous matrix their geometricmultiplicity is single.)Theorem 7.7. A �ve-dimensional solvable Lie algebra is controllable i� it isisomorphic to L5;I(�; �), �; � 2 C nR, � 6= �; ��, or L5;II(�), � 2 C nR.Theorem 7.8. Let L = L5;I(�; �), �; � 2 C nR, � 6= �; ��, and let A;B 2 L.The system � = A+RB � L is controllable i� the following conditions are satis�ed:1. B =2 L(1),2. A(�) 6= 0 and A(�) 6= 0.Theorem 7.9. Let L = L5;II(�), � 2 C n R, and let A;B 2 L. The system� = A+RB � L is controllable i� the following conditions are satis�ed:1. B =2 L(1),2. top(A; �) 6= 0.Remark. The notation top(A; �) 6= 0 in Theorem 7.9 (and in Theorem 7.15below) means that the vector A has a nonzero component corresponding to thehigher order root space of the operator adBjL(1) corresponding to its eigenvalue �.



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 157.6. Six-dimensional Lie algebras.Construction. The Lie algebra L6;I(�; �), �; � 2 C nR, Fig. 5.L6;I(�; �) = span(x; y; z; u; v; w);adxjspan(y;z;u;v;w) = 0BBBB@ a �b 0 0 0b a 0 0 00 0 c �d 00 0 d c 00 0 0 0 2a 1CCCCA ; � = a+ bi; � = c+ di;[y; z] = w:Construction. The Lie algebra L6;II(�; �; k), �; � 2 C n R, Re� = Re�,k 2 Rn f0g, Fig. 6.L6;II(�; �; k) = span(x; y; z; u; v; w);adxjspan(y;z;u;v;w) = 0BBBB@ a �b 0 0 0b a 0 0 00 0 a �d 00 0 d a 00 0 0 0 2a 1CCCCA ; � = a+ bi; � = a + di;[y; z] = w; [u; v] = kw:Construction. The Lie algebra L6;III(�; k; l), � 2 C n (R[ iR), k; l 2 R,k2 + l2 6= 0, Fig. 7.L6;III(�; k; l) = span(x; y; z; u; v; w);adxjspan(y;z;u;v;w) = 0BBBB@ a �b 0 0 0b a 0 0 00 0 3a �b 00 0 b 3a 00 0 0 0 2a 1CCCCA ; � = a+ bi;[w; y] = ku+ lv; [w; z] = �lu + kz:Construction. The Lie algebra L6;IV (�; k; l), � 2 C n (R[ iR), k; l 2 R,k2 + l2 6= 0, Fig. 8.L6;IV (�; k; l) = span(x; y; z; u; v; w);adxjspan(y;z;u;v;w) = 0BBBB@ a �b 0 0 0b a 0 0 00 0 �a �b 00 0 b �a 00 0 0 0 0 1CCCCA ; � = a+ bi;[y; v] = �[z; u] = kw; [y; u] = [z; v] = lw:



16 YURI L. SACHKOVConstruction. The Lie algebra L6;V (�; k; l), � 2 C n (R[ iR), k; l 2 R,k2 + l2 6= 0, Fig. 9.L6;V (�; k; l) = span(x; y; z; u; v; w);adxjspan(y;z;u;v;w) = 0BBBB@ a �b 0 0 0b a 0 0 01 0 a �b 00 1 b a 00 0 0 0 2a 1CCCCA ; � = a+ bi;[y; z] = kw; [y; u] = [z; v] = lw:Construction. The class of Lie algebras L6;V I(bi), b 2 Rn f0g, Fig. 10.A Lie algebra L belongs to the class L6;V I(bi) if:L = span(x; y; z; u; v; w);L(1) = span(y; z; u; v; w);Sp(adxjL(1)) = f�bi; 0g;both eigenvalues �bi have double algebraic multiplicity;w 2 L(2):The class L6;V I contains a lot of nonisomorphic Lie algebras in which multipli-cation can not be described in detail as in Lie algebras L6;I{L6;V .Theorem 7.10. Let a six-dimensional solvable Lie algebra L not belong to theclass L6;V I(bi), b 2 Rn f0g. Then L is controllable i� it is isomorphic to one ofthe following Lie algebras:1. L6;I(�; �), �; � 2 C nR, � 6= �; ��;2. L6;II(�; �; k), �; � 2 C nR, Re� = Re�, � 6= �; ��, k 2 Rn f0g;3. L6;III(�; k; l), � 2 C n (R[ iR), k; l 2 R, k2 + l2 6= 0;4. L6;IV (�; k; l), � 2 C n (R[ iR), k; l 2 R, k2 + l2 6= 0;5. L6;V (�; k; l), � 2 C n (R[ iR), k; l 2 R, k2 + l2 6= 0.Theorem 7.11. Let L = L6;I(�; �), �; � 2 C nR, � 6= �; ��, and let A;B 2 L.The system � = A+RB � L is controllable i� the following conditions are satis�ed:1. B =2 L(1),2. A(�) 6= 0 and A(�) 6= 0.Theorem 7.12. Let L = L6;II(�; �; k), �; � 2 C n R, Re� = Re�, � 6= �; ��,k 2 Rn f0g, and let A;B 2 L. The system � = A +RB � L is controllable i� thefollowing conditions are satis�ed:1. B =2 L(1),2. A(�) 6= 0 and A(�) 6= 0.Theorem 7.13. Let L = L6;III(�; k; l), � 2 C n (R[ iR), k; l 2 R, k2+ l2 6= 0,and let A;B 2 L. The system � = A + RB � L is controllable i� the followingconditions are satis�ed:1. B =2 L(1),2. A(�) 6= 0.Theorem 7.14. Let L = L6;IV (�; k; l), � 2 C n (R[ iR), k; l 2 R, k2+ l2 6= 0,and let A;B 2 L. The system � = A + RB � L is controllable i� the followingconditions are satis�ed:



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 171. B =2 L(1),2. A(�) 6= 0 and A(��) 6= 0.Theorem 7.15. Let L = L6;V (�; k; l), � 2 C n (R[ iR), k; l 2 R, k2 + l2 6= 0,and let A;B 2 L. The system � = A + RB � L is controllable i� the followingconditions are satis�ed:1. B =2 L(1),2. top(A; �) 6= 0.Remark. The class L6;V I(bi), b 2 R n f0g, contains both controllable andnoncontrollable Lie algebras.Controllable solvable Lie algebras up to dimension 6:r �yr ��zFig. 1. L3(�). r �y@@@Rr ��z����r2awFig. 2. L4(�); Re� = a.r �yr ��z r �ur ��vFig. 3. L5;I(�; �). rf�uy rf ��vzFig. 4. L5;II(�).r �y@@@Rr ��z����r2aw r �ur ��vFig. 5. L6;I(�; �); Re� = a. r �y@@@Rr� uHHHjr ��z����r�� v���*r2awFig. 6. L6;II(�; �; k); Re� = Re� = a.



18 YURI L. SACHKOVr �y@@@R -r ��z���� -r 2aw����@@@Rr 3a+ biur 3a� bivFig. 7. L6;III(�; k; l); � = a+ bi. rw0 �����+ r a+ biyrQQQQQk a� biz�����3r�a� bi vrQQQQQs�a+ bi uFig. 8. L6;IV (�; k; l); � = a+ bi.@@@Rrf�uy ����rf ��vz r2awFig. 9. L6;V (�; �); Re� = a. rw0?rf biy urf6�biz vFig. 10. L6;V I(bi).8. Bibliographical notesThe results presented in this paper were obtained by the following authors:Subsection 3.1: J. Hilgert, K.H. Hofmann, and J.D. Lawson [13].Subsection 3.2: V. Ayala Bravo [6].Section 4: J.D. Lawson [25].Sections 5{7: Yu. L. Sachkov [26, 27, 28].9. Questions and suggestionsIn this section we present and discuss several challenging open questions relatedto the results considered above.9.1. The hypersurface principle. The hypersurface principle given by The-orem 5.3, Section 5, is a necessary controllability condition for an arbitrary simplyconnected Lie group. If a simply connected Lie group has cocompact radical, thenthis principle is also su�cient for controllability (Theorem 4.1, Section 4). Is itpossible to extend the class of simply connected Lie groups with cocompact radicalso that the hypersurface principle remain a criterion of controllability?9.2. Lie algebras hard to control. For any Lie group G and any systema�ne in control � = fA+Pmi=1 uiBi j ui 2 Rg on G controllability of the homo-geneous part �0 = fPmi=1 uiBi j ui 2 Rg is su�cient for controllability of � on G.We call a Lie algebra L hard to control if any a�ne in control system � � L andits homogeneous part �0 are simultaneously controllable or noncontrollable (on theconnected simply connected Lie group G corresponding to L). In Lie algebras L



CONTROLLABILITY OF INVARIANT SYSTEMS ON SOLVABLE LIE GROUPS 19hard to control the drift term A in an a�ne system � � L does not help in control,which is not the case for general Lie algebras.There is the expanding chain of classes of Lie algebras hard to control:abelian � nilpotent � completely solvable: (�)The abelian case is obvious, the nilpotent one is Theorem 3.3, Subsection 3.2, andthe completely solvable one is Theorem 5.1, Section 5.On the other hand, the Lie algebra of the group E(2) of motions of the planeis solvable, not completely solvable and not hard to control (see the example inSubsection 6.3).Corollary 3.3 [26] states that all Lie algebras satisfying the following property:any subalgebra l � L; l 6= L; is containedin a codimension one subalgebra of L � (��)are included in the set of Lie algebras hard to control. The author does not know,whether this inclusion is strict. (By Lemma 4.2 [26], completely solvable Lie alge-bras satisfy property (**).)Are there any Lie algebras hard to control not contained in chain (*)? If yes,can this chain be continued by any reasonable class of Lie algebras?The theory of K.H. Hofmann on hyperplane subalgebras of Lie algebras [16,17, 19] may be important for this question.9.3. Small-dimensional groups. A complete and visual classi�cation of con-trollable systems might be obtained for small-dimensional groups with the help ofthe known results for the following classes of groups: compact [20], semi-simple [21],[22], [11], reductive [14], nilpotent [13], [6], and solvable [25], [26], [27], [28]. Anattempt in this direction was made in [29].9.4. Solvable not simply connected Lie groups. The results of K.H. Hof-mann on compact elements in solvable Lie algebras [18] might be applied in order tounderstand controllability for solvable Lie groups without the assumption of simpleconnectedness essential in Sections 5{7.9.5. General groups. On the basis of the results listed in Subsection 9.3,controllability theory for general Lie groups can be started synthesizing the \semi-simple" and \solvable" theory via Levi decomposition (I. Kupka [24]).9.6. Nilpotent and solvable manifolds. Controllability of projections ofright-invariant systems onto nilpotent and solvable manifolds can be studied viaapplication of the theory of 
ows on these manifolds [5]. This may be importantfor studying local controllability of nonlinear systems via nilpotent approximations(P.E. Crouch and C. I. Byrnes [10]).9.7. Codimension one and two subalgebras. The solution of the control-lability problem for completely solvable Lie groups (see Section 5) is based uponthe following fact: any proper subalgebra of a real completely solvable Lie algebrais contained in a codimension one subalgebra. On the other hand, any proper sub-algebra of a real solvable Lie algebra is included in some subalgebra of codimensionone or two.This suggests the following approach to controllability on solvable Lie groups.Project a system along the connected subgroup corresponding to the indicatedcodimension one or two subalgebra. Then: 1) if this group is closed and normal,
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