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its generalizations (Secs. 11{16). In Sec. 17, we list some works related to thesubject of this survey.2. De�nitions and General Properties of Right-Invariant SystemsThroughout this paper G will denote a real Lie group; L its Lie algebra, i.e.,the set of right-invariant vector �elds on G.2.1. Basic de�nitions. A right-invariant control system � on a Lie group G isan arbitrary set of right-invariant vector �elds on G, i.e., any subset� � L: (2.1)A particular class of right-invariant systems, which is important for applicationsis formed by systems a�ne in control� = (A+ mXi=1 uiBi j u = (u1; : : : ; um) 2 U � Rm ) ; (2.2)where A, B1, . . . , Bm are some elements of L. If the control set U coincides withRm , then system (2.2) is an a�ne subspace of L.Remark. Throughout this paper, we write a right-invariant control systemas (2.1) or (2.2), i.e., as a set of vector �elds, a polysystem. In the classicalnotation, control a�ne systems (2.2) are written as follows:_x = A(x) + mXi=1 uiBi(x); u = (u1; : : : ; um) 2 U; x 2 G; (2.3)with piecewise-constant control functions u1(�), . . . , um(�). Polysystem (2.1) canalso be written in such classical notation via a choice of a parametrization of theset �.A trajectory of a right-invariant system � on G is a continuous curve x(t) inG de�ned on an interval [a; b] � R so that there exists a partition a = t0 < t1 <� � � < tk = b and vector �elds A1; : : : ; Ak in � such that the restriction of x(t) toeach open interval (ti�1; ti) is di�erentiable and _x(t) = Ai(x(t)) for t 2 (ti�1; ti),i = 1; : : : ; k.For any T � 0 and any x in G, the reachable set for time T of a system �from the point x is the set A �(x; T ) of all points that can be reached from x inexactly T units of time:A �(x; T ) = fx(T ) j x(�) a trajectory of �; x(0) = xg:The reachable set for time not greater than T � 0 is de�ned asA �(x;� T ) = [0�t�T A �(x; t):2



The reachable (or attainable) set of a system � from a point x 2 G is the setA �(x) of all terminal points x(T ), T � 0, of all trajectories of � starting at x:A �(x) = fx(T ) j x(�) a trajectory of �; x(0) = x; T � 0g = [T�0 A �(x; T ):If there is no ambiguity, in the sequel we denote the reachable sets A �(x; T ) andA �(x) by A (x; T ) and A (x), respectively.A system � is called controllable if, given any pair of points x0 and x1 in G,the point x1 can be reached from x0 along a trajectory of � for a nonnegativetime: x1 2 A (x0) for any x0; x1 2 G;or in other words, if A (x) = G for any x 2 G:Another property, which is obviously weaker than controllability, is also es-sential for description of reachable sets. A system � is called accessible at a pointx 2 G if the reachable set A (x) has nonempty interior in G.The orbit of a system � passing through a point x 2 G is denoted by O�(x)and is de�ned similar to the reachable set A (x), but the terminal time T can takeboth positive and negative values:O�(x) = fx(T ) j x(�) a trajectory of �; x(0) = x; T 2 Rg:If a system � is �xed, its orbit is denoted by O(x).Remark. The inversion i : G! G; i(x) = x�1induces an isomorphism between the Lie algebra of right-invariant vector �eldson a Lie group G and the Lie algebra of left-invariant vector �elds on G. Thus, allproblems for left-invariant control systems, including controllability, are reducedto the study of right-invariant systems.For any subset � � L, we denote by Lie(�) the Lie algebra generated by �,i.e., the smallest subalgebra of L containing �.Given any subset l of a vector space V , we denote by span(l) the vectorsubspace of V generated by l and by co(l) the positive convex cone generated bythe set l.We denote the topological closure and the interior of a set M by clM andintM , respectively.The identity operator or matrix will be denoted by Id, and Eij stands forthe matrix with the identity ij-th entry and all other zero entries. We denote byAT the transposed matrix of a matrix A.2.2. Elementary properties of orbits and reachable sets. Let exp : L! Gbe the exponential mapping from the Lie algebra L into the Lie group G. Any3



right-invariant �eld A 2 L is complete. The trajectory of A passing through thegroup identity e 2 G is exp(tA); t 2 R;and exp(tA)x; t 2 Ris the trajectory of A passing through a point x 2 G.Some properties of orbits of systems of right-invariant vector �elds that arewell known from the Lie group theory are collected in the following proposition.Lemma 2.1. Let � � L be a right-invariant system, and let x be an arbitrarypoint of G. Then(i) O(x) = fexp(tkAk) � � � exp(t1A1)x j Ai 2 �; ti 2 R; k 2 Ng;(ii) O(x) = O(e)x;(iii) O(e) is the connected Lie subgroup of G with the Lie algebra Lie(�);(iv) O(x) is the maximal integral manifold of the involutive right-invariant dis-tribution Lie(�) on G passing through the point x.The following basic properties of attainable sets follow easily from the right-invariant property of � and the de�nition of A (x).Lemma 2.2. Let � � L be a right-invariant system, and let x be an arbitrarypoint of G. Then(i) A (x) = fexp(tkAk) � � � exp(t1A1)x j Ai 2 �; ti � 0; k 2 Ng;(ii) A (x) = A (e)x;(iii) A (e) is a subsemigroup of G;(iv) A (x) is an arcwise-connected subset of G.Since all essential properties of attainable sets (including controllability, see,e.g., Theorems 2.6 and 2.7) are expressed in terms of the attainable set from theidentity A (e), in the sequel, we restrict ourselves to this set and denote it by A .In a similar way, we denote the orbit O(e) simply by O.2.3. Matrix systems. An important class of right-invariant systems thatmotivated the whole theory of such systems are matrix control systems.Denote by M(n; R) the set of all n� n real matrices.The general linear group GL(n; R) is formed by nonsingular real n � n ma-trices: GL(n; R) = fX 2 M(n; R) j detX 6= 0g :4



The group product in GL(n; R) is the usual matrix product, and the real analyticstructure on GL(n; R) is induced by identifying M(n; R) with Rn2 .The Lie algebra of GL(n; R) is the space of all real n� n matrices:gl(n; R) = M(n; R)with the matrix commutator[A;B] = AB � BA; A;B 2 gl(n; R);as a Lie product.Let G be a linear group, i.e., a closed subgroup of GL(n; R), and let L �gl(n; R) be the Lie algebra of G.For any matrix A 2 L, the corresponding right-invariant vector �eld on G isde�ned by the matrix productA(x) = Ax; x 2 G (2.4)(we identify a right-invariant vector �eld with its value at the group identity).The exponential mapping from L to G is the matrix exponentialA 7! exp(A) = Id+A+ 12!A2 + � � �+ 1n!An + � � � ; A 2 L:The trajectory of A 2 L passing through a point x 2 G is given by the matrixexponential and the product exp(tA)x; t 2 R: (2.5)The right translation by an element g 2 Gx 7! xg; x 2 Gmaps a trajectory (2.5) into a trajectory; this explains the name right-invariantfor vector �elds of the form (2.4).A right-invariant control system on a linear group G is an arbitrary set ofmatrices � � L.An a�ne in control right-invariant system on G has the form (2.2) for somematrices A, B1, . . . , Bm 2 L. In the classical notation, such system is written asa matrix control system_x = Ax + mXi=1 uiBix; u = (u1; : : : ; um) 2 U � Rm ; x 2 G: (2.6)Now we list several examples of linear groups G and their Lie algebras L.In each of these cases, G can be regarded as the state space of a right-invariantsystem � � L; in the a�ne in control case, see (2.2) or (2.6), the matrices A, B1,. . . , Bm can arbitrarily be chosen in L. 5



Example 2.1. The general linear group GL(n; R) has the Lie algebra gl(n; R).Its dimension is equal to n2. Notice that GL(n; R) is not connected: it has twoconnected components.Example 2.2. The connected component of the identity in GL(n; R) is thegroup of all real n� n matrices with positive determinant:GL+(n; R) = fX 2 M(n; R) j detX > 0g :The Lie algebra of the group GL+(n; R) is gl(n; R).Example 2.3. The special linear group is the group of all real n�n unimodularmatrices: SL(n; R) = fX 2 M(n; R) j detX = 1g:It is a connected (n2 � 1)-dimensional Lie group, and its Lie algebra sl(n; R)consists of all n� n matrices with zero trace:sl(n; R) = fA 2 M(n; R) j trA = 0g:Example 2.4. The special orthogonal group is formed by all real n�n orthogonalunimodular matrices:SO(n; R) = fX 2 M(n; R) j XT = X�1; detX = 1g:It is a connected Lie group of dimension n(n� 1)=2, and its Lie algebra so(n; R)consists of all real n� n skew-symmetric matrices:so(n; R) = fA 2 M(n; R) j AT = �Ag:2.4. Normal accessibility. If a point y in G is reachable (or accessible) from apoint x in G, then there exist elements A1; : : : ; Ak in � and t = (t1; : : : ; tk) 2 Rkwith positive coordinates such thaty = exp(tkAk) � � � exp(t1A1)x:The following stronger notion turns out to be important in the study of topologicalproperties of reachable sets and controllability.De�nition 2.1. A point y in G is called normally accessible from a point x in Gby � if there exist elements A1, . . . , Ak in � and t̂ 2 Rk with positive coordinatest̂1, . . . , t̂k such that the mapping F (t1; : : : ; tk) = exp(tkAk) � � � exp(t1A1)x as amapping from Rk into G satis�es the following conditions:(i) F (t̂) = y.(ii) The rank of the di�erential dF at t̂ is equal to the dimension of G.6



The point y is said to be normally accessible from x by A1, . . . , Ak.Theorem 2.1. If Lie(�) = L, then in any neighborhood O of the identity e 2 G,there are points normally accessible from e by �. Consequently, the set int A \Ois nonempty.Proof. Denote n = dimL = dimLie(�). If n = 0, everything is clear.Assume that n > 0 and �x a neighborhood O of the identity e.There exists a nonzero element A1 2 �. The curveM1 = fexp(t1A1) j 0 < t1 < "1gis a smooth one-dimensional manifold contained in the neighborhood O for asu�ciently small positive "1. If n = 1, then any point inM1 is normally accessiblefrom e by A1, since the mapping F1(t1) = exp(t1A1) has rank 1 on the intervalI1 = (0; "1).If n > 1, there exists an element A2 2 � such that the right-invariant �eldA2 is not tangent to M1 at any point of M1; if this is the case for any A2 2 �,then dimLie(�) = 1; a contradiction. That is why the setM2 = fexp(t2A2) exp(t1A1) j 0 < ti < "i; i = 1; 2gis a smooth two-dimensional manifold that belongs to O for su�ciently smallpositive "1 and "2. Moreover, the mapping F2(t1; t2) = exp(t2A2) exp(t1A1) hasrank 2 in the domain I2 = (0; "1)� (0; "2). If n = 2, the theorem is proved, sincein this case, any point of M2 is normally accessible from e by A1 and A2.If n > 2, we proceed by induction. For any dimension k < n and someelements A1; : : : ; Ak 2 �, we construct the k-dimensional smooth manifoldMk = fexp(tkAk) � � � exp(t1A1) j 0 < ti < "i; i = 1; : : : ; kgcontained in the neighborhood O for su�ciently small positive "1; : : : ; "k, so thatthe mapping Fk(t1; : : : ; tk) = exp(tkAk) � � � exp(t1A1) has the rank k in the domainIk = (0; "1) � � � � � (0; "k). Then any point in Mn is normally accessible from eby A1; : : : ; An.The image of the box In by the mapping Fn is an open set contained in Aand O; thus, int A \O � Fn(In).If the Lie algebra generated by � does not coincide with the whole Lie algebraL, then � can be considered as a right-invariant system on the orbit O. By item(iv) of Lemma 2.1, Lie(�) coincides with the Lie algebra of the Lie group O; thus,the previous theorem implies the following relationship between the attainable setA and the orbit O.Lemma 2.3.(i) The attainable set A is contained in the orbit O.(ii) For any neighborhood O of the identity e in the topology of the orbit O, theintersection intO A \ O is nonempty. 7



(iii) Moreover, cl intO A � A .(We denote by intO the interior of a subset of the orbit O in the topology ofO.)Proof. Item (i) is straightforward. Item (ii) follows from Theorem 2.1: sinceLie(�) is the Lie algebra of O, one should replace in this theorem G by O. Toprove inclusion (iii), take any point x in A and choose any neighborhood U of xin O. We have to show that the intersection intO A \U is nonempty. There existsa neighborhood O of e in O such that Ox � U . By item (ii), there is a point yin intO A \ O. Then yx 2 intO A \ U .2.5. Basic controllability conditions.Theorem 2.2. A necessary condition for a right-invariant system � on G tobe controllable is that the Lie group G be connected.Proof. The reachable set A is arcwise-connected; see Lemma 2.2.Remark. In view of the previous theorem, in the sequel, all Lie groups areassumed to be connected , unless otherwise explicitly speci�ed.The fundamental necessary controllability condition given in the followingproposition is usually referred to as the rank condition or the Lie algebra rankcondition (LARC ).Theorem 2.3. A necessary condition for a right-invariant system � on G tobe controllable is that � generates L as a Lie algebra: Lie(�) = L. If Lie(�) = L,then the attainable set A has a nonempty interior in the group G.Proof. If A = G, then more so O = G. By Lemma 2.1, Lie(�) = L.If Lie(�) = L, then Theorem 2.1 yields int A 6= ?.In general, the rank condition is not su�cient for controllability, but it isequivalent to accessibility.Theorem 2.4. A right-invariant system � on G is accessible at the identity(and thus at any point in G) if and only if Lie(�) = L.Proof. Necessity. If the reachable set A has a nonempty interior in G, thenthe same holds for the orbit O. By Lemma 2.1, we obtain Lie(�) = L.Su�ciency. If Lie(�) = L, then int A is nonempty by Theorem 2.1.A system � � L is said to have a full rank if the rank condition Lie(�) = Lholds.Theorem 2.5. A right-invariant system � on a connected Lie group G iscontrollable if and only if the following conditions hold:(i) The attainable set A is a subgroup of G and(ii) Lie(�) = L.8



Proof. Necessity. Item (i) is obvious, and item (ii) follows from the rankcondition.Su�ciency. If A is a subgroup, then for any exponential exp(tA), A 2 �,t � 0, its inverse exp(�tA) is also in A . Thus, the attainable set A coincideswith the orbit O. But since � has the full rank, its orbit coincides with the wholegroup G (see Lemma 2.1, item (iv)). Consequently, A = G.Theorem 2.6. A right-invariant system � is controllable on a connected Liegroup G if and only if it is controllable from the identity, i.e., A = G.Proof. Apply item (ii) of Lemma 2.2.For a full-rank system �, its attainable set A has a nonempty interior in G.But in general, the identity e can lie on the boundary of A .Theorem 2.7. A right-invariant system � is controllable on a connected Liegroup G if and only if the group identity e is contained in the interior of A .Proof. Necessity is obvious, and su�ciency follows from the fact that for aconnected Lie group G, an arbitrary neighborhood of the identity e generates Gas a semigroup.The following controllability condition is fundamental, since it shows us thatin the study of controllability of full-rank systems, one can replace the attainableset A by its closure cl A .Theorem 2.8. If the reachable set A is dense in a connected Lie group G andLie(�) = L, then � is controllable on G.Proof. Consider the backward-time system�� = f�A j A 2 �g;its trajectories are trajectories of � passed in the backward time. The attainableset of �� isA �� = fexp(�tkAk) � � � exp(�t1A1) j Ai 2 �; ti � 0; k 2 Ng = A �1 : (2.7)Since the system �� has the full rank: Lie(��) = Lie(�) = L, its attainable sethas a nonempty interior and thus contains an open set O1.On the other hand, since � has the full rank, there is a point x in G that hasa neighborhood O(x) contained in A .The closure of the attainable set from x is everywhere dense: cl A (x) =cl(A � x) = G; thus, there exists a point y 2 A (x) \ O1. We have y 2 A � x;hence yx�1 2 A . Taking into account the inclusion O(x) � A and the semigroupproperty of A , we obtain that the neighborhood O(y) = yx�1 �O(x) of the pointy is contained in A . But y 2 O1 � A �1 ; thus, y�1 2 A , and the neighborhood ofthe identity O(e) = y�1 �O(y) is contained in A . By Theorem 2.7, A = G.Theorem 2.9. A right-invariant system � is controllable on a connected Liegroup G if and only if the identity e is normally accessible from e by some elementsA1; : : : ; Al in �. 9



Proof. Necessity. By Theorem 2.1, there exists a point x 2 G that is normallyaccessible by some �elds A1; : : : ; Ak 2 � from e. Since � is controllable, thebackward-time system �� is also controllable; thus,e = exp(tlAl) � � � exp(tk+1Ak+1)xfor some Ak+1; : : : ; Al 2 � and some tk+1; : : : ; tl > 0. Then e is normally accessiblefrom e by the �elds A1; : : : ; Al.Su�ciency follows from Theorem 2.7, since a normally accessible point is inthe interior of the attainable set.The preceding result easily implies that controllability of right-invariant sys-tems is preserved under small perturbations. More precisely, let �(�; �) be thedistance in the Lie algebra L, and let d(�; �) be the corresponding Hausdor� dis-tance between subsets of L:d(�1;�2) = max( supA12�1 infA22�2 �(A1; A2); supA22�2 infA12�1 �(A1; A2)) :Theorem 2.10. If a right-invariant system � � L is controllable, then thereexists " > 0 such that any system �0 � L is controllable provided that d(�;�0) < ".Proof. If � is controllable, then the identity e is normally accessible frome by some A1; : : : ; Ak 2 �. For a su�ciently small " > 0, any system �0 withd(�;�0) < " contains elements A01; : : : ; A0k such that �(Ai; A0i) < ", i = 1; : : : ; k.Then e is normally accessible from e by A01; : : : ; A0k.2.6. Remarks. Control systems with a Lie group as a state space are studiedin the mathematical control theory since the early 1970-ies.Brockett [36] considered applied problems leading to control systems on ma-trix groups and their homogeneous spaces; e.g., a model of DC to DC conversionand the rigid body control raise control problems on the group of rotations of thethree-space SO(3; R) and on SO(3; R) � R3 , respectively. The natural frameworkfor such problems are matrix control systems of the form_x(t) = Ax(t) + mXi=1 ui(t)Bix(t); ui(t) 2 R; (2.8)where x(t) and A, B1; : : : ; Bm are n� n matrices.The systematic mathematical study of control systems on Lie groups wasinitiated by Jurdjevic and Sussmann [83]. They observed that the passage fromthe matrix system (2.8) to a more general right-invariant system_x(t) = A(x(t)) + mXi=1 ui(t)Bi(x(t)); x(t) 2 G; u(t) 2 R;where A, B1; : : : ; Bm are right-invariant vector �elds on a Lie group G, \in no es-sential way a�ects the nature of the problem". The basic properties of attainableset and orbits of right-invariant systems were found in [83].The notion of normal accessibility (for arbitrary nonlinear systems) is dueto Sussmann [140].10



3. Control Systems Subordinated to a Group Action3.1. Transitive actions, homogeneous spaces, and controllability.De�nition 3.1. A Lie group G is said to act on an analytic manifold M ifthere exists an analytic mapping � : G �M ! M that satis�es the followingconditions:(1) �(g2g1; x) = �(g2; �(g1; x)) for any g1; g2 in G and any x in M ;(2) �(e; x) = x for any x in M .For each g 2 G, consider the analytic di�eomorphism �g : M ! M givenby �g(x) = �(g; x) (the inverse to �g is given by �g�1). The mapping g 7! �g iscalled an action of G on M . Any action is a homomorphism from the group Ginto the group of analytic di�eomorphisms of M . For any element A 2 L, �exp tAis a one-parameter group of di�eomorphisms of M with the generator ��(A), ananalytic vector �eld on M :��(A)(x) = ddt �����t=0 �exp tA(x); x 2 M; A 2 L:Such vector �elds ��(A), A 2 L are said to be subordinated to the action � of G.They form the �nite-dimensional Lie algebra��(L) = f��(A) j A 2 Lgof complete vector �elds on M .De�nition 3.2. A system of vector �elds F on M is called subordinated to anaction � if F is contained in ��(L). If F = ��(�) for some right-invariant system� � L, then F is said to be induced by �.A Lie group G acts transitively on M if, for any x 2 M , the orbit f�g(x) jg 2 Gg coincides with the whole M . A manifold that admits a transitive actionof a Lie group is called the homogeneous space of this Lie group. Homogeneousspaces are exactly manifolds that can be represented as quotients of Lie groups.If � is a transitive action of G on M , then we can consider the isotropy group Hat a given point x 2M : H = fg 2 G j �g(x) = xg:H is a closed subgroup of G, and the manifold M is di�eomorphic to the leftcoset space G=H with the di�eomorphism G=H !M given by gH 7! �g(x).Given a right-invariant system � on a Lie group G that acts on a manifoldM , one can construct a system on M induced by �. The following proposition isa controllability result related to this construction.Theorem 3.1. Let � be an action of a connected Lie group on a manifold M ,� � L be a right-invariant system on G, and let F = ��(�) be the induced systemon M . 11



(i) For any point x in M , the reachable set of F from x isA F (x) = �A� (x) = f�g(x) j g 2 A �g:(ii) Assume that the action � is transitive. If � is controllable on G, then F iscontrollable on M .(iii) F is controllable onM if and only if the semigroup A � acts transitively onM .Proof. (i) For any trajectory g(t) of � and for any point x in M , the curve�g(t)(x) is a trajectory of F ; moreover, any trajectory of F is obtained in such away. (ii) If A � = G, then A F (x) =M , since the orbit of � coincides with M .(iii) Su�ciency follows in the same way as in (ii). The necessity is obtainedfrom the description of the reachable set A F (x) in (i).Important applications of Theorem 3.1 are related to the linear action oflinear groups G � GL(n; R) on the vector space Rn . In this case, the inducedsystems are bilinear, or more generally, a�ne systems.3.2. Bilinear systems.3.2.1. Induced vector �elds and systems. For the linear action of the groupGL(n; R) on the vector space Rn ,�g(x) = gx; g 2 GL(n; R); x 2 Rn ;the induced vector �elds are linear:��(A)(x) = Ax; A 2 gl(n; R); x 2 Rn :Given any elements A;B1; : : : ; Bm 2 gl(n; R) and a control set U � Rm , con-sider the following right-invariant system on GL(n; R), which is a�ne in control:� = (A+ mXi=1 uiBi j u = (u1; : : : ; um) 2 U � Rm) :Then the induced system is the following set of linear vector �elds on Rn :F = (A+ mXi=1 uiBi j u = (u1; : : : ; um) 2 U � Rm) :Passing from polysystems to control systems in the classical notation, we obtaina bilinear system_x = Ax + mXi=1 uiBix; u = (u1; : : : ; um) 2 U � Rm ; x 2 Rn :3.2.2. Bilinear systems on Rn n f0g. Assume that the action of a connectedlinear group G � GL(n; R) is transitive on the punctured vector space M =12



Rn n f0g. The typical examples are the groups GL+(n; R) and SL(n; R). Let L bethe Lie algebra of G. The Lie algebras in the previous examples are respectivelygl(n; R) and sl(n; R).For this case, Theorem 3.1 implies the following.Corollary 3.1. If a right-invariant system� = (A+ mXi=1 uiBi j u = (u1; : : : ; um) 2 U � Rm) � Lis controllable on a linear group G that acts transitively on Rn n f0g, then thebilinear system_x = Ax + mXi=1 uiBix; u = (u1; : : : ; um) 2 U � Rm ; x 2 Rn n f0gis controllable on Rn n f0g.3.2.3. Bilinear systems on Sn�1. Now consider the case of a connected lineargroup whose action is transitive on the unit sphereSn�1 = fx 2 Rn j kxk = 1g;e.g., the group SO(n; R) of rotations of Rn . Let L be the Lie algebra of G. Inthe previous example, the Lie algebra so(n; R) is formed by n�n skew-symmetricmatrices.Then Theorem 3.1 yields the following.Corollary 3.2. If a right-invariant system� = (A+ mXi=1 uiBi j u = (u1; : : : ; um) 2 U � Rm) � Lis controllable on a linear group G that acts transitively on Sn�1, then the bilinearsystem _x = Ax + mXi=1 uiBix; u = (u1; : : : ; um) 2 U � Rm ; x 2 Sn�1is controllable on the sphere Sn�1.3.3. A�ne systems.3.3.1. Induced vector �elds and systems. Let A�(n; R) be the group ofinvertible a�ne transformations of Rn . It is the semidirect product of the groupof translations of Rn with the general linear group:A�(n; R) = Rn nGL(n; R): 13



This group can be represented as a subgroup of GL(n + 1; R) by matrices of theform X =  X x0 1 ! ; X 2 GL(n; R); x 2 Rn :Embedding Rn into Rn+1 as the hyperplaneRn � fvn+1 = 1g = f(v1; : : : ; vn; 1)T 2 Rn+1 j (v1; : : : ; vn)T 2 Rng;we obtain an a�ne mapping in Rn de�ned by an element X 2 A�(n; R); this isthe mapping  v1 ! 7!  X x0 1 ! v1 ! =  Xv + x1 ! :That is, the group A�(n; R) acts on Rn as follows:�X(v) = Xv + x; X 2 A�(n; R); v 2 Rn :The Lie algebra aff(n; R) of the a�ne group is represented by the matricesA =  A a0 0 ! ; A 2 gl(n; R); a 2 Rn :The one-parameter subgroup in A�(n; R) corresponding to A 2 aff(n; R) isexp t A a0 0 ! =  etA etA�IdA a0 1 ! ;where etA � IdA = t Id+ t22!A+ � � �+ tnn!An�1 + � � � :The corresponding ow in Rn is�exp(tA)(v) = etAv + etA � IdA a;thus, the induced vector �eld is an a�ne �eld on Rn :��(A)(v) = Av + a; v 2 Rn :Now let G be a connected linear subgroup of A�(n; R) that acts transitivelyon Rn , e.g., the group of invertible a�ne transformations of Rn that preserve theorientationA�+(n; R) = Rn nGL+(n; R) = ( X x0 1 ! j X 2 GL+(n; R); x 2 Rn) ;or the group of Euclidean motions of Rn ,E(n; R) = Rn n SO(n; R) = ( X x0 1 ! j X 2 SO(n; R); x 2 Rn) :14



Let L be the Lie algebra of G; in the previous cases, we have the Lie algebrasaff(n; R) = Rn h gl(n; R) = ( A a0 0 ! j A 2 gl(n; R); a 2 Rn) ;and e(n; R) = Rn h so(n; R) = ( A a0 0 ! j A 2 so(n; R); a 2 Rn) ;respectively. A right-invariant system� = (A + mXi=1 uiBi j u = (u1; : : : ; um) 2 U � Rm) � L (3.1)on the Lie group G that is a�ne in control withA =  A a0 0 ! ; Bi =  Bi bi0 0 ! ; i = 1; : : : ; m;induces the following a�ne control system:_x = Ax + a+ mXi=1 ui(Bix+ bi); u = (u1; : : : ; um) 2 U � Rm ; x 2 Rn : (3.2)Notice that particular cases of a�ne systems are bilinear systems considered inSecs. 3.2.2 and 3.2.3 (a = b1 = � � � = bm = 0) and the classical linear systems_x = Ax + mXi=1 uibi; u = (u1; : : : ; um) 2 U � Rm ; x 2 Rn ;obtained in the case a = 0, B1 = � � � = Bm = 0.Now Theorem 3.1 implies the following proposition.Corollary 3.3. Let G be a connected linear subgroup of A�(n; R) that actstransitively on Rn . If a right-invariant system (3:1) is controllable on G, then theinduced a�ne system (3:2) is controllable on Rn .3.4. Remarks. Control systems on homogeneous spaces that are subordinatedto a group action (in particular, bilinear and a�ne systems) were among the mostimportant motivations for the study of right-invariant systems. The contents ofthis section is mainly due to Brockett [36]. The terminology used and the generalapproach were adopted by Jurdjevic and Kupka [80].Boothby and Wilson [29, 31] found a complete list of linear groups that acttransitively on Rn n f0g. Moreover, they presented an algorithm for veri�cationwhether a Lie group generated by given matrices belongs to this list; this algo-rithm involves only rational matrix operations.Lie groups that act transitively on spheres are also listed; see Samelson [128],p. 26, Borel [32, 33], Montgomery and Samelson [105]. 15



4. Lie SaturateAn e�cient method for obtaining (su�cient) controllability conditions forright-invariant systems is the extension technique based on the computation ofthe tangent cone to the closure of the attainable set of a system at the groupidentity.De�nition 4.1. Two right-invariant systems �1;�2 � L are called equivalentone another if cl(A �1 ) = cl(A �2 ).De�nition 4.2. Let � � L be a right-invariant system. The Lie saturate of �,denoted by LS(�), is the largest subset of Lie(�) that is equivalent to �.If two systems �1 and �2 are equivalent to �, then their union �1 [ �2 isobviously equivalent to �. That is why the Lie saturate of � always exists: it isthe union of all systems in Lie(�) that are equivalent to �. The largest right-in-variant system that is equivalent to � is fA 2 L j exp(tA) 2 cl(A �) 8t � 0g; thus,the Lie saturate can be described as follows.Theorem 4.1. For any system � � L,LS(�) = Lie(�) \ fA 2 L j exp(tA) 2 cl(A �) 8t � 0g:Denote by E(�) the set fA 2 LS(�) j �A 2 LS(�)g. It is the largest vectorsubspace of L contained in LS(�).The basic properties of Lie saturate are collected in the following proposition.Theorem 4.2.(0) LS �LS = LS;(1) LS(�) is a closed convex positive cone in L, i.e.,(1a) LS(�) is topologically closed:cl(LS(�)) = LS(�);(1b) LS(�) is convex:A;B 2 LS(�) ) �A+ (1� �)B 2 LS(�) 8 � 2 [0; 1];(1c) LS(�) is a positive cone:A 2 LS(�) ) �A 2 LS(�) 8 � � 0:Thus, A;B 2 LS(�) ) �A+ �B 2 LS(�) 8 �; � � 0:16



(2) For any A 2 E(�) and for any t 2 R,et adA LS(�) � LS(�):That is,�A;B 2 LS(�) ) et adAB = B + (t adA)B + (t adA)22! B + : : : 2 LS(�)8 t 2 R:(3) E(�) is a subalgebra of L. In particular,�A;�B 2 LS(�) ) �[A;B] 2 LS(�):(4) If A 2 LS(�) and if the one-parameter subgroup fexp(tA) j t 2 Rg is periodic,then RA � LS(�).Proof. (0) is obvious in view of the de�nition of the Lie saturate and Theo-rem 4.1.(1) follows from the well-known properties A cl(�) � cl(A �), A co(�) � cl(A �),and A R+� = A � of reachable sets.To prove (2), assume that �A;B 2 LS(�). Thenexp(set adAB) = exp(sAdexp(tA)B) = exp(tA) exp(sB) exp(�tA) 2 cl(A �)for any s � 0, t 2 R; thus et adAB 2 LS(�) for all t 2 R.Now (3) easily follows: if �A;�B 2 LS(�), then �et adAB;�B 2 LS(�),that is why �[A;B] = � limt!0 et adAB � Bt 2 LS(�):(4) follows from the chainfexp(tA) j t � 0g = fexp(tA) j t 2 Rg � A � ;which is valid for all A 2 LS(�) with a periodic one-parameter group.The following theorem gives a general controllability test in terms of the Liesaturate.Theorem 4.3. A right-invariant system � � L is controllable on a connectedLie group G if and only if LS(�) = L.Proof. Necessity follows from the de�nition of the Lie saturate.Su�ciency. Assume that LS(�) = L. The connected Lie group G is gener-ated by the one-parameter semigroups fexp(tA) j A 2 L; t � 0g as a semigroup;thus, cl(A ) = G. If, in addition, the rank condition Lie(�) = L holds, then � iscontrollable by Theorem 2.8. 17



Usually, it is di�cult to construct the Lie saturate of a right-invariant sys-tem explicitly. That is why Theorem 4.3 is applied as a su�cient condition ofcontrollability via the following procedure. Starting from a given system �, oneconstructs a completely ordered ascending family of extensions f��g of �, i.e.,�0 = �; �� � �� if � < �:The extension rules are provided by Theorem 4.2:(1) given ��, one constructs �� = cl(co(��));(2) for �A;B 2 ��, one constructs �� = �� [ eRadAB;(3) for �A;�B 2 ��, one constructs �� = �� [ R[A;B];(4) given A 2 �� with periodic one-parameter group, one constructs �� = �� [RA.Theorem 4.2 guarantees that all extensions �� belong to LS(�). If one obtains therelation �� = L at some step �, then LS(�) = L, and the system � is controllable.4.1. Remarks. The idea to consider the closure of attainable sets as an invariantof right-invariant systems is important in controllability questions and goes backto Jurdjevic and Sussmann [83]. The concept of Lie saturate and the extensiontechnique were developed by Jurdjevic and Kupka [80, 81].The Lie subsemigroup theory studies general subsemigroups of Lie groups,not necessarily appearing as reachable sets of right-invariant systems. A gener-alization of Theorem 4.2 holds for this case.A subset W of a Lie algebra L is called a wedge if W is a closed positiveconvex cone in L. The edge of a wedge W , denoted by H(W ), is the maximalvector subspace of L contained in W :H(W ) =W \ �W:A wedge W is called a Lie wedge ifeadAW � W for all A 2 H(W ):For a closed subsemigroup S of a Lie group G that contains the identity elemente, its tangent object L(S) = fA 2 L j exp(tA) 2 S 8t � 0gis the Lie wedge.The basic results on the subsemigroup theory can be found in books byHofmann and Lawson [66], Hilgert and Neeb [59], and Hilgert, Hofmann andLawson [58].18



5. Homogeneous Systems5.1. Controllability criterion. A system � � L is called homogeneous if,together with any element X, this system contains also the sign-opposite element�X, i.e., � = ��:Theorem 5.1. Let � be a homogeneous right-invariant system on G. Then itsreachable set A is a subgroup of G and coincides with the orbit O.Proof. Apply Lemmas 2.1 and 2.2.Thus the study of controllability for � is reduced to the veri�cation of thealgebraic condition of coincidence of the connected Lie groups O and G.Theorem 5.2. A homogeneous right-invariant system � � L is controllable ona connected Lie group if and only if Lie(�) = L.Proof. By Lemma 2.1, the Lie algebra of the Lie group O is Lie(�). Thenapply Theorem 5.1.5.2. Control-a�ne systems. A control-a�ne system� = (A + mXi=1 uiBi j u = (u1; : : : ; um) 2 U � Rm)is homogeneous if the drift term A is equal to zero and the control set U issymmetric with respect to the origin: U = �U . For this case, Theorems 5.1 and5.2 are speci�ed as follows.Theorem 5.3. Assume that a control set U � Rm satis�es the relation U = �U .Consider the homogeneous control-a�ne system� = ( mXi=1 uiBi j u = (u1; : : : ; um) 2 U � Rm) � Lon a Lie group G. Then(i) The reachable set A coincides with the orbit O, i.e., with the connected Liesubgroup of G with the Lie algebra Lie(�);(ii) If U = Rm , then any point of A can be reached from the identity e at anarbitrary time: A (e; T ) = A = O for any T > 0;(iii) If G is connected and U = Rm , then the system � is controllable if and onlyif Lie(B1; : : : ; Bm) = L.Proof. Items (i) and (iii) follow respectively from Theorems 5.1 and 5.2. 19



To prove (ii), choose any T > 0. Let a point x in G be reachable from e forsome time T1 > 0: x = exp(tkXk) � � � exp(t1X1); kXi=1 ti = T1;where t1; : : : ; tk > 0 and X1; : : : ; Xk 2 �. Since the control set U = Rm ishomothetic with respect to the origin, the vector �elds Yi = �Xi, i = 1; : : : ; k,belong to � for � = T1=T > 0. Thus, x can be reached from e for time T :x = exp(skYk) � � � exp(s1Y1); kXi=1 si = T;where si = ti=�, i = 1; : : : ; k.5.3. Remarks. The controllability criterion for homogeneous matrix systemswas given by Brockett [36]. In this paper, the criterion was also speci�ed for thegroup of matrices GL+(n; R) with positive determinant, the group of unimodularmatrices SL(n; R), the group of symplectic matrices Sp(n; R), and the group oforthogonal unimodular matrices SO(n; R).The general controllability results for homogeneous right-invariant systemson Lie groups are due to Jurdjevic and Sussmann [83].6. Compact Lie GroupsIn this section, we consider the case of a Lie group that is compact as atopological space.6.1. Controllability conditions.Theorem 6.1. A right-invariant system � � L is controllable on a compactconnected Lie group G if and only if Lie(�) = L.Proof. For any right-invariant vector �eld A 2 L on a compact Lie group G,the negative and positive semitrajectories satisfy the inclusionclfexp(�tA) j t � 0g � clfexp(tA) j t � 0g:That is why any right-invariant system � on G is equivalent to the homogeneoussystem �[��. But for homogeneous systems, controllability is equivalent to therank condition; see Theorem 5.2.Theorem 6.2. Let a Lie group G be compact and connected, and let a right-invariant system � � L be controllable on G. Then there exists T > 0 such thatfor every g0; g1 2 G, there is a control that steers g0 to g1 for not more than Tunits of time.20



Proof. The interiors of the reachable sets A (e;� t), t � 0, form an opencovering of the group G. By compactness of G, there is an instant T1 > 0 suchthat int A (e;� T1) = G:That is, the identity element e can be steered to any element g1 2 G for not morethan T1 units of time. A similar argument applied to �� shows us that thereexists T2 > 0 such that any element g0 2 G can be steered to e for not more thanT2 units of time. Then g0 and g1 can be connected by a trajectory of � for timenot more than T = T1 + T2.6.2. Examples.6.2.1. Special orthogonal group in dimension 3. Let G = SO(3; R), the setof all 3� 3 real orthogonal matrices with positive determinant. The Lie group Gis compact and connected. Its Lie algebra L = so(3; R) is the set of all 3� 3 realskew-symmetric matrices.Take any linearly independent matrices A1; A2 2 so(3; R) and consider theright-invariant system � = fA1; A2g. Notice that the matrices A1, A2, and[A1; A2] span the whole Lie algebra so(3; R). By Theorem 6.1, the system �is controllable. That is, any rotation in SO(3; R) can be written as the productof exponentialsexp(tkAik) � � � exp(t1Ai1); tj � 0; ij 2 f1; 2g; k 2 N: (6.1)Moreover, by Theorem 6.2, there is T > 0 that gives a universal upper boundPkj=1 tj � T for decomposition (6.1) of any rotation in SO(3; R).The single-input right-invariant a�ne in control system_X = (A1 + uA2)X; u 2 U � R; X 2 SO(3; R) (6.2)is also controllable (for any control set U containing more than one element).Moreover, there is T > 0 such that given any two matrices P;Q 2 SO(3; R), thereis a piecewise-constant control that steers P to Q for not more than T units oftime. Notice that in general, there may not exist arbitrarily small numbers T withthe above property even if the control is unconstrained, i.e., U = R. Take, forinstance, A1 = E12�E21 and A2 = E13�E31. Write the solution to system (6.2)with the initial condition X(0) = Id as X = (xij)i;j=1;2;3. Then we have_x12 = x22 + ux32;_x32 = �ux12:Multiplying the �rst equation by x12, the second equation by x32, and adding, weobtain 12 ddt(x212 + x232) = x22x12: 21



Since x212 + x232 vanishes at t = 0, we have(x212 + x232)(t) = 2 tZ0 x22(�)x12(�) d�:But x22(�) and x12(�) are entries of the orthogonal matrix X(�); hence, theirabsolute values are bounded by 1. Therefore, we conclude that(x212 + x232)(t) � 2t:This shows us that a matrix (aij) for which a212+ a232 = 1 cannot be reached fromthe identity for less than 12 units of time.6.2.2. Special orthogonal group in dimension n. The previous considera-tions are generalized to the group G = SO(n; R) of rotations of Rn . In this case,the Lie algebra L of G is the set of all n� n skew-symmetric matrices so(n; R).Take the matrices A1 = Pn�2i=1 (Ei;i+1�Ei+1;i) and A2 = En�1;n�En;n�1. It iseasy to show that Lie(A1; A2) = so(n; R). Thus, even though the group SO(n; R)is 12n(n� 1)-dimensional, the system_X = (A1 + uA2)X; X 2 SO(n; R); u 2 U � R;in which only one control is involved, is controllable (if the control set U containsat least two distinct points).Moreover, as above, we can �nd an upper bound for time that is necessaryfor reaching one point in SO(n; R) from another.Notice that the set of pairs (A1; A2) such that Lie(A1; A2) = L is open anddense in L � L (this is valid for any semisimple Lie algebra L; see Theorem 8.1below). Thus, we can replace the matrices A1 and A2 by an \almost arbitrary"pair in L� L.6.2.3. Serret{Frenet frames. Let x(t) denote any curve in a Euclidean spaceRn whose derivatives dkx(t)=dtk, k = 1; : : : ; n, span an n-dimensional vectorspace at each point along the curve. The Serret{Frenet frame along the curve xis described by an orthonormal matrix R(t) in SO(n; R) that relates this frameto a standard orthonormal frame e1; e2; : : : ; en in Rn and that further satis�es thefollowing di�erential equation in SO(n; R):dRdt = R(t)0BBBBBBBB@ 0 �k1(t) 0 : : : 0k1(t) 0 �k2(t) ...0 k2(t) 0 . . . 0... . . . . . . �kn�1(t)0 : : : 0 kn�1(t) 0
1CCCCCCCCA ; (6.3)where k1(t), . . . , kn�1(t) are called the curvature functions associated with thecurve x. (For curves in R3 , k2 is called the torsion of x.) Notice that the curvatures22



k1, . . . , kn�2 are positive, while the last curvature kn�1 could be of any sign. Thecurve x = 0BB@ x1...xn 1CCAand the rotation matrix R(t) can be expressed as the curveg(t) =  1 0x(t) R(t) !in the group E(n; R) of motions of Rn realized as the closed subgroup of GL(n+1; R) consisting of all matrices 1 0x R ! ; x 2 Rn ; R 2 SO(n; R):Since the �rst vector in the Serret{Frenet frame coincides with the tangent vectordx=dt, it follows that dx=dt = R(t)e1, where e1 = (1; 0; : : : ; 0)T. Being combinedwith system (6.3) for the orientation matrix R(t), this gives the following left-invariant control a�ne system in E(n; R):dgdt = g(t)0BBBBBBBBBB@
0 0 0 0 � � � 01 0 �k1(t) 0 � � � 00 k1(t) 0 �k2(t) ...0 0 k2(t) 0 . . . 0... ... . . . . . . �kn�1(t)0 0 � � � 0 kn�1(t) 0

1CCCCCCCCCCA ; (6.4)
with k1, . . . , kn�1 playing the role of controls.Consider the extreme case where all, except for one, curvatures are constant.Then Eq. (6.3) can be written as the control a�ne systemdRdt = R(t)(A+ uB); R 2 SO(n; R); u � 0; (6.5)where u(t) = ki(t) is the nonconstant curvature (we assume that 1 � i � n � 2;in the case i = n� 1, the control should be unconstrained: u 2 R), andA =  A1 00 A2 ! ; (6.6)

A1 = 0BBBBBBBB@ 0 �k1 0 � � � 0k1 0 �k2 ...0 k2 0 . . . 0... . . . . . . �ki�10 � � � 0 ki�1 0
1CCCCCCCCA ; (6.7)
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A2 = 0BBBBBBBB@ 0 �ki+1 0 � � � 0ki+1 0 �ki+2 ...0 ki+2 0 . . . 0... . . . . . . �kn�10 � � � 0 kn�1 0
1CCCCCCCCA ; (6.8)and B = 0BBBBBBBBB@

0 � � � � � � 0... . . . ...0 �11 0... . . . ...0 � � � � � � 0
1CCCCCCCCCA = Ei+1;i � Ei;i+1: (6.9)

Writing h(t) forR�1(t) turns the left-invariant system (6.5) into the right-invariantsystem dhdt = �(A + uB)h(t); h 2 SO(n; R); u � 0; (6.10)which will be called the Serret{Frenet system. It follows from Theorem 6.1 thatsystem (6.10) is controllable if and only if the set � = f�A � uB j u � 0ggenerates so(n; R) as a Lie algebra, i.e., Lie(A;B) = so(n; R). A description of theLie algebra Lie(A;B) is given in the following proposition.Theorem 6.3. Assume that each �xed curvature kj, j 6= i, in Eqs. (6:7) and(6:8) is nonzero. The Lie algebra generated by the matrices A and B, which isgiven by (6:6){(6:9), is equal to so(n; R) in all the cases, except for one. Theexceptional case occurs when n = 2m, i = m, and k1 = � � � = km�1 = km+1 =� � � = kn�1. The Lie algebra in the exceptional case is equal to the Lie algebra ofthe unitary group U(2m; R).6.3. Homogeneous spaces.6.3.1. Sphere. The (n� 1)-sphereSn�1 = fx 2 Rn j kxk = 1gis the homogeneous space of the group SO(n; R) of rotations of Rn .Let A, B1, . . . , Bm be n � n skew-symmetric matrices. The control-a�neright-invariant system_X = (A+ mXi=1 uiBi)X; X 2 SO(n; R); u = (u1; : : : ; um) 2 Rm ; (6.11)induces the bilinear system_x = (A+ mXi=1 uiBi)x; x 2 Sn�1; u = (u1; : : : ; um) 2 Rm ; (6.12)24



one can consider the unit vector x 2 Sn�1 to be the �rst column of the orthogonalmatrix X 2 SO(n; R). Theorems 6.1 and 6.2 imply the following proposition.Corollary 6.1. Let matrices A;B1; : : : ; Bm 2 so(n; R) generate so(n; R) asa Lie algebra. Then system (6:12) is globally controllable on the sphere Sn�1.Moreover, there exists T > 0 such that any points x0; x1 2 Sn�1 can be connectedby a trajectory of (6:12) corresponding to a piecewise constant control for notmore than T units of time.Remark. System (6.12) is globally controllable on the sphere Sn�1 if and onlyif the reachable set A of system (6.11), which is always a subgroup of SO(n; R),acts transitively on Sn�1.Each group SO(n; R) and U(2m; R), 2m = n, acts linearly on Rn by the leftmultiplication, and these actions are transitive on the spheres in Rn . That is whyTheorems 6.1 and 6.3 yield the following.Corollary 6.2. Let matrices A and B be given by (6:6){(6:9). If all curvatureskj, j 6= i, are nonzero, then the bilinear system_x = Ax + uBx; x 2 Sn�1; u � 0is controllable on the sphere Sn�1.6.3.2. Grassmann manifolds. The Grassmann manifold G(k; n) consists ofall k-dimensional vector subspaces of Rn . The manifold structure on G(k; n) canbe introduced by embedding it into the orthogonal groupO(n; R) = fX 2 M(n; R) j XT = X�1g:Each k-dimensional subspace S 2 G(k; n) can be identi�ed with the orthogonalreection PS 2 O(n; R) given by PS(x) = x for x 2 S and PS(x) = �x for xin the orthogonal complement of S. The requirement that the correspondenceS 7! PS is a homeomorphism turns G(k; n) into a topological space. Since fPS jS 2 G(k; n)g is a closed subset of the compact Lie group O(n; R), then G(k; n) iscompact.The group O(n; R) acts on G(k; n) in a natural way: for any S 2 G(k; n) andany R 2 O(n; R), the subspace RS = fRx j x 2 Sg is an element of G(k; n). Thisaction is transitive. In terms of the correspondence S 7! PS, it is expressed asRS 7! RPSRT with RT being equal to the transpose of R. The isotropy group isH = O(n� k; R) �O(k; R); thus dimG(k; n) = dimO(n; R) � dimH = k(n� k).For any skew-symmetric matrix A and each S in G(k; n),ddt �����t=0 (exp tA)PS(exp�tA) = APS � PSA = [A; PS]:That is, XA(S) = [A; PS] is an in�nitesimal generator of the one-parameter groupof isomorphisms induced by A. 25



Let P denote the set of all vector �elds XA in G(k; n) with A in so(n; R). P isthe family of vector �elds in G(k; n) subordinated to the group action of O(n; R)on G(k; n). A description of the reachable set A F of any subfamily F � P isobtained from Theorems 3.1 and 6.1.Theorem 6.4.(a) The reachable set A F (x) of F from any point x 2 G(k; n) is equal to theorbit of F passing through x.(b) Let � denote the set of all matrices A such that XA is in F . Then A F (x) =Gx = fgxgT j g 2 Gg with G being equal to A � , i.e., the subgroup of SO(n; R)generated by fexp tA j A 2 �; t 2 Rg.(c) F is controllable on G(k; n) if and only if G acts transitively on G(k; n).6.4. Remarks. The controllability results of Sec. 6.1 and their application to thegroup of rotations in Secs. 6.2.1 and 6.2.2 are due to Jurdjevic and Sussmann [83].Serret{Frenet frames (Sec. 6.2.3) were studied by Jurdjevic [79]. The proofof Theorem 6.3 on the Lie algebra generated in the control problem on SO(n; R)with one �xed curvature can be found in [74].The applications to Grassmann manifolds (Sec. 6.3.2) is also due to Jurdje-vic [79].By the argument of Sec. 6.2.1, Theorems 6.1 and 6.2 can be regarded asresults that describe the generation of compact Lie groups. Related results onthe generation of both compact and noncompact classical Lie groups can be foundin Sec. 8.6 and in papers by Crouch and Silva Leite [43], Silva Leite [132, 133,134, 135], and Albuquerque and Silva Leite [5].7. Semidirect Products of Lie GroupsIn this section, we consider the case of a Lie group G that is a semidirectproduct of a vector space V by a Lie group K. If K is compact, then com-plete controllability results are available; in particular, if the Lie group K has nononzero �xed points in the space V , then the rank condition is equivalent to thecontrollability. If K is not compact, then controllability conditions are obtainedby considering compact subgroups of K.Let K and V be Lie groups, and let K act on V . Consider the semidirectproduct G = V nK. The manifold G is the Cartesian product of V and K, andthe group product in G is de�ned by(v1; k1) � (v2; k2) = (v1 + k1v2; k1k2); v1; v2 2 V; k1; k2 2 K:The Lie algebra L of G is the semidirect sum L(V )hL(K), where L(V ) and L(K)are Lie algebras of V and K, respectively. The vector space L is the direct sum of26



the vector spaces L(V ) and L(K), and the Lie algebra product in L is as follows:[(a1; b1); (a2; b2)] = ([a1; a2]+b1(a2)�b2(a1); [b1; b2]); a1; a2 2 L(V ); b1; b2 2 L(K):Denote the projections from G onto the factors V and K by � and �, respec-tively, � : G! V; �(v; k) = v; v 2 V; k 2 K;� : G! K; �(v; k) = k; v 2 V; k 2 K:The projection � is a Lie group homomorphism. Denote by L(K) the Lie algebraof K. The di�erential �� : L! L(K)is a Lie algebra homomorphism.Throughout this section, we assume that V is a vector Lie group, i.e., a �nite-dimensional real vector space regarded as an Abelian Lie group. In addition, weassume that the action of the Lie group K on the vector space V is linear.De�nition 7.1. We say that v 2 V is a �xed point under K ifKv = fgv j g 2 Kg = fvg:We write this as Kv = v.Notice that the origin 0 2 V is a �xed point for any linear action on V .7.1. K is compact and admits no nonzero �xed points in V . In this sub-section, we prove the following result, which can be considered as a generalizationof the controllability test for compact Lie groups (Theorem 6.1).Theorem 7.1. Let a compact connected Lie group K act linearly on a vectorspace V , and let V admit no nonzero �xed points with respect to K. Then aright-invariant system � � L is controllable on the Lie group G = V nK if andonly if Lie(�) = L.7.1.1. Proof of Theorem 7.1 in particular cases. Before proving the the-orem in its full generality, we give a shorter proof for the most interesting inapplications cases G = E(n; R) = Rn n SO(n; R) and G = R2m n U(2m; R).Proof. The rank condition Lie(�) = L is necessary for controllability of � byTheorem 2.3.Assume that Lie(�) = L. Then the right-invariant system �K = ��(�) on Kis controllable, since K is compact and connected; see Theorem 6.1. That is,�(A ) = K: (7.1)It follows from Theorem 2.7 that it is su�cient to show that the identity e =(0; Id) 2 G is contained in the interior of A . Let (x; k) be a point in the interior ofA , which is nonempty by the rank condition. In view of (7.1), there exists y 2 V27



such that (y; k�1) is contained in A . Then (x; k)(y; k�1) = (x + ky; Id), and thisproduct is in the interior of A .Denote x+ ky by v. Let 
 be a neighborhood of Id in K such that (v;
) �int A .For any h 2 
 and n 2 N, the element (v; h)n = (v + hv + � � �+ hn�1v; hn)is contained in the interior of A . If hn = Id and if v = hw � w for some w 2 V ,then v+hv+ � � �+hn�1v = 0, and e = (0; Id) is contained in the interior of A . Tocomplete the proof, we have to show in either of the two cases (K = SO(n; R),V = Rn , and K = U(2m; R), V = R2m) that for any v 2 V and any neighborhood
 of Id in K, there exists an element h in 
 such that v 2 Im(h�Id) and hm = Idfor some m 2 N.We outline a proof for the �rst case; for the second one, it is similar. LetP be a plane in Rn , n � 2, that contains a given point v 2 Rn . Then, for anyneighborhood 
 of Id in the group of rotations of the plane P , there exists arotation R 2 
 such that R � Id is nonsingular and Rm = Id for some m 2 N.Then R can be extended to Rn by setting it equal to the identity on the orthogonalcomplement of P in Rn . Hence v 2 Im(R� Id) and Rm = Id.7.1.2. Proof of Theorem 7.1 in the general case.We �rst obtain several auxiliary propositions under the condition Lie(�) = L.Lemma 7.1. �(A ) = K.Proof. The projected system �K = ��(�) is a full-rank right-invariant sys-tem on the compact connected Lie group K; hence, it is controllable on K; seeTheorem 6.1.In the next three lemmas, we study the following subset of G:T = f(v; Id) j (v; Id) 2 int A g: (7.2)Lemma 7.2. T is nonempty.Proof. By Theorem 2.4, the system � is accessible, i.e., the interior of A isnonempty. Take any (w; g) 2 int A . By virtue of Lemma 7.1, there exists v 2 Vsuch that (v; g�1) 2 A . Then(w; g) � (v; g�1) = (w + gv; Id) 2 int A :Hence T is nonempty.Lemma 7.3. For each (v; Id) 2 T , there exists an integer N > 0 such that(�v; Id) 2 T for all � with � > N .Proof. If (v; Id) 2 int A , then there exist " > 0 such that ((1+�)v; Id) 2 int Afor all � with j�j < ". Hence ((1 + �)v; Id)n = (n(1 + �)v; Id) 2 int A for eachinteger n > 0. Let N be any integer with N(1 + ") > 1. Then the closed realinterval [N;N + 1] has the property that (�v; Id) 2 int A for all � 2 [N;N + 1].28



But, by the semigroup property of A , the whole real ray f� j � > Ng has such aproperty.Lemma 7.4. For each (v; Id) 2 T and for each g 2 K, there exists an integerM > 0 such that (Mgv; Id) 2 T .Proof. For each g 2 K, by Lemma 7.1, there exist vectors vg; vg�1 2 V suchthat (vg; g) and (vg�1 ; g�1) belong to A . Hence (vg�1; g�1) � (vg; g) = (g�1vg +vg�1 ; Id) belongs to A .If (v; Id) 2 int A , then let M > 0 be any integer such that�v �M�1 �vg�1 + g�1vg� ; Id�belongs to int A . Therefore,�v �M�1 �vg�1 + g�1vg� ; Id�M = �Mv � �vg�1 + g�1vg� ; Id� 2 int A :But then (vg; g) � �Mv � �vg�1 + g�1vg� ; Id� � �vg�1 ; g�1� = (Mgv; Id)belongs to int A .Now we prove Theorem 7.1.Proof. The rank condition Lie(�) = L is necessary for controllability byTheorem 2.3. In order to prove the su�ciency, assume that Lie(�) = L.By Lemma 7.2, there exists a vector v 2 V such that (v; Id) 2 int A . Let�v = ZK Kv d�;where � is a Haar measure on K such that �(K) = 1. Then K�v = �v, and by thehypothesis of the theorem, �v = 0.On the other hand, the mean RK Kv d� is contained in the convex conegenerated by the set fgv j g 2 Kg, that is why0 = �v = pXj=1�jgjv for some g1; : : : ; gp 2 K; �1 > 0; : : : ; �p > 0:By Lemma 7.4, there exist integersM1 > 0, . . . ,Mp > 0 such that (Mj�jgjv; Id) 2int A for each j = 1; : : : ; p. Then, forM = Qpj=1Mj, we have (M�jgjv; Id) 2 int Afor j = 1; : : : ; p. Thus,e = (0; Id) = (M�v; Id) = 0@ pXj=1M�jgjv; Id1A = pYj=1(M�jgjv; Id) 2 int A :By Theorem 2.7, the system � is controllable on G. 29



7.1.3. The rank condition and irreducible actions. A particular casecovered by Theorem 7.1 is the case where K acts irreducibly on V . The followingtheorem deals with this case and gives a criterion that ensures that Lie(�) = Lfor a given subset � of L. To this end, we consider the following construction.Since the Lie group K acts linearly on the vector space V , the group G =V nK acts a�nely on V :(v; k)x = kx+ v; (v; k) 2 G; x 2 V:For each M = (v; A) 2 L and for each x 2 V , f(exp tM)x j t 2 Rg is a one-parameter group on V whose in�nitesimal generator in the a�ne vector �eldx 7! Ax+ v.De�nition 7.2. Given a subset � � L, then F(�) is the set of a�ne vector�elds on V induced by �, i.e., X 2 F(�) if and only if X(x) = Ax + v for some(v; A) 2 �.We denote by Fx(�) the set fX(x) j X 2 F(�)g. Then we have the followingassertion.Theorem 7.2. Assume that K is a connected, compact, semisimple real Liegroup that acts linearly and irreducibly on a vector space V . Let G = V nK, andlet � � L. Then a necessary and su�cient condition for Lie(�) = L is that(i) Lie(�K) = Lie(��(�)) = L(K);(ii) Fx(�) 6= f0g for all x 2 V .Proof. Denote by O(F)(x) the orbit of F(�) passing through x 2 V , i.e.,the action of the group generated by fexp tX j t 2 R; X 2 F(�)g. Let H denotethe orbit O�, i.e., the subgroup of G generated by fexp tA j t 2 R; A 2 �g. ThenO(F)(x) = Hx.If Lie(�) = L, then H = G, since G is connected. Thus, the orbits of F(�)passing through each point x 2 V are given by Gx. But Gx 6= x for any x 2 V ;therefore, for each x 2 V , there exists X 2 F(�) such that X(x) 6= 0. Thatis, condition (ii) holds. Since condition (i) is obviously satis�ed, the necessityfollows.To prove the su�ciency, assume that (i) and (ii) hold. Let �� be the restric-tion of the projection � to Lie(�). Thus, �� : Lie(�) ! L(K) is a Lie algebrahomomorphism. By condition (i), �� is onto. Since ker �� is an ideal of Lie(�) andsince �� is onto, it follows that ker �� is a linear subspace of V that is invariantunder K. By the irreducibility assumption, either ker �� = V or ker �� = f0g.If ker �� = V , then, obviously, Lie(�) = L. To complete the proof, weshow that the case ker �� = f0g is impossible. If ker �� = f0g, then Lie(�) isisomorphic to L(K). Since K is semisimple and compact, it follows that theintegral group H of Lie(�) is compact. For any x 2 V , the mean �x = RH hx d�30



is a �xed point of H (� is a normalized Haar measure on H). Then F�x = 0; thiscontradicts assumption (ii). Thus, ker �� 6= f0g, and the proof is complete.7.2. K is compact and has nonzero �xed points in V . If the linear actionof a compact Lie group K has nonzero �xed points in V , then the rank conditionis no longer su�cient for controllability.Example 7.1. Let K = SO(1; R)�SO(n; R), and let V = R�Rn . The compactconnected Lie group K acts naturally on the vector space V :(1; g)(x; y) = (x; gy); (1; g) 2 K; (x; y) 2 V:For this action, Kv = v if and only if v = (x; 0).We take the Lie group G = V nK and the right-invariant system on it:� = f(v; A) j v = (x; y); x > 0; A 2 L(K)g:Then,(i) Lie(�) = L and(ii) A = f(v; g) j v = (x; y); x > 0; g 2 Kg.Hence, � is not controllable even though it has a full rank.Now we obtain controllability conditions for the case where the action ofa compact connected group K has nonzero �xed points in a vector space V .Denote by h�; �i the inner product on V that is invariant under K, and let dV bethe corresponding metric on V . If dK denotes the left- and right-invariant metricon K, we let dG to be the corresponding direct product metric on G = V nK:dG((v1; g1); (v2; g2)) = dK(g1; g2) + dV (v1; v2); (v1; g1); (v2; g2) 2 G:If (w; h) 2 G, thendG((w; h)(v1; g1); (w; h)(v2; g2)) = dG((w + hv1; hg1); (w + hv2; hg2))= dK(hg1; hg2) + dV (hv1; hv2) = dK(g1; g2) + dV (v1; v2):Thus, dG is left-invariant.We denote V1 = fv 2 V j Kv = vg;V2 = V ?1 :It follows from the de�nitions of the subspace V1 that for any X 2 L(K) and forany v 2 V1, we have Xv = 0. Moreover, if X 2 L(K) and w 2 V2, thenhv;Xwi = �hXv;wi = 0 for all v 2 V1:Thus, both V1 and V2 are invariant under elements of L(K). Let P denote theorthogonal projection of V onto V1. Recall that � is the canonical projection of31



G onto V ; thus, �� is the projection of L onto V . Denote by �V the projection��(�) of a right-invariant system � � L. We now have the followingTheorem 7.3. Let a compact connected Lie group K act linearly on a vectorspace V . Then a right-invariant system � � L is controllable on the Lie groupG = V nK if and only if(i) Lie(�) = L and(ii) the convex cone spanned by P (�V ) is equal to V1.Proof. We �rst prove the necessity. If (a; A) 2 �, then (a; A) = (a1; 0) �(a2; A), where a1 = Pa and a2 = a � a1; the sign � means that the elements(a1; 0) and (a2; A) commute. Henceexp t(a; A) = (a1t; Id)(a2(t); exp tA); where a2(t) 2 V2 for all tsince AV2 � V2.It is now clear that if Y = (b; B) is one more element of �, thenexp t2(b; B) � exp t1(a1; A)= (a1t1 + b1t2; Id)(b2(t2) + (exp t2B)a2(t); exp t2B � exp t1A):Thus, the projection of A onto V1 is equal to the convex cone spanned by P (�V ).If � is controllable, then such a cone should be equal to V1.To prove the su�ciency, assume that Lie(�) = L and co(P (�V )) = V1.Let T� = f(v; Id) j (v; Id) 2 int A gas above. By Lemma 7.2, the set T� is nonempty. If (z; Id) 2 T�, then letw = RK Kz d�, where � is a normalized Haar measure on K. We have Kw = w;hence, w 2 V1. If w = 0, then, as in the proof of Theorem 7.1, it follows that(0; Id) 2 T� and A = G.If w 6= 0, then there exists a positive integer N such that (v; Id) 2 T� forv = Nw. Indeed, w belongs to the convex cone spanned by the orbit Kv. Thus,w = Ppj=1 �jgjv for some elements g1 . . . , gp in K and positive numbers �1, . . . ,�p. By Lemma 7.4, there exist integers Mj such that (Mj�jgjv; Id) 2 T�. Therequired integer N can then be taken to be equal to Qpj=1Mj.Now we show that there exists � > 0 such that both �v and ��v belongto int A co(�). Since co(P (�V )) = V1, there exists an element of co(�) of the formX = (�v + u;A), where u 2 V2 and A 2 L(K), andexp tX = exp t(�v + u;A) = (�vt + u(t); exp tA); where u(t) 2 V2 for all t:Since (v; Id) 2 T� � int A , it follows that some ball B((v; Id); ") of radius "centered at (v; Id) is contained in int A . From the left-invariance of the metric dG,32



it follows that B((exp tX)(v; Id); ") is contained in int A co(�). Now K is compact;hence, there exists time t > 1 such that dK(exp tA; Id) < ". Therefore,dG(((1� t)v + u(t); Id); ((1� t)v + u(t); exp tA)) < ":Thus, (exp tX)(v; Id) = ((1� t)v + u(t); Id) 2 B((exp tX)(v; Id); ");and hence, ((1� t)v + u(t); Id) 2 Tco(�):Now, RK K((1� t)v+u(t)) d� = (1� t)v, and by a preceding argument, it followsthat (M(1 � t)v; Id) 2 Tco(�) for some positive integer M . Since M(1 � t) < 0,it follows from Lemma 7.3, that there exists a su�ciently large � > 0 suchthat both �v and ��v are in Tco(�). Since Tco(�) is a semigroup, it follows that(0; Id) = (�v; Id) � (��v; Id) is in Tco(�). Thus, Tco(�) contains the identity of G.This shows us that A co(�) = �. But A co(�) � cl A ; consequently, cl A = G. Togetherwith the assumption Lie(�) = L, this implies that the system � is controllable;see Theorem 2.8.7.3. Semidirect product of a vector space with an arbitrary Lie group.Theorem 7.4. Let H be a connected Lie group that acts linearly on a �nite-dimensional real vector space V , and let G = V nH. Assume that H contains acompact group K that has no nonzero �xed points in V . Then a necessary andsu�cient condition for a right-invariant system � � L to be controllable on G isthat(i) Lie(�) = L and(ii) �H = ��(�) is controllable on H.Proof. The conditions of the theorem are obviously necessary. To provethe su�ciency, assume that conditions (i) and (ii) hold. By Theorem 2.4, thefull-rank system � is accessible, i.e., int A is nonempty. If (v; g) 2 int A , then,by condition (ii), there exists w 2 V such that (w; g�1) 2 A . Thus, (v; g) �(w; g�1) = (v + gw; Id) 2 int A . Hence the set T de�ned by (7.2) is nonempty.If (v; Id) 2 T , then the element w = RK Kv d� is invariant under K, and hence,w = 0. The rest of the proof is the same as in the proof of Theorem 7.1. Hence,e = (0; Id) 2 T � int A , and thus, A = G by Theorem 2.7.The following example shows us that without any assumption on the compactsubgroup K, conditions (i) and (ii) do not in general guarantee the controllability.Example 7.2. Let H = SO0(n; 1) be the connected component passing throughthe identity of the Lorentz group in Rn . This group, as a subgroup of GL(n+1; R),acts linearly on V = Rn+1 . Consider the Lie group G = V n H. Let C be the33



light cone of H in V , and let � = C h L(H). Then conditions (i) and (ii) aresatis�ed, but the attainable set is A = C n H 6= G. In this case, the maximalcompact subgroup K of H is equal to SO(n; R)� SO(1; R), which has many �xedpoints in V .7.4. Homogeneous spaces.7.4.1. Serret{Frenet frames in R3 . The Serret{Frenet system associated witha curve x(t) in R3 (see Sec. 6.2.3) is given bydxdt = R(t)e1; dRdt = R(t)0B@ 0 �k 0k 0 ��0 � 0 1CA :If both the curvature k and the torsion � are constant, then! = 0B@ �0k 1CAis the axis of rotation for A = 0B@ 0 �k 0k 0 ��0 � 0 1CA :Then exp tA is the rotation about ! by the angle tp� 2 + k2, and x(t) is a helixalong !.Assume now that we consider curves whose curvature k = const 6= 0 andwhose torsion can take two distinct values, �1 and �2. Such curves are concate-nations of helices along!1 = 0B@ �10k 1CA and !2 = 0B@ �20k 1CA :The corresponding family of left-invariant vector �elds on the Euclidean groupG = E(3; R) = R3 n SO(3; R) is � = f(e1; A); (e1; B)g � e(3; R) = R3 h so(3; R)with A = 0B@ 0 �k 0k 0 ��10 �1 0 1CA and B = 0B@ 0 �k 0k 0 ��20 �2 0 1CA :It follows that Lie(�) = R3 h so(3; R) because of the following calculations:(e1; A)� (e1; B) = (�1 � �2)(0; A1)and [(e1; A); (e1; B)] = (�1 � �2)(0; A2);34



where we denoteA1 = E32 � E23; A2 = E13 � E31; A3 = E21 � E12:Then [(0; A1); (0; A2)] = (0; A3), and therefore, (0; so(3; R)) � Lie(�). Hence weobtain (e1; 0) 2 Lie(�), and then, [(e1; 0); (0; so(3; R))] = (R3 ; 0) � Lie(�). Thus,Lie(�) = R3 h so(3; R) = e(3; R).According to Theorem 7.1, any initial point x0 2 R3 and any initial frame atx0 can be connected with any terminal point x1 2 R3 and any terminal frame atx1 along the integral curves of the left-invariant family � in G = E(3; R).7.4.2. Serret{Frenet frames in Rn . Results of the previous subsubsection aregeneralized to curves in Rn that have all curvatures, except for one, to be �xed,while the remaining free curvature can take any positive value. Indeed, accordingto Theorem 6.3, the matrices A and B that correspond to such a case generateeither so(n; R) or u(2m; R). The corresponding control system in G is given by� = f(e1; A+ uB) j u > 0g:We will show now that Lie(�) = Rn h L(K) with L(K) equal to the Lie algebraof either K = SO(n; R) or K = U(2m; R). By Theorem 6.3, the projection�� : Lie(�)! L(K); (a; A) 7! A;is onto. On the other hand, ker �� cannot be equal to zero, since otherwise Lie(�)would be isomorphic to L(K); this is impossible, since, for the system �, A is notcontained in any compact subgroup of G = Rn n K. Thus, (a; 0) 2 Lie(�) forsome a 2 Rn , a 6= 0. The multiplication rule in Rn h L(K),[(v; 0); (b; B)] = (�Bv; 0);implies that ker �� is an ideal in L. Taking into account that Im�� = L(K) andL(K)a = Rn , we obtain Lie(�) = L.Therefore, Theorem 7.1 is applicable, and the corresponding controllabilityconclusions for curves in Rn follow as in the previous subsubsection.7.4.3. A�ne systems on Rn . Consider the single-input a�ne system_x = Ax+ a + u(Bx+ b); x 2 Rn ; u 2 U � R; (7.3)where A and B are real n� n matrices; a and b are vectors in Rn .Equation (7.3) can be regarded as a part of a larger system de�ned as follows.Denote by H the orbit of the right-invariant systemfA+ uB j u 2 Ug � gl(n; R) (7.4)in GL(n; R). The elements X = (a; A) and Y = (b; B) belong to the Lie algebraL = Rn hL(H) � aff(n; R) of the Lie group G = Rn nH � A�(n; R); we denote by35



L(H) the Lie algebra of H; it is the subalgebra of gl(n; R) generated by set (7.4).Thus, � = fX + uY j u 2 Ug � Lcan be considered as a right-invariant control system onG. The a�ne system (7.3)is induced by the system �. Moreover, the a�ne action of the Lie group G istransitive on Rn , since G contains all translations. By Corollary 3.3, if the right-invariant system � is controllable on the Lie group G, then the a�ne system (7.3)is controllable on Rn .By construction, for the system �H = ��(�) projected onto H, we haveLie(�H) = L(H). That is why, by Theorem 7.4, the right-invariant system �(and consequently, the a�ne system (7.3)) is controllable if(i) either H is compact, or �H is controllable on H, and(ii) Lie(�) = L.7.5. Remarks. The results of Secs. 7.1{7.3 are due to Bonnard, Jurdjevic,Kupka, and Sallet [28].The proof of Theorem 7.1 for the particular cases G = Rn n SO(n; R) andR2m n U(2m; R) in Sec. 7.1.1 and the applications in Sec. 7.4 were developed byJurdjevic [79].One of the early results on controllability of right-invariant systems on theEuclidean group was obtained by Sallet [124]. This proposition obviously followsfrom Theorem 7.1:Theorem 7.5. Let X1 = (a; A); X2 = (b; B) 2 Rn h so(n; R) be right-invariantvector �elds on the Lie group G = E(n; R). Then a su�cient condition for thesystem � = fX1; X2g to be controllable on G is(i) Lie(X1; X2) = L and(ii) a 2 ImA and b 2 ImB.
8. Semisimple Lie GroupsA Lie algebra L is called semisimple if it contains no nonzero solvable ideals.A Lie group G is called semisimple if its Lie algebra L is semisimple. A Liealgebra L is called simple if it contains no nontrivial (i.e., distinct from f0g andL) ideals. A semisimple Lie algebra is a direct sum of its simple non-abelianideals.In this section, we assume that L is a real �nite-dimensional semisimple Liealgebra.36



8.1. Preliminaries.8.1.1. Regular elements. For any element B 2 L, the adjoint operatoradB : L! L; adB(C) = [B;C]; C 2 L;is de�ned. A Lie algebra L is semisimple if and only if the Killing formKil : L� L! R; Kil(A;B) = tr(adA � adB)is nondegenerate.The roots of the characteristic polynomialPB(t) = det(adB � t Id) = (�1)ntn + a1(B)tn�1 + a2(B)tn�2 + � � �+ an(B);n = dimL;are eigenvalues of the operator adB, B 2 L, and a1(B), . . . , an(B) are formson L. Since adB(B) = 0, we have an(B) � 0. The smallest number r such thatan�r+1 � 0; an�r+2 � 0; : : : ; an � 0; but an�r 6� 0;is called the rank of the Lie algebra L and is denoted by rkL. An element B 2 Lis called regular if an�r(B) 6= 0; r = rkL:For a regular element B, zero 0 2 C is an eigenvalue of the adjoint operator adBwith the multiplicity r; thus, dim(ker adB) = rkL:The set of regular elements is open and dense in L.8.1.2. Weyl basis and normal real form. Let L be a �nite-dimensionalsemisimple Lie algebra over C . Let L0 be the Cartan subalgebra of L, i.e., anilpotent subalgebra that is its own normalizer in L. Denote by R the set ofnonzero roots of L with respect to L0. Then there is a decomposition of L intothe direct sum L = L0 �X�fL� j � 2 Rg;where L�, � 2 R, are root spaces, which are one-dimensional.For any � 2 R, there exists a unique element H� 2 L0 such thatKil(H;H�) = �(H) for all H 2 L0:De�ne the following subspace of L0:L(0) =X�fRH� j � 2 Rg:We have L0 = L(0)� iL(0): 37



One can identify R with the dual space L(0)� of L(0) and then introduce anordering of roots in R induced by some vector space ordering of L(0)�. A positiveroot is called fundamental if it cannot be written as a sum of two positive roots.Denote by �+ the set of fundamental roots.For any root � 2 R, there exists an element E� 2 L� such that Kil(E�; E��) =1, and for all �; � 2 R,[E�; E��] = H�;[H;E�] = �(H)E� for all H 2 L0;[E�; E�] = ( 0 if �+ � =2 R;N��E�+� if �+ � 2 R;where N�� are some real constants. The systemH�; � 2 �+; E�; � 2 Ris called a Weyl basis of L with respect to L0.The subspace L = L(0)�X�fRE� j � 2 Rg (8.1)is a normal real form of the complex Lie algebra L; it is unique up to an isomor-phism.8.1.3. Strongly regular elements. Any element A 2 L admits a uniquedecomposition A = A(0) +Xfk�E� j � 2 Rg; (8.2)where A(0) 2 L(0); k� 2 R:Remark. An element B 2 L(0) is regular if and only if the elements �(B) arenonzero for all � 2 R.It turns out that the following two variations of the regularity property arerelevant in controllability questions.De�nition 8.1. An element B 2 L is called strongly regular if(i) B is regular and(ii) every nonzero eigenvalue of adB is simple.De�nition 8.2. Given A 2 L with A =2 L(0) and B 2 L(0), the element Bis called A-strongly regular if the elements �(B) are nonzero and distinct for all� 2 R such that k� 6= 0 in decomposition (8.2).Remark. To compare strong regularity and A-strong regularity, we notice thatan element B 2 L(0) is strongly regular if and only if the elements �(B) arenonzero and distinct for all roots � 2 R.38



8.1.4. Root decompositions along eigenspaces of a strongly regularelement. Choose and �x a strongly regular element B 2 L.The complexi�cation Lc = L
R C is a complex semisimple Lie algebra. Theadjoint operator in Lc is de�ned byadcB : Lc ! Lc; adcB(C) = [B;C]; C 2 Lc:By the strongly regular property of B, the spaceL0 = ker adcBis the Cartan subalgebra of Lc. Denote by Sp(B) the subset of C of all nonzeroeigenvalues of adB. Notice that there is an isomorphismR! Sp(B); � 7! �(B) (8.3)between Sp(B) and R, the set of roots of Lc with respect to the Cartan subalge-bra L0. That is why we can denote the root spacesL�; � 2 R;by La; a = �(B) 2 Sp(B):Notice that La = �(La), a 2 Sp(B), where a is the complex conjugate to aneigenvalue a and � is the conjugation in Lc with respect to L.For a 2 Sp(B), consider the real spaceL(a) = (La + La) \ L:Notice that dimL(a) = 1 if a 2 R;in this case, L(a) is the eigenspace of adB corresponding to the eigenvalue a, anddimL(a) = 2 if a =2 R;then L(a) is an invariant subspace of adB. Thus, we obtain the following decom-positions into direct sums of eigenspaces and invariant spaces:Lc = ker adcB �X�fLa j a 2 Sp(B)g;L = ker adB �X�fL(a) j a 2 Sp(B); Im a � 0g: (8.4)Then any element A 2 Lc has a complex decompositionA = A0 +XfAa j a 2 Sp(B)g; A0 2 ker adcB; Aa 2 La; (8.5)and any A 2 L has a real decompositionA = A(0) +XfA(a) j a 2 Sp(B); Im a � 0g;A(0) 2 ker adB; A(a) 2 L(a): (8.6)39



8.2. Homogeneous systems. Now we turn to controllability conditions forright-invariant systems on semisimple Lie groups.First of all, in semisimple Lie algebras, the rank condition is genericallysatis�ed.Theorem 8.1. If L is semisimple, then the set S of all pairs (A;B) in L � Lfor which the Lie algebra generated by A, B is equal to L is an open and densesubset of L� L.Proof. If Lie(A;B) = L, then the homogeneous system f�A;�Bg is control-lable on G. But controllable right-invariant systems remain controllable undersmall perturbations (see Theorem 2.10); thus S is open.To show that S is dense, take any strongly regular element B 2 L and anyelement A in L for which A(a) 6= 0 for a 2 Sp(B) in decomposition (8.6). Suchpairs form a dense subset of L� L, and each pair (A;B) belongs to S.In the semisimple case, homogeneous systems are naturally treated moreeasily, as well as in the general case (see Sec. 5).Theorem 8.2. Let G be a semisimple connected Lie group. Then, for a genericpair of elements A and B in L, the system � = f�A;�Bg is controllable on G.Proof. For a generic pair of elements A and B in the Lie algebra of G, theelements A and B generate this Lie algebra; see Theorem 8.1. By Theorem 5.2,the homogeneous system � is controllable.8.3. Multiple-input nonhomogeneous systems. In the case of unboundedcontrol range, the result for multiple-input nonhomogeneous systems is an easyconsequence of the proposition from the previous subsection on homogeneoussystems.Theorem 8.3. Let G be a semisimple connected Lie group. Then, for genericelements A, B1, . . . , Bm 2 L, the system � = fA+Pmi=1 uiBi j ui 2 Rg is con-trollable on G.Proof. The vector space span(B1; : : : ; Bm) is contained in the Lie satu-rate LS(�). By Theorem 8.1, the set of all m-tuples of right-invariant vector�elds (B1; : : : ; Bm) that generate L is open and dense. Each system � with suchB1; : : : ; Bm is controllable independently of the drift vector �eld A.8.4. Single-input nonhomogeneous systems. Now we consider a much morecomplicated case of systems of the form � = A + RB.8.4.1. Statement of theorems. We endow the complex plane C with thelexicographic ordering: a > b if Re a > Re b or Re a = Re b and Im a > Im b.De�nition 8.3. An eigenvalue a 2 Sp(B) is called maximum (resp. minimum)if, for any b 2 Sp(B), b > 0 (resp. b < 0), we have [La; Lb] = f0g.([La; Lb] is the vector space generated by the brackets [X; Y ], X 2 La, Y 2Lb.)40



Theorem 8.4. Let G be a semisimple connected Lie group with a �nite centerand Lie algebra L. Then, for A;B 2 L, the system � = A + RB is controllableon G if the following conditions hold:(1) B is strongly regular;(2) Lie(A;B) = L;(3) let A = A0 + PfAa j a 2 Sp(B)g be the decomposition of A along theeigenspaces of adcB; see (8:5). Then As 6= 0 if s is either maximum orminimum;(4) if s 2 Sp(B) is maximum and the real part r = Re s is a nonzero eigenvalueof adcB, then Kil(Ar; A�r) < 0 provided that Lr and Ls belong to the samesimple ideal of Lc.Remark. All the conditions (1){(4) de�ne semialgebraic subsets of L � L.Moreover, the subsets de�ned by (1){(3) are open and dense in L� L.To approach the proof of Theorem 8.4, consider systems � � L satisfyingthe following conditions:(A) � is a wedge, i.e., a closed convex positive cone;(B) the largest vector subspace E(�) contained in �, which is called the edgeof �, is a Lie subalgebra of L;(C) for any X 2 E(�) and for any t 2 R, exp(t adX) maps � into itself;(D) E(�) contains a strongly regular element B;(E) if s 2 Sp(B) and s is maximum (resp. minimum), then there exists avector X+ (resp. X�) in � such that X+(s) 6= 0 (resp. X�(s) 6= 0);(F) if r 2 Sp(B) is the real part of a maximum eigenvalue s and if Lr andLs belong to the same simple ideal of Lc, then there exist X+; X� 2 � such thatKil(X+(r); X�(�r)) < 0.Remark. Hypotheses (A), (B), and (C) mean that � is a Lie wedge; see Sec. 4.Theorem 8.5. If a system � � L satis�es conditions (A){(F) and if Lie(�) = L,then � is controllable on G.The following more general result holds.Theorem 8.6. If a system � � L satis�es conditions D), E), F), and ifLie(�) = L, then � is controllable on G.Proof. The Lie saturate LS(�) satis�es the assumptions of Theorem 8.5.The main controllability result for semisimple Lie groups, Theorem 8.4, easilyfollows from Theorem 8.5.Proof. The Lie saturate LS(�) satis�es all the hypotheses of Theorem 8.5.For example, to show that �B 2 E(LS(�)), consider the limits limu!�1(A +uB)=juj = �B; by property (A), these limits belong to LS(�). 41



8.4.2. Proof of Theorem 8.5. Let Sim(L) (resp. Sim(Lc)) denote the set ofall simple ideals in L (resp. Lc). Then we have the following direct Lie algebradecompositions:L =X�f� j � 2 Sim(L)g; Lc =X�fS j S 2 Sim(Lc)g:The conjugation � : Lc ! Lc permutes the elements of Sim(Lc). Theconnection between Sim(L) and Sim(Lc) is as follows:(1) Sim(L) = f(S + �S) \ L j S 2 Sim(Lc)g;(2) if � 2 Sim(L) and �c denotes its complexi�cation, then either �c 2Sim(Lc) (inner case) or �c = S1�S2, S1; S2 2 Sim(Lc) (outer case). In the outercase, � induces a real Lie algebra isomorphism S1 ! S2 and � can be identi�edwith the graph of � in S1 � S2, i.e., � = f(x; �(x)) j x 2 S1g.Let B 2 L be a strongly regular element in L. The Cartan subalgebraL0 = ker adcB of Lc splits:L0 =X�fL0 \ S j S 2 Sim(Lc)g:Each L0 \ S is a Cartan algebra of S. The root system R of Lc is the union ofthe root systems RS, S 2 Sim(Lc).In view of bijection (8.3), we write L� and L(�) instead of L�(B) and L(�(B)).The conjugation � acts on R as follows: �(�)(X) = �(�(X)), where X 2 Lc.De�nition 8.4. We endow R[f0g with the total order structure pull back of theorder structure on Sp(B)[f0g by the bijection � 2 R[f0g 7! �(B) 2 Sp(B)[f0g.De�nition 8.5. A root � 2 R is maximum (resp. minimum) if �(B) 2 C ismaximum (resp. minimum) in the sense of De�nition 8.3.This is equivalent to the classical de�nition: � is maximum (resp. minimum)if �+ � =2 R whenever � 2 R and � > 0 (resp. � < 0).Let S 2 Sim(Lc) be a simple component of Lc and s (resp. �s) its maximum(resp. minimum) root.De�nition 8.6. Denote by R0S the set of roots � 2 RS such that �+ s or �� sis a root. R00S will denote the complement RS n (R0S [ fs;�sg).Proposition 8.1. (1) If �; � 2 R0S have the same sign and if �+ � 2 RS, then� + � 2 fs;�sg.(2) If � 2 R0S, � 2 R00S and � + � 2 RS, then � + � 2 R0S and � and � + �have the same sign.(3) If �; � 2 R00S and � + � 2 RS, then �+ � 2 R00S.Corollary 8.1. (1) If �; � 2 R0S have the same sign, then, for all  2 R00S suchthat � + � +  2 RS and either �+  or � +  is a root, � + � +  2 fs;�sg.42



(2) If � 2 R0S, �;  2 R00S, � + � +  2 RS, and at least one of three linearforms �+�, �+, and �+ is a root, then �+�+ 2 R0S and � and �+�+have the same sign.Now we explain the main idea of the proof of Theorem 8.5 in the case of asimple Lie algebra L.Denote by L0 the Lie algebra generated by fL� j � 2 R0S [ f�sgg. Considerthe Lie algebra I generated by elements X of L0 such that RX � �.I is nonempty; if we show that it is an ideal of L, then we obtain � = L.To prove that I is an ideal, we verify that the generators X(�) of I andY (�) of L are such that [X(�); Y (�)] 2 I. This is mainly obtained on the basisof the properties of the sets of roots R0S and R00S given by Proposition 8.1 andCorollary 8.1.In the case of a semisimple Lie algebra L, the idea of the proof of Theorem 8.5is analogous.8.5. The special linear group. The Lie group G = SL(n; R) is simple and hasa trivial center; thus, the results of the previous subsection can be applied.Take any A;B 2 sl(n; R) and consider the right-invariant system � = A+RBon the group SL(n; R). The eigenvalues of adB are di�erences of eigenvalues ofB. Let �1, . . . , �n denote the (possibly complex) eigenvalues of B. Stronglyregular elements in sl(n; R) are characterized by the inequalities�i � �j 6= �k � �l; fi; jg 6= fk; lg; i 6= j:The eigenspace La of adB corresponding to a real eigenvalue a = �i � �j 2Sp(B) consists of all matrices of the form bi
 cj, where bi and cj are respectivelyeigenvalues of B and its transpose BT, i.e., Bbi = �ibi and BTcj = �jcj. If aneigenvalue a 2 Sp(B) is complex, then a is also an eigenvalue and La is the two-dimensional vector space spanned by Re(bi
 cj) and Im(bi
 cj). The eigenspaceL0 that corresponds to a zero eigenvalue consists of all matrices that commutewith B.8.5.1. The special linear group in dimension 2. Consider two examples,which are generic for the group SL(2; R).Example 8.1. Let B =  0 1�1 0 ! :The eigenvalues of B are �1 = i and �2 = �i; hence the nonzero eigenvaluesof the adjoint operator adB are Sp(B) = f�ig. The unit eigenvectors of B areb1 = (e1 + ie2)=p2 and b2 = b1 = (e1 � ie2)=p2, where fe1; e2g is the canonicalbasis in R2 . Since BT = �B, it follows that c1 = b2 and c2 = b1. Thus,b1 
 c2 = 12  1 ii �1 ! and b2 
 c1 = 12  1 �i�i �1 ! : 43



The linear hull of the matricesRe(b1 
 c2) = 12  1 00 �1 ! and Im(b1 
 c2) = 12  0 11 0 !is the two-dimensional vector space of 2� 2 symmetric matrices with zero trace.Hence decomposition (8.4) induced by B is the classic decomposition of matricesinto the symmetric part and antisymmetric part.Now we verify conditions of Theorem 8.4. The matrix B is a strongly regularelement of the Lie algebra sl(2; R). Condition (3) means that the matrix A hasa nonzero symmetric part. Under this assumption, A and B generate sl(2; R) asa Lie algebra. Finally, condition (4) is absent. Consequently, by Theorem 8.4,the system � = A + RB is controllable on SL(2; R) if the matrix A is not skew-symmetric. This condition is also necessary for controllability: if AT = �A, thenthe rank condition for � is violated.Example 8.2. Now consider the case ofB =  1 00 �1 ! :The eigenvalues of B are �1 and Sp(B) = f�2g. The corresponding eigenspacesof adB are one-dimensional and are spanned bye1 
 e2 =  0 10 0 ! and e2 
 e1 =  0 01 0 ! :We use B, e1
 e2, and e2
 e1 as the basis for decomposition (8.4) and write anymatrix A = (aij) as A = a11B + a12e1 
 e2 + a21e2 
 e1.By Theorem 8.4, the system � = A + RB is controllable on SL(2; R) ifa12a21 < 0. On the other hand, if a12a21 � 0, then � is not controllable, since, inthis case, the bilinear system induced by � has invariant quadrants in R2 .Remark. The preceding two examples are exhaustive for SL(2; R), since anymatrix B 2 sl(2; R) with a nonzero spectrum is similar to one of the matrices 0 b�b 0 ! ;  b 00 �b ! ; b 2 R n f0g:Using the control scaling u 7! u=b, any system � = A + RB on SL(2; R) withdetB 6= 0 can be reduced to the systems considered in the previous two examples.Now we return to the general case in SL(n; R). If a strongly regular elementB has a real spectrum, then B can be diagonalized. The eigenspaces of adB arethen one-dimensional spaces spanned by the matrices ei
ej = Eij, where e1, . . . ,en is the standard basis in Rn . The maximum eigenvalue of adB is the largest44



di�erence between the diagonal elements of B, and the minimum eigenvalue isnegative. Rearranging the base vectors ei, we can put the diagonal elements ofB in the ascending order �1 < �2 < � � � < �n. Then condition (4) in Theorem 8.4takes the form a1nan1 < 0, where aij is the general entry of the drift matrix A.This argument leads to the following result.Theorem 8.7. Let n� n real matrices A = (aij) and B with zero trace satisfythe conditions:(i) a1nan1 < 0;(ii) B = diag(b1; : : : ; bn);(iii) b1 < b2 < � � � < bn;(iv) bi � bj 6= bk � bm for (i; j) 6= (k;m).Then the system � = A+ RB is controllable on the group SL(n; R) if and only ifthe matrix A is permutation-irreducible.Recall that an n� n matrix A is called permutation-reducible if there existsa permutation matrix P such thatP�1AP =  A1 A20 A3 ! ;where A3 is a k�k matrix with 0 < k < n. An n�n matrix is called permutation-irreducible if it is not permutation-reducible. Permutation-irreducible matricesare matrices having no nontrivial invariant coordinate subspaces.8.5.2. The conjecture of Jurdjevic{Kupka. In the case of strongly reg-ular elements B with real eigenvalues, Theorem 8.4 covers the case of a skew-symmetric drift term A. From this point of view, the case where both A and Bare symmetric is at the other end of the spectrum created by Theorem 8.4.Conjecture 8.1. If matrices A;B 2 sl(n; R) are symmetric, then the right-invariant system � = A + RB is not controllable, neither on SL(n; R) nor onRn n f0g.In dimensions n = 2; 3, this conjecture is easily proved by constructing in-variant quadrants or octants for the induced bilinear system_x = Ax + uBx; x 2 Rn n f0g; u 2 R: (8.7)For n > 3, the question remains open. A partial con�rmation of the precedingconjecture in arbitrary dimensions under some additional assumptions is givenby computing all invariant orthants of bilinear systems in Rn .8.5.3. Invariant orthants of bilinear systems. Let A;B1; : : : ; Bm be ar-bitrary real n � n matrices. In this subsubsection, we present a criterion for a45



bilinear system _x = Ax + mXi=1 uiBix; x 2 Rn n f0g; ui 2 R (8.8)to have invariant orthants. This result implies a partial con�rmation of Conjec-ture 8.1.First, we give the necessary notation and de�nitions. The set of indices�n = f � = (�1; : : : ; �n) j �i = �1 8i = 1; : : : ; n gwill be used for parametrization of orthants, i.e., sets of the formRn� = f x = (x1; : : : ; xn) 2 Rn j xi�i � 0 8i = 1; : : : ; n g:A subset of the state space is called positive (negative) invariant for a vector �eldor a control system if all trajectories of the �eld or the system starting in thisset (resp., its complement) do not leave it (resp., its complement) for all positiveinstants of time.Remark. A system is globally controllable i� it has neither positive nor negativeinvariant sets (except the trivial ones, the whole state space and the empty set).Thus, conditions for existence for nontrivial invariant sets are su�cient conditionsfor global noncontrollability.De�nition 8.7. An n�n matrix A = (aij) is called sign-symmetric if aijaji � 0for all i; j = 1; : : : ; n.Construction 8.1. For any sign-symmetric n� n matrix A, we construct thegraph H(A) by the following rule. The graph H(A) has n vertices 1; 2; : : : ; n. Itsvertices i; j, i 6= j, are connected by the edge (i; j) if and only if at least one ofthe numbers aij and aji is nonzero. We take into account only edges that connectdistinct vertices of the graph H(A); self-loops are thus explicitly excluded fromconsideration. Every edge (i; j) is marked by the sign + or � : if aij � 0 andaji � 0, then the sign + is applied, and if aij � 0 and aji � 0, then we apply� (there can be no other combinations of signs by virtue of sign-symmetry ofA). The marked edges are called positive or negative depending on the sign + or� . For the graph H(A), we de�ne the following function s(i; j), i; j = 1; : : : ; n,i 6= j : s(i; j) = 0 if the vertices i; j are not connected by an edge in H(A),s(i; j) = 1 for the positive, and s(i; j) = �1 for the negative edge (i; j) in thegraph H(A). A loop (i.e., a closed path composed of edges) of a graph is calledeven (odd) if it contains an even (resp. odd) number of negative edges. A graphsatis�es the even-loop property if all its loops are even.Remark. If a graph H satis�es the even-loop property, then there is a subsetV of the set of its vertices such that:46



(a) any negative edge of the graph H has exactly one vertex in V ;(b) any positive edge of the graph H has either 0 or 2 vertices in V .In other words, such a graph H is bichromatic: its vertices can be colored intwo colors so that odd edges connect vertices of distinct colours, and even edgesconnect vertices of coinciding colours; the �rst color corresponds to the set V andthe second one to its complement.Construction 8.2. Assume that a graph H satis�es the even-loop propertyand V is any subset of the set of its vertices that satis�es the previous conditions(a) and (b). Then the index of the graph H corresponding to the set V is the set� = (�1; : : : ; �n) 2 �n de�ned as follows: �i = +1 if i =2 V and �i = �1 if i 2 V .Theorem 8.8. Let A;B1; : : : ; Bm be n� n matrices. The bilinear system (8:8)has positive (negative) invariant orthants if and only if the following conditionshold:1. the matrix A is sign-symmetric;2. the matrices B1, . . . , Bm are diagonal;3. the graph H(A) (resp. H(�A)) satis�es the even-loop property.Then positive (negative) invariant orthants are Rn� , where � is any index ofthe graph H(A) (resp. H(�A)), and their number is equal to 2c, where c is thenumber of connected components of the graph H(A).If system (8:8) has no invariant coordinate subspaces (in particular, if thissystem satis�es the rank condition everywhere in Rn n f0g), then it has either 0or 2 invariant orthants.Proof. The outline of the proof of Theorem 8.8 is as follows. System (8.8) hasinvariant orthants if and only if the matrices Bi, i = 1; : : : ; m, are diagonal andthe linear vector �eld Ax has invariant orthants. The search for these orthants isbased on two ideas. First, it is common knowledge that the positive orthantRn+ = f x = (x1; : : : ; xn) 2 Rn j xi � 0 8i = 1; : : : ; n gis positive invariant for the �eld Ax if and only if all o�-diagonal entries of thematrix A are nonnegative. Second, if the �eld Ax has an invariant orthant, thensuccessive changes of coordinates (x1; : : : ; xi; : : : ; xn) 7! (x1; : : : ;�xi; : : : ; xn) inRn map this orthant onto Rn+ . During this process, we can keep track of signsof entries aij of the matrix A and obtain conditions for existence of invariantorthants in terms of sign combinations of aij. These conditions are convenientlyexpressed in terms of the graph H(A) that corresponds to the matrix A as givenin Theorem 8.8.Theorem 8.8 is related to Conjecture 8.1, since there exists an orthogonaltransformation of Rn that diagonalizes a symmetric matrix B; then a symmetric47
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Fig. 1. The graph H(A).matrix A turns into a symmetric one. That is why we can assume that B isdiagonal and A is symmetric.Theorem 8.8 implies that Conjecture 8.1 holds in dimensions 2 and 3: in fact,for these dimensions, if A is sign-symmetric and B is diagonal, then system (8:7)has a positive or negative invariant orthant. Even for n = 4, there are symmetricmatrices A for which the �eld Ax and system (8.7) have no invariant orthants (seethe example below). Here the question of global controllability, i.e., of absence ofany invariant sets, is left open. But for symmetric matrices A with at least oneof the graphs H(A), H(�A) satisfying the even-loop property, Conjecture 8.1 isvalid. However, in these cases not the symmetry but the sign-symmetry of A isessential.Example 8.3. Let A = (aij) be any 4� 4 matrix of the form0BBB@ � + 0 ++ � + 00 + � �+ 0 � � 1CCCA ;i.e., a12; a21; a14; a41; a23; a32 > 0, a34; a43 < 0, a13 = a31 = a24 = a42 = 0, anddiagonal entries are arbitrary. The corresponding graph H(A) is given in Fig. 1.The only loop (1; 2; 3; 4) is negative in both graphs H(A) and H(�A).That is why, for any 4� 4 diagonal matrix B, system (8.7) has no invariantorthants. But the question of global controllability of this system (if it has a fullrank) seems to be open. These statements remain stable under small perturba-tions of the matrix A.8.6. Classical Lie groups.8.6.1. Complex simple Lie algebras. Let M(n; C ) denote the set of all n� ncomplex matrices, and let d(n; C ) be the subset of all diagonal matrices in M(n; C ).The Lie algebra gl(n; C ) is the vector space M(n; C ) endowed with the matrixcommutator [A;B] = AB � BA as a Lie bracket.48



The Lie algebra sl(n; C ) is a subalgebra of gl(n; C ) consisting of all matriceswith zero trace: sl(n; C ) = fA 2 gl(n; C ) j trA = 0g:The subalgebrasl(n; C ) \ d(n; C ) = fdiag(a1; : : : ; an) j a1 + � � �+ an = 0gis a Cartan subalgebra of sl(n; C ). The algebra sl(n; C ) is called an algebra of thetype Al, l = n� 1.Let (�; �) be a nonsingular symmetric bilinear form on C n . The Lie algebraso(n; C ) consists of all endomorphisms A of C n such that(Ax; y) + (x;Ay) = 0; x; y 2 C n :Assume that the form (�; �) is de�ned by the n� n matrix I given by 0 IdlIdl 0 ! if n = 2l or 0B@ 0 Idl 0Idl 0 00 0 1 1CA if n = 2l + 1;where Idl is the identity l � l matrix. Thenso(n; C ) = fA 2 gl(n; C ) j IAT + AI = 0g:In this case, the Cartan subalgebra can be chosen as a subspace of so(n; C ) con-sisting of matrices of the formdiag(a1; : : : ; al;�a1; : : : ;�al) if n = 2l;diag(a1; : : : ; al;�a1; : : : ;�al; 0) if n = 2l + 1:The algebra so(n; C ) is called an algebra of the type Bl for n = 2l + 1 and analgebra of the type Dl for n = 2l.Now let (�; �) be a nonsingular skew-symmetric bilinear form on C n . The Liealgebra sp(n; C ) is de�ned as the set of all endomorphisms A of C n such that(Ax; y) + (x;Ay) = 0; x; y 2 C n :If the form (�; �) is de�ned by the matrixJ =  0 Idl� Idl 0 ! ;then sp(n; C ) = fA 2 gl(n; C ) j JAT + AJ = 0g:The set of all matrices in sp(n; C ) of the formdiag(a1; : : : ; al;�a1; : : : ;�al) 49



is a Cartan subalgebra of sp(n; C ). The algebra sp(n; C ) is called an algebra of thetype Cn.In Secs. 8.6.2, 8.6.3, and 8.6.4, we assume that Cartan subalgebras L0 inLie algebras Al, Bl, Cl, and Dl are chosen as above. In particular, the conditionB 2 L(0) will imply that the matrix B is diagonal.The algebras Al, Bl, Cl, and Dl are known as classical complex Lie algebras.In addition to them, there exist �ve exceptional Lie algebras denoted by G2, F4,E6, E7, and E8.The classical classi�cation result on complex simple Lie algebras states thatall Lie algebras Al; l � 1; Bl; l � 2; Cl; l � 3; Dl; l � 4;and G2; F4; E6; E7; E8are simple, and any simple Lie algebra over C is isomorphic to exactly one ofthese.8.6.2. Generation of classical Lie algebras. The central role for the con-trollability results in this subsection is played by the following proposition, whichdescribes pairs of elements that generate classical Lie algebras.Theorem 8.9. Let L be the normal real form of a complex Lie algebra of type Al,Bl, Cl, or Dl. Let elements A;B 2 L be such that B 2 L(0) is A-strongly regular.Then Lie(A;B) = L if and only if the matrix A is permutation-irreducible.Remark. The nontrivial part in this theorem is the su�ciency: if B is diagonaland A permutation-reducible, then it is easy to see that Lie(A;B) consists ofpermutation-reducible matrices.8.6.3. Homogeneous systems.Theorem 8.10. Let G be a connected Lie group with a Lie algebra L thatis a normal real form of a complex Lie algebra of type Al, Bl, Cl, or Dl. Letelements A;B 2 L be such that B 2 L(0) is A-strongly regular. Then the system� = RA + RB is controllable on G if and only if the matrix A is permutation-irreducible.Proof. For homogeneous systems, the controllability is equivalent to the rankcondition. Thus, the statement follows from Theorem 8.9.8.6.4. Nonhomogeneous systems.Theorem 8.11. Let G be a connected Lie group with a Lie algebra L that isa normal real form of a complex Lie algebra L of type Al or Dl. Let elementsA;B 2 L be such that(i) B 2 L(0) is A-strongly regular;50



(ii) let A = A(0) +PfA(�) j � 2 Rg be the decomposition of A along the rootspaces of L relative to L0; see (8:2). Then Kil(A(s); A(�s)) < 0 for themaximal root s.Then the system � = A + RB is controllable on G if and only if the matrix A ispermutation-irreducible.This theorem is proved by an argument analogous to that used in the proofof Theorem 8.5 in Sec. 8.4.2. The only essential distinction is that the rankcondition follows from Theorem 8.9.8.7. Remarks. The controllability results of Sec. 8.4 were obtained by El As-soudi, Gauthier, and Kupka [10]. They are a culmination of the series of pa-pers on controllability on semisimple Lie groups by Jurdjevic and Kupka [80,81], Gauthier and Bornard [48], Gauthier, Kupka and Sallet [49], El Assoudiand Gauthier [8, 9], Silva Leite and Crouch [136], El Assoudi [7]. In particular,Theorem 8.7 was obtained by Gauthier and Bornard [48]. This paper also con-tains an easy procedure for veri�cation whether a square matrix is permutation-irreducible.Proposition 8.1 is due to Joseph [73].Conjecture 8.1 on the noncontrollability of a single-input bilinear systemwith symmetric matrices in the right-hand side was suggested by Jurdjevic andKupka [80].Invariant orthants of bilinear systems were described by Sachkov [121] viaapplication of bichromatic graphs to the study of invariant sets of dynamicalsystems; this idea is due to Hirsch [60].Results of Sec. 8.6 are due to Silva Leite and Crouch [136]. In additionto Theorem 8.9, there are other results on generation of classical Lie algebrasand Lie groups; see Crouch and Silva Leite [43], Silva Leite [132, 133, 134, 135],Albuquerque and Silva Leite [5].Results related to subsemigroups of semisimple Lie groups can be found inpapers by San Martin [129] and San Martin and Tonelli [130].9. Nilpotent Lie GroupsA Lie algebra L is called nilpotent if its descending central seriesL(1) = [L; L]; L(2) = [L; L(1)]; : : : ; L(i) = [L; L(i�1)]; : : : ; i 2 N;stabilizes at zero, that is,L � L(1) � L(2) � � � � � L(N) = f0gfor some N 2 N. Any nilpotent Lie algebra is solvable, since L(i) � L(i), i 2 N,where L(i) denotes an element of the derived seriesL(1) = [L; L]; L(2) = [L(1); L(1)]; : : : ; L(i) = [L(i�1); L(i�1)]; : : : ; i 2 N: 51



Another equivalent characterization of nilpotency of L is that all adjoint operatorsad x, x 2 L, are nilpotent, and thus, have zero spectrum.9.1. Arbitrary systems. Controllability of a right-invariant system � � L ona nilpotent Lie group G is completely characterized in terms of the wedge, i.e.,the topologically closed convex positive cone generated by �:W (�) = cl(co(�)) � L:Since � � W (�) � LS(�), it is obvious that � and W (�) are controllable ornoncontrollable, simultaneously.Theorem 9.1. Let G be a nilpotent connected Lie group with a Lie algebra L,and let � � L be a right-invariant system on G that generates L as a Lie algebra.Then � is controllable on G if and only if one of the following conditions holds:(i) (intW�W W ) \ L(1) 6= ? or(ii) int cl(L(1) +W ) \ exp�1(e) 6= ?,where W =W (�) is the wedge generated by �.Remark. Here intW�W W is the interior of the wedge W relative to the vectorspace W �W generated by W , and e is the identity of the Lie group G.The su�ciency in Theorem 9.1 follows from the description of maximal opensubsemigroups S of nilpotent Lie groups in terms of their tangent objects:L(S) = f x 2 L j exp(R+x) � cl(S) g:An open subsemigroup S of a Lie group G is proper, i.e., S 6= G if and only ife =2 S. Hence the set of open subsemigroups in G is inductive, and any propersubsemigroup is contained in a maximal one.Theorem 9.2. Let G be a nilpotent connected Lie group, and let S be amaximal open proper subsemigroup of G. Then L(S) is a half-space bounded bya codimension one subalgebra in L.For necessity in Theorem 9.1, the Hahn{Banach theorem yields thatW+L(1)is contained in a half-space in L; then exp �int �W + L(1)�� is a proper opensemigroup of G; this implies that exp(W ) is contained in a proper subsemigroupof G.The controllability test of Theorem 9.1 is essentially nilpotent. This result isnot true for the group SL(2; R). It also fails in the following solvable non-nilpotentexample.Example 9.1. Let G be a (unique) two-dimensional connected simply con-nected non-Abelian Lie group, which is represented by matrices as follows:G = ( x y0 1 ! j x > 0; y 2 R ) :52



The Lie group G is solvable but is not nilpotent. Its Lie algebra has the formL = ( a b0 0 ! j a; b 2 R ) :Consider the following wedge in L:W = ( a b0 0 ! j a 2 R; b � 0) :A direct computation shows thatexp(R+W ) = ( x y0 1 ! j x > 0; y � 0) ;which is a proper subsemigroup of G; thus, W is not controllable on G. On theother hand, it is easy to see that both conditions (i) and (ii) of Theorem 9.1 holdfor the wedge W in this example.9.2. Abelian groups. Let G be a (connected) Abelian Lie group. Then G =Rn�k � T k for some k � n, where n = dimG and T k = S1 � � � � � S1 is thek-dimensional torus.For such Lie groups, Theorem 9.1 implies the following.Corollary 9.1. Let G be an Abelian connected Lie group with a Lie algebra L,and let � � L be a right-invariant system on G. Then � is controllable on G ifand only if int(cl(co(�))) \ exp�1(e) 6= ?:If, in addition, G is simply connected, then � is controllable if and only ifint(cl(co(�))) 3 e:9.3. Quotient systems. Let G be an arbitrary Lie group with a Lie algebra L.Let h be an ideal of L, and let H be the corresponding connected subgroup ofG. Assume that H is closed, and so G=H is a Lie group. Denote the projectionfrom G onto G=H by � and its di�erential by ��. The projection of the system� onto G=H is well de�ned:��(�) = f ��v j v 2 � g � L=h:Notice that the controllability of the system � on G implies the controllability ofits projection ��(�) on G=H.The derived subalgebra L(1) is an ideal of L, and for simply connected G, itsderived subgroup G(1) = [G;G] is closed. Moreover, the quotient group G=G(1)is Abelian. Thus, the above construction and Corollary 9.1 allow us to give thefollowing general necessary controllability condition for control a�ne systems� = (A + mXi=1 uiBi j ui 2 R; i = 1; : : : ; m) � L (9.1)53



on simply-connected Lie groups.Introduce the following notation for the Lie algebra generated by the vector�elds in � near controls: L0 = Lie(B1; : : : ; Bm);Theorem 9.3. Let a connected Lie group G be simply connected. If a controla�ne right-invariant system (9:1) is controllable, then(1) ��(L0) = L=L(1);(2) m � dimL� dimL(1).Proof. (1) If � is controllable on G, then ��(�) is controllable on the Abeliansimply-connected Lie group G=G(1). Then it follows from Corollary 9.1 that��(L0) = L=L(1).(2) The Lie algebra ��(L0) is Abelian and is spanned by the vectors ��B1,. . . , ��Bm. Therefore,m � dim(��(L0)) = dim(L=L(1)) = dimL� dimL(1):Remark. This theorem implies that right-invariant systems on a simply-connected Lie group G with nontrivial G=G(1) essentially di�er from right-in-variant systems on semisimple Lie groups (notice that if G is semisimple, thenG(1) = G). In semisimple Lie groups, m = 2 is su�cient for controllability of ageneric control a�ne right-invariant system; see Theorem 8.3. But Theorem 9.3yields a lower bound m � dimG=G(1)for the number of controlled vector �elds B1; : : : ; Bm that is necessary to achievethe controllability on the simply-connected G.9.4. Control-a�ne systems. For control-a�ne right-invariant systems (9.1) onsimply-connected nilpotent Lie groups, there is a simple controllability criterionin terms of the Lie subalgebra L0.Theorem 9.4. Let G be a connected, simply-connected nilpotent Lie group.Then system (9:1) is controllable on G if and only if L0 = L.The su�ciency of the condition L0 = L for controllability of � is valid forarbitrary Lie groups G: it follows from the inclusion L0 � LS(�). So, the essentialpart is the necessity. Here a key role is played by the necessary controllabilityconditions in terms of the notion of a symplectic vector.Consider the co-adjoint representation �� of the group G in the dual spaceL� of L. For any covector � 2 L�, the co-adjoint orbit �� of � by the �� action�� = ��G(�) is a smooth submanifold of L� di�eomorphic to the homogeneous54



space G=E�, where E� is the isotropy subgroup of �, E� = f g 2 G j ��g(�) = � g.Further, the system � can be projected from G onto the homogeneous spaceG=E� ' ��, and the controllability of � on G obviously implies the controllabilityof its projection �� on G=E�. This leads us to necessary controllability conditionsin terms of the co-adjoint representation.De�nition 9.1. A covector � 2 L� is called a symplectic vector for w 2 L ifthe co-adjoint orbit �� is not trivial and hw; �i > 0 for all � 2 ��.(We denote by h�; �i the pairing of a vector and covector.)Theorem 9.5. If there is a vector �eld � 2 L belonging to the centralizer ofthe subalgebra L0 such that the nonzero vector �eld [A; �] has a symplectic vector,then system (9:1) cannot be controllable on G.In fact, the existence of such vector �eld � 2 L yields that the functionf� : �� ! R; � 7! f�(�) = �h�; �iis strictly increasing on trajectories of the projection of � onto the co-adjointorbit ��. Indeed, the solution to the Cauchy problem _g(t) = A(g(t)), g(0) = g0,is given by g(t) = exp(tA)g0. Further, the functionh(t) = Ad �g(t)�1� = Ad �g�10 � � exp(�t adA)has the derivative_h(t) = Ad �g�10 � � exp(�t adA) � (� adA) = �Ad �g(t)�1� � adA:Now, for � 2 L�, the co-adjoint action �� of the element g 2 G is determined by��g(�) = Ad� �g�1��;consequently, for any � 2 L and � 2 L�,ddtf�(��g(t)(�)) = � ddth�; ��g(t)(�)i = � ddth�;Ad� �g(t)�1��i= � ddthAd �g(t)�1� �; �i = hAd �g(t)�1� � adA(�); �i= h[A; �]; ��g(t)(�)i:Thus, if � is a symplectic vector for [A; �], then f� increases along co-adjoint orbitsof trajectories of the �eld A. If, in addition, ad � vanishes on the subalgebra L0,then the same holds for trajectories of the whole system �; this is impossible fora controllable system.Another important fact for necessity in Theorem 9.4 is the following propo-sition related to hypersurface systems, i.e., control-a�ne systems (9.1) with L0being a codimension one subalgebra of L. 55



Denote by G0 the connected subgroup of the Lie group G corresponding tothe subalgebra L0.Theorem 9.6. Let � � L be a control-a�ne system (9:1) on a connected Liegroup G such that L0 is a codimension one ideal of L. Then1. If G0 is closed in G, then � is controllable if and only if A =2 L0 and G=G0 'S1.2. If G0 is not closed in G, then � is controllable if and only if A =2 L0.Remark. The previous theorem holds without assumption that L0 is an ideal;this is important for a generalization of Theorem 9.4 to a subclass of solvable Liegroups including nilpotent ones (see Sec. 13 below).Now we outline the scheme of proof of the necessity in Theorem 9.4. Assumethat the system � is controllable on the group G. Then the theory of symplecticvectors implies that the subalgebra L0 is an ideal of L. The rank condition for �holds: Lie(�) = Lie(A;L0) = L; hence, L0 has codimension 0 or 1 in L. But thecodimension one case is impossible, since then Theorem 9.6 yields G=G0 ' S1;this contradicts the simple connectedness of G. Thus, L0 = L, and the necessityin Theorem 9.4 follows.Example 9.2. Let G be the Heisenberg group of dimension 2p + 1. It can berepresented as a subgroup of GL(p+ 2; R) generated by the matricesId+Xi; Id+Yi; Z; i = 1; : : : ; p;where Xi = E1;i+1; Yi = Ei+1;p+2; i = 1; : : : ; p:The Lie algebra L of G is spanned by the matricesXi; Yi; Z; i = 1; : : : ; p;with the nonzero brackets [Xi; Yi] = Z; i = 1; : : : ; p:The Heisenberg group G is simply-connected and nilpotent; hence, Theorem 9.4describes all controllable systems on G.9.5. Remarks. The controllability test for arbitrary right-invariant systems andthe description of maximal subsemigroups in nilpotent Lie groups (Sec. 9.1) isdue to Hilgert, Hofmann, and Lawson [57].The result on quotient systems (Sec. 9.3) was obtained by Sachkov [118].The criterion for control a�ne systems (Sec. 9.4) was given by Ayala [12],and the notion of a symplectic vector is due to Ayala and Vergara [13].The controllability of projections of right-invariant systems onto nilpotentand solvable manifolds might be studied via application of the theory of owson these manifolds, see e.g., the book by Auslender, Green, and Hahn [11]. Thiscan be important for studying the local controllability of nonlinear systems vianilpotent approximations (Crouch and Byrnes [44]).56



10. Products of Lie GroupsIn this section, we present controllability conditions on products of vectorgroups with nilpotent Lie groups. The results obtained for such Lie groups canbe viewed as a generalization of results for nilpotent Lie groups; see Sec. 9.1.Theorem 10.1. Let G be a connected Lie group, C be a connected compactsubgroup of G, and let N be a nilpotent normal subgroup of G such that G =C � cl(N). If W is a wedge in L that generates L as a Lie algebra, then W iscontrollable if and only ifintW�W (W ) \ (L(C) + L(1)) 6= ?:The previous controllability result is proved via the following description ofall maximal open semigroups in products of compact and nilpotent groups.Theorem 10.2. Let G be a connected Lie group, C be a connected compactsubgroup of G, and let N be a nilpotent normal subgroup of G such that G =C � cl(N). If S is a maximal open subsemigroup of G, then its tangent wedgeL(S) = fX 2 L j exp(tX) 2 cl(S) 8t � 0gis a half-space bounded by an ideal in L.10.1. Remarks. The results in this section are due to Hilgert [55].Another important (and more general) result on maximal semigroups relatedto controllability is the characterization of maximal subsemigroups in Lie groupswith cocompact radical by Lawson; see Sec. 11.11. Lie Groups with Cocompact RadicalDenote by RadG the radical of a Lie group G, i.e., the maximal solvable nor-mal subgroup of G. In this section, we assume that a Lie group G has cocompactradical , that is, the quotient group K = G=RadG is compact. This wide classof Lie groups contains(i) solvable Lie groups (K = feg);(ii) compact Lie groups;(iii) semidirect products of a vector space V with a compact Lie group (V �RadG).11.1. Controllability conditions and maximal subsemigroups. The nexttheorem gives a Lie-algebraic description of controllability on Lie groups withcocompact radical, which is complete in the simply-connected case. 57



Theorem 11.1. Assume that G=RadG is compact; let � � L be a right-inva-riant system that satis�es the rank condition Lie(�) = L. If � is not containedin any half-space of L with boundary being a subalgebra, then � is controllable onthe connected Lie group G. The converse holds if G is simply-connected.This result is a consequence of the following classi�cation of maximal sub-semigroups of Lie groups with cocompact radical.Theorem 11.2. The maximal subsemigroups M with nonempty interior of aconnected, simply-connected Lie group G with compact G=RadG are in a one-to-one correspondence with their tangent objectsL(M) = fA 2 L j exp(tA) 2 cl(M) 8t � 0g;and the latter are exactly the closed half-spaces with boundary being a subalgebra.Furthermore, M is the semigroup generated by exp(L(M)).Theorem 11.1 follows from Theorem 11.2, since the attainable set of any non-controllable right-invariant system � � L, Lie(�) = L, is a proper subsemigroupof G contained in some maximal subsemigroup with non-empty interior.11.2. Reductive Lie groups. A Lie algebra L is called reductive if its radical,i.e., the maximal solvable ideal, coincides with its center. L is reductive if andonly if the derived subalgebra L(1) is semisimple. In this case, L is the directsum of its center and L(1). A Lie group is called reductive if it has reductive Liealgebra.In this subsection, we present a characterization of controllable systems � ona reductive group G under the assumptions that � is a closed convex cone in L,� is pointed, i.e., it has the zero edge: � \ �� = f0g, and is invariant under theadjoint action of the group K, where NAK is an Iwasawa decomposition of G.Recall that (see Sec. 4)(1) a right-invariant system � is controllable if and only if the closed convexcone cl(co(�)) generated by � is controllable;(2) a system � is controllable, i.e., A = G if and only if the closure cl(A ) coincideswith G, provided that � satis�es the rank condition Lie(�) = L.Let G = NAK be an Iwasawa decomposition of a Lie group G, where N ,A, and K are respectively a maximal nilpotent subgroup, a principal vector sub-group, and a maximal compact subgroup of G. Denote by L(N) and L(K) theLie algebras of the Lie groups N and K, respectively, and by L(1)(K) the derivedsubalgebra of K.Theorem 11.3. Let G be a connected, simply-connected reductive Lie groupwith Iwasawa decomposition NAK. Let � be an Ad(K)-invariant convex cone inL satisfying � \ �� = f0g and int � 6= ?. Then the following assertions hold.(i) If (int �) \ (L(N) + L(1)(K)) 6= ?, then � is controllable.58



(ii) If � \ (L(N) + L(1)(K)) = f0g, then� = LS(�) = fX 2 L j exp(R+X) � cl(A )gand � is not controllable.(iii) If ? 6= (� \ (L(N) + L(1)(K))) n f0g � @�, then � is not controllable.The main idea of the proof of this theorem is to describe a reductive group asa homogeneous space of a group with cocompact radical, and after that, use thecharacterization of maximal subsemigroups in such groups given by Theorem 11.2.11.3. Remarks. The description of maximal subsemigroups in Lie groups withcocompact radical and conditions of controllability on such Lie groups in Sec. 11.1are due to Lawson [94].The controllability result for reductive Lie groups in Sec. 11.2 was obtainedby Hilgert [56].11.3.1. The rank condition and hypersurface principle. The customaryprocedure for verifying the noncontrollability is either to show the violation of therank controllability condition; see Theorem 2.3, or to construct a (not necessarilysmooth) hypersurface in the state space of a system intersected by all trajecto-ries of the system in one direction only; see e.g., the hypersurface principle inTheorem 12.2. By Lawson's Theorem 11.1, for right-invariant systems on simply-connected Lie groups with cocompact radical such hypersurface can always befound among codimension one subgroups. An interesting question is whetherany full-rank noncontrollable right-invariant system have such codimension onesubgroup? A positive answer will give a new method for obtaining su�cientcontrollability conditions, and a negative one will give an example of a complexobstruction to controllability.12. Hypersurface SystemsThe class of control systems in Rn with (n � 1) independent controls hasspeci�c features that simplify their study, especially in the case of unboundedcontrols. The more so this is true for right-invariant systems.De�nition 12.1. A control a�ne right-invariant system� = (A + mXi=1 uiBi j ui 2 R; i = 1; : : : ; m) � L (12.1)is called hypersurface if the Lie algebra L0 generated by the vector �elds B1, . . . ,Bm is a codimension one subalgebra of L:dimL0 = dimLie(B1; : : : ; Bm) = dimL� 1: 59



Denote by G0 the connected subgroup of G corresponding to the subalgebraL0. The controllability of hypersurface right-invariant systems is completely char-acterized by the following proposition.Theorem 12.1. Let � be a hypersurface control a�ne system (12:1) on aconnected Lie group G. Then(1) If G0 is closed in G, then � is controllable if and only if A =2 L0 and G=G0 'S1;(2) If G0 is not closed in G, then � is controllable if and only if A =2 L0.Proof. The condition A =2 L0 is necessary for controllability in both cases(1) and (2), since it is equivalent to the rank condition Lie(�) = Lie(A;L0) = L.Also, we note that L0 � LS(�); that is why � is controllable if and only if theextended system ~� = cl(co(�)) = R+A+ L0 is controllable.(1) If cl(G0) = G0, then the right coset space G=G0 is a smooth one-dimensional manifold, i.e., the line R or the circle S1. Since any point of theright coset G0x is reachable from x for the system ~� for any x 2 G, we canproject ~� onto G=G0. It is easy to see that the projected system is controllableif G=G0 = S1 and noncontrollable if G=G0 = R.(2) If the codimension one subgroup G0 is not closed in G, then it is densein G; thus, the reachable set A is also dense in G. If A =2 L0, then the system �has a full rank; thus, it is controllable by Theorem 2.8.Remark. Theorem 12.1 generalizes the analogous criterion of Theorem 9.6with an additional assumption that L0 is an ideal of L.Corollary 12.1. A hypersurface system cannot be controllable on a simply-connected Lie group.Proof. If G is simply-connected, then its codimension one subgroup G0is closed. Furthermore, G is simply-connected; that is why G=G0 is simply-connected as well. Thus, G=G0 = R, and it follows from Theorem 12.1 that � isnot controllable.The previous propositions imply the following hypersurface principle, thegeneral necessary controllability condition for simply-connected Lie groups.Theorem 12.2. Let � � L be a control a�ne system (12:1) on a connected,simply-connected Lie group G. Assume that there exists a codimension one sub-algebra l of the Lie algebra L containing L0. Then � is not controllable.Proof. The system � can be extended to an a�ne system of the form�1 = 8<:A + mXi=1 uiBi + kXi=m+1 uiBi j ui 2 R; i = 1; : : : ; k9=; ;60



where Bm+1; : : : ; Bk complement B1; : : : ; Bm to a basis of the subalgebra l. ByCorollary 12.1, the system �1 is not controllable, and therefore, � is not control-lable too.The sense of this proposition is that if the codimension one subalgebra l � L0exists, then attainable set of � lies \to one side" of the connected codimensionone subgroup of G corresponding to l: by the simple connectedness of G, thiscodimension one subgroup separates G into two disjoint parts.12.1. Remarks. General hypersurface nonlinear systems were studied byHunt [67, 68].The results of this section are due to Sachkov [118].The hypersurface principle given by Theorem 12.2, is a necessary control-lability condition for an arbitrary simply-connected Lie group. By Lawson'sTheorem 11.1, if a simply-connected Lie group has a cocompact radical, thenthis principle is also su�cient for controllability. It would be interesting to ex-tend the class of simply-connected Lie groups with cocompact radical so that thehypersurface principle remain to be a controllability criterion.13. Completely Solvable Lie GroupsIn this section, we assume that � is a control-a�ne system (12.1) and givecontrollability conditions for a subclass of the class solvable Lie groups.De�nition 13.1. A solvable Lie algebra L is called a completely solvable ifall adjoint operators ad x, x 2 L, have real spectra. A Lie group is completelysolvable if it has a completely solvable Lie algebra.The triangular group T(n; R) (see Example 13.1 below) is completely solvableas well as any of its subgroups. Nilpotent Lie groups are completely solvable,since adjoint operators in nilpotent Lie algebras have zero spectrum. On theother hand, the group of motions of the plane E(2; R) is, e.g., solvable but notcompletely solvable (the group E(2; R), and its simply-connected covering ~E(2; R)are treated in Sec. 15).Completely solvable Lie algebras have many codimension one subalgebras(this is crucial for the controllability test for completely solvable Lie groups).Lemma 13.1. If L is a completely solvable Lie algebra, then, for any subalgebral1 � L, l1 6= L, there exists a subalgebra l2 � L such that l1 � l2 and dim l2 =dim l1 + 1.It turns out that the controllability criterion for systems a�ne in control onnilpotent Lie groups (Theorem 9.4) is valid for completely solvable Lie groups aswell.Theorem 13.1. Let G be a connected, simply-connected completely solvable Liegroup. Then system (12:1) is controllable on G if and only if L0 = L. 61



Proof. Su�ciency. If L0 = L, then LS(�) � LS(L0) = L. By Theorem 4.3,the system � is controllable.The necessity follows from Theorem 12.2 and Lemma 13.1.Example 13.1. Let G = T(n; R) be the group of all real n�n upper triangularmatrices with positive diagonal entries. We see that T(n; R) is a connected,simply-connected, and completely solvable Lie group. Its Lie algebra L = t(n; R)consists of all n � n upper triangular matrices. The derived subalgebra L(1)consists of all strictly upper triangular matrices, and L=L(1) is the n-dimensionalAbelian Lie algebra of all diagonal n� n matrices.By Theorem 13.1, a control a�ne system � is controllable on T(n; R) if andonly if L0 = L.By Theorem 9.3, the controllability of � on T(n; R) can be attained with notless than n = dimL=L(1) controlled vector �elds. This lower estimate is sharp.For example, the system � = fA+Pni=1 uiBi j ui 2 R g with Bi = Eii+Ei;i+1 fori = 1; : : : ; n� 1 and Bn = Enn is controllable on T(n; R). Indeed, it is easy to seethat Lie(B1; : : : ; Bn) = t(n; R).Example 13.2. Let G = E(2; R) be the Euclidean group of motions of thetwo-dimensional plane R2 . E(2; R) is a connected but not a simply-connected Liegroup. It can be represented by 3� 3 matrices of the form0B@ c11 c12 b1c21 c22 b20 0 1 1CA ; C = (cij) 2 SO(2; R); b =  b1b2 ! 2 R2 ;where C is a rotation matrix and b is a translation vector. The correspondingmatrix Lie algebra L = e(2; R) is spanned by the matrices A1 = E13, A2 = E23,and A3 = E21 � E12. We have L(1) = span(A1; A2) and L(2) = f0g; therefore, Lis solvable.Consider the right-invariant system � = fA1 + uA3 j u 2 R g: We use theLie saturation technique and show that the system � is controllable on E(2; R).We have A1;�A3 2 LS(�). That is why exp(s adA3)A1 2 LS(�) for anys 2 R. But exp(s adA3)A1 = (cos s)A1+(sin s)A2. Consequently, span(A1; A2) �LS(�); therefore, LS(�) = L. Thus, � is controllable on E(2; R).Obviously, � can also be considered as a right-invariant system on the simply-connected covering group ~E(2; R) of E(2; R). The above proof of controllabilityof � on E(2; R) is purely algebraic; i.e., it does not use any global geometricproperties of E(2; R). That is why � is controllable on ~E(2; R) as well.The spectrum of the operator adA3 consists of �i and 0. Therefore, thisexample shows us that the assumption on the complete solvability of L, i.e.,of the realness of the spectrum of adjoint operators in Theorem 13.1 is essential.Detailed controllability conditions for right-invariant systems on the group E(2; R)and its simply-connected covering ~E(2; R) are given in Example 15.2.62



13.1. Remarks. The results of this section were obtained by Sachkov [118].Completely solvable Lie algebras and Lie groups are also called triangularover R or algebras (resp. groups) of type (R), see, e.g., the survey by Vinberg,Gorbatcevich, and Onishchik [148].13.1.1. Lie algebras that are di�cult to control. For any Lie group G andany system a�ne in control� = (A+ mXi=1 uiBi j ui 2 R )on G, the controllability of the homogeneous part�0 = ( mXi=1 uiBi j ui 2 R )is su�cient for the controllability of � on G. We call a Lie algebra L di�cult tocontrol if any a�ne in control system � � L and its homogeneous part �0 are si-multaneously controllable or noncontrollable (on the connected simply connectedLie group G corresponding to L). In Lie algebras L that are di�cult to control,the drift term A in an a�ne system � � L does not help in control, which is notthe case for general Lie algebras.There is an expanding chain of classes of Lie algebras that are di�cult tocontrol: Abelian � nilpotent � completely solvable: (13.1)The Abelian case is Corollary 9.1, the nilpotent one is Theorem 9.4, and thecompletely solvable one is Theorem 13.1.On the other hand, the Lie algebra of the group E(2; R) of motions of theplane is solvable, but not completely solvable and is not di�cult to control; seeExample 15.2.By the hypersurface principle (Theorem 12.2), all Lie algebras satisfying thefollowing property:( any subalgebra l � L; l 6= L; is containedin a codimension one subalgebra of L ) (13.2)are di�cult to control. The author does not know, whether this inclusion isstrict. By Lemma 13.1, completely solvable Lie algebras satisfy property (13.2).The natural question is, whether there are Lie algebras di�cult to control notcontained in chain (13.1)? If yes, can this chain be continued by any reasonableclass of Lie algebras? The theory on codimension one subalgebras of Lie algebrasof Hofmann [62, 63, 65] can be important for this question.13.1.2. Subalgebras of codimension one and two. The solution of thecontrollability problem for completely solvable Lie groups (see Sec. 13) is basedon the following fact: any proper subalgebra of a real completely solvable Lie63



algebra is contained in a codimension one subalgebra. On the other hand, anyproper subalgebra of a real solvable Lie algebra is included in some subalgebra ofcodimension one or two.This suggests the following approach to the controllability on solvable Liegroups. Project a system along the connected subgroup corresponding to theindicated codimension one or two subalgebra. Then (1) if this group is closedand normal, we obtain a right-invariant system on a one- or two-dimensional Liegroup (such systems are transparent); (2) if this subgroup is closed, we obtain anonlinear system on a one- or two-dimensional smooth manifold (such systemsare tractable by the nonlinear controllability theory); (3) and if this subgroupis not closed, then try to apply and develop the theory of control systems onfoliations.14. Lie Groups Di�ering from their Derived SubgroupsLie algebras L that satisfy the condition L 6= L(1) form a wide class thatcontains the class of solvable Lie algebras but does not coincide with it; forexample, gl(n; R) is not solvable and has the derived subalgebra sl(n; R). On theother hand, if a Lie algebra L is semisimple, then L = L(1). The converse isnot true: the Lie algebra of in�nitesimal motions of the three-dimensional spacee(2; R) = R3 h so(3; R) is not semisimple, although it coincides with its derivedsubalgebra.In this section, we present controllability conditions for single-input systems� = fA+ uB j u 2 R g = A+ RB � L (14.1)on a Lie group G that does not coincide with its derived subgroup G(1). Conse-quently, we assume that L 6= L(1).14.1. Notation and de�nitions. First, we introduce the notation connectedwith eigenvalues and eigenspaces of the adjoint operator adB in L.The derived subalgebra and the second derived subalgebra areL(1) = [L; L]; L(2) = [L(1); L(1)];the complexi�cations of L and L(i), i = 1; 2, areLc = L
R C L(i)c = L(i) 
R C ;the adjoint representations and operators aread : L! End(L); (adB)X = [B;X] 8X 2 L;adc : Lc ! End(Lc); (adcB)X = [B;X] 8X 2 Lc;spectra of the operators adBjL(i) , i = 1; 2, areSp(i) = n a 2 C j Ker �adcBjL(i)c � a Id� 6= f0g o ;64



real and complex spectra of the operators adBjL(i), i = 1; 2, areSp(i)r = Sp(i) \ R; Sp(i)c = Sp(i) nR;complex eigenspaces of adcBjL(1)c areLc(a) = Ker �adcBjL(1)c � a Id� ;real invariant subspaces of adBjL(1) , which are one-dimensional for real a 2 Sp(1)rand two-dimensional for complex a 2 Sp(1)c , areL(a) = (Lc(a) + Lc(a)) \ L;complex root subspaces of adcBjL(i)c , i = 1; 2, areL(i)c (a) = 1[N=1Ker �adcBjL(i)c � a Id�N ;real invariant subspaces of adBjL(i), i = 1; 2, real analogues of the complex rootsubspaces, are L(i)(a) = �L(i)c (a) + L(i)c (a)�\L;components of L(i) corresponding to the real eigenvalues of adBjL(i), i = 1; 2, areL(i)r =X� nL(i)(a) j a 2 Sp(i)r o :The subalgebras L(1) and L(2) are ideals of L, so they are (adB)-invariant, andthe restrictions adBjL(1) and adBjL(2) are well de�ned.In the following lemma, we collect several simple statements about decom-position of the subalgebras L(1) and L(2) into sums of invariant subspaces of theadjoint operator adB.Lemma 14.1.(1) L(i) =X� nL(i)(a) j a 2 Sp(i); Im a � 0 o, i = 1; 2;(2) Sp(2) � Sp(1), Sp(2)r � Sp(1)r ;(3) L(2)(a) � L(1)(a) for any a 2 Sp(2);(4) L(2)r � L(1)r ;(5) Sp(2) � Sp(1)+Sp(1).Proof. It is obtained by the standard linear-algebraic arguments. In addition,Jacobi's identity is applied in item (5). 65



Consider the quotient operatorfadB : L(1)=L(2) ! L(1)=L(2)de�ned as follows:�fadB� �X + L(2)� = (adB)X + L(2) 8X 2 L(1):Analogously, for a 2 Sp(1), we de�ne the quotient operator in the quotientroot space: fadB(a) : L(1)(a)=L(2)(a)! L(1)(a)=L(2)(a);�fadB(a)� �X + L(2)(a)� = (adB)X + L(2)(a) 8X 2 L(1)(a);and its complexi�cation: gadcB(a) : L(1)c (a)=L(2)c (a)! L(1)c (a)=L(2)c (a);�gadcB(a)� �X + L(2)c (a)� = (adcB)X + L(2)c (a) 8X 2 L(1)c (a):De�nition 14.1. Let a 2 Sp(1). Denote by j(a) the geometric multiplicity ofthe eigenvalue a of the operator gadcB(a) in the vector space L(1)c (a)=L(2)c (a).Remarks.(a) For a 2 Sp(1), the number j(a) is equal to the number of Jordan blocks ofthe operator fadB(a) in the space L(1)(a)=L(2)(a).(b) If an eigenvalue a 2 Sp(1) is simple, then j(a) = 0 for a 2 Sp(2) and j(a) = 1for a 2 Sp(1) n Sp(2).Assume that L = L(1)�RB for some B in L (this assumption will be justi�edby Theorem 14.1 below). Then, by Lemma 14.1,L = RB � L(1) = RB �X� nL(1)(a) j a 2 Sp(1); Im a � 0 o ; (14.2)that is why any element X 2 L can uniquely be decomposed as follows:X = XB +XnX(a) j a 2 Sp(1); Im a � 0 o ; XB 2 RB; X(a) 2 L(1)(a):We will consider such decomposition for the uncontrolled vector �eld A of thesystem �: A = AB +XnA(a) j a 2 Sp(1); Im a � 0 o :Denote by eA(a) the canonical projection of the vector A(a) 2 L(1)(a) ontothe quotient space L(1)(a)=L(2)(a).66



De�nition 14.2. Let L = L(1) � RB, a 2 Sp(1), and let j(a) = 1. We say thata vector A 2 L has the zero a-top ifeA(a) 2 �fadB(a)� a Id� �L(1)(a)=L(2)(a)� :In the opposite case, we say that A has a nonzero a-top. We use the correspondingnotations: top(A; a) = 0 or top(A; a) 6= 0.Remark. Geometrically, if a vector A has a nonzero a-top, then the vectoreA(a) has a nonzero component corresponding to the highest adjoint vector inthe (single) Jordan chain of the operator fadB(a). Due to nonuniqueness of theJordan base, this component is nonuniquely determined, but its property to bezero is basis-independent.De�nition 14.3. A pair of complex numbers (�; �), Re� � Re�, is called anN-pair of eigenvalues of the operator adB if the following conditions hold:(1) �; � 2 Sp(1),(2) L(2)(�) 6�Xn [L(1)(a); L(1)(b)] j a; b 2 Sp(1); Re a; Re b =2 [Re�;Re�] o,(3) L(2)(�) 6�Xn [L(1)(a); L(1)(b)] j a; b 2 Sp(1); Re a; Re b =2 [Re�;Re�] o.Remark. In other words, to generate both root spaces L(2)(�) and L(2)(�) foran N-pair (�; �), we need at least one root space L(1)() with Re  2 [�; �]. InTheorem 14.2 below, N-pairs are the strongest obstruction to controllability underthe necessary conditions of Theorem 14.1. In some generic cases, the property ofabsence of real N-pairs can be veri�ed by using Lemma 14.5.14.2. Necessary controllability conditions.14.2.1. Formulation of results. It turns out that the controllability on simply-connected Lie groups G with G 6= G(1) is a very strong property: it imposesessential restrictions both on the group G and on the system �.Theorem 14.1. Let a connected Lie group G be simply-connected, and let itsLie algebra L satisfy the condition L 6= L(1). If a right-invariant system � � L iscontrollable, then(1) dimL(1) = dimL� 1;(2) B =2 L(1);(3) L(2)r = L(1)r ;(4) Sp(2)r = Sp(1)r ; 67



(5) Sp(1)r � Sp(1)+Sp(1);(6) j(a) � 1 for all a 2 Sp(1);(7) top(A; a) 6= 0 for all a 2 Sp(1) for which j(a) = 1.The notations j(a) and top(A; a) used in Theorem 14.1 are introduced inDe�nitions 14.1 and 14.2.Remarks.(a) The �rst condition is a characterization of the state space G but not of thesystem �. It means that no single-input system � = fA + uB g can becontrollable on a simply-connected Lie group G with dimG(1) < dimG� 1.That is, to control on such a group, one has to increase the number ofinputs. This agrees with the general lower estimate m > dimG � dimG(1)for the number of the controlled vector �elds B1; : : : ; Bm that are necessaryfor controllability of the multi-input system � = fA + Pmi=1 uiBi g on asimply-connected group G, see Theorem 9.3.(b) Conditions (3){(7) are nontrivial only for Lie algebras L with L(2) 6= L(1)(in particular, for solvable noncommutative L). If L(2) = L(1), then theseconditions are obviously satis�ed.(c) The third condition means that j(a) = 0 for all a 2 Sp(1)r ; that is whycondition (6) is nontrivial only for a 2 Sp(1)c .(d) By the same reason, the inclusion a 2 Sp(1) in condition (7) can be replacedby a 2 Sp(1)c . Note that if j(a) = 0, then, by the formal De�nition 14.2, thevector A has the zero a-top.(e) The fourth and �fth conditions are implied by the third one but are easierto verify. The simple (and strong) \arithmetic" necessary controllabilitycondition (5) can be veri�ed by considering the spectrum of the operatoradBjL(1) .(f) For solvable Lie algebras L, under conditions (1) and (2), the spectrumSp(1) = Sp(adBjL(1)) is the same for all B =2 L(1) modulo homothety. Thenconditions (4) and (5) depend on L but not on B.(g) For the case of a simple spectrum of the operator adBjL(1) , the necessarycontrollability conditions take respectively the more simple form.Corollary 14.1. Let a Lie group G be simply-connected, and let its Lie algebraL satisfy the condition L 6= L(1). Assume that the spectrum Sp(1) is simple. If aright-invariant system � � L is controllable, then68



(1) dimL(1) = dimL� 1,(2) B =2 L(1),(3) Sp(2)r = Sp(1)r ,(4) Sp(1)r � Sp(1)+Sp(1),(5) A(a) 6= 0 for all a 2 Sp(1) n Sp(2).14.2.2. Outline of the proof of Theorem 14.1. The main tools for obtain-ing the necessary controllability conditions given in Theorem 14.1 are the rankcontrollability condition (Theorem 2.3) and the hypersurface principle (Theo-rem 12.2).First, the following auxiliary propositions are proved.Lemma 14.2. Let L be a Lie algebra such that L 6= L(1), and let B 2 L.Assume that(1) dimL(1) < dimL� 1 or(2) B 2 L(1) or(3) L(1) � RB = L and L(2)r 6= L(1)r .Then there exists a codimension one subalgebra of L containing B.Lemma 14.3. Let L be a Lie algebra, and let A;B 2 L. Let L = RB � L(1).Assume that there exists an eigenvalue a 2 Sp(1) such that(1) j(a) > 1 or(2) j(a) = 1 and top(A; a) = 0.Then Lie(A;B) 6= L.Now Theorem 14.1 follows. If one of its conditions (1){(5) is violated, then,by Lemma 14.2 and Theorem 12.2, the reachable set A is contained in the closedsemigroup of the Lie group G bounded by a codimension one subgroup of G.If one of the conditions (6) and (7) does not hold, then, by Lemma 14.3 andTheorem 2.3, the set A lies in a proper connected subgroup of G with the Liealgebra Lie(�).14.3. Su�cient controllability conditions.14.3.1. Formulation of results. Under the necessary assumptions of Theo-rem 14.1, there exist many su�cient controllability conditions. Notice that theassumption on the simple connectedness can now be removed. So, the su�cientconditions below are completely Lie-algebraic, i.e., local; this is in contrast to the69



global assumption (the �niteness of center of G) essential for su�cient controlla-bility conditions for semisimple Lie groups G (see Sec. 8).Theorem 14.2. Let � � L be a right-invariant system on a connected Liegroup G. Assume that the following conditions hold:(1) dimL(1) = dimL� 1;(2) B =2 L(1);(3) L(2)r = L(1)r ;(4) dimLc(a) = 1 for all a 2 Sp(1)c ;(5) top(A; a) 6= 0 for all a 2 Sp(1)c ;(6) the operator adBjL(1) has no N-pairs of real eigenvalues.Then the system � is controllable on the Lie group G.The notation top(A; a) and the notion of N-pair used in Theorem 14.2 areintroduced in De�nitions 14.2 and 14.3.Remarks.(a) Conditions (1){(3) are necessary for controllability in the case of a simplyconnected G 6= G(1); see Theorem 14.1.(b) Conditions (4) and (5) are close to the necessary conditions (6) and (7) ofTheorem 14.1, respectively. Notice that the fourth condition means that allcomplex eigenvalues of adBjL(1) are geometrically simple.(c) Conditions (2) and (5) are open, i.e., they are preserved under small pertur-bations of A and B.(d) The most restrictive of the conditions (1){(6) is the last one. It can be shownthat the smallest dimension of L(1) in which this condition is satis�ed andpreserved under small perturbations of spectrum of adBjL(1) for solvable Lis 6. This can be used to obtain a classi�cation of controllable systems � onlower-dimensional simply connected solvable Lie groups G; see Sec. 16.(e) The technically complicated condition (6) can be replaced with a more sim-ple and more restrictive one, and su�cient conditions can be given as inCorollary 14.2 below.(f) Under the additional assumption of simplicity of the spectrum Sp(1), thesu�cient controllability conditions take the even more simple form presentedin Corollary 14.3 below.70



Corollary 14.2. Assume that the following conditions hold for a system � � Lon a Lie group G:(1) dimL(1) = dimL� 1;(2) B =2 L(1);(3) L(2)r = L(1)r ;(4) dimLc(a) = 1 for all a 2 Sp(1)c ;(5) top(A; a) 6= 0 for all a 2 Sp(1)c ;(6) Sp(1)r = ? or Sp(1) � fRe z > 0g or Sp(1) � fRe z < 0g.Then the system � is controllable on G.Corollary 14.3. Assume that the following conditions hold for a system � � Lon a Lie group G:(1) dimL(1) = dimL� 1;(2) B =2 L(1);(3) the spectrum Sp(1) is simple;(4) Sp(2)r = Sp(1)r ;(5) A(a) 6= 0 for all a 2 Sp(1)c ;(6) Sp(1)r = ? or Sp(1) � fRe z > 0g or Sp(1) � fRe z < 0g.Then the system � is controllable on G.14.3.2. Outline of the proof of Theorem 14.2. This theorem is obtainedvia the Lie saturation technique; see Sec. 4: a sequence of increasing lower boundsof the tangent cone LS(�) to the closure of the attainable set A at the identity eis shown to stabilize at the whole Lie algebra L.The crucial role in the proof is played by the following proposition.Lemma 14.4. Let C 2 LS(�) \ L(1). Assume that for any a 2 Sp(1)c , thefollowing conditions hold:(1) dimLc(a) = 1 and(2) top(C; a) 6= 0 or L(1)(a) � LS(�). 71



Assume additionally that for the numberr = maxfRe a j a 2 Sp(1); C(a) 6= 0 g(or r = minfRe a j a 2 Sp(1); C(a) 6= 0 g);we have r =2 Sp(1) or C(r) = 0. ThenLS(�) �XnL(1)(a) j a 2 Sp(1); Re a = r; a 6= r o :Now the idea of the proof of Theorem 14.2 can be outlined as follows. Inview of (14.2), the Lie algebra L splits into the direct sum of the line RB andthe root spaces L(1)(a), a 2 Sp(1). We show that the Lie saturate LS(�) coincideswith L. First of all, it easy to see that RB � LS(�). Then we prove on thecontrary that L(1)(a) � LS(�) for all a 2 Sp(1). Indeed, assume that there existnumbers n = min nRe a j a 2 Sp(1); L(1)(a) 6� LS(�) o ;m = max nRe a j a 2 Sp(1); L(1)(a) 6� LS(�) oand consider the closed interval [n;m] � R. Then Lemma 14.4 implies that n;m isan N-pair of real eigenvalues of the operator adBjL(1); this contradicts hypothesis(6) of Theorem 14.2. The theorem is proved.Corollaries 14.2 and 14.3 follow from Theorem 14.2 and the following proposi-tion, which gives simple conditions that guarantee the nonexistence of real N-pairsof eigenvalues.Lemma 14.5. Assume that B =2 L(1) and L(1)r = L(2)r . Then any one of thefollowing conditions is su�cient for the operator adBjL(1) not to have real N-pairsof eigenvalues:(1) Sp(1)r = ? or(2) Sp(1) � fRe z > 0g or(3) Sp(1) � fRe z < 0g.The controllability conditions of Theorems 14.1 and 14.2 for Lie groupsG 6= G(1) yield a complete description of controllability for several particu-lar classes of Lie groups: meta-Abelian ones, some subgroups of the group ofa�ne transformations of Rn , and lower-dimensional simply-connected solvableLie groups. These results are presented in Secs. 15 and 16.14.4. Remarks. The results of this section are due to Sachkov [120].The results of Hofmann [64] on compact elements in solvable Lie algebrasmight be helpful in order to understand the controllability on solvable Lie groupswithout the assumption on the simple connectedness that is essential for necessarycontrollability conditions in this section.72



15. Meta-Abelian Lie GroupsLie algebras L having derived series of length 2:L � L(1) � L(2) = f0g;are called meta-Abelian. A Lie group with a meta-Abelian Lie algebra is alsocalled meta-Abelian.A meta-Abelian Lie algebra is obviously solvable. Thus results of the previ-ous section yield controllability conditions for meta-Abelian Lie groups.Theorem 15.1. Let G be a meta-Abelian connected Lie group. Then thefollowing conditions are su�cient for controllability of a system � = A+RB � Lon G:(1) dimL(1) = dimL� 1;(2) B =2 L(1);(3) Sp(1)r = ?;(4) dimLc(a) = 1 for all a 2 Sp(1)c ;(5) top(A; a) 6= 0 for all a 2 Sp(1)c .If the group G is simply connected, then conditions (1){(5) are also necessary forcontrollability of the system � on G.The notation top(A; a) was introduced in De�nition 14.2.Proof. The su�ciency follows from Corollary 14.2.In order to prove the necessity for the simply-connected G, assume that � iscontrollable. Then (1) and (2) follow from items (1) and (2) of Theorem 14.1.Condition (3) follows from item (3) of Theorem 14.1 and from the meta-Abelian property of G: L(1)r = L(2)r � L(2) = f0g:Condition (4). For any a 2 Sp(1)c , we have L(2)(a) = f0g; that is why j(a)is equal to geometric multiplicity of the eigenvalue a of the operator adBjL(1)(a),i.e., to dimLc(a). By item (6) of Theorem 14.1, we have j(a) = 1; that is whydimLc(a) = 1.Condition (5). For any a 2 Sp(1)c , we have j(a) = 1; then, by item (7) ofTheorem 14.1, top(A; a) 6= 0.Example 15.1. Let V be a �nite-dimensional real vector space, and let l �gl(V ) be a linear Lie algebra. Consider their semidirect sum L = V h l. It is asubalgebra of the Lie algebra of the group of a�ne transformations of the spaceV since L � V h gl(V ). If l is Abelian, then L is meta-Abelian:L(1) = lV h f0g; L(2) = f0g: 73



In the next subsection, we study in detail a particular case where l is one-dimensional.15.1. Semidirect products. Let V be a real �nite-dimensional vector space,dimV = n, and let M be a nonzero linear operator in V . Consider the meta-Abelian Lie algebra L(M), which is the semidirect sum of the Abelian Lie algebraV with the one-dimensional Lie algebra RM . This Lie algebra can be representedby (n+ 1)� (n + 1) matrices:L(M) = ( Mt b0 0 ! j t 2 R; b 2 Rn ) � gl(n + 1; R): (15.1)Denote by G(M) the connected Lie subgroup of GL(n + 1; R) corresponding toL(M). It is the semidirect product of the vector Lie group Rn with the one-dimensional Lie group G1 = f exp(Mt) j t 2 R g. Elements of the group G(M)are the matrices  exp(Mt) p0 1 ! ; t 2 R; p 2 Rn ;thus, G(M) can be viewed as a subgroup of the group A�(n; R) of a�ne trans-formations of Rn generated by the one-parameter group of automorphisms G1and all translations p 2 Rn . The group G(M) is not simply-connected i� theone-parameter subgroup G1 is periodic; this obviously occurs i�( the matrix M is semisimple;Sp(M) = ir � (k1; : : : ; kn) for some r 2 R; (k1; : : : ; kn) 2 Zn: (15.2)Remark. If conditions (15.2) hold, then, by Theorem 7.1, on semidirect prod-ucts of vector spaces with compact Lie groups, a system � � L(M) is controllableon G(M) if and only if it has a full rank: Lie(�) = L(M).On the other hand, the controllability test for simply-connected meta-AbelianLie groups (Theorem 15.1) implies the following controllability conditions for theuniversal covering ~G(M) and for the group G(M) itself.Theorem 15.2. Let M be a nonzero n � n matrix, G = ~G(M), and letL = L(M). A system � = A + RB � L is controllable on G if and only if thefollowing conditions hold:(1) the matrix M has a purely complex spectrum;(2) B =2 L(1);(3) span(B;A; (adB)A; : : : ; (adB)n�1A) = L.For the group G(M), conditions (1){(3) are su�cient for controllability. If con-ditions (15:2) are violated, then (1){(3) are equivalent to the controllability onG(M).74



Example 15.2. Let G = E(2; R) be the Euclidean group of motions of the planeR2 . Its Lie algebra L = e(2; R) is spanned by the matrices A1 = E13, A2 = E23,and A3 = E21 � E12 and has form (15.1):L = L(M); M =  0 �11 0 ! :It is solvable (in fact, meta-Abelian):L(1) = span(A1; A2) � L(2) = f0g;but not completely solvable: Sp(adA3) = f�i; 0g:The Lie group E(2; R) = G(M) is connected but not simply-connected; comparewith (15.2).Consider the system � = A+ RB � e(2; R) on ~E(2; R), the simply-connectedcovering of E(2; R). A complete characterization of controllability of � on ~E(2; R)is derived from Theorem 15.2.Theorem 15.3. A system � = A + RB � e(2; R) is controllable on ~E(2; R) ifand only if the vectors A and B are linearly independent and B =2 span(A1; A2).Compare the controllability conditions for ~E(2; R) with the following condi-tions for E(2; R) derived from Theorem 7.1.Theorem 15.4. A system � = A+RB � e(2; R) is controllable on E(2; R) if andonly if the vectors A and B are linearly independent and fA;Bg 6� span(A1; A2).15.2. A�ne systems. Given any matrix A 2 M(n; R) and any vector b 2 Rn ,consider the a�ne system_x = uAx+ b; x 2 Rn ; u 2 R: (�)According to Sec. 3.3, such system is subordinated to the linear action of thegroup G(A) � A�(n; R) described in the previous subsection.This observation in combination with the controllability results for right-in-variant systems on Lie groups of the form G(A) lead us to complete controllabilityconditions for a�ne systems �.Theorem 15.5. The system � is globally controllable on Rn if and only if thefollowing conditions hold:(1) the matrix A has a purely complex spectrum and(2) span(b; Ab; : : : ; An�1b) = Rn . 75



Proof. Su�ciency. Consider the right-invariant system � = A+ RB � L(A)on the Lie group G(A), where the matrices A;B 2 L(A) are given byA =  0 b0 0 ! ; B =  A 00 0 ! :The a�ne system � is induced by the right-invariant system �. On the otherhand, the group of a�ne transformations G(A) � A�(n; R) acts transitively onRn , since it contains all translations. By Corollary 3.3, if the right-invariantsystem � is controllable on G(A), then the a�ne system � is controllable on Rn .By Theorem 15.2, the system � is controllable on G(A); thus, the su�ciencyfollows.Necessity. If one of the conditions (1) and (2) of Theorem 15.5 is violated,then the system � has codimension 1 or 2 invariant subspaces in Rn .15.3. Remarks. The results of this section were obtained by Sachkov [120].16. Small-Dimensional Simply Connected Solvable Lie GroupsGiven a Lie algebra L, there is the \largest" connected Lie group G havingLie algebra L, the simply-connected one. All other connected Lie groups withLie algebra L are \smaller" than G in the sense that they are quotients G=C,where C is a discrete subgroup of center of G. A right-invariant system � � Lcan thus be considered on any of these groups, and the simply-connected groupG is the most di�cult to control among them. Hence, given a right-invariantsystem � on a Lie group (or a homogeneous space of a Lie group) H, it is natural�rst to study its controllability on the simply-connected covering fH of H. If� is controllable on fH, then it is obviously controllable on H (and on all itshomogeneous spaces); in the opposite case, one should use particular geometricproperties of H (e.g., the existence of periodic one-parameter subgroups) to verifythe controllability of � on H. It is obvious and remarkable that controllabilityconditions on a simply-connected Lie group G should have a completely Lie-algebraic form: they are completely determined by the Lie algebra L and itssubset � (see, e.g., Theorems 9.4, 13.1, 14.1, 15.1, and 15.2).This motivates the following de�nition.De�nition 16.1. A system � � L is called controllable if it is controllable ona (unique) connected simply-connected Lie group with Lie algebra L.The next de�nition makes sense at least for solvable Lie algebras in lowerdimensions.De�nition 16.2. A Lie algebra L is called controllable if there exist A;B 2 Lsuch that the system � = A+ RB is controllable.Indeed, it turns out that controllability conditions on solvable Lie groups(Secs. 11 and 14) imply that for solvable lower-dimensional Lie algebras L,76



(1) the existence of a controllable single-input system � � L, i.e., controllabilityof L, is a strong restriction on L;(2) if L is controllable, then almost all pairs (A;B) 2 L�L give rise to control-lable systems � = A+ RB;(3) the controllability of a system � � L depends primarily on L but not on �.Moreover, these results yield a complete description of controllability in lower-dimensional solvable Lie algebras presented in the following subsections.Up to dimension 6, we describe all solvable Lie algebras L that are control-lable, and give controllability tests for single-input systems � = A + RB � L(the only gap in this picture is the class L6;IV of six-dimensional Lie algebras notcompletely studied).The general \bird's-eye view" of controllable small-dimensional solvable Liealgebras is as follows:dimL = 1 the (unique) Lie algebra is controllable;dimL = 2 the two Lie algebras are noncontrollable;dimL = 3 there is one family of controllable Lie algebras L3(�), � 2 C n R;dimL = 4 there is one family of controllable Lie algebras L4(�), � 2 C n R;dimL = 5 there are two families of controllable Lie algebras:1. L5;I(�; �), �; � 2 C n R, � 6= �; ��,2. L5;II(�), � 2 C n R;dimL = 6 there are �ve families of controllable Lie algebras:1. L6;I(�; �), �; � 2 C n R, � 6= �; ��,2. L6;II(�; �; k), �; � 2 C n R, Re� = Re�, � 6= �; ��, k 2 R n f0g,3. L6;III(�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0,4. L6;IV (�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0,5. L6;V (�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0,and one exceptional class L6;IV (bi), b 2 R n f0g, containing both controllable andnoncontrollable Lie algebras.All controllable Lie algebras L are presented by a scheme in the complex plane Ccontaining eigenvalues of the adjoint operator adBjL(1), B 2 L nL(1), and arrowsbetween these eigenvalues describing Lie brackets between eigenvectors of theoperator adBjL(1) (these schemes are given at the very end of this section). Noticethat for solvable Lie algebras L with codimension one subalgebras L(1) (and only77



such solvable Lie algebras may be controllable, see condition (1) of Theorem 14.1),spectra of all adjoint operators adBjL(1) , B 2 LnL(1), are homothetic with respectto the origin 0 2 C , and the homothety equivalence class of spectra of adBjL(1),B 2 L n L(1), is determined not by B 2 L n L(1) but by L itself (in fact, by theisomorphism class of L).Now we present the classi�cation of controllability in lower-dimensional solv-able Lie algebras. These results are obtained by virtue of controllability conditionsof Secs. 11, 12, and 14. The proofs are outlined up to the �rst nontrivial dimen-sion 3: for dimensions 4{6 the idea of proofs is analogous to the 3-dimensionalcase but the argument is much longer.16.1. One-dimensional Lie groups. A unique one-dimensional Lie algebra isAbelian and isomorphic to R.Theorem 16.1. The one-dimensional Lie algebra R is controllable.A system � = A + RB � R is controllable if and only if B 6= 0.Proof. Apply Corollary 9.1.16.2. Two-dimensional Lie groups. There are two nonisomorphic two-dimen-sional Lie algebras: the Abelian R2 and the solvable non-Abelian S2 = span(x; y),[x; y] = y.Theorem 16.2. Both two-dimensional Lie algebras R2 and S2 are not control-lable.Proof. Both R2 and S2 are completely solvable; thus, Theorem 13.1 can beapplied.16.3. Three-dimensional Lie groups.Construction 16.1. The Lie algebra L3(�), � 2 C n R (Fig. 2).L3(�) = span(x; y; z);ad xjspan(y;z) =  a �bb a ! ; � = a+ bi:The Lie algebra L3(�) is schematically represented in Fig. 2 by the eigen-values �; �� 2 C and reali�cations of the eigenvectors y; z 2 L3(�) of the adjointoperator ad xjspan(y;z).Theorem 16.3. Let L = L3(�), � 2 C n R, and let A;B 2 L. The system� = A + RB � L is controllable if and only if the following conditions hold:(1) B =2 L(1),(2) the vectors A and B are linearly independent.Proof. Su�ciency. We show that all the hypotheses of Corollary 14.3 hold.78



Conditions (1) and (2) are obviously satis�ed.Condition (3). Consider the decomposition B = Bxx+Byy+Bzz. We haveSp(1) = Sp(adBjL(1)) = Bx � Sp(adxjL(1)) = Bx � f�; ��g:B =2 L(1) is equivalent to Bx 6= 0; thus, the spectrum Sp(1) is simple.Condition (4): Sp(2)r = Sp(1)r = ?.Condition (5), A(a) 6= 0 for all a 2 Sp(1)c , means that the vector A has anonzero projection onto L(1) along the line RB, i.e., that A and B are linearlyindependent.Condition (6): Sp(1)r = ?.Now it follows from Corollary 14.3 that the system � is controllable.The necessity follows from Corollary 14.1.Theorem 16.4. A three-dimensional solvable Lie algebra is controllable if andonly if it is isomorphic to L3(�), � 2 C n R.Proof. Su�ciency. The set of systems � that satisfy conditions (1) and (2)of Theorem 16.3 is nonempty.Necessity. Let � = A+ RB � L be a controllable system. By Theorem 14.1,dimL(1) = 2 and B =2 L(1). The derived subalgebra L(1) is nilpotent and two-dimensional; thus, it is Abelian. Consequently, Sp(2)r � Sp(2) = ?. Thus,Sp(1) = Sp(adBjL(1)) = f�; ��g; � = � + i� 2 C n R:Then there exist a basis y; z of the plane L(1) such that[B; y] = �y + �z; [B; z] = ��y + �z:Taking into account that L(1) is Abelian, we obtain that L ' L3(�).16.4. Four-dimensional Lie groups.Construction 16.2. The Lie algebra L4(�), � 2 C n R (Fig. 3).L4(�) = span(x; y; z; w);adxjspan(y;z;w) = 0B@ a �b 0b a 00 0 2a 1CA ; � = a+ bi;[y; z] = w:The arrows in the schematic representation of the Lie algebra L4(�) in Fig. 3mean that the Lie bracket of the vectors y and z gives the vector w.Theorem 16.5. Let L = L4(�), � 2 C n R, and let A;B 2 L. The system� = A + RB � L is controllable if and only if the following conditions hold:1. B =2 L(1); 79



2. A(�) 6= 0.Theorem 16.6. A four-dimensional solvable Lie algebra is controllable if andonly if it is isomorphic to L4(�), � 2 C n R.16.5. Five-dimensional Lie groups.Construction 16.3. The Lie algebra L5;I(�; �), �; � 2 C n R (Fig. 4).L5;I(�; �) = span(x; y; z; u; v);ad xjspan(y;z;u;v) = 0BBB@ a �b 0 0b a 0 00 0 c �d0 0 d c 1CCCA ; � = a+ bi; � = c+ di:Construction 16.4. The Lie algebra L5;II(�), � 2 C n R (Fig. 5).L5;II(�) = span(x; y; z; u; v);adxjspan(y;z;u;v) = 0BBB@ a �b 0 0b a 0 01 0 a �b0 1 b a 1CCCA ; � = a + bi:The circles around the eigenvalues �, �� in Fig. 5 mean that they have dou-ble algebraic multiplicity. (Notice that according to the previous matrix, theirgeometric multiplicity is simple.)Theorem 16.7. Let L = L5;I(�; �), �; � 2 C n R, � 6= �; ��, and let A;B 2 L.The system � = A+RB � L is controllable if and only if the following conditionshold:1. B =2 L(1);2. A(�) 6= 0 and A(�) 6= 0.Theorem 16.8. Let L = L5;II(�), � 2 C n R, and let A;B 2 L. The system� = A + RB � L is controllable if and only if the following conditions hold:1. B =2 L(1),2. top(A; �) 6= 0.Remark. The notation top(A; �) 6= 0 in Theorem 16.8 (and in Theorem 16.14below) means that the vector A has a nonzero component corresponding to the80



higher order root space of the operator adBjL(1) corresponding to its eigenvalue�.Theorem 16.9. A �ve-dimensional solvable Lie algebra is controllable if andonly if it is isomorphic to L5;I(�; �), �; � 2 C nR, � 6= �; ��, or L5;II(�), � 2 C nR.16.6. Six-dimensional Lie groups.Construction 16.5. The Lie algebra L6;I(�; �), �; � 2 C n R (Fig. 6).L6;I(�; �) = span(x; y; z; u; v; w);adxjspan(y;z;u;v;w) = 0BBBBB@ a �b 0 0 0b a 0 0 00 0 c �d 00 0 d c 00 0 0 0 2a
1CCCCCA ; � = a+ bi; � = c+ di;[y; z] = w:Construction 16.6. The Lie algebra L6;II(�; �; k), �; � 2 C n R, Re� = Re�,k 2 R n f0g (Fig. 7).L6;II(�; �; k) = span(x; y; z; u; v; w);adxjspan(y;z;u;v;w) = 0BBBBB@ a �b 0 0 0b a 0 0 00 0 a �d 00 0 d a 00 0 0 0 2a
1CCCCCA ; � = a + bi; � = a+ di;[y; z] = w; [u; v] = kw:Construction 16.7. The Lie algebra L6;III(�; k; l), � 2 C n (R [ i R), k; l 2 R,k2 + l2 6= 0 (Fig. 8).L6;III(�; k; l) = span(x; y; z; u; v; w);adxjspan(y;z;u;v;w) = 0BBBBB@ a �b 0 0 0b a 0 0 00 0 3a �b 00 0 b 3a 00 0 0 0 2a

1CCCCCA ; � = a+ bi;[w; y] = ku+ lv; [w; z] = �lu+ kz:Construction 16.8. The Lie algebra L6;IV (�; k; l), � 2 C n (R [ i R), k; l 2 R,k2 + l2 6= 0 (Fig. 9).L6;IV (�; k; l) = span(x; y; z; u; v; w); 81



ad xjspan(y;z;u;v;w) = 0BBBBB@ a �b 0 0 0b a 0 0 00 0 �a �b 00 0 b �a 00 0 0 0 0
1CCCCCA ; � = a+ bi;[y; v] = �[z; u] = kw; [y; u] = [z; v] = lw:Construction 16.9. The Lie algebra L6;V (�; k; l), � 2 C n (R [ i R), k; l 2 R,k2 + l2 6= 0 (Fig. 10).L6;V (�; k; l) = span(x; y; z; u; v; w);ad xjspan(y;z;u;v;w) = 0BBBBB@ a �b 0 0 0b a 0 0 01 0 a �b 00 1 b a 00 0 0 0 2a
1CCCCCA ; � = a+ bi;[y; z] = kw; [y; u] = [z; v] = lw:Construction 16.10. The class of Lie algebras L6;V I(bi), b 2 R n f0g (Fig. 11).A Lie algebra L belongs to the class L6;V I(bi) ifL = span(x; y; z; u; v; w);L(1) = span(y; z; u; v; w);Sp(ad xjL(1)) = f�bi; 0g;both eigenvalues �bi have double algebraic multiplicity;w 2 L(2):The class L6;V I contains a lot of nonisomorphic Lie algebras in which multi-plication can not be described in detail as in Lie algebras L6;I{L6;V .Theorem 16.10. Let L = L6;I(�; �), �; � 2 C n R, � 6= �; ��, and let A;B 2 L.The system � = A+RB � L is controllable if and only if the following conditionshold:1. B =2 L(1);2. A(�) 6= 0 and A(�) 6= 0.Theorem 16.11. Let L = L6;II(�; �; k), �; � 2 C n R, Re� = Re�, � 6= �; ��,k 2 R n f0g, and let A;B 2 L. The system � = A+RB � L is controllable if andonly if the following conditions hold:1. B =2 L(1);82



2. A(�) 6= 0 and A(�) 6= 0.Theorem 16.12. Let L = L6;III(�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0,and let A;B 2 L. The system � = A + RB � L is controllable if and only if thefollowing conditions hold:1. B =2 L(1);2. A(�) 6= 0.Theorem 16.13. Let L = L6;IV (�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0,and let A;B 2 L. The system � = A + RB � L is controllable if and only if thefollowing conditions hold:1. B =2 L(1),2. A(�) 6= 0 and A(��) 6= 0.Theorem 16.14. Let L = L6;V (�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0,and let A;B 2 L. The system � = A + RB � L is controllable if and only if thefollowing conditions hold:1. B =2 L(1);2. top(A; �) 6= 0.Remark. The class L6;V I(bi), b 2 R n f0g, contains both controllable andnoncontrollable Lie algebras.Theorem 16.15. Let a six-dimensional solvable Lie algebra L do not belongto the class L6;V I(bi), b 2 R n f0g. Then L is controllable if and only if it isisomorphic to one of the following Lie algebras:1. L6;I(�; �), �; � 2 C n R, � 6= �; ��;2. L6;II(�; �; k), �; � 2 C n R, Re� = Re�, � 6= �; ��, k 2 R n f0g;3. L6;III(�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0;4. L6;IV (�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0;5. L6;V (�; k; l), � 2 C n (R [ i R), k; l 2 R, k2 + l2 6= 0.
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Controllable solvable Lie algebras up to dimension 6:
r �y
r ��zFig. 2. L3(�).

r �y@@@Rr ��z����r2awFig. 3. L4(�); Re� = a.
r �y
r ��z r �ur ��vFig. 4. L5;I(�; �).

rf�uy
rf ��vzFig. 5. L5;II(�).r �y@@@Rr ��z����r2aw r �ur ��vFig. 6. L6;I(�; �); Re� = a.

r �y@@@Rr� uHHHjr ��z����r�� v���*r2awFig. 7. L6;II(�; �; k); Re� = Re� = a.
r �y@@@R -r ��z���� -r 2aw����@@@Rr 3a+ biu

r 3a� bivFig. 8. L6;III(�; k; l); � = a+ bi. rw0 �����+ r a+ biy
rQQQQQk a� biz�����3r�a� biv

rQQQQQs�a+ biu
Fig. 9. L6;IV (�; k; l); � = a+ bi.84



@@@Rrf�uy
����rf ��vz r2awFig. 10. L6;V (�; �); Re� = a. rw0?rf biy u

rf6�biz vFig. 11. L6;V I(bi).16.7. Remarks. The classi�cation of small-dimensional controllable solvableLie algebras is due to Sachkov [122, 123].A natural next step would be a complete and visual classi�cation of con-trollable systems on general small-dimensional Lie algebras by synthesizing the\semi-simple" and \solvable" theory via Levi decomposition (Kupka [92]).17. Final remarksIn this section, we collect some references related to the subject of this survey:Surveys and reference works on controllability of right-invariant systems onLie groups: Chong and Lawson [42], Kupka [92], Sachkov [122], Sallet [125, 126,127].Textbooks and surveys on geometric control theory: Agrachev, Vakhrameev,and Gamkrelidze [4], Andereev [6], Brockett [37], Casti [40], Gauthier [47], Jur-djevic [79], Sussmann [141], Vakhrameev [144], Vakhrameev and Sarychev [145].Textbooks and surveys on Lie groups and Lie algebras: Bourbaki [34, 35],Varadarajan [146], Vinberg and Onishchik [147], Vinberg, Gorbatcevich, and On-ishchik [148].Textbooks on Lie semigroup theory: Hofmann and Lawson [66], Hilgert andNeeb [59], Hilgert, Hofmann and Lawson [58].Controllability of nonlinear systems: Agrachev [3], Bacciotti and Stefani [23],Basto Gon�calves [18, 19, 20, 21], Bianchini and Stefani [24], Hermann [50], Her-mes [51, 52, 53], Hermes and Kawski [54], Kawski [84], Krener [86], Levitt andSussmann [95], Lobry [97, 98], Stefani [137], Sussmann [142], Sussmann and Ju-rdjevic [139], Tretyak [143].Controllability of bilinear and a�ne systems: Adda [1], Adda and Sallet [2],Bacciotti [22], Bonnard [25, 26], Boothby [30], Brockett [38], Bruni, Di Pillo, andKoch [39], Koditschek and Narendra [85], Elliott and Tarn [45], Imbert, Clique,and Fossard [69], Joo and Tuan [72], Jurdjevic and Sallet [82], Ku�cera [89, 90,91], Lepe [96], Lobry [99], Piechottka [111], Piechottka and Frank [112], Rink andM�ohler [113], Sachkov [114, 115, 116, 117, 119]. 85



Linear and bilinear systems on Lie groups: Ayala and Tirao [15], Ayala andJiron [14], Ayala and Hacibekiroglu [16], Ayala, Rojo, and Soto [17], Markus [100].Motion planning on Lie groups and their representation spaces: Krishnapra-sad and Tsakiris [87, 88], Leonard [106], Leonard and Krishnaprasad [107, 108],Sarti, Walsh, and Sastry [131], Walsh, Montgomery, and Sastry [149], Zelikin [153,154, 155, 156].Control problems on Lie groups: Bonnard [27], Cheng, Dayawansa, andMartin [41], Enos [46], Hirschorn [61], Jurdjevic [75, 76, 77, 78], Lovric [109],Mittenhuber [101, 103], Monroy-P�erez [104], Sussmann [138], Yakovenko [150,151], Yatcenko [152].
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REFERENCES1. Ph. Adda, \Contrôllabilit�e des syst�emes bilin�eaires generaux et homogenesdans R2 ," Lect. Notes Contr. Inform. Sci., 111, 205{214 (1988).2. Ph. Adda and G. Sallet, \Determination algorothmique de la contrôllabilit�epour des familles �nies de champs de vecteurs lineaires sur R2 n f0g," R. A.I. R. O. APII, 24, 377{390 (1990).3. A.A. Agrachev, \Local controllability and semigroups of di�eomorphisms,"Acta Appl. Math., 32, 1{57 (1993).4. A.A. Agrachev, S.V. Vakhrameev, and R.V. Gamkrelidze, \Di�erential-geometric and group-theoretic methods in optimal control theory," in: Progressof Science and Technology, Series on Problems in Geometry [in Russian], Vol.14, All Union Institute for Scienti�c and Technical Information (VINITI),Akad. Nauk SSSR, Moscow (1983), pp. 3{56.5. H. Albuquerque and F. Silva Leite, \On the generators of semisimple Liealgebras," Linear Algebra Appl., 119, 51{56 (1989).86



6. Yu.N. Andreev, \Di�erential-geometric methods in control theory," Au-tomat. Telemekh., No. 10, 5{46 (1982).7. R. El Assoudi, \Accessibilit�e par des champs de vecteurs invariants �a droitesur un groupe de Lie," Th�ese de doctorat de l'Universit�e Joseph Fourier,Grenoble (1991).8. R. El Assoudi and J. P. Gauthier, \Controllability of right invariant systemson real simple Lie groups of type F4, G2, Cn, and Bn,"Math. Control SignalsSystems, 1, 293{301 (1988).9. R. El Assoudi and J. P. Gauthier, \Controllability of right-invariant systemson semi-simple Lie groups," in: New Trends in Nonlinear Control Theory,Springer-Verlag 122 (1989); pp. 54{64.10. R. El Assoudi, J. P. Gauthier, and I. Kupka, \On subsemigroups of semisim-ple Lie groups," Ann. Inst. Henri Poincar�e, 13, No. 1, 117{133 (1996).11. L. Auslander, L. Green, and F. Hahn, \Flows on homogeneous spaces,"Ann. Math. Studies, No. 53, Princeton Univ. Press, Princeton, New Jersey,(1963).12. V. Ayala Bravo, \Controllability of nilpotent systems," in: Geometry innonlinear control and di�erential inclusions, Banach Center Publications,Warszawa, 32 (1995), pp. 35{46.13. V. Ayala Bravo and L. Vergara, \Co-adjoint representation and controlla-bility," Proyecciones 11, 37{48 (1992).14. V. Ayala Bravo and I. Jiron, \Observabilidad del producto directo de sis-temas bilineales," Revista Cubo, 9, 35{46 (1993).15. V. Ayala Bravo and J. Tirao, \Controllability of linear vector �elds on Liegroups," Int. Centre Theor. Physics, Preprint IC/94/310, Trieste, Italy,(1994).16. V. Ayala Bravo and A. Hacibekiroglu, \Observability of linear systems onLie groups," Int. Centre Theor. Physics, Preprint IC/95/2, Trieste, Italy,(1995).17. V. Ayala Bravo, O. Rojo, and R. Soto, \Observability of the direct product ofbilinear systems on Lie groups," Comput. Math. Appl., 36, No. 3, 107{112(1998).18. J. Basto Gon�calves, \Su�cient conditions for local controllability with un-bounded controls," SIAM J. Control Optim., 16, 1371{1378 (1987).19. J. Basto Gon�calves, \Controllability in codimension one," J. Di�. Equat.,68, 1{9 (1987). 87
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