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1. Introduction

The aim of this work is to give a comprehensive survey of results on control-
lability of right-invariant control systems on Lie groups and their homogeneous
spaces. This subject is an area of active research in the mathematical control
theory and the Lie semigroup theory during the last 25 years. The motivations
for this study are diverse: applications in mechanics and geometry, connections
with other important classes of nonlinear control systems (bilinear and affine),
the work on generalization of S. Lie’s theory from the group case to the semigroup
case.

The structure of this work is reflected in detail in the contents. First we
give definitions, state the problems, and present general results on right-invariant
systems (Secs. 2-4). In Secs. 5-7 we give controllability conditions in the three
well-studied cases: homogeneous systems, compact Lie groups, and semidirect
products. In the subsequent sections, we present controllability results according
to group properties of the state space of a system: the semisimple case (Sec. 8),
the nilpotent case (Sec. 9), and its generalization (Sec. 10), the solvable case and
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its generalizations (Secs. 11-16). In Sec. 17, we list some works related to the
subject of this survey.

2. Definitions and General Properties of Right-Invariant Systems
Throughout this paper GG will denote a real Lie group; L its Lie algebra, i.e.,
the set of right-invariant vector fields on G.

2.1. Basic definitions. A right-invariant control system I' on a Lie group G is
an arbitrary set of right-invariant vector fields on G, i.e., any subset

I'cL. (2.1)

A particular class of right-invariant systems, which is important for applications
is formed by systems affine in control

F:{A+ZuiBi|u:(u1,...,um)€UC]Rm}, (2.2)
i=1
where A, By, ..., B, are some elements of L. If the control set U coincides with

R™, then system (2.2) is an affine subspace of L.

Remark. Throughout this paper, we write a right-invariant control system
as (2.1) or (2.2), i.e., as a set of vector fields, a polysystem. In the classical
notation, control affine systems (2.2) are written as follows:

m
i =A(x) + > wBi(z), u=(uy,...,un) €U, z€Gq, (2.3)
i—1
with piecewise-constant control functions u;(-), ..., uy,(-). Polysystem (2.1) can

also be written in such classical notation via a choice of a parametrization of the
set .

A trajectory of a right-invariant system I' on G is a continuous curve x(t) in
G defined on an interval [a,b] C R so that there exists a partition a =ty < t; <
-+ - < tr, = b and vector fields Ay, ..., Ay in ' such that the restriction of z(t) to
each open interval (¢; 1,¢;) is differentiable and %(t) = A;(x(t)) for t € (¢t;_1,t;),
i=1,... k.

For any T > 0 and any z in G, the reachable set for time T of a system I’
from the point z is the set Ar(z,T) of all points that can be reached from z in
exactly 1" units of time:

Ar(z,T) ={z(T) | z(-) a trajectory of T', z:(0) = z}.
The reachable set for time not greater than T > 0 is defined as

Ar(z,<T)= |J Ar(z,t).
0<I<T



The reachable (or attainable) set of a system I’ from a point z € G is the set
Ar(z) of all terminal points 2(T), T > 0, of all trajectories of I starting at x:

Ar(z) = {z(T) | z(-) a trajectory of ', (0) =z, T > 0} = |J Ar(z,T).

If there is no ambiguity, in the sequel we denote the reachable sets Ar(x,T) and
Ar(x) by A(z,T) and A(x), respectively.

A system I is called controllable if, given any pair of points z¢ and z; in G,
the point x; can be reached from zy along a trajectory of I' for a nonnegative
time:

x1 € A(zg) for any xy, z; € G,

or in other words, if
Alz) =G for any x € G.

Another property, which is obviously weaker than controllability, is also es-
sential for description of reachable sets. A system I'is called accessible at a point
x € G if the reachable set A(z) has nonempty interior in G.

The orbit of a system I' passing through a point x € G is denoted by Or(x)
and is defined similar to the reachable set A(z), but the terminal time T can take
both positive and negative values:

Or(z) = {z(T) | z(-) a trajectory of ', z(0) =z, T € R}.
If a system T is fixed, its orbit is denoted by O(x).

Remark. The inversion
i G—G, i(r) =a2"!

induces an isomorphism between the Lie algebra of right-invariant vector fields
on a Lie group G and the Lie algebra of left-invariant vector fields on GG. Thus, all
problems for left-invariant control systems, including controllability, are reduced
to the study of right-invariant systems.

For any subset I' C L, we denote by Lie(I") the Lie algebra generated by T,
i.e., the smallest subalgebra of L containing I'.

Given any subset [ of a vector space V', we denote by span(l) the vector
subspace of V' generated by [ and by co(l) the positive convex cone generated by
the set [.

We denote the topological closure and the interior of a set M by cl M and
int M, respectively.

The identity operator or matrix will be denoted by Id, and E;; stands for
the matrix with the identity ¢j-th entry and all other zero entries. We denote by
AT the transposed matrix of a matrix A.

2.2. Elementary properties of orbits and reachable sets. Letexp : L - G
be the exponential mapping from the Lie algebra L into the Lie group G. Any



right-invariant field A € L is complete. The trajectory of A passing through the
group identity e € G is

exp(tA), tER,
and

exp(tA)z, teER

is the trajectory of A passing through a point z € G.
Some properties of orbits of systems of right-invariant vector fields that are
well known from the Lie group theory are collected in the following proposition.

Lemma 2.1. Let ' C L be a right-invariant system, and let x be an arbitrary
point of G. Then

(i) O(xz) = {exp(tpAg) - -exp(t1A))x | A; €T, t; €R, k € N};

(iii) O(e) is the connected Lie subgroup of G with the Lie algebra Lie(T);

(iv) O(x) is the mazimal integral manifold of the involutive right-invariant dis-
tribution Lie(T") on G passing through the point x.

The following basic properties of attainable sets follow easily from the right-
invariant property of I' and the definition of A(x).

Lemma 2.2. Let ' C L be a right-invariant system, and let x be an arbitrary
point of G. Then

(i) A(z) = {exp(txAg) ---exp(t1 A1)z | A; €T, t; >0, k € N};
(i) Alz) = Ae)x;
(iii) Ae) is a subsemigroup of G,

(iv) A(z) is an arcwise-connected subset of G.

Since all essential properties of attainable sets (including controllability, see,
e.g., Theorems 2.6 and 2.7) are expressed in terms of the attainable set from the
identity A(e), in the sequel, we restrict ourselves to this set and denote it by A.
In a similar way, we denote the orbit O(e) simply by O.

2.3. Matrix systems. An important class of right-invariant systems that
motivated the whole theory of such systems are matriz control systems.

Denote by M(n; R) the set of all n x n real matrices.

The general linear group GL(n;R) is formed by nonsingular real n x n ma-
trices:

GL(n;R) = {X € M(n;R) | det X # 0} .



The group product in GL(n; R) is the usual matrix product, and the real analytic
structure on GL(n;R) is induced by identifying M(n; R) with R*’.
The Lie algebra of GL(n;R) is the space of all real n x n matrices:

gl(n; R) = M(n; R)
with the matrix commutator
[A,B] = AB — BA, A, B € gl(n;R),

as a Lie product.

Let G be a linear group, i.e., a closed subgroup of GL(n;R), and let L C
gl(n; R) be the Lie algebra of G.

For any matrix A € L, the corresponding right-invariant vector field on G is
defined by the matrix product

A(x) = Ax, reqd (2.4)

(we identify a right-invariant vector field with its value at the group identity).
The exponential mapping from L to G is the matrix exponential

1 1
Ai—>eXp(A):Id—|—A—i—§A2—|—---—|——'An—i—---, Ac L.
. n.

The trajectory of A € L passing through a point x € G is given by the matrix
exponential and the product

exp(tA)z, teR (2.5)
The right translation by an element g € G
T g, red

maps a trajectory (2.5) into a trajectory; this explains the name right-invariant
for vector fields of the form (2.4).

A right-invariant control system on a linear group G is an arbitrary set of
matrices I' C L.

An affine in control right-invariant system on G has the form (2.2) for some
matrices A, By, ..., B, € L. In the classical notation, such system is written as
a matrix control system

&= Ax+ > u;Bjz, u=(u,...,u,) EUCR", z€d. (2.6)
i=1

Now we list several examples of linear groups G and their Lie algebras L.

In each of these cases, G can be regarded as the state space of a right-invariant

system [ C L; in the affine in control case, see (2.2) or (2.6), the matrices A, By,
.., By, can arbitrarily be chosen in L.



Example 2.1. The general linear group GL(n;R) has the Lie algebra gi(n; R).
Its dimension is equal to n?. Notice that GL(n;R) is not connected: it has two
connected components.

Example 2.2. The connected component of the identity in GL(n;R) is the
group of all real n x n matrices with positive determinant:

GLi(nR) = {X € M(n;R) | det X > 0}.
The Lie algebra of the group GL, (n;R) is gl(n;R).

Example 2.3. The special linear group is the group of all real n x n unimodular
matrices:

SL(n;R) = {X € M(n;R) | det X = 1}.

It is a connected (n? — 1)-dimensional Lie group, and its Lie algebra si(n;R)
consists of all n X n matrices with zero trace:

si(n;R) = {A € M(n;R) | trA = 0}.

Example 2.4. The special orthogonal group is formed by all real nxn orthogonal
unimodular matrices:

SO(m;R) = {X € M(n;R) | XT = X~ det X = 1}.

It is a connected Lie group of dimension n(n — 1)/2, and its Lie algebra so(n; R)
consists of all real n x n skew-symmetric matrices:

so(n;R) = {A € M(n;R) | AT = —A}.

2.4. Normal accessibility. If a point y in G is reachable (or accessible) from a
point z in G, then there exist elements A;,..., A, in [ and t = (t;,...,1;) € R
with positive coordinates such that

y = exp(tpAy) - - - exp(t14;)z.

The following stronger notion turns out to be important in the study of topological
properties of reachable sets and controllability.

Definition 2.1. A point y in G is called normally accessible from a point x in G
by T if there exist elements Ay, ..., A, in T and t € R with positive coordinates
t1, ..., tx such that the mapping F(ty,...,t;) = exp(tzAg) - --exp(t, A1)z as a
mapping from R into G satisfies the following conditions:

i) F(t) =y.

(ii) The rank of the differential dF at f is equal to the dimension of G



The point y is said to be normally accessible from x by Ay, ..., Ag.

Theorem 2.1. IfLie(T') = L, then in any neighborhood O of the identity e € G,

there are points normally accessible from e by I'. Consequently, the set int AN O
18 nonempty.

Proof. Denote n = dimL = dimLie(T"). If n = 0, everything is clear.
Assume that n > 0 and fix a neighborhood O of the identity e.
There exists a nonzero element A; € I'. The curve

M, = {exp(tlAl) | O0<t; < 61}

is a smooth one-dimensional manifold contained in the neighborhood O for a
sufficiently small positive ;. If n = 1, then any point in M, is normally accessible
from e by Aj;, since the mapping Fi(t;) = exp(t1A;) has rank 1 on the interval
I, = (0,¢).

If n > 1, there exists an element A, € I' such that the right-invariant field
As is not tangent to M; at any point of Mj; if this is the case for any Ay € T,
then dim Lie(I") = 1; a contradiction. That is why the set

M2 = {exp(tgAQ) exp(tlAl) | 0< t; < g, 1= ]_, 2}

is a smooth two-dimensional manifold that belongs to O for sufficiently small
positive €1 and £9. Moreover, the mapping Fy(t1,%2) = exp(t2Ay) exp(t1A;) has
rank 2 in the domain I, = (0,£1) X (0,&2). If n = 2, the theorem is proved, since
in this case, any point of M is normally accessible from e by A; and A,.

If n > 2, we proceed by induction. For any dimension & < n and some
elements Aq,..., Ay € I', we construct the k-dimensional smooth manifold

M, = {exp(tkAk) . -exp(tlAl) | 0<t; <gg,i=1,..., k}

contained in the neighborhood O for sufficiently small positive ¢, ..., &g, so that
the mapping Fj(t1,...,t;) = exp(txAx) - - -exp(t1 A1) has the rank k in the domain
Iy = (0,e1) X -+ X (0,e;). Then any point in M, is normally accessible from e
by Ai,..., A,.

The image of the box I,, by the mapping F), is an open set contained in A
and O; thus, int AN O D F,(I,,).

If the Lie algebra generated by I' does not coincide with the whole Lie algebra
L, then I" can be considered as a right-invariant system on the orbit O. By item
(iv) of Lemma 2.1, Lie(T") coincides with the Lie algebra of the Lie group O; thus,
the previous theorem implies the following relationship between the attainable set
A and the orbit O.

Lemma 2.3.

(i) The attainable set A is contained in the orbit O.

(ii) For any neighborhood O of the identity e in the topology of the orbit O, the
intersection intp A N O is nonempty.



(iii) Moreover, clintp A D A.

(We denote by inte the interior of a subset of the orbit O in the topology of
0.)
Proof.  Item (i) is straightforward. Item (ii) follows from Theorem 2.1: since
Lie(T") is the Lie algebra of O, one should replace in this theorem G by O. To
prove inclusion (iii), take any point z in A and choose any neighborhood U of x
in O. We have to show that the intersection into ANU is nonempty. There exists
a neighborhood O of e in O such that Ox C U. By item (ii), there is a point y
in into AN O. Then yx € intp ANU.

2.5. Basic controllability conditions.

Theorem 2.2. A necessary condition for a right-invariant system I' on G to
be controllable is that the Lie group G be connected.

Proof. The reachable set A is arcwise-connected; see Lemma 2.2.

Remark. In view of the previous theorem, in the sequel, all Lie groups are
assumed to be connected, unless otherwise explicitly specified.

The fundamental necessary controllability condition given in the following
proposition is usually referred to as the rank condition or the Lie algebra rank
condition (LARC).

Theorem 2.3. A necessary condition for a right-invariant system I' on G to
be controllable is that T generates L as a Lie algebra: Lie(T') = L. If Lie(T') = L,
then the attainable set A has a nonempty interior in the group G.

Proof. If A = G, then more so O = G. By Lemma 2.1, Lie(T") = L.

If Lie(T") = L, then Theorem 2.1 yields int A # &.

In general, the rank condition is not sufficient for controllability, but it is
equivalent to accessibility.

Theorem 2.4. A right-invariant system I' on G is accessible at the identity
(and thus at any point in G) if and only if Lie(T") = L.

Proof. Necessity. If the reachable set A has a nonempty interior in GG, then
the same holds for the orbit O@. By Lemma 2.1, we obtain Lie(T") = L.
Sufficiency. If Lie(T') = L, then int A is nonempty by Theorem 2.1.
A system I' C L is said to have a full rank if the rank condition Lie(I') = L
holds.

Theorem 2.5. A right-invariant system ' on a connected Lie group G is
controllable if and only if the following conditions hold:

(i) The attainable set A is a subgroup of G and

(ii) Lie(T") = L.



Proof. Necessity. Ttem (i) is obvious, and item (ii) follows from the rank
condition.

Sufficiency. If A is a subgroup, then for any exponential exp(tA), A € T,
t > 0, its inverse exp(—tA) is also in A. Thus, the attainable set A coincides
with the orbit O. But since I' has the full rank, its orbit coincides with the whole
group G (see Lemma 2.1, item (iv)). Consequently, A = G.

Theorem 2.6. A right-invariant system T is controllable on a connected Lie
group G if and only if it is controllable from the identity, i.e., A = G.

Proof.  Apply item (ii) of Lemma 2.2.
For a full-rank system [', its attainable set A has a nonempty interior in G.
But in general, the identity e can lie on the boundary of A.

Theorem 2.7. A right-invariant system I is controllable on a connected Lie
group G if and only if the group identity e is contained in the interior of A.

Proof. Necessity is obvious, and sufficiency follows from the fact that for a
connected Lie group G, an arbitrary neighborhood of the identity e generates G
as a semigroup.

The following controllability condition is fundamental, since it shows us that
in the study of controllability of full-rank systems, one can replace the attainable
set A by its closure cl A.

Theorem 2.8. If the reachable set A is dense in a connected Lie group G and
Lie(T') = L, then T is controllable on G.

Proof. Consider the backward-time system
-IT'={-A|AeT};

its trajectories are trajectories of I" passed in the backward time. The attainable
set of —I" is

A= {exp(—tkAk) s -exp(—tlAl) | AZ € F, tz Z 0, ke N} == A_l. (27)

Since the system —I" has the full rank: Lie(—I") = Lie(I") = L, its attainable set
has a nonempty interior and thus contains an open set O;.

On the other hand, since I' has the full rank, there is a point x in G that has
a neighborhood O(x) contained in A.

The closure of the attainable set from x is everywhere dense: clA(x) =
cl(A - ) = G; thus, there exists a point y € A(x) N O;. We have y € A - x;
hence yz~' € A. Taking into account the inclusion O(x) C A and the semigroup
property of A, we obtain that the neighborhood O(y) = yz~! - O(z) of the point
y is contained in A. But y € O; C A™!; thus, y~! € A, and the neighborhood of
the identity O(e) = y~! - O(y) is contained in A. By Theorem 2.7, A = G.

Theorem 2.9. A right-invariant system T is controllable on a connected Lie

group G if and only if the identity e is normally accessible from e by some elements
Al;---aAl i T,



Proof. Necessity. By Theorem 2.1, there exists a point + € G that is normally
accessible by some fields Ay,...,A; € I from e. Since I' is controllable, the
backward-time system —I" is also controllable; thus,

e = exp(t;A;) - - - exp(tey1Ar1)T
for some Ag,q,...,A; € I'and some tx,1,...,t > 0. Then e is normally accessible
from e by the fields Aq,..., A4;.

Sufficiency follows from Theorem 2.7, since a normally accessible point is in
the interior of the attainable set.

The preceding result easily implies that controllability of right-invariant sys-
tems is preserved under small perturbations. More precisely, let p(-,-) be the
distance in the Lie algebra L, and let d(-,-) be the corresponding Hausdorff dis-
tance between subsets of L:

d(T'y,Ty) =max < sup inf p(A;, As), sup inf p(A;, Ay) .
(T, Ty) {AIEIEI AQGFQP( 1, Az) A2€1122A1€F1 p(A 2)}
Theorem 2.10. If a right-invariant system I' C L is controllable, then there
exists € > 0 such that any system I C L is controllable provided that d(T',T") < e.

Proof. If I is controllable, then the identity e is normally accessible from
e by some A,..., A, € T'. For a sufficiently small £ > 0, any system I with
d([',T") < £ contains elements Af,..., A} such that p(A4;, A)) <e,i=1,...,k.
Then e is normally accessible from e by A}, ..., Aj.

2.6. Remarks. Control systems with a Lie group as a state space are studied
in the mathematical control theory since the early 1970-ies.

Brockett [36] considered applied problems leading to control systems on ma-
trix groups and their homogeneous spaces; e.g., a model of DC to DC conversion
and the rigid body control raise control problems on the group of rotations of the
three-space SO(3;R) and on SO(3;R) x R?, respectively. The natural framework
for such problems are matrix control systems of the form

i(t) = Az(t) + > ui(t)Biz(t), w;(t) € R, (2.8)
i=1
where x(t) and A, By,..., B, are n X n matrices.

The systematic mathematical study of control systems on Lie groups was
initiated by Jurdjevic and Sussmann [83]. They observed that the passage from
the matrix system (2.8) to a more general right-invariant system

#(t) = A(x(t) + f;ui(t)Bi(x(t)), 2(t) € G, ul(t) €R,

where A, By, ..., B, are right-invariant vector fields on a Lie group GG, “in no es-
sential way affects the nature of the problem”. The basic properties of attainable
set and orbits of right-invariant systems were found in [83].

The notion of normal accessibility (for arbitrary nonlinear systems) is due
to Sussmann [140].
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3. Control Systems Subordinated to a Group Action

3.1. Transitive actions, homogeneous spaces, and controllability.

Definition 3.1. A Lie group G is said to act on an analytic manifold M if
there exists an analytic mapping 6 : G x M — M that satisfies the following
conditions:

(1) 6(gag1, ) = 0(g2,0(g1,2)) for any g1, ¢> in G and any x in M;
(2) O(e,z) =z for any z in M.

For each g € G, consider the analytic diffeomorphism 6, : M — M given
by 64(x) = 0(g,z) (the inverse to 6, is given by 6,-1). The mapping g — 0, is
called an action of G on M. Any action is a homomorphism from the group G
into the group of analytic diffeomorphisms of M. For any element A € L, Ocxpia
is a one-parameter group of diffeomorphisms of M with the generator 6,(A), an
analytic vector field on M:

d

0.(A)x) = 2|

Ocxpra(r), w€ M, Ac L.
Such vector fields 0,(A), A € L are said to be subordinated to the action 6 of G.
They form the finite-dimensional Lie algebra

0.(L) ={0.(A) | Ae L}
of complete vector fields on M.

Definition 3.2. A system of vector fields F on M is called subordinated to an
action 0 if F is contained in 0,(L). If F = 0,(T") for some right-invariant system
[' C L, then F is said to be induced by I'.

A Lie group G acts transitively on M if, for any x € M, the orbit {f,(x) |
g € G} coincides with the whole M. A manifold that admits a transitive action
of a Lie group is called the homogeneous space of this Lie group. Homogeneous
spaces are exactly manifolds that can be represented as quotients of Lie groups.
If 6 is a transitive action of G on M, then we can consider the isotropy group H
at a given point x € M:

H={geG|b(x)=uz}.
H is a closed subgroup of GG, and the manifold M is diffeomorphic to the left
coset space G/H with the diffeomorphism G/H — M given by ¢H — 6 (x).
Given a right-invariant system [' on a Lie group G that acts on a manifold
M , one can construct a system on M induced by I'. The following proposition is
a controllability result related to this construction.
Theorem 3.1. Let 0 be an action of a connected Lie group on a manifold M,

[' C L be a right-invariant system on G, and let F = 0,(T') be the induced system
on M.

11



(i) For any point x in M, the reachable set of F from x is
Ar (x) = Oa (x) = {04(2) | g € Ar}.

(ii) Assume that the action 0 is transitive. If T is controllable on G, then F is
controllable on M.

(iii) F is controllable on M if and only if the semigroup Ar acts transitively on M.

Proof. (i) For any trajectory ¢(¢) of T" and for any point x in M, the curve
041 (x) is a trajectory of F; moreover, any trajectory of F is obtained in such a
way.

(ii) If Ar = G, then Ax(z) = M, since the orbit of # coincides with M.

(iii) Sufficiency follows in the same way as in (ii). The necessity is obtained
from the description of the reachable set Ar(z) in (i).

Important applications of Theorem 3.1 are related to the linear action of
linear groups G C GL(n;R) on the vector space R". In this case, the induced
systems are bilinear, or more generally, affine systems.

3.2. Bilinear systems.

3.2.1. Induced vector fields and systems. For the linear action of the group
GL(n;R) on the vector space R",

0,(r) = gv, g€ GL(mR), z € R",
the induced vector fields are linear:
0.(A)(x) = Az, A€ gl(n;R), x € R".

Given any elements A, By, ..., By, € gl(n;R) and a control set U C R™, con-
sider the following right-invariant system on GL(n;R), which is affine in control:

= {A+ZuiBi |u = (ug,...,uy) € UC]Rm}.
i=1
Then the induced system is the following set of linear vector fields on R":
F= {A+ZuiBi | u=(u1,...,uy) € UC]Rm}.
i=1

Passing from polysystems to control systems in the classical notation, we obtain
a bilinear system

m
& =Ar+> wBix, u=(ui,...,uy,) €U CR", =z€R"
i=1

3.2.2. Bilinear systems on R" \ {0}. Assume that the action of a connected
linear group G C GL(n;R) is transitive on the punctured vector space M =

12



R™ \ {0}. The typical examples are the groups GL, (n;R) and SL(n;R). Let L be
the Lie algebra of G. The Lie algebras in the previous examples are respectively
gl(n; R) and sl(n; R).

For this case, Theorem 3.1 implies the following.

Corollary 3.1. If a right-invariant system
= {A+ZuiBi |u = (u1,...,uy) € UC]Rm} C L
i=1

is controllable on a linear group G that acts transitively on ®* \ {0}, then the
bilinear system

& =Ar+ > wBiw, u=(ui,...,un) €U CR", zeR"\{0}
i=1
is controllable on R" \ {0}.

3.2.3. Bilinear systems on S"~!. Now consider the case of a connected linear
group whose action is transitive on the unit sphere

ST ={zeR" |||lz]| =1},

e.g., the group SO(n;R) of rotations of R”. Let L be the Lie algebra of G. In
the previous example, the Lie algebra so(n; R) is formed by n x n skew-symmetric

matrices.
Then Theorem 3.1 yields the following.

Corollary 3.2. If a right-invariant system
= {A+ZuiBi |u=(u1,...,uy) € UC]Rm} CL
i=1

is controllable on a linear group G that acts transitively on S"~', then the bilinear
system

m

& =Ax+ Y wBix, u=(ui,...,u,) €UCR", z€ snt
i=1

is controllable on the sphere S™!.

3.3. Affine systems.

3.3.1. Induced vector fields and systems. Let Aff(n;R) be the group of
invertible affine transformations of R”. It is the semidirect product of the group
of translations of R” with the general linear group:

Aff(n; R) = R" x GL(n; R).
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This group can be represented as a subgroup of GL(n + 1;R) by matrices of the
form

72(20( f), X € GL(n;R), x € R".

Embedding R” into R**! as the hyperplane
R* X {vp1 =1} = {(v1, ..., 0, )T € R | (01,...,0,)" € K"},

we obtain an affine mapping in R* defined by an element X € Aff(n;R); this is

the mapping
v X =z v\ [ Xv+z
1 0 1 1) 1 '
That is, the group Aff(n;R) acts on R” as follows:
Ox(v) = Xv+z, X €Aff(n;R), veR"

The Lie algebra aff(n; R) of the affine group is represented by the matrices

— A a n
A:(O 0), A € gl(n;R), a € R".

The one-parameter subgroup in Aff(n;R) corresponding to A € ajf(n; R) is
A a etA et4 1d a
= A
expt ( 0 0 ) ( 0 1 ,

e —1d
A

The corresponding flow in R" is

where

2 "o
=tld+=A+ -+ —=A""+.-. .
21 n!

e —1d
A

thus, the induced vector field is an affine field on R":

0.(A)(v) = Av+a, vER".

eexp(tZ) (U) = etAU + a;

Now let G' be a connected linear subgroup of Aff(n;R) that acts transitively
on R, e.g., the group of invertible affine transformations of R” that preserve the
orientation

X =z

Affy(n;R) = R* x GLy (n;R) = {( 0 1

> | X € GL,(n; R), xE]R”},

or the group of Euclidean motions of R,

E(n;R) = R" x SO(n; R) :{(%.( f) | X € SO(n; R), a:E]R”}.
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Let L be the Lie algebra of (G; in the previous cases, we have the Lie algebras

aﬁ(n;R)ZR"%g[(n;R)Z{(é 3) | A€ aniR), aew},

and

e(n;R) = R" N so(n;R) = {(‘3 8) | A € s0(n;R), aE]R”},

respectively. A right-invariant system

F:{Z+Zui§i|u:(u1,...,um)EUC]Rm}CL (3.1)

=1

on the Lie group G that is affine in control with

Az(o 0>, Bi:<0 O),Z—l,...,m,

induces the following affine control system:

t=Az+a+Y w(Bx+b), u=(uy,...,u,) EUCE", z€R'. (3.2)
i=1
Notice that particular cases of affine systems are bilinear systems considered in
Secs. 3.2.2 and 3.2.3 (a = by = --- = b, = 0) and the classical linear systems

& =Ar+> wb, u=(ui,...,u,) EUCR", =z€R",
i=1
obtained in the case a =0, B =--- = B,, = 0.
Now Theorem 3.1 implies the following proposition.

Corollary 3.3.  Let G be a connected linear subgroup of Aff(n;R) that acts
transitively on R*. If a right-invariant system (3.1) is controllable on G, then the
induced affine system (3.2) is controllable on R".

3.4. Remarks. Control systems on homogeneous spaces that are subordinated
to a group action (in particular, bilinear and affine systems) were among the most
important motivations for the study of right-invariant systems. The contents of
this section is mainly due to Brockett [36]. The terminology used and the general
approach were adopted by Jurdjevic and Kupka [80].

Boothby and Wilson [29, 31] found a complete list of linear groups that act
transitively on R" \ {0}. Moreover, they presented an algorithm for verification
whether a Lie group generated by given matrices belongs to this list; this algo-
rithm involves only rational matrix operations.

Lie groups that act transitively on spheres are also listed; see Samelson [128],
p. 26, Borel [32, 33], Montgomery and Samelson [105].
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4. Lie Saturate

An efficient method for obtaining (sufficient) controllability conditions for
right-invariant systems is the extension technique based on the computation of
the tangent cone to the closure of the attainable set of a system at the group
identity.

Definition 4.1. Two right-invariant systems [';,'y C L are called equivalent
one another if cl(Ar, ) = cl(Ar,).

Definition 4.2. Let ' C L be a right-invariant system. The Lie saturate of I,
denoted by LS(T"), is the largest subset of Lie(I") that is equivalent to I'.

If two systems I'; and 'y are equivalent to I', then their union I'; U I’y is
obviously equivalent to I". That is why the Lie saturate of I' always exists: it is
the union of all systems in Lie(T") that are equivalent to I'. The largest right-in-
variant system that is equivalent to I is {A € L | exp(tA) € cl(Ar) Vt > 0}; thus,
the Lie saturate can be described as follows.

Theorem 4.1. For any system I' C L,

LS(D) = Lie(l) N {A € L | exp(tA) € cl(Ar) ¥t > 0}.

Denote by E(T') the set {A € LS(T') | —A € LS(T")}. Tt is the largest vector
subspace of L contained in LS(T").
The basic properties of Lie saturate are collected in the following proposition.

Theorem 4.2.
(0) LSoLS = LS;
(1) LS(T) is a closed convex positive cone in L, i.e.,
(1a) LS(T) is topologically closed:
cl(LS(T)) = LS(T),
(1b) LS(T) is convex:
A BelS(l') = aA+(1—-—a)BeLS(I') Vael,1],
(1c) LS(T) is a positive cone:
AelS(l) = aAelS(l') Va>0.

Thus,
A BeLS(T) = aA+pBeLS(I) Ya,p>0.
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(2) For any A € E(T') and for any t € R,
e"ALS(I) c LS(T).
That 1s,

(tad A)?

+A,BcLS(I) = ¢"™4B =B+ (tad A)B + o

B+...€LS(T)

VteRr

(3) E(T) is a subalgebra of L. In particular,

+A,+B € LS(I') = =[A, B] € LS(T).

(4) If A € LS(T') and if the one-parameter subgroup {exp(tA) | t € R} is periodic,
then RA C LS(T).

Proof. (0) is obvious in view of the definition of the Lie saturate and Theo-
rem 4.1.
(1) follows from the well-known properties Aqy C cl(Ar), Ao mr) C cl(Arp),

and Ag r = Ar of reachable sets.
To prove (2), assume that +A, B € LS(T"). Then

exp(se'® 1 B) = exp(s Adexp(ray B) = exp(tA) exp(sB) exp(—tA) € cl(Ar)

for any s > 0, t € R; thus '*4B € LS(T) for all t € R.
Now (3) easily follows: if +4,+B € LS(T'), then +e'*4B +B € LS(I),
that is why
tadAp B
+[A, B] = inm% € LS(D).

t—0

(4) follows from the chain
{exp(tA) |t > 0} = {exp(tA) |t € R} C Ar,

which is valid for all A € LS(T") with a periodic one-parameter group.

The following theorem gives a general controllability test in terms of the Lie
saturate.

Theorem 4.3. A right-invariant system I' C L is controllable on a connected
Lie group G if and only if LS(T') = L.
Proof. Necessity follows from the definition of the Lie saturate.

Sufficiency. Assume that LS(I') = L. The connected Lie group G is gener-
ated by the one-parameter semigroups {exp(tA) | A € L, t > 0} as a semigroup;

thus, cl(A) = G. If, in addition, the rank condition Lie(I') = L holds, then I is
controllable by Theorem 2.8.
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Usually, it is difficult to construct the Lie saturate of a right-invariant sys-
tem explicitly. That is why Theorem 4.3 is applied as a sufficient condition of
controllability via the following procedure. Starting from a given system I', one
constructs a completely ordered ascending family of extensions {I',} of ', i.e.,

Ihy=T, I'yCTgifa<p.
The extension rules are provided by Theorem 4.2:

(1) given I',, one constructs 'z = cl(co(T'n));
(2) for £A, B € T, one constructs T'y = I, U e**4B;
(3) for £A,£B € T, one constructs 'y = 'y U R[A, B];

(4) given A € ', with periodic one-parameter group, one constructs I'y = I, U

RA.

Theorem 4.2 guarantees that all extensions I',, belong to LS(T"). If one obtains the
relation I', = L at some step «, then LS(I") = L, and the system I is controllable.

4.1. Remarks. The idea to consider the closure of attainable sets as an invariant
of right-invariant systems is important in controllability questions and goes back
to Jurdjevic and Sussmann [83]. The concept of Lie saturate and the extension
technique were developed by Jurdjevic and Kupka [80, 81].

The Lie subsemigroup theory studies general subsemigroups of Lie groups,
not necessarily appearing as reachable sets of right-invariant systems. A gener-
alization of Theorem 4.2 holds for this case.

A subset W of a Lie algebra L is called a wedge if W is a closed positive
convex cone in L. The edge of a wedge W, denoted by H (W), is the maximal
vector subspace of L contained in W:

HW)=Wn-w.
A wedge W is called a Lie wedge if
AW Cc W forall A€ H(W).

For a closed subsemigroup S of a Lie group G that contains the identity element
e, its tangent object

L(S)={A € L |exp(tA) € SVt >0}

is the Lie wedge.

The basic results on the subsemigroup theory can be found in books by
Hofmann and Lawson [66], Hilgert and Neeb [59], and Hilgert, Hofmann and
Lawson [58].
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5. Homogeneous Systems

5.1. Controllability criterion. A system [' C L is called homogeneous if,
together with any element X, this system contains also the sign-opposite element
-X, ie.,

=-r.

Theorem 5.1. Let I' be a homogeneous right-invariant system on G. Then its
reachable set A is a subgroup of G and coincides with the orbit O.

Proof. Apply Lemmas 2.1 and 2.2.
Thus the study of controllability for I' is reduced to the verification of the
algebraic condition of coincidence of the connected Lie groups O and G.

Theorem 5.2. A homogeneous right-invariant system I' C L is controllable on
a connected Lie group if and only if Lie(T') = L.

Proof. By Lemma 2.1, the Lie algebra of the Lie group O is Lie(I'). Then
apply Theorem 5.1.

5.2. Control-affine systems. A control-affine system
= {A+Zui3i | u=(uy,...,up) €U C ]Rm}
i=1

is homogeneous if the drift term A is equal to zero and the control set U is
symmetric with respect to the origin: U = —U. For this case, Theorems 5.1 and
5.2 are specified as follows.

Theorem 5.3. Assume that a control set U C R™ satisfies the relation U = —U.
Consider the homogeneous control-affine system

= {ZuiBi|u: (Ugy vy Up) EUC]R’"} cL
i=1
on a Lie group G. Then

(i) The reachable set A coincides with the orbit O, i.e., with the connected Lie
subgroup of G with the Lie algebra Lie(T');

(ii) If U = R™, then any point of A can be reached from the identity e at an
arbitrary time:
Ale,T) = A= 0O forany T > 0;

(iii) If G is connected and U = R™, then the system U is controllable if and only
if Lie(By,...,By,) = L.

Proof. Items (i) and (iii) follow respectively from Theorems 5.1 and 5.2.
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To prove (ii), choose any T > 0. Let a point = in G be reachable from e for
some time 77 > 0:

k
r = exp(tpXy) - --exp(ti X1), Y t; =T,
i=1

where t1,...,%x > 0 and Xy,...,X; € I'. Since the control set U = R is
homothetic with respect to the origin, the vector fields V; = aX;, i = 1,...,k,
belong to I" for « = T /T > 0. Thus, x can be reached from e for time 7"

k
x = exp(skYy) - -exp(s1Y7), Z s; =T,
i=1

where s; = t;/a, i =1,... k.
5.3. Remarks. The controllability criterion for homogeneous matrix systems
was given by Brockett [36]. In this paper, the criterion was also specified for the
group of matrices GL (n; R) with positive determinant, the group of unimodular
matrices SL(n;R), the group of symplectic matrices Sp(n;R), and the group of
orthogonal unimodular matrices SO(n; R).

The general controllability results for homogeneous right-invariant systems
on Lie groups are due to Jurdjevic and Sussmann [83].

6. Compact Lie Groups
In this section, we consider the case of a Lie group that is compact as a
topological space.
6.1. Controllability conditions.

Theorem 6.1. A right-invariant system I' C L is controllable on a compact
connected Lie group G if and only if Lie(T') = L.

Proof. For any right-invariant vector field A € L on a compact Lie group G,
the negative and positive semitrajectories satisfy the inclusion

cl{exp(—tA) | t > 0} C cl{exp(tA) | t > 0}.

That is why any right-invariant system I' on G is equivalent to the homogeneous
system I'U —I". But for homogeneous systems, controllability is equivalent to the
rank condition; see Theorem 5.2.

Theorem 6.2. Let a Lie group G be compact and connected, and let a right-
invariant system I' C L be controllable on G. Then there exists T > 0 such that
for every go, g1 € G, there is a control that steers gy to g, for not more than T
units of time.
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Proof. The interiors of the reachable sets A(e, < t), ¢ > 0, form an open
covering of the group GG. By compactness of GG, there is an instant 77 > 0 such
that

int Ale, < T7) =G.

That is, the identity element e can be steered to any element ¢g; € G for not more
than 77 units of time. A similar argument applied to —I' shows us that there
exists 75 > 0 such that any element gy € G can be steered to e for not more than
T, units of time. Then gy and ¢; can be connected by a trajectory of I' for time
not more than 7' =T} + T5.

6.2. Examples.

6.2.1. Special orthogonal group in dimension 3. Let G = SO(3; R), the set
of all 3 x 3 real orthogonal matrices with positive determinant. The Lie group G
is compact and connected. Its Lie algebra L = so(3;R) is the set of all 3 x 3 real
skew-symmetric matrices.

Take any linearly independent matrices A;, Ay € so(3;R) and consider the
right-invariant system I' = {4, A}. Notice that the matrices A;, A,, and
[Ay, Ag] span the whole Lie algebra so(3;R). By Theorem 6.1, the system I’
is controllable. That is, any rotation in SO(3;R) can be written as the product
of exponentials

exp(tkAz-k) .- -exp(tlAz-l), t; > 0, ij S {1, 2}, k €N (61)

Moreover, by Theorem 6.2, there is T" > 0 that gives a universal upper bound
*_,t; < T for decomposition (6.1) of any rotation in SO(3; R).
The single-input right-invariant affine in control system

X =(A+ud)X, vwelUCR, X €SO(3;R) (6.2)

is also controllable (for any control set U containing more than one element).
Moreover, there is T' > 0 such that given any two matrices P, @ € SO(3;R), there
is a piecewise-constant control that steers P to () for not more than T units of
time. Notice that in general, there may not exist arbitrarily small numbers 7" with
the above property even if the control is unconstrained, i.e., U = R. Take, for
instance, Ay = E5 — Fy and Ay = Ej3 — E3;. Write the solution to system (6.2)
with the initial condition X (0) =Id as X = (x;;)ij=1,2,3. Then we have

T2 = T2z + UT32,

T32 = —UT12.

Multiplying the first equation by x5, the second equation by x3,, and adding, we
obtain

1d
—— (a1, + 73,) = Taw12.

2dt
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Since 7%, + x3, vanishes at ¢ = 0, we have

(% + 23) (1) = 2 [ 2 (r)1a(r) dr.

But z95(7) and z12(7) are entries of the orthogonal matrix X (7); hence, their
absolute values are bounded by 1. Therefore, we conclude that

(35%2 + x§2)(t) < 21.

This shows us that a matrix (a;;) for which a?, + a3, = 1 cannot be reached from

the identity for less than % units of time.

6.2.2. Special orthogonal group in dimension n. The previous considera-
tions are generalized to the group G = SO(n; R) of rotations of R”. In this case,
the Lie algebra L of G is the set of all n x n skew-symmetric matrices so(n;R).

Take the matrices 4, = X" (E; ;01— Eiy14) and Ay = B, 1, — Ep 1. Ttis
easy to show that Lie(A;, Ay) = so(n;R). Thus, even though the group SO(n; R)
is n(n — 1)-dimensional, the system

X = (A +uAd)X, X eSO(mR), uelUCR,
in which only one control is involved, is controllable (if the control set U contains
at least two distinct points).

Moreover, as above, we can find an upper bound for time that is necessary
for reaching one point in SO(n;R) from another.

Notice that the set of pairs (A;, As) such that Lie(A;, As) = L is open and
dense in L x L (this is valid for any semisimple Lie algebra L; see Theorem 8.1
below). Thus, we can replace the matrices A; and A, by an “almost arbitrary”
pair in L x L.

6.2.3. Serret—Frenet frames. Let z(¢) denote any curve in a Euclidean space
R" whose derivatives d*z(t)/dt*, k = 1,...,n, span an n-dimensional vector
space at each point along the curve. The Serret—Frenet frame along the curve x
is described by an orthonormal matrix R(¢) in SO(n;R) that relates this frame
to a standard orthonormal frame ey, e, ..., e, in R” and that further satisfies the
following differential equation in SO(n; R):

0 —Fki(t) 0 . 0
kq(t 0 —ko(t :
. 10 .(0)
0o ... 0 koi(t) O
where ki(t), ..., kn_1(t) are called the curvature functions associated with the

curve z. (For curves in R®, ky is called the torsion of z.) Notice that the curvatures
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kq, ..., kn_o are positive, while the last curvature k,_; could be of any sign. The
curve
T

Tn

and the rotation matrix R(t) can be expressed as the curve

9(t) = ( o) Rt )

in the group E(n;R) of motions of R” realized as the closed subgroup of GL(n +
1;R) consisting of all matrices

10 . _
(m R)’ r € R', R € SO(n;R).

Since the first vector in the Serret—Frenet frame coincides with the tangent vector
dz/dt, it follows that dz/dt = R(t)e;, where e; = (1,0,...,0)T. Being combined
with system (6.3) for the orientation matrix R(¢), this gives the following left-
invariant control affine system in E(n;R):

0 0 0 0 e 0
10 —k() 0 e 0
d 0 kyi(t) 0 —ka(t) .
== g(t) . o (64)
dt 0 O ko (1) 0 - 0
: : —kn_1(t)
0 0 e 0 kn1(2) 0
with &k, ..., k,_1 playing the role of controls.

Consider the extreme case where all, except for one, curvatures are constant.
Then Eq. (6.3) can be written as the control affine system

% — RU)(A+uB), ReSOMm:R), u>0, (6.5)

where u(t) = k;(t) is the nonconstant curvature (we assume that 1 <i < n — 2;
in the case i = n — 1, the control should be unconstrained: u € R), and

A= (% A“) (6.6)
0 -k 0 - 0
ki 0 —ky :

Ar=10 k 0 . 0 , (6.7)
: B —ki1
0 0 kii O
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A2 = 0 ki+2 0 0 ) (6 8)
’ _knfl
0 0 kn_1 0
and
0 0
0 —1

B = L 0 = FEit1i— Eijip. (6.9)

0 0

Writing h(t) for R~!(¢) turns the left-invariant system (6.5) into the right-invariant
system
dh
=
which will be called the Serret—Frenet system. It follows from Theorem 6.1 that
system (6.10) is controllable if and only if the set I' = {-A —uB | u > 0}
generates so(n; R) as a Lie algebra, i.e., Lie(A, B) = so(n;R). A description of the

—(A + uB)h(t), h € SO(n;R), u >0, (6.10)

Lie algebra Lie(A, B) is given in the following proposition.

Theorem 6.3. Assume that each fived curvature kj, j # i, in Eqgs. (6.7) and
(6.8) is nonzero. The Lie algebra generated by the matrices A and B, which is
given by (6.6)—(6.9), is equal to so(n;R) in all the cases, except for one. The
exceptional case occurs when n = 2m, i = m, and ky = +++ = k1 = kpyr =
-+ =ky_1. The Lie algebra in the exceptional case is equal to the Lie algebra of
the unitary group U(2m;R).

6.3. Homogeneous spaces.

6.3.1. Sphere. The (n — 1)-sphere
S ={reR" ||| =1}

is the homogeneous space of the group SO(n; R) of rotations of R".
Let A, By, ..., B,, be n x n skew-symmetric matrices. The control-affine
right-invariant system

X =(A+Y wB)X, X e€SOmR), u=(u,...,uy) € R", (6.11)

=1

induces the bilinear system

i=(A+Y wB)z, z€S" " u=_(uy,...,un) €R™; (6.12)

=1
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one can consider the unit vector z € S" ! to be the first column of the orthogonal
matrix X € SO(n;R). Theorems 6.1 and 6.2 imply the following proposition.

Corollary 6.1. Let matrices A, By, ..., By, € so(n;R) generate so(n;R) as
a Lie algebra. Then system (6.12) is globally controllable on the sphere S™~'.
Moreover, there exists T > 0 such that any points xo, 1, € S™ ! can be connected
by a trajectory of (6.12) corresponding to a piecewise constant control for not
more than T units of time.

Remark. System (6.12) is globally controllable on the sphere S™~! if and only
if the reachable set A of system (6.11), which is always a subgroup of SO(n;R),
acts transitively on S™~1.

Each group SO(n;R) and U(2m;R), 2m = n, acts linearly on R” by the left
multiplication, and these actions are transitive on the spheres in R”. That is why
Theorems 6.1 and 6.3 yield the following.

Corollary 6.2. Let matrices A and B be given by (6.6)—(6.9). If all curvatures
ki, j # 1, are nonzero, then the bilinear system

i = Ar + uBu, resSH u>0
is controllable on the sphere S?~!.

6.3.2. Grassmann manifolds. The Grassmann manifold G(k,n) consists of
all k-dimensional vector subspaces of R”. The manifold structure on G(k,n) can
be introduced by embedding it into the orthogonal group

O(n;R) = {X ¢ M(m;R) | X7 = X1,

Each k-dimensional subspace S € G(k,n) can be identified with the orthogonal
reflection Ps € O(n;R) given by Ps(z) = x for x € S and Ps(z) = —x for x
in the orthogonal complement of S. The requirement that the correspondence
S +— Ps is a homeomorphism turns G(k,n) into a topological space. Since {Ps |
S € G(k,n)} is a closed subset of the compact Lie group O(n;R), then G(k,n) is
compact.

The group O(n; R) acts on G(k,n) in a natural way: for any S € G(k,n) and
any R € O(n; R), the subspace RS = {Rz | x € S} is an element of G(k,n). This
action is transitive. In terms of the correspondence S +— Pg, it is expressed as
RS — RPsR"™ with RT being equal to the transpose of R. The isotropy group is
H = 0(n — k;R) x O(k; R); thus dim G(k,n) = dim O(n; R) — dim H = k(n — k).

For any skew-symmetric matrix A and each S in G(k,n),

d
% (exp tA)Ps(eXp —tA) = APS — PsA = [A, Ps]
t=0

That is, X4(S) = [A, Ps| is an infinitesimal generator of the one-parameter group
of isomorphisms induced by A.
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Let P denote the set of all vector fields X 4 in G(k,n) with A in so(n; R). P is
the family of vector fields in G(k, n) subordinated to the group action of O(n;R)
on G(k,n). A description of the reachable set Az of any subfamily F C P is
obtained from Theorems 3.1 and 6.1.

Theorem 6.4.

(a) The reachable set Ag(x) of F from any point x € G(k,n) is equal to the
orbit of F passing through x.

(b) Let I' denote the set of all matrices A such that X4 is in F. Then Ar(z) =
Gz = {gzg" | g € G} with G being equal to Ar, i.e., the subgroup of SO(n; R)
generated by {exptA| A €T t € R}.

(c) F is controllable on G(k,n) if and only if G acts transitively on G(k,n).

6.4. Remarks. The controllability results of Sec. 6.1 and their application to the
group of rotations in Secs. 6.2.1 and 6.2.2 are due to Jurdjevic and Sussmann [83].

Serret—Frenet frames (Sec. 6.2.3) were studied by Jurdjevic [79]. The proof
of Theorem 6.3 on the Lie algebra generated in the control problem on SO(n; R)
with one fixed curvature can be found in [74].

The applications to Grassmann manifolds (Sec. 6.3.2) is also due to Jurdje-
vic [79].

By the argument of Sec. 6.2.1, Theorems 6.1 and 6.2 can be regarded as
results that describe the generation of compact Lie groups. Related results on
the generation of both compact and noncompact classical Lie groups can be found
in Sec. 8.6 and in papers by Crouch and Silva Leite [43], Silva Leite [132, 133,
134, 135], and Albuquerque and Silva Leite [5].

7. Semidirect Products of Lie Groups

In this section, we consider the case of a Lie group G that is a semidirect
product of a vector space V by a Lie group K. If K is compact, then com-
plete controllability results are available; in particular, if the Lie group K has no
nonzero fixed points in the space V', then the rank condition is equivalent to the
controllability. If K is not compact, then controllability conditions are obtained
by considering compact subgroups of K.

Let K and V be Lie groups, and let K act on V. Consider the semidirect
product G =V x K. The manifold G is the Cartesian product of V' and K, and
the group product in G is defined by

(01, k1) - (va, ko) = (v1 + kyve, k1ka), wvi,ve €V, ki, ky € K.

The Lie algebra L of G is the semidirect sum L(V)X\ L(K), where L(V') and L(K)
are Lie algebras of V and K, respectively. The vector space L is the direct sum of
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the vector spaces L(V') and L(K), and the Lie algebra product in L is as follows:
[(a/la b1)7 (G’?) b?)] = ([ala a2]+b1(a2)_b2(a1)7 [bla b?])a ai,ag € L(V)a bl) b2 € L(K)

Denote the projections from G onto the factors V and K by 7 and 7, respec-
tively,

T:G=>V, 1(v,k) =, veV, keK,
m:G—=K, w(vk)=k, veV, keK.

The projection 7 is a Lie group homomorphism. Denote by L(K) the Lie algebra
of K. The differential
. : L — L(K)
is a Lie algebra homomorphism.
Throughout this section, we assume that V' is a vector Lie group, i.e., a finite-

dimensional real vector space regarded as an Abelian Lie group. In addition, we
assume that the action of the Lie group K on the vector space V' is linear.

Definition 7.1. We say that v € V is a fized point under K if
Kv={gv|ge K} ={v}.
We write this as Kv = v.

Notice that the origin 0 € V' is a fixed point for any linear action on V.

7.1. K is compact and admits no nonzero fixed points in V. In this sub-
section, we prove the following result, which can be considered as a generalization
of the controllability test for compact Lie groups (Theorem 6.1).

Theorem 7.1. Let a compact connected Lie group K act linearly on a vector
space V', and let V admit no nonzero fixed points with respect to K. Then a
right-invariant system ' C L s controllable on the Lie group G =V x K if and
only if Lie(T') = L.

7.1.1. Proof of Theorem 7.1 in particular cases. Before proving the the-
orem in its full generality, we give a shorter proof for the most interesting in
applications cases G = E(n; R) = R” x SO(n;R) and G = R*™ x U(2m; R).
Proof. The rank condition Lie(I") = L is necessary for controllability of I" by
Theorem 2.3.

Assume that Lie(I') = L. Then the right-invariant system I'x = 7, (') on K
is controllable, since K is compact and connected; see Theorem 6.1. That is,

m(a) = K. (7.1)

It follows from Theorem 2.7 that it is sufficient to show that the identity e =
(0,1d) € G is contained in the interior of A. Let (x, k) be a point in the interior of
A, which is nonempty by the rank condition. In view of (7.1), there exists y € V'
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such that (y, k') is contained in A. Then (z,k)(y,k ') = (z + ky,1Id), and this
product is in the interior of A.

Denote = + ky by v. Let Q be a neighborhood of Id in K such that (v,Q) C
int A.

For any h € Q and n € N, the element (v,h)" = (v + hv +---+ h""'v, A")
is contained in the interior of A. If A" = Id and if v = hw — w for some w € V,
then v +hv+---+h""'v =0, and e = (0,1d) is contained in the interior of A. To
complete the proof, we have to show in either of the two cases (K = SO(n;R),
V =R, and K = U(2m;R), V = R*™) that for any v € V and any neighborhood
Q of Id in K, there exists an element A in €2 such that v € Im(h—1d) and A™ = Id
for some m € N.

We outline a proof for the first case; for the second one, it is similar. Let
P be a plane in R”, n > 2, that contains a given point v € R”. Then, for any
neighborhood €2 of Id in the group of rotations of the plane P, there exists a
rotation R € €2 such that R — Id is nonsingular and R™ = Id for some m € N.
Then R can be extended to R” by setting it equal to the identity on the orthogonal
complement of P in R*. Hence v € Im(R — Id) and R™ = Id.

7.1.2. Proof of Theorem 7.1 in the general case.
We first obtain several auxiliary propositions under the condition Lie(T") = L.

Lemma 7.1. 7(A) = K.

Proof. The projected system 'y = 7,(T") is a full-rank right-invariant sys-
tem on the compact connected Lie group K; hence, it is controllable on K see
Theorem 6.1.

In the next three lemmas, we study the following subset of G

T = {(v,1d) | (v,1d) € int A}. (7.2)

Lemma 7.2. T is nonempty.

Proof. By Theorem 2.4, the system I' is accessible, i.e., the interior of A is
nonempty. Take any (w, g) € int A. By virtue of Lemma 7.1, there exists v € V
such that (v,g') € A. Then

(w,g) - (v,g7") = (w+ gv,1d) € int A.

Hence T is nonempty.

Lemma 7.3.  For each (v,1d) € T, there exists an integer N > 0 such that
(A, Id) € T for all X with A > N.

Proof.  If (v,Id) € int A, then there exist £ > 0 such that ((1+A)v,Id) € int A
for all A with |A| < e. Hence ((1 + A)v,Id)" = (n(1 + A)v,Id) € int A for each
integer n > 0. Let N be any integer with N(1 + <) > 1. Then the closed real
interval [V, N + 1] has the property that (Av,Id) € int A for all A € [N, N + 1].
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But, by the semigroup property of A, the whole real ray {\ | A > N} has such a
property.

Lemma 7.4. For each (v,1d) € T and for each g € K, there exists an integer
M >0 such that (Mgv,1d) € T.

Proof. For each g € K, by Lemma 7.1, there exist vectors vy, v,-1 € V such

that (vg,¢) and (v,-1,¢9° ') belong to A. Hence (v,-1,9 1) - (vg,9) = (¢ tvy +

vg-1,1d) belongs to A.
If (v,1d) € int A, then let M > 0 be any integer such that

(v =M (v +97"v,) . 1d)
belongs to int A. Therefore,
(v =M (v +g7"0,) )" = (Mo~ (0,1 + g '0,) ,1d) € int a.
But then
(g, 9) - (Mv = (g1 + g7"v,) ,1d) - (vg-1,97") = (Mg, 1d)

belongs to int A.

Now we prove Theorem 7.1.
Proof. The rank condition Lie(I') = L is necessary for controllability by
Theorem 2.3. In order to prove the sufficiency, assume that Lie(T") = L.

By Lemma 7.2, there exists a vector v € V' such that (v,Id) € int A. Let

6:/deu,
K

where p is a Haar measure on K such that u(K) = 1. Then Ko = 9, and by the
hypothesis of the theorem, v = 0.
On the other hand, the mean [, Kvdy is contained in the convex cone

generated by the set {gv | ¢ € K}, that is why
/4
Oz@zZAjgjv for some ¢1,...,9, € K, A >0,...,), > 0.
j=1
By Lemma 7.4, there exist integers M; > 0, ..., M, > 0such that (M;\;g;v,1d) €

int A for each j = 1,...,p. Then, for M = [T}_, M, we have (M \;g;v,Id) € int A
for j=1,...,p. Thus,
7j=1 7j=1

p p
e=(0,Id) = (Mv,1d) = (Z M)\jgjv,Id> = [[(MA;g;v,1d) € int A.

By Theorem 2.7, the system I' is controllable on G.
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7.1.3. The rank condition and irreducible actions. A particular case
covered by Theorem 7.1 is the case where K acts irreducibly on V. The following
theorem deals with this case and gives a criterion that ensures that Lie(I') = L
for a given subset I of L. To this end, we consider the following construction.

Since the Lie group K acts linearly on the vector space V', the group G =
V x K acts affinely on V:

(v, k)r = kx + v, (v,k) e G, zeV.

For each M = (v,A) € L and for each x € V, {(exptM)x | t € R} is a one-
parameter group on V whose infinitesimal generator in the affine vector field
x— Ax +v.

Definition 7.2. Given a subset I' C L, then F(T') is the set of affine vector
fields on V' induced by T, i.e., X € F(T') if and only if X (z) = Az + v for some
(v, A) € T.

We denote by F,(T') the set {X(z) | X € F(I')}. Then we have the following
assertion.

Theorem 7.2. Assume that K is a connected, compact, semisimple real Lie
group that acts linearly and irreducibly on a vector space V. Let G =V x K, and
let T'C L. Then a necessary and sufficient condition for Lie(T') = L is that

(i) Lie(T'x) = Lie(m.(I')) = L(K);
(ii) Fr(T) # {0} for allz € V.

Proof. Denote by O(F)(x) the orbit of F(I') passing through = € V, i.e.,
the action of the group generated by {exptX |t € R, X € F(I')}. Let H denote
the orbit Or, i.e., the subgroup of G generated by {exptA |t € R, A € I'}. Then
O(F)(x) = Hz.

If Lie(T') = L, then H = G, since G is connected. Thus, the orbits of F(I')
passing through each point x € V are given by Gx. But Gx # x for any = € V;
therefore, for each x € V, there exists X € F(I') such that X (z) # 0. That
is, condition (ii) holds. Since condition (i) is obviously satisfied, the necessity

follows.
To prove the sufficiency, assume that (i) and (ii) hold. Let 7 be the restric-

tion of the projection 7 to Lie(T'"). Thus, 7 : Lie(T') — L(K) is a Lie algebra
homomorphism. By condition (i), 71 is onto. Since ker 7p is an ideal of Lie(I") and
since 7 is onto, it follows that ker 7p is a linear subspace of V' that is invariant
under K. By the irreducibility assumption, either ker 7 = V" or ker 7 = {0}.
If kernrr = V, then, obviously, Lie(I') = L. To complete the proof, we
show that the case kermr = {0} is impossible. If ker 7 = {0}, then Lie(T) is
isomorphic to L(K). Since K is semisimple and compact, it follows that the
integral group H of Lie(T") is compact. For any x € V, the mean & = [, hx du
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is a fixed point of H (u is a normalized Haar measure on H). Then F; = 0; this
contradicts assumption (ii). Thus, ker 7 # {0}, and the proof is complete.

7.2. K is compact and has nonzero fixed points in V. If the linear action
of a compact Lie group K has nonzero fixed points in V', then the rank condition
is no longer sufficient for controllability.

Example 7.1. Let K = SO(1;R) x SO(n;R), and let V"= Rx R". The compact
connected Lie group K acts naturally on the vector space V:

(Lg)(z,y) = (z,9y), (1,9) € K, (v,y) €V.

For this action, Kv = v if and only if v = (x,0).
We take the Lie group G =V x K and the right-invariant system on it:

I'={(v,A) |v=(2,y), >0, Aec L(K)}.
Then,
(i) Lie(T") = L and

(i) A=A{(v,9) [v=(2,9), >0, g€ K}.
Hence, T" is not controllable even though it has a full rank.

Now we obtain controllability conditions for the case where the action of
a compact connected group K has nonzero fixed points in a vector space V.
Denote by (-, -) the inner product on V' that is invariant under K, and let dy be
the corresponding metric on V. If dx denotes the left- and right-invariant metric
on K, we let dg to be the corresponding direct product metricon G =V x K:

dG((Ulagl)J (v2ag2)) = dK(glag2) + dV(vla v?)a (Ulagl)a (v2792) € G.
If (w,h) € G, then
dG((wa h)(vla gl)a (’U), h) (1}27 92)) = dG((w + hvla hgl)a (’U} + h’l)g, hg?))
= dg (hg1, hga) + dy (hvi, hva) = dk (g1, g2) + dv (v1, v2).

Thus, dg is left-invariant.
We denote

Vi ={veV|Kv=u},
Vo= Vi

It follows from the definitions of the subspace Vi that for any X € L(K) and for
any v € V;, we have Xv = 0. Moreover, if X € L(K) and w € V5, then

(v, Xw) = —(Xv,w) =0 for all v € V.

Thus, both V7 and V5 are invariant under elements of L(K). Let P denote the
orthogonal projection of V' onto V;. Recall that 7 is the canonical projection of
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G onto V; thus, 7, is the projection of L onto V. Denote by I'y the projection
7.(T') of a right-invariant system I" C L. We now have the following

Theorem 7.3. Let a compact connected Lie group K act linearly on a vector
space V. Then a right-invariant system I' C L s controllable on the Lie group
G =V x K if and only if

(i) Lie(l') = L and

(i) the convex cone spanned by P(T'y) is equal to V.

Proof. We first prove the necessity. If (a, A) € T, then (a,A) = (a1,0) ®
(ay, A), where a; = Pa and ay = a — ay; the sign @ means that the elements
(a1,0) and (az, A) commute. Hence

expt(a, A) = (a1t,1d)(as(t),exptA), where ay(t) € V5 for all ¢

since AV, C V5.
It is now clear that if Y = (b, B) is one more element of T', then

exp ta(b, B) - exp t1 (a1, A)
= (a1t1 + bltg, Id) (bg(tg) + (exp tQB)ag(t), exp tQB - exp tlA)

Thus, the projection of A onto V] is equal to the convex cone spanned by P(I'y).
If T" is controllable, then such a cone should be equal to V.
To prove the sufficiency, assume that Lie(T') = L and co(P(Ty)) = V3.
Let
Tr = {(v,1d) | (v,1d) € int A}

as above. By Lemma 7.2, the set Tt is nonempty. If (z,Id) € T, then let
w = [ Kzdp, where p is a normalized Haar measure on K. We have Kw = w;
hence, w € V;. If w = 0, then, as in the proof of Theorem 7.1, it follows that
(0,1d) € Tr and A = G.

If w # 0, then there exists a positive integer N such that (v,Id) € Tt for
v = Nw. Indeed, w belongs to the convex cone spanned by the orbit Kv. Thus,
w = Z?:l Ajg;v for some elements g; ..., g, in K and positive numbers Ay, ...,
Ap. By Lemma 7.4, there exist integers M, such that (M;\;g;v,1d) € Tr. The
required integer N can then be taken to be equal to H?:1 M;.

Now we show that there exists A > 0 such that both Av and —Av belong
to int Aeo(ry. Since co(P(T'v)) = Vi, there exists an element of co(I") of the form

X =(—v+u,A), where u € V3 and A € L(K), and
exptX =expt(—v+u, A) = (—vt + u(t),exptA), where u(t) € V5 for all t.

Since (v,Id) € Tr C intA, it follows that some ball B((v,Id),e) of radius &
centered at (v,Id) is contained in int A. From the left-invariance of the metric dg,
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it follows that B((exp?X)(v,Id),¢) is contained in int A, (ry. Now K is compact;
hence, there exists time ¢ > 1 such that dx(exptA,1d) < e. Therefore,

da(((1 = t)v+u(t),Id), ((1 — t)v + u(t),exptA)) < e.
Thus,
(exptX)(v,Id) = ((1 — t)v + u(t),Id) € B((exptX)(v,1d),e),

and hence,
((1 - t)?) + u(t), Id) € Tco(F)-

Now, [x K((1 —t)v+u(t))du = (1 —t)v, and by a preceding argument, it follows
that (M (1 — t)v,Id) € Teo(ry for some positive integer M. Since M (1 —1t) < 0,
it follows from Lemma 7.3, that there exists a sufficiently large A > 0 such
that both Av and —Av are in Tior). Since Tory is a semigroup, it follows that
(0,1d) = (Av,1d) - (=Aw,Id) is in Teory. Thus, Teoqry contains the identity of G.
This shows us that A,y = I'. But Acory C cl A; consequently, cl A = G. Together
with the assumption Lie(T') = L, this implies that the system T" is controllable;
see Theorem 2.8.

7.3. Semidirect product of a vector space with an arbitrary Lie group.

Theorem 7.4. Let H be a connected Lie group that acts linearly on a finite-
dimensional real vector space V', and let G =V x H. Assume that H contains a
compact group K that has no nonzero fized points in V. Then a necessary and
sufficient condition for a right-invariant system I C L to be controllable on G s
that

(i) Lie(T') = L and

(ii) Ty = m.(T) is controllable on H.

Proof. The conditions of the theorem are obviously necessary. To prove
the sufficiency, assume that conditions (i) and (ii) hold. By Theorem 2.4, the
full-rank system I' is accessible, i.e., int A is nonempty. If (v,g) € int A, then,
by condition (ii), there exists w € V such that (w,¢g™') € A. Thus, (v,g) -
(w,g7') = (v+ gw,Id) € int A. Hence the set T" defined by (7.2) is nonempty.
If (v,1d) € T, then the element w = [, Kvdp is invariant under K, and hence,
w = 0. The rest of the proof is the same as in the proof of Theorem 7.1. Hence,
e=(0,Id) € T C int A, and thus, A = G by Theorem 2.7.

The following example shows us that without any assumption on the compact
subgroup K, conditions (i) and (ii) do not in general guarantee the controllability.

Example 7.2. Let H = SOy(n, 1) be the connected component passing through
the identity of the Lorentz group in R”. This group, as a subgroup of GL(n+1; R),
acts linearly on V' = R**!. Consider the Lie group G = V x H. Let C be the
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light cone of H in V, and let I' = C'X\ L(H). Then conditions (i) and (ii) are
satisfied, but the attainable set is A = C' x H # (. In this case, the maximal
compact subgroup K of H is equal to SO(n; R) x SO(1;R), which has many fixed
points in V.

7.4. Homogeneous spaces.

7.4.1. Serret—Frenet frames in R*. The Serret—Frenet system associated with
a curve z(t) in R® (see Sec. 6.2.3) is given by

0 —k 0
d dR
Y _RWe, Z=rW)|k 0 -7 |.
dt dt

0 7 0

If both the curvature k£ and the torsion 7 are constant, then

(8

is the axis of rotation for

0 -k 0
A=k 0 -1
0 7 0

Then exptA is the rotation about w by the angle tv/72 + k2, and x(¢) is a helix
along w.

Assume now that we consider curves whose curvature £ = const # 0 and
whose torsion can take two distinct values, 74 and 7. Such curves are concate-
nations of helices along

T T
wi=1 0 and wy =1 0 |.
k k

The corresponding family of left-invariant vector fields on the Euclidean group
G = E(3;R) = R® x SO(3;R) is ' = {(e;, A4), (e, B)} C ¢(3;R) = R* X s0(3; R)

with
0 -k O 0 -k O
A=k 0 -7 and B=| k 0 -—-7m |.
0 5t 0 0 T2 0

It follows that Lie(T') = R® X\ s0(3; R) because of the following calculations:
(e1,4) = (e1, B) = (11 = 1) (0, 4y)

and
[(e1, A), (€1, B)] = (11 — 72)(0, A2),
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where we denote
Ay = E3p — By, Ay =FE3—Ey, Az =Ey — Eis.

Then [(0, A1), (0, A3)] = (0, A3), and therefore, (0,s0(3;R)) C Lie(T"). Hence we
obtain (e, 0) € Lie(T'), and then, [(e1,0), (0,s0(3;R))] = (R*,0) C Lie(T"). Thus,
Lie(T') = R® X so(3; R) = ¢(3; R).

According to Theorem 7.1, any initial point 7, € R* and any initial frame at
7o can be connected with any terminal point z; € R* and any terminal frame at
x1 along the integral curves of the left-invariant family I' in G = E(3; R).

7.4.2. Serret—Frenet frames in R”. Results of the previous subsubsection are
generalized to curves in R” that have all curvatures, except for one, to be fixed,
while the remaining free curvature can take any positive value. Indeed, according
to Theorem 6.3, the matrices A and B that correspond to such a case generate
either so(n; R) or u(2m;R). The corresponding control system in G is given by

I'={(e1,A+uB) | u> 0}.

We will show now that Lie(I') = R* X\ L(K) with L(K) equal to the Lie algebra
of either K = SO(n;R) or K = U(2m;R). By Theorem 6.3, the projection

mp @ Lie(T') — L(K), (a, A) — A,

is onto. On the other hand, ker 7 cannot be equal to zero, since otherwise Lie(T")
would be isomorphic to L(K); this is impossible, since, for the system I', A is not
contained in any compact subgroup of G = R* x K. Thus, (a,0) € Lie(T") for
some a € R, a # 0. The multiplication rule in R* X L(K),

[(Ua O)a (ba B)] = (—BU, O)a

implies that ker 7rp is an ideal in L. Taking into account that Im 7 = L(K') and
L(K)a = R", we obtain Lie(T") = L.

Therefore, Theorem 7.1 is applicable, and the corresponding controllability
conclusions for curves in R” follow as in the previous subsubsection.

7.4.3. Affine systems on R". Consider the single-input affine system
& =Ar+a+u(Br+0), r€R", uelUCR, (7.3)

where A and B are real n x n matrices; a and b are vectors in R".
Equation (7.3) can be regarded as a part of a larger system defined as follows.
Denote by H the orbit of the right-invariant system

{A4+uB|ueU} Cgl(n;R) (7.4)

in GL(n;R). The elements X = (a, A) and Y = (b, B) belong to the Lie algebra
L =R"\L(H) C aff(n; R) of the Lie group G = R" x H C Aff(n; R); we denote by
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L(H) the Lie algebra of H; it is the subalgebra of gi(n;R) generated by set (7.4).
Thus,
F={X+uY|ueU}CL

can be considered as a right-invariant control system on G. The affine system (7.3)
is induced by the system I'. Moreover, the affine action of the Lie group G is
transitive on R”, since GG contains all translations. By Corollary 3.3, if the right-
invariant system I is controllable on the Lie group G, then the affine system (7.3)
is controllable on R™.

By construction, for the system I'y = m,(T") projected onto H, we have
Lie(T'gy) = L(H). That is why, by Theorem 7.4, the right-invariant system I'
(and consequently, the affine system (7.3)) is controllable if

(i) either H is compact, or I'y is controllable on H, and

(i) Lie(I') = L.

7.5. Remarks. The results of Secs. 7.1-7.3 are due to Bonnard, Jurdjevic,
Kupka, and Sallet [28].

The proof of Theorem 7.1 for the particular cases G = R” x SO(n;R) and
R*™ x U(2m;R) in Sec. 7.1.1 and the applications in Sec. 7.4 were developed by
Jurdjevic [79].

One of the early results on controllability of right-invariant systems on the
Euclidean group was obtained by Sallet [124]. This proposition obviously follows
from Theorem 7.1:

Theorem 7.5. Let X; = (a,A), Xy = (b, B) € R" X s0(n;R) be right-invariant
vector fields on the Lie group G = E(n;R). Then a sufficient condition for the
system T' = { X1, Xu} to be controllable on G is

(i) Lie(X1, Xo) = L and

(ii) a € Im A and b € Im B.

8. Semisimple Lie Groups

A Lie algebra L is called semisimple if it contains no nonzero solvable ideals.
A Lie group G is called semisimple if its Lie algebra L is semisimple. A Lie
algebra L is called simple if it contains no nontrivial (i.e., distinct from {0} and
L) ideals. A semisimple Lie algebra is a direct sum of its simple non-abelian
ideals.

In this section, we assume that L is a real finite-dimensional semisimple Lie
algebra.
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8.1. Preliminaries.
8.1.1. Regular elements. For any element B € L, the adjoint operator
adB: L— L, adB(C)=[B,C], Ce€lL,
is defined. A Lie algebra L is semisimple if and only if the Killing form
Kil : Lx L — R, Kil(A4, B) =tr(ad Ao ad B)

is nondegenerate.
The roots of the characteristic polynomial

Pg(t) =det(ad B — t1d) = (—1)"t" + a1 (B)t" " + aa(B)t" * + - - - + a,(B),
n =dim L,

are eigenvalues of the operator ad B, B € L, and a;(B), ..., a,(B) are forms
on L. Since ad B(B) =0, we have a,(B) = 0. The smallest number r such that

pyi1 =0, Gp_p12=0, ..., a, =0, but a,_,Z0,

is called the rank of the Lie algebra L and is denoted by rk L. An element B € L
is called regular if
an—r(B) #0, r=rkL.

For a regular element B, zero 0 € C is an eigenvalue of the adjoint operator ad B
with the multiplicity r; thus,

dim(kerad B) = rk L.

The set of regular elements is open and dense in L.

8.1.2. Weyl basis and normal real form. Let £ be a finite-dimensional
semisimple Lie algebra over C. Let Ly be the Cartan subalgebra of L, i.e., a
nilpotent subalgebra that is its own normalizer in £. Denote by R the set of
nonzero roots of £ with respect to L. Then there is a decomposition of L into
the direct sum

L=Ly®Y "{Lq| o€ R}

where L., a € R, are root spaces, which are one-dimensional.
For any a € R, there exists a unique element H, € Ly such that

Kil(H, H,) = «(H) for all H € L,.
Define the following subspace of Ljg:
L(0) = Y "{RH, | a € R}.

We have
Ly = L(0) & iL(0).
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One can identify R with the dual space L(0)* of L(0) and then introduce an
ordering of roots in R induced by some vector space ordering of L(0)*. A positive
root is called fundamental if it cannot be written as a sum of two positive roots.
Denote by AT the set of fundamental roots.
For any root o € R, there exists an element E, € L, such that Kil(E,, E_,) =
1, and for all o, 8 € R,
[Eon Efa] = Ha;
[H,E,] = a(H)E, forall H€ Ly,
|0 ifa+p3¢R,
[Ea,Eﬁ] - { NaﬁEa+ﬁ if o + 3 €R,
where N,g are some real constants. The system
H,, ac A", E,, a € R
is called a Weyl basis of £ with respect to Lyg.
The subspace
L=L(0)&Y "{RE, |a € R} (8.1)
is a normal real form of the complex Lie algebra £; it is unique up to an isomor-
phism.

8.1.3. Strongly regular elements. Any element A € L admits a unique
decomposition

A=A(0)+ > {kaEs | @ € R}, (8.2)
where
A(0) € L(0), ko€ R
Remark. An element B € L(0) is regular if and only if the elements «(B) are
nonzero for all « € R.

It turns out that the following two variations of the regularity property are
relevant in controllability questions.

Definition 8.1. An element B € L is called strongly regular if

(i) B is regular and
(ii) every nonzero eigenvalue of ad B is simple.
Definition 8.2. Given A € L with A ¢ L(0) and B € L(0), the element B

is called A-strongly regular if the elements «(B) are nonzero and distinct for all
« € R such that k, # 0 in decomposition (8.2).

Remark. To compare strong regularity and A-strong regularity, we notice that
an element B € L(0) is strongly regular if and only if the elements «(B) are
nonzero and distinct for all roots o € R.

38



8.1.4. Root decompositions along eigenspaces of a strongly regular
element. Choose and fix a strongly regular element B € L.

The complexification L. = L ®g C is a complex semisimple Lie algebra. The
adjoint operator in L, is defined by

adB : L.— L., ad.B(C)=[B,C], C € L..
By the strongly regular property of B, the space
Ly =kerad, B

is the Cartan subalgebra of L.. Denote by Sp(B) the subset of C of all nonzero
eigenvalues of ad B. Notice that there is an isomorphism

R — Sp(B), a — «o(B) (8.3)

between Sp(B) and R, the set of roots of L, with respect to the Cartan subalge-
bra Ly. That is why we can denote the root spaces

L,, a€R,

by
L,, a=«a(B) € Sp(B).

Notice that Lz = o(L,), a € Sp(B), where @ is the complex conjugate to an
eigenvalue a and o is the conjugation in L, with respect to L.
For a € Sp(B), consider the real space

L(a) = (L, + Lz) N L.

Notice that
dimL(a) =1 if a € R;

in this case, L(a) is the eigenspace of ad B corresponding to the eigenvalue a, and
dim L(a) =2 if a ¢ R;

then L(a) is an invariant subspace of ad B. Thus, we obtain the following decom-
positions into direct sums of eigenspaces and invariant spaces:

L.=kerad. B® Z@{La | a € Sp(B)},
L=%eradB® Y “{L(a) | a € Sp(B), Ima > 0}. (8.4)
Then any element A € L. has a complex decomposition
A=A+ {4, |a€Sp(B)}, Ag€kerad. B, A, € L, (8.5)
and any A € L has a real decomposition

A=A0)+> {A(a) | a € Sp(B), Ima > 0},
A(0) € kerad B, A(a) € L(a). (8.6)
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8.2. Homogeneous systems. Now we turn to controllability conditions for
right-invariant systems on semisimple Lie groups.

First of all, in semisimple Lie algebras, the rank condition is generically
satisfied.

Theorem 8.1. If L is semisimple, then the set S of all pairs (A, B) in L x L
for which the Lie algebra generated by A, B is equal to L is an open and dense
subset of L x L.

Proof. If Lie(A, B) = L, then the homogeneous system {+A, £ B} is control-
lable on G. But controllable right-invariant systems remain controllable under
small perturbations (see Theorem 2.10); thus S is open.

To show that S is dense, take any strongly regular element B € L and any
element A in L for which A(a) # 0 for a € Sp(B) in decomposition (8.6). Such
pairs form a dense subset of L x L, and each pair (A, B) belongs to S.

In the semisimple case, homogeneous systems are naturally treated more
casily, as well as in the general case (see Sec. 5).

Theorem 8.2. Let G be a semisimple connected Lie group. Then, for a generic
pair of elements A and B in L, the system T' = {+A, +B} is controllable on G.

Proof. For a generic pair of elements A and B in the Lie algebra of G, the
elements A and B generate this Lie algebra; see Theorem 8.1. By Theorem 5.2,
the homogeneous system I' is controllable.

8.3. Multiple-input nonhomogeneous systems. In the case of unbounded
control range, the result for multiple-input nonhomogeneous systems is an easy
consequence of the proposition from the previous subsection on homogeneous
systems.

Theorem 8.3. Let G be a semisimple connected Lie group. Then, for generic
elements A, By, ..., By, € L, the system T' = {A+ X", w;B; | u; € R} is con-
trollable on G.

Proof. The vector space span(By,..., B,,) is contained in the Lie satu-
rate LS(I"). By Theorem 8.1, the set of all m-tuples of right-invariant vector
fields (By,. .., By,) that generate L is open and dense. Each system I' with such
By,...,B,, is controllable independently of the drift vector field A.

8.4. Single-input nonhomogeneous systems. Now we consider a much more
complicated case of systems of the form I' = A + RB.

8.4.1. Statement of theorems. We endow the complex plane C with the
lexicographic ordering: a > b if Rea > Reb or Rea = Reb and Ima > Im b.

Definition 8.3. An eigenvalue a € Sp(B) is called mazimum (resp. minimum)
if, for any b € Sp(B), b > 0 (resp. b < 0), we have [L,, L,] = {0}.

([La, Ly) is the vector space generated by the brackets [X,Y], X € L,, Y €
Ly.)
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Theorem 8.4. Let G be a semisimple connected Lie group with a finite center
and Lie algebra L. Then, for A,B € L, the system I' = A 4+ RB is controllable
on G if the following conditions hold:

(1) B is strongly regular;
(2) Lie(A, B) = L;

(3) let A = Ay + >{A. | a € Sp(B)} be the decomposition of A along the
eigenspaces of ad. B; see (8.5). Then As # 0 if s is either mazimum or
minimum;

(4) if s € Sp(B) is mazimum and the real part r = Re s is a nonzero eigenvalue

of ad. B, then Kil(A4,, A_,) < 0 provided that L, and Ly belong to the same
stmple ideal of L.

Remark.  All the conditions (1)—(4) define semialgebraic subsets of L x L.
Moreover, the subsets defined by (1)—(3) are open and dense in L x L.

To approach the proof of Theorem 8.4, consider systems [I' C L satisfying
the following conditions:

(A) T is a wedge, i.e., a closed convex positive cone;

(B) the largest vector subspace E(T") contained in ', which is called the edge
of I, is a Lie subalgebra of L;
(C) for any X € E(T") and for any ¢ € R, exp(tad X) maps [ into itself;
(D) E(T') contains a strongly regular element B;
(E) if s € Sp(B) and s is maximum (resp. minimum), then there exists a
vector X (resp. X_) in I" such that X, (s) # 0 (resp. X_(s) # 0);

(F) if r € Sp(B) is the real part of a maximum eigenvalue s and if L, and
L, belong to the same simple ideal of L., then there exist X, X_ € I' such that
Kil(X(r), X_(—r)) < 0.

Remark. Hypotheses (A), (B), and (C) mean that I" is a Lie wedge; see Sec. 4.

Theorem 8.5. If a system I' C L satisfies conditions (A)—(F) and if Lie(T') = L,
then T" is controllable on G.

The following more general result holds.

Theorem 8.6. If a system T' C L satisfies conditions D), E), F), and if
Lie(T') = L, then T is controllable on G.

Proof. The Lie saturate LS(T") satisfies the assumptions of Theorem 8.5.
The main controllability result for semisimple Lie groups, Theorem 8.4, easily

follows from Theorem 8.5.
Proof. The Lie saturate LS(T") satisfies all the hypotheses of Theorem 8.5.

For example, to show that £B € E(LS(I")), consider the limits lim, ,4.(A +
uB)/|u| = £B; by property (A), these limits belong to LS(T").
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8.4.2. Proof of Theorem 8.5. Let Sim(L) (resp. Sim(L.)) denote the set of
all simple ideals in L (resp. L.). Then we have the following direct Lie algebra
decompositions:

L=Y"{|TesSim(L)}, L.=3"{5]|S¢€Sim(L)}

The conjugation o : L. — L, permutes the elements of Sim(L.). The
connection between Sim(L) and Sim(L,) is as follows:

(1) Sim(L) ={(S+0oS)NL|S € Sim(L,)};

(2) if ¥ € Sim(L) and X. denotes its complexification, then either X, €
Sim(L.) (inner case) or ¥, = 51 @ Sy, Si, S € Sim(L,) (outer case). In the outer
case, X induces a real Lie algebra isomorphism S; — Sy and ¥ can be identified
with the graph of o in S} & S, i.e., ¥ = {(x,0(x)) | z € S1}.

Let B € L be a strongly regular element in L. The Cartan subalgebra
Ly = kerad, B of L, splits:

Lo=Y""{LynS|S € Sim(L,)}.

Each Ly N S is a Cartan algebra of S. The root system R of L. is the union of
the root systems Rg, S € Sim(L,).
In view of bijection (8.3), we write L, and L(«) instead of Ly(py and L(a(B)).

The conjugation o acts on R as follows: o(a)(X) = a(0(X)), where X € L..

Definition 8.4. We endow RU{0} with the total order structure pull back of the
order structure on Sp(B)U{0} by the bijection & € RU{0} — «(B) € Sp(B)U{0}.

Definition 8.5. A root o € R is mazimum (resp. minimum) if a(B) € C is
maximum (resp. minimum) in the sense of Definition 8.3.

This is equivalent to the classical definition: « is maximum (resp. minimum)
if « + 3 ¢ R whenever 3 € R and > 0 (resp. § < 0).

Let S € Sim(L.) be a simple component of L. and s (resp. —s) its maximum
(resp. minimum) root.

Definition 8.6. Denote by R the set of roots & € Rg such that a +sor a—s
is a root. RY will denote the complement Rg \ (Rg U {s, —s}).

Proposition 8.1. (1) If a, 3 € Ry have the same sign and if « + 3 € Rg, then
a+ g€ {s,—s}.

(2) Ifa € Ry, B € Rs and a+ 3 € Rg, then a+ 3 € Ry and a and a + 3
have the same sign.

(3) If a, B € R, and o + B € Rg, then o+ 3 € RY.

Corollary 8.1. (1) If o, € R have the same sign, then, for all v € RY such
that o+ B+ v € Rs and either a+y or 3+ is a root, a« + [ + v € {s, —s}.
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(2) If « € Ry, B,7 € RY, a+ B+ v € Rgs, and at least one of three linear
forms a+ 3, B+, and a+y is a root, then a+ 3+~ € Ry and o and o+ B+
have the same sign.

Now we explain the main idea of the proof of Theorem 8.5 in the case of a
simple Lie algebra L.

Denote by L' the Lie algebra generated by {L, | &« € R U {+£s}}. Consider
the Lie algebra I generated by elements X of L’ such that RX C I.

I is nonempty; if we show that it is an ideal of L, then we obtain I' = L.

To prove that I is an ideal, we verify that the generators X («) of I and
Y () of L are such that [X(«),Y ()] € I. This is mainly obtained on the basis
of the properties of the sets of roots Ry and RY given by Proposition 8.1 and
Corollary 8.1.

In the case of a semisimple Lie algebra L, the idea of the proof of Theorem 8.5
is analogous.

8.5. The special linear group. The Lie group G = SL(n;R) is simple and has
a trivial center; thus, the results of the previous subsection can be applied.

Take any A, B € sl(n; R) and consider the right-invariant system I' = A+RB
on the group SL(n;R). The eigenvalues of ad B are differences of eigenvalues of
B. Let A1, ..., A\, denote the (possibly complex) eigenvalues of B. Strongly
regular elements in s((n; R) are characterized by the inequalities

Ni— N FE X e — N, {i g #E kL 1 #£

The eigenspace L, of ad B corresponding to a real eigenvalue a = A\, — \; €
Sp(B) consists of all matrices of the form b; ® ¢;, where b; and ¢; are respectively
eigenvalues of B and its transpose BT, i.e., Bb; = \;b; and BT¢; = Ajc;. If an
eigenvalue a € Sp(B) is complex, then @ is also an eigenvalue and L, is the two-
dimensional vector space spanned by Re(b; ® ¢;) and Im(b; ® ¢j). The eigenspace
Ly that corresponds to a zero eigenvalue consists of all matrices that commute
with B.

8.5.1. The special linear group in dimension 2. Consider two examples,
which are generic for the group SL(2; R).

0 1
s=( % 5)-
The eigenvalues of B are \; = ¢ and Ay = —i; hence the nonzero eigenvalues
of the adjoint operator ad B are Sp(B) = {+£i}. The unit eigenvectors of B are

by = (e1 +iey)/V/2 and by = by = (e; — ies)/V/2, where {e1,es} is the canonical
basis in R%. Since BT = —B, it follows that ¢; = b, and c; = b;. Thus,

171 4 1 1 —1
b1®02:§<i _1>andb2®01:§<_i _1>

Example 8.1. Let
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The linear hull of the matrices

Re(by ® ¢3) :%<(1) _01 ) and Im(b; ® ¢) :%< [1) (1) )
is the two-dimensional vector space of 2 x 2 symmetric matrices with zero trace.
Hence decomposition (8.4) induced by B is the classic decomposition of matrices
into the symmetric part and antisymmetric part.

Now we verify conditions of Theorem 8.4. The matrix B is a strongly regular
element of the Lie algebra s((2;R). Condition (3) means that the matrix A has
a nonzero symmetric part. Under this assumption, A and B generate sl(2;R) as
a Lie algebra. Finally, condition (4) is absent. Consequently, by Theorem 8.4,
the system I' = A + RB is controllable on SL(2; R) if the matrix A is not skew-

symmetric. This condition is also necessary for controllability: if AT = —A, then
the rank condition for I' is violated.

Example 8.2. Now consider the case of

p=(54)

The eigenvalues of B are +1 and Sp(B) = {#+2}. The corresponding eigenspaces
of ad B are one-dimensional and are spanned by

01 00
€1®62:<0 0) and62®61:<1 0).

We use B, e; ® 5, and e ® e; as the basis for decomposition (8.4) and write any
matrix A = (a;;) as A = a11B + ajze; ® ez + azea ® e;.

By Theorem 8.4, the system I' = A + RB is controllable on SL(2;R) if
a12a91 < 0. On the other hand, if a12a9; > 0, then I' is not controllable, since, in
this case, the bilinear system induced by I' has invariant quadrants in R?.

Remark. The preceding two examples are exhaustive for SL(2;R), since any
matrix B € sl(2;R) with a nonzero spectrum is similar to one of the matrices

(—Ob 8) (8 _0b>,bE]R\{()}_

Using the control scaling u — u/b, any system I' = A + RB on SL(2;R) with
det B # 0 can be reduced to the systems considered in the previous two examples.

Now we return to the general case in SL(n;R). If a strongly regular element
B has a real spectrum, then B can be diagonalized. The eigenspaces of ad B are
then one-dimensional spaces spanned by the matrices e; ® e; = E;;, where ey, ...,
e, is the standard basis in R". The maximum eigenvalue of ad B is the largest
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difference between the diagonal elements of B, and the minimum eigenvalue is

negative. Rearranging the base vectors e;, we can put the diagonal elements of

B in the ascending order A\; < Ay < --- < A,. Then condition (4) in Theorem 8.4

takes the form ay,a,1 < 0, where a;; is the general entry of the drift matrix A.
This argument leads to the following result.

Theorem 8.7. Let n X n real matrices A = (a;;) and B with zero trace satisfy
the conditions:

(1 A1nln1 < 0;

)
(ii) B = diag(by,...,by);
)

(iV bl — bj 7é bk — bm f07’ (Z,]) 7é (k,m)

Then the system I' = A 4+ RB is controllable on the group SL(n;R) if and only if
the matrix A is permutation-irreducible.

Recall that an n x n matrix A is called permutation-reducible if there exists
a permutation matrix P such that

-1 . Al A2
P AP_<O )

where Az is a k x k matrix with 0 < k£ < n. An nxn matrix is called permutation-
irreducible if it is not permutation-reducible. Permutation-irreducible matrices
are matrices having no nontrivial invariant coordinate subspaces.

8.5.2. The conjecture of Jurdjevic—Kupka. In the case of strongly reg-
ular elements B with real eigenvalues, Theorem 8.4 covers the case of a skew-
symmetric drift term A. From this point of view, the case where both A and B
are symmetric is at the other end of the spectrum created by Theorem 8.4.

Conjecture 8.1. If matrices A, B € sl(n;R) are symmetric, then the right-
invariant system I' = A 4+ RB is not controllable, neither on SL(n;R) nor on

R™ \ {0}.
In dimensions n = 2,3, this conjecture is easily proved by constructing in-
variant quadrants or octants for the induced bilinear system

t=Ar+uBz, zeR'\{0}, ueR (8.7)

For n > 3, the question remains open. A partial confirmation of the preceding
conjecture in arbitrary dimensions under some additional assumptions is given
by computing all invariant orthants of bilinear systems in R".

8.5.3. Invariant orthants of bilinear systems. Let A, B;,...,B,, be ar-
bitrary real n x n matrices. In this subsubsection, we present a criterion for a
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bilinear system

& =Ax+ > wBix, ze® \{0}, wu €R (8.8)

i1=1

to have invariant orthants. This result implies a partial confirmation of Conjec-
ture 8.1.
First, we give the necessary notation and definitions. The set of indices

Yp={o=(o1,....00) |y =%1Vi=1,...,n}
will be used for parametrization of orthants, i.e., sets of the form
R ={z=(z1,...,2,) ER" |20, >0Vi=1,...,n}.

A subset of the state space is called positive (negative) invariant for a vector field
or a control system if all trajectories of the field or the system starting in this
set (resp., its complement) do not leave it (resp., its complement) for all positive
instants of time.

Remark. A system is globally controllable iff it has neither positive nor negative
invariant sets (except the trivial ones, the whole state space and the empty set).
Thus, conditions for existence for nontrivial invariant sets are sufficient conditions
for global noncontrollability.

Definition 8.7. An nxn matrix A = (a;;) is called sign-symmetric if a;;a;, > 0
forallz,j =1,...,n.

Construction 8.1. For any sign-symmetric n X n matrix A, we construct the
graph H(A) by the following rule. The graph H(A) has n vertices 1,2,...,n. Its
vertices i, j, i # j, are connected by the edge (i,7) if and only if at least one of
the numbers a;; and aj; is nonzero. We take into account only edges that connect
distinct vertices of the graph H(A); self-loops are thus explicitly excluded from
consideration. Every edge (7,7) is marked by the sign + or — : if a;; > 0 and
aj; > 0, then the sign + is applied, and if a;; < 0 and a;; < 0, then we apply
— (there can be no other combinations of signs by virtue of sign-symmetry of
A). The marked edges are called positive or negative depending on the sign + or
— . For the graph H(A), we define the following function s(i, j), i,7 = 1,...,n,
i # j: s(i,j) = 0 if the vertices 7,j are not connected by an edge in H(A),
s(i,7) = 1 for the positive, and s(i,j) = —1 for the negative edge (4,7j) in the
graph H(A). A loop (i.e., a closed path composed of edges) of a graph is called
even (odd) if it contains an even (resp. odd) number of negative edges. A graph
satisfies the even-loop property if all its loops are even.

Remark. If a graph H satisfies the even-loop property, then there is a subset
V' of the set of its vertices such that:
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(a) any negative edge of the graph H has exactly one vertex in V;

(b) any positive edge of the graph H has either 0 or 2 vertices in V.

In other words, such a graph H is bichromatic: its vertices can be colored in
two colors so that odd edges connect vertices of distinct colours, and even edges
connect vertices of coinciding colours; the first color corresponds to the set V' and
the second one to its complement.

Construction 8.2. Assume that a graph H satisfies the even-loop property
and V is any subset of the set of its vertices that satisfies the previous conditions
(a) and (b). Then the index of the graph H corresponding to the set V' is the set
o= (01,...,0,) € %, defined as follows: 0; =+1ifi ¢V and o, = —1ifi € V.

Theorem 8.8. Let A, By,..., By be n x n matrices. The bilinear system (8.8)

has positive (negative) invariant orthants if and only if the following conditions
hold:

1. the matriz A is sign-symmetric;
2. the matrices By, ..., By, are diagonal,
3. the graph H(A) (resp. H(—A)) satisfies the even-loop property.

Then positive (negative) invariant orthants are R}, where o is any index of
the graph H(A) (resp. H(—A)), and their number is equal to 2¢, where ¢ is the
number of connected components of the graph H(A).

If system (8.8) has no invariant coordinate subspaces (in particular, if this
system satisfies the rank condition everywhere in R" \ {0}), then it has either 0
or 2 invariant orthants.

Proof.  The outline of the proof of Theorem 8.8 is as follows. System (8.8) has
invariant orthants if and only if the matrices B;, i = 1,..., m, are diagonal and
the linear vector field Ax has invariant orthants. The search for these orthants is
based on two ideas. First, it is common knowledge that the positive orthant

R = {2 =(x1,...,0,) ER" |2, >0Vi=1,...,n}

is positive invariant for the field Ax if and only if all off-diagonal entries of the
matrix A are nonnegative. Second, if the field Az has an invariant orthant, then
successive changes of coordinates (zy,...,z; ..., x,) — (T1,..., =%, ..., Ty) In
R" map this orthant onto R}. During this process, we can keep track of signs
of entries a;; of the matrix A and obtain conditions for existence of invariant
orthants in terms of sign combinations of a;;. These conditions are conveniently
expressed in terms of the graph H(A) that corresponds to the matrix A as given
in Theorem 8.8.

Theorem 8.8 is related to Conjecture 8.1, since there exists an orthogonal
transformation of R” that diagonalizes a symmetric matrix B; then a symmetric
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1 L 4

Fig. 1. The graph H(A).

matrix A turns into a symmetric one. That is why we can assume that B is
diagonal and A is symmetric.

Theorem 8.8 implies that Conjecture 8.1 holds in dimensions 2 and 3: in fact,
for these dimensions, if A is sign-symmetric and B is diagonal, then system (8.7)
has a positive or negative invariant orthant. Even for n = 4, there are symmetric
matrices A for which the field Az and system (8.7) have no invariant orthants (see
the example below). Here the question of global controllability, i.e., of absence of
any invariant sets, is left open. But for symmetric matrices A with at least one
of the graphs H(A), H(—A) satisfying the even-loop property, Conjecture 8.1 is
valid. However, in these cases not the symmetry but the sign-symmetry of A is
essential.

Example 8.3. Let A = (a;;) be any 4 x 4 matrix of the form
0 +
+ 0
*

+
*
+
0

+ o 4+ %

— %

i.e., ay9, 091, Q14, G41, Qo3,a30 > 0, asg,a43 < 0, @13 = az; = agy = age = 0, and
diagonal entries are arbitrary. The corresponding graph H(A) is given in Fig. 1.
The only loop (1,2, 3,4) is negative in both graphs H(A) and H(—A).

That is why, for any 4 x 4 diagonal matrix B, system (8.7) has no invariant
orthants. But the question of global controllability of this system (if it has a full
rank) seems to be open. These statements remain stable under small perturba-
tions of the matrix A.

8.6. Classical Lie groups.

8.6.1. Complex simple Lie algebras. Let M(n;C) denote the set of all n x n
complex matrices, and let o(n; C) be the subset of all diagonal matrices in M(n; C).

The Lie algebra gi(n; C) is the vector space M(n;C) endowed with the matrix
commutator [A, B] = AB — BA as a Lie bracket.
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The Lie algebra sl(n; C) is a subalgebra of gl(n; C) consisting of all matrices
with zero trace:

sl(n;C) = {A € gl(n;C) | trA = 0}.
The subalgebra

sl(n; C) Na(n; C) = {diag(ay,...,a,) | a1 +---+a, =0}

is a Cartan subalgebra of si(n; C). The algebra si(n; C) is called an algebra of the
type A, [ =n — 1.

Let (-,-) be a nonsingular symmetric bilinear form on C*. The Lie algebra
so(n; C) consists of all endomorphisms A of C* such that

(Az,y) + (z, Ay) =0, x,y € C".
Assume that the form (-, -) is defined by the n x n matrix I given by

0 Id 0
(1?1 Igl> ifn=21 or |1 0 0| ifn=2+1,
! 0 0 1

where Id; is the identity [ x [ matrix. Then
so(n;C) = {A € gi(n; C) | TAT + AT = 0}.

In this case, the Cartan subalgebra can be chosen as a subspace of so(n;C) con-
sisting of matrices of the form

diag(ay,...,a;, —ay,...,—a;) if n =2,

diag(ay,...,a;, —ay,...,—a;,0) ifn=20+1.

The algebra so(n;C) is called an algebra of the type B; for n = 2l + 1 and an
algebra of the type D; for n = 2I.

Now let (-,-) be a nonsingular skew-symmetric bilinear form on C". The Lie
algebra sp(n; C) is defined as the set of all endomorphisms A of C* such that

(Az,y) + (z, Ay) =0, x,y € C".

If the form (-,-) is defined by the matrix
B 0 Id,
T = < —Id; 0 > ’

sp(n;C) = {A € gl(n;C) | JAT + AJ = 0}.

then

The set of all matrices in sp(n; C) of the form

diag(al, ey Ay — Q1 ..y, —al)
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is a Cartan subalgebra of sp(n; C). The algebra sp(n; C) is called an algebra of the
type C,.

In Secs. 8.6.2, 8.6.3, and 8.6.4, we assume that Cartan subalgebras Ly in
Lie algebras A;, By, C;, and D; are chosen as above. In particular, the condition
B € L(0) will imply that the matrix B is diagonal.

The algebras A;, B;, C;, and D; are known as classical complex Lie algebras.
In addition to them, there exist five exceptional Lie algebras denoted by G5, Fy,
FEg, E7, and FEg.

The classical classification result on complex simple Lie algebras states that
all Lie algebras

Alalzla Bl;l227 Cl;l237 DlalZ47

and
GZ; F47 EG; E77 ES

are simple, and any simple Lie algebra over C is isomorphic to exactly one of
these.

8.6.2. Generation of classical Lie algebras. The central role for the con-
trollability results in this subsection is played by the following proposition, which
describes pairs of elements that generate classical Lie algebras.

Theorem 8.9. Let L be the normal real form of a complex Lie algebra of type Ay,
By, Cy, or Dy. Let elements A, B € L be such that B € L(0) is A-strongly reqular.
Then Lie(A, B) = L if and only if the matriz A is permutation-irreducible.

Remark. The nontrivial part in this theorem is the sufficiency: if B is diagonal
and A permutation-reducible, then it is easy to see that Lie(A, B) consists of
permutation-reducible matrices.

8.6.3. Homogeneous systems.

Theorem 8.10. Let G be a connected Lie group with a Lie algebra L that
is a normal real form of a complex Lie algebra of type A;, B, C;, or D;. Let
elements A, B € L be such that B € L(0) is A-strongly regular. Then the system
I' = RA + RB s controllable on G if and only if the matriz A is permutation-
wrreducible.

Proof. For homogeneous systems, the controllability is equivalent to the rank
condition. Thus, the statement follows from Theorem 8.9.

8.6.4. Nonhomogeneous systems.

Theorem 8.11. Let G be a connected Lie group with a Lie algebra L that is
a normal real form of a complex Lie algebra L of type A; or D,. Let elements
A, B € L be such that

(i) B € L(0) is A-strongly regular,
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(ii) let A = A(0) + >{A(a) | « € R} be the decomposition of A along the root
spaces of L relative to Ly; see (8.2). Then Kil(A(s), A(—s)) < 0 for the
mazimal root s.

Then the system I' = A + RB is controllable on G if and only if the matrix A is
permutation-irreducible.

This theorem is proved by an argument analogous to that used in the proof
of Theorem 8.5 in Sec. 8.4.2. The only essential distinction is that the rank
condition follows from Theorem 8.9.

8.7. Remarks. The controllability results of Sec. 8.4 were obtained by El As-
soudi, Gauthier, and Kupka [10]. They are a culmination of the series of pa-
pers on controllability on semisimple Lie groups by Jurdjevic and Kupka [80,
81], Gauthier and Bornard [48], Gauthier, Kupka and Sallet [49], El Assoudi
and Gauthier [8, 9], Silva Leite and Crouch [136], El Assoudi [7]. In particular,
Theorem 8.7 was obtained by Gauthier and Bornard [48]. This paper also con-
tains an easy procedure for verification whether a square matrix is permutation-
irreducible.

Proposition 8.1 is due to Joseph [73].

Conjecture 8.1 on the noncontrollability of a single-input bilinear system
with symmetric matrices in the right-hand side was suggested by Jurdjevic and
Kupka [80].

Invariant orthants of bilinear systems were described by Sachkov [121] via
application of bichromatic graphs to the study of invariant sets of dynamical
systems; this idea is due to Hirsch [60].

Results of Sec. 8.6 are due to Silva Leite and Crouch [136]. In addition
to Theorem 8.9, there are other results on generation of classical Lie algebras
and Lie groups; see Crouch and Silva Leite [43], Silva Leite [132, 133, 134, 135],
Albuquerque and Silva Leite [5].

Results related to subsemigroups of semisimple Lie groups can be found in
papers by San Martin [129] and San Martin and Tonelli [130].

9. Nilpotent Lie Groups
A Lie algebra L is called nilpotent if its descending central series
Loy =I[L,L], Loy =[L, Ly}, ..., Lay =[L,Ls-vy), ..., i€N,
stabilizes at zero, that is,
LD Ly D LegyD-+ D Ly = {0}

for some N € N. Any nilpotent Lie algebra is solvable, since L) D LW e N,

where L(® denotes an element of the derived series

LW =[L,L], L® =[LW, LW], ..., LW =LY Y] . jeN
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Another equivalent characterization of nilpotency of L is that all adjoint operators
adz, x € L, are nilpotent, and thus, have zero spectrum.

9.1. Arbitrary systems. Controllability of a right-invariant system I' C L on
a nilpotent Lie group G is completely characterized in terms of the wedge, i.e.,
the topologically closed convex positive cone generated by I':

W(T) = cl(co(I")) C L.
Since I' ¢ W(T') ¢ LS(T'), it is obvious that I' and W (T') are controllable or
noncontrollable, simultaneously.

Theorem 9.1. Let G be a nilpotent connected Lie group with a Lie algebra L,
and let T C L be a right-invariant system on G that generates L as a Lie algebra.
Then T is controllable on G if and only if one of the following conditions holds:

(1) (intW,W W) N L(l) 7£ g or
(i) int cl(LM + W) Nexp~i(e) # o,
where W = W(T') is the wedge generated by T.

Remark. Here inty _y W is the interior of the wedge W relative to the vector
space W — W generated by W, and e is the identity of the Lie group G.

The sufficiency in Theorem 9.1 follows from the description of maximal open
subsemigroups S of nilpotent Lie groups in terms of their tangent objects:

L(S)={z € L|exp(Ryx) C cl(S) }.

An open subsemigroup S of a Lie group G is proper, i.e., S # G if and only if
e ¢ S. Hence the set of open subsemigroups in G is inductive, and any proper
subsemigroup is contained in a mazimal one.

Theorem 9.2. Let G be a nilpotent connected Lie group, and let S be a
mazximal open proper subsemigroup of G. Then L(S) is a half-space bounded by
a codimension one subalgebra in L.

For necessity in Theorem 9.1, the Hahn-Banach theorem yields that 1+ L(!)
is contained in a half-space in L; then exp (int (W + L(l))) is a proper open

semigroup of G; this implies that exp(W) is contained in a proper subsemigroup

of G.

The controllability test of Theorem 9.1 is essentially nilpotent. This result is
not true for the group SL(2; R). It also fails in the following solvable non-nilpotent
example.

Example 9.1. Let G be a (unique) two-dimensional connected simply con-
nected non-Abelian Lie group, which is represented by matrices as follows:
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The Lie group G is solvable but is not nilpotent. Its Lie algebra has the form

L:{(g 8>|a,b6R}.

Consider the following wedge in L:

A direct computation shows that

wM&WU={<g¥>Iw>&yZO}

which is a proper subsemigroup of G; thus, W is not controllable on G. On the
other hand, it is easy to see that both conditions (i) and (ii) of Theorem 9.1 hold
for the wedge W in this example.

9.2. Abelian groups. Let G be a (connected) Abelian Lie group. Then G =
R** x T* for some k < n, where n = dimG and 7% = S' x --- x S' is the
k-dimensional torus.

For such Lie groups, Theorem 9.1 implies the following.

Corollary 9.1. Let GG be an Abelian connected Lie group with a Lie algebra L,
and let I' C L be a right-invariant system on G. Then I' is controllable on G if
and only if

int(cl(co(T))) Nexp *(e) # 2.
If, in addition, G is simply connected, then I" is controllable if and only if
int(cl(co(T"))) > e.

9.3. Quotient systems. Let GG be an arbitrary Lie group with a Lie algebra L.
Let h be an ideal of L, and let H be the corresponding connected subgroup of
G. Assume that H is closed, and so G/H is a Lie group. Denote the projection
from G onto G/H by 7 and its differential by 7.. The projection of the system
[ onto G/H is well defined:

(L) ={muv|vel}CL/h.
Notice that the controllability of the system I' on G implies the controllability of
its projection 7, (I") on G/H.
The derived subalgebra L) is an ideal of L, and for simply connected G, its
derived subgroup G") = [G,G] is closed. Moreover, the quotient group G/G()

is Abelian. Thus, the above construction and Corollary 9.1 allow us to give the
following general necessary controllability condition for control affine systems

F:{A+Zm&|meKi:L“wm}CL (9.1)

=1
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on simply-connected Lie groups.
Introduce the following notation for the Lie algebra generated by the vector

fields in ' near controls:
LO = Lie(Bl, Cey Bm),

Theorem 9.3. Let a connected Lie group G be simply connected. If a control
affine right-invariant system (9.1) is controllable, then

(1) m(Lo) = L/LW;

(2) m > dim L — dim L™,

Proof. (1) If T is controllable on G, then 7, (") is controllable on the Abelian
simply-connected Lie group G/G(). Then it follows from Corollary 9.1 that
m.(Lo) = L/LM.

(2) The Lie algebra m,(Lg) is Abelian and is spanned by the vectors 7, By,
..., M« Bp,. Therefore,

m > dim(7, (L)) = dim(L/LM) = dim L — dim LW.

Remark. This theorem implies that right-invariant systems on a simply-
connected Lie group G with nontrivial G/G(") essentially differ from right-in-
variant systems on semisimple Lie groups (notice that if G is semisimple, then
G = @). In semisimple Lie groups, m = 2 is sufficient for controllability of a
generic control affine right-invariant system; see Theorem 8.3. But Theorem 9.3
yields a lower bound

m > dim G/GW

for the number of controlled vector fields By, ..., B,, that is necessary to achieve
the controllability on the simply-connected G.

9.4. Control-affine systems. For control-affine right-invariant systems (9.1) on
simply-connected nilpotent Lie groups, there is a simple controllability criterion
in terms of the Lie subalgebra L.

Theorem 9.4. Let G be a connected, simply-connected nilpotent Lie group.
Then system (9.1) is controllable on G if and only if Ly = L.

The sufficiency of the condition Ly = L for controllability of T" is valid for
arbitrary Lie groups G: it follows from the inclusion Ly C LS(T"). So, the essential
part is the necessity. Here a key role is played by the necessary controllability
conditions in terms of the notion of a symplectic vector.

Consider the co-adjoint representation p* of the group G in the dual space
L* of L. For any covector A € L*, the co-adjoint orbit 8y of A by the p* action
0, = p&(A) is a smooth submanifold of L* diffeomorphic to the homogeneous
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space G/ Ey, where E) is the isotropy subgroup of A, Ex = {g € G | p;()\) = A }.
Further, the system I' can be projected from G onto the homogeneous space
G/E\ ~ 0, and the controllability of I on G obviously implies the controllability
of its projection I'y on G/E). This leads us to necessary controllability conditions
in terms of the co-adjoint representation.

Definition 9.1. A covector A € L* is called a symplectic vector for w € L if
the co-adjoint orbit ) is not trivial and (w, #) > 0 for all 3 € 0,.

(We denote by (-, -) the pairing of a vector and covector.)

Theorem 9.5. If there is a vector field & € L belonging to the centralizer of
the subalgebra Ly such that the nonzero vector field [A, £] has a symplectic vector,
then system (9.1) cannot be controllable on G.

In fact, the existence of such vector field £ € L yields that the function
fe r =R B fe(B) =—(EB)

is strictly increasing on trajectories of the projection of I' onto the co-adjoint
orbit 0. Indeed, the solution to the Cauchy problem ¢(t) = A(g(t)), g(0) = go,
is given by ¢(t) = exp(tA)gy. Further, the function

h(t) = Ad (g(t) ') = Ad (g5 ') o exp(—tad A)
has the derivative
h(t) = Ad (g5 ') o exp(—tad A) o (—ad A) = — Ad (g(t) ') oad A.
Now, for A € L*, the co-adjoint action p* of the element g € GG is determined by
py(N) = Ad* (g71) X

consequently, for any £ € L and )\ € L*,

TPy (V) =~ (€ gy () = — (6 A (9()7) X
= (A (90) 1) £ = (Ad (9(1) ") 0 ad A(E), )

Thus, if A is a symplectic vector for [A, £], then f¢ increases along co-adjoint orbits
of trajectories of the field A. If, in addition, ad £ vanishes on the subalgebra Ly,
then the same holds for trajectories of the whole system I'; this is impossible for
a controllable system.

Another important fact for necessity in Theorem 9.4 is the following propo-
sition related to hypersurface systems, i.e., control-affine systems (9.1) with Ly
being a codimension one subalgebra of L.
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Denote by G the connected subgroup of the Lie group G corresponding to
the subalgebra L.

Theorem 9.6. Let I' C L be a control-affine system (9.1) on a connected Lie
group G such that Ly is a codimension one ideal of L. Then

1. If Gy is closed in G, then T is controllable if and only if A ¢ Ly and G/Gy ~
St
2. If Gy is not closed in G, then T is controllable if and only if A ¢ Ly.

Remark. The previous theorem holds without assumption that L, is an ideal;
this is important for a generalization of Theorem 9.4 to a subclass of solvable Lie
groups including nilpotent ones (see Sec. 13 below).

Now we outline the scheme of proof of the necessity in Theorem 9.4. Assume
that the system I' is controllable on the group GG. Then the theory of symplectic
vectors implies that the subalgebra Lg is an ideal of L. The rank condition for I'
holds: Lie(I') = Lie(A, Ly) = L; hence, Ly has codimension 0 or 1 in L. But the
codimension one case is impossible, since then Theorem 9.6 yields G/Gy ~ S;
this contradicts the simple connectedness of G. Thus, Ly = L, and the necessity
in Theorem 9.4 follows.

Example 9.2. Let G be the Heisenberg group of dimension 2p + 1. It can be
represented as a subgroup of GL(p + 2; R) generated by the matrices
d+X;, Id+Y;, Z, 1=1,...,p,
where
Xi=FEiin, Yi=FEipp, 1=1,...,p.
The Lie algebra L of G is spanned by the matrices

X, Y, Z, i=1,...,p,
with the nonzero brackets

(X, Yi|=2, i=1,...,p.
The Heisenberg group G is simply-connected and nilpotent; hence, Theorem 9.4
describes all controllable systems on G.
9.5. Remarks. The controllability test for arbitrary right-invariant systems and
the description of maximal subsemigroups in nilpotent Lie groups (Sec. 9.1) is
due to Hilgert, Hofmann, and Lawson [57].

The result on quotient systems (Sec. 9.3) was obtained by Sachkov [118].

The criterion for control affine systems (Sec. 9.4) was given by Ayala [12],
and the notion of a symplectic vector is due to Ayala and Vergara [13].

The controllability of projections of right-invariant systems onto nilpotent
and solvable manifolds might be studied via application of the theory of flows
on these manifolds, see e.g., the book by Auslender, Green, and Hahn [11]. This
can be important for studying the local controllability of nonlinear systems via
nilpotent approximations (Crouch and Byrnes [44]).
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10. Products of Lie Groups

In this section, we present controllability conditions on products of vector
groups with nilpotent Lie groups. The results obtained for such Lie groups can
be viewed as a generalization of results for nilpotent Lie groups; see Sec. 9.1.

Theorem 10.1. Let G be a connected Lie group, C' be a connected compact
subgroup of G, and let N be a nilpotent normal subgroup of G such that G =
C-cl(N). If W is a wedge in L that generates L as a Lie algebra, then W is

controllable if and only if

inty_w(W) N (L(C) + LY) # o.

The previous controllability result is proved via the following description of
all maximal open semigroups in products of compact and nilpotent groups.

Theorem 10.2. Let G be a connected Lie group, C' be a connected compact
subgroup of G, and let N be a nilpotent normal subgroup of G such that G =
C - cl(N). If S is a mazimal open subsemigroup of G, then its tangent wedge

L(S) = {X € L | exp(tX) € cl(S) V¢ > 0}

15 a half-space bounded by an ideal in L.

10.1. Remarks. The results in this section are due to Hilgert [55].

Another important (and more general) result on maximal semigroups related
to controllability is the characterization of maximal subsemigroups in Lie groups
with cocompact radical by Lawson; see Sec. 11.

11. Lie Groups with Cocompact Radical

Denote by Rad G the radical of a Lie group G, i.e., the maximal solvable nor-
mal subgroup of GG. In this section, we assume that a Lie group G has cocompact
radical, that is, the quotient group K = G/ Rad G is compact. This wide class
of Lie groups contains

(i) solvable Lie groups (K = {e});
(ii) compact Lie groups;

(iii) semidirect products of a vector space V' with a compact Lie group (V' C
Rad G).

11.1. Controllability conditions and maximal subsemigroups. The next
theorem gives a Lie-algebraic description of controllability on Lie groups with
cocompact radical, which is complete in the simply-connected case.

o7



Theorem 11.1. Assume that G/ Rad G is compact; let T C L be a right-inva-
riant system that satisfies the rank condition Lie(T') = L. If T is not contained
i any half-space of L with boundary being a subalgebra, then I" is controllable on
the connected Lie group G. The converse holds if G is simply-connected.

This result is a consequence of the following classification of maximal sub-
semigroups of Lie groups with cocompact radical.

Theorem 11.2. The mazimal subsemigroups M with nonempty interior of a
connected, simply-connected Lie group G with compact G/RadG are in a one-
to-one correspondence with their tangent objects

L(M) ={A€ L|exp(tAd) € cl(M) Vt > 0},

and the latter are exactly the closed half-spaces with boundary being a subalgebra.
Furthermore, M is the semigroup generated by exp(L(M)).

Theorem 11.1 follows from Theorem 11.2, since the attainable set of any non-
controllable right-invariant system I' C L, Lie(T') = L, is a proper subsemigroup
of G contained in some maximal subsemigroup with non-empty interior.

11.2. Reductive Lie groups. A Lie algebra L is called reductive if its radical,
i.e., the maximal solvable ideal, coincides with its center. L is reductive if and
only if the derived subalgebra L(!) is semisimple. In this case, L is the direct
sum of its center and L("). A Lie group is called reductive if it has reductive Lie
algebra.

In this subsection, we present a characterization of controllable systems I' on
a reductive group GG under the assumptions that I' is a closed convex cone in L,
[ is pointed, i.e., it has the zero edge: I' N —I" = {0}, and is invariant under the
adjoint action of the group K, where NAK is an Iwasawa decomposition of G.

Recall that (see Sec. 4)

(1) a right-invariant system T is controllable if and only if the closed convex
cone cl(co(I")) generated by I is controllable;

(2) asystem I'is controllable, i.e., A = G if and only if the closure cl(A) coincides
with G, provided that I' satisfies the rank condition Lie(I') = L.

Let G = NAK be an Iwasawa decomposition of a Lie group G, where N,
A, and K are respectively a maximal nilpotent subgroup, a principal vector sub-
group, and a maximal compact subgroup of G. Denote by L(N) and L(K) the
Lie algebras of the Lie groups N and K, respectively, and by L(! (K) the derived
subalgebra of K.

Theorem 11.3. Let G be a connected, simply-connected reductive Lie group
with Twasawa decomposition NAK. Let T be an Ad(K)-invariant convex cone in
L satisfying T N =T = {0} and int T # @. Then the following assertions hold.

(i) If (intT) N (L(N) + LY(K)) # o, then T is controllable.
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(ii) If TN (L(N) + LY (K)) = {0}, then
=LS(T")={X € L |exp(R, X) C cl(A)}
and I is not controllable.

(iii) If @ # (T N (L(N) 4+ LY (K))) \ {0} C 9T, then T is not controllable.

The main idea of the proof of this theorem is to describe a reductive group as
a homogeneous space of a group with cocompact radical, and after that, use the
characterization of maximal subsemigroups in such groups given by Theorem 11.2.

11.3. Remarks. The description of maximal subsemigroups in Lie groups with
cocompact radical and conditions of controllability on such Lie groups in Sec. 11.1
are due to Lawson [94].

The controllability result for reductive Lie groups in Sec. 11.2 was obtained
by Hilgert [56].

11.3.1. The rank condition and hypersurface principle. The customary
procedure for verifying the noncontrollability is either to show the violation of the
rank controllability condition; see Theorem 2.3, or to construct a (not necessarily
smooth) hypersurface in the state space of a system intersected by all trajecto-
ries of the system in one direction only; see e.g., the hypersurface principle in
Theorem 12.2. By Lawson’s Theorem 11.1, for right-invariant systems on simply-
connected Lie groups with cocompact radical such hypersurface can always be
found among codimension one subgroups. An interesting question is whether
any full-rank noncontrollable right-invariant system have such codimension one
subgroup? A positive answer will give a new method for obtaining sufficient
controllability conditions, and a negative one will give an example of a complex
obstruction to controllability.

12. Hypersurface Systems

The class of control systems in R* with (n — 1) independent controls has
specific features that simplify their study, especially in the case of unbounded
controls. The more so this is true for right-invariant systems.

Definition 12.1. A control affine right-invariant system
F:{A+Zm&|m€Ki:L”wm}cL (12.1)
i=1

is called hypersurface if the Lie algebra Ly generated by the vector fields By, ...,
B,, is a codimension one subalgebra of L:

dim Ly = dim Lie(By, ..., B,,) =dim L — 1.
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Denote by Gy the connected subgroup of G' corresponding to the subalgebra
Ly.

The controllability of hypersurface right-invariant systems is completely char-
acterized by the following proposition.

Theorem 12.1. Let T be a hypersurface control affine system (12.1) on a
connected Lie group G. Then

(1) If Gy is closed in G, then T is controllable if and only if A ¢ Ly and GGy ~
St

(2) If Gy is not closed in G, then T' is controllable if and only if A ¢ L.

Proof. The condition A ¢ Lg is necessary for controllability in both cases
(1) and (2), since it is equivalent to the rank condition Lie(I") = Lie(A, Ly) = L.
Also, we note that Ly C LS(T'); that is why I' is controllable if and only if the
extended system T’ = cl(co(I')) = R A + L is controllable.

(1) If cl(Gy) = Gy, then the right coset space G/Gy is a smooth one-
dimensional manifold, i.e., the line R or the circle S*. Since any point of the
right coset Gyx is reachable from x for the system T for any z € G, we can
project T’ onto G/Gy. Tt is easy to see that the projected system is controllable
if G/Gy = S" and noncontrollable if G/Gy = R.

(2) If the codimension one subgroup Gy is not closed in G, then it is dense

in G; thus, the reachable set A is also dense in G. If A ¢ Ly, then the system I'
has a full rank; thus, it is controllable by Theorem 2.8.

Remark. Theorem 12.1 generalizes the analogous criterion of Theorem 9.6
with an additional assumption that L is an ideal of L.

Corollary 12.1. A hypersurface system cannot be controllable on a simply-
connected Lie group.

Proof. If G is simply-connected, then its codimension one subgroup Gy
is closed. Furthermore, G is simply-connected; that is why G/Gy is simply-
connected as well. Thus, G/Gy = R, and it follows from Theorem 12.1 that T is
not controllable.

The previous propositions imply the following hypersurface principle, the
general necessary controllability condition for simply-connected Lie groups.

Theorem 12.2. Let I' C L be a control affine system (12.1) on a connected,
simply-connected Lie group G. Assume that there exists a codimension one sub-
algebra | of the Lie algebra L containing Ly. Then T is not controllable.

Proof. The system I' can be extended to an affine system of the form

m k
Flz{A+Zusz+ Z ’LLZ'BZ'|Ui€]R, izl,...,k},

=1 i=m+1
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where B,,11,..., By complement By,..., B, to a basis of the subalgebra [. By
Corollary 12.1, the system I'y is not controllable, and therefore, I" is not control-
lable too.

The sense of this proposition is that if the codimension one subalgebra [ D Lg
exists, then attainable set of I' lies “to one side” of the connected codimension
one subgroup of G corresponding to [: by the simple connectedness of G, this
codimension one subgroup separates G into two disjoint parts.

12.1. Remarks. General hypersurface nonlinear systems were studied by
Hunt [67, 68].

The results of this section are due to Sachkov [118].

The hypersurface principle given by Theorem 12.2, is a necessary control-
lability condition for an arbitrary simply-connected Lie group. By Lawson’s
Theorem 11.1, if a simply-connected Lie group has a cocompact radical, then
this principle is also sufficient for controllability. It would be interesting to ex-
tend the class of simply-connected Lie groups with cocompact radical so that the
hypersurface principle remain to be a controllability criterion.

13. Completely Solvable Lie Groups

In this section, we assume that T' is a control-affine system (12.1) and give
controllability conditions for a subclass of the class solvable Lie groups.

Definition 13.1. A solvable Lie algebra L is called a completely solvable if
all adjoint operators ad x, x € L, have real spectra. A Lie group is completely
solvable if it has a completely solvable Lie algebra.

The triangular group T(n; R) (see Example 13.1 below) is completely solvable
as well as any of its subgroups. Nilpotent Lie groups are completely solvable,
since adjoint operators in nilpotent Lie algebras have zero spectrum. On the
other hand, the group of motions of the plane E(2;R) is, e.g., solvable but not
completely solvable (the group E(2;R), and its simply-connected covering E(2; R)
are treated in Sec. 15).

Completely solvable Lie algebras have many codimension one subalgebras
(this is crucial for the controllability test for completely solvable Lie groups).

Lemma 13.1. If L is a completely solvable Lie algebra, then, for any subalgebra
Iy C L, l; # L, there exists a subalgebra ls C L such that I C ly and dimly, =

It turns out that the controllability criterion for systems affine in control on
nilpotent Lie groups (Theorem 9.4) is valid for completely solvable Lie groups as
well.

Theorem 13.1. Let G be a connected, simply-connected completely solvable Lie
group. Then system (12.1) is controllable on G if and only if Ly = L.
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Proof. Sufficiency. If Ly = L, then LS(T") D LS(Lg) = L. By Theorem 4.3,
the system I' is controllable.
The necessity follows from Theorem 12.2 and Lemma 13.1.

Example 13.1. Let G = T(n;R) be the group of all real n x n upper triangular
matrices with positive diagonal entries. We see that T(n;R) is a connected,
simply-connected, and completely solvable Lie group. Its Lie algebra L = t(n; R)
consists of all n x n upper triangular matrices. The derived subalgebra L(!)
consists of all strictly upper triangular matrices, and L/ LM is the n-dimensional
Abelian Lie algebra of all diagonal n x n matrices.

By Theorem 13.1, a control affine system I' is controllable on T(n;R) if and
only if Ly = L.

By Theorem 9.3, the controllability of I on T(n; R) can be attained with not
less than n = dim L/L®™ controlled vector fields. This lower estimate is sharp.
For example, the system I' = { A+ Y | w;B; | u; € R} with B; = Ej; + E; ;4 for
i=1,...,n—1and B, = E,, is controllable on T(n;R). Indeed, it is easy to see
that Lie(By, ..., B,) = t(n; R).

Example 13.2. Let G = E(2;R) be the Euclidean group of motions of the
two-dimensional plane R?. E(2;R) is a connected but not a simply-connected Lie
group. It can be represented by 3 x 3 matrices of the form

cii ci2 b b
Co1 Cop Do , C= (Cij) € SO(2;]R), b= ( ! ) € ]RZ,
0O 0 1

where C' is a rotation matrix and b is a translation vector. The corresponding
matrix Lie algebra L = ¢(2;R) is spanned by the matrices A; = Fi3, Ay = FEag,
and Az = Ey — Fj5. We have LY = span(Ay, Ay) and L = {0}; therefore, L
is solvable.

Consider the right-invariant system I' = { A} + uA;3 | u € R}. We use the
Lie saturation technique and show that the system I is controllable on E(2;R).

We have Ay, +A; € LS(I'). That is why exp(sad A3)A; € LS(T") for any
s € R. But exp(sad Az)A; = (cos s)A; + (sin s) Ay. Consequently, span(A;, Ay) C
LS(T); therefore, LS(T") = L. Thus, I is controllable on E(2;R).

Obviously, I' can also be considered as a right-invariant system on the simply-
connected covering group E(2;R) of E(2;R). The above proof of controllability
of I' on E(2;R) is purely algebraic; i.e., it does not use any global geometric
properties of E(2;R). That is why I is controllable on E(2;R) as well.

The spectrum of the operator ad A; consists of i and 0. Therefore, this
example shows us that the assumption on the complete solvability of L, i.e.,
of the realness of the spectrum of adjoint operators in Theorem 13.1 is essential.
Detailed controllability conditions for right-invariant systems on the group E(2; R)
and its simply-connected covering E(2;R) are given in Example 15.2.
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13.1. Remarks. The results of this section were obtained by Sachkov [118].

Completely solvable Lie algebras and Lie groups are also called triangular
over R or algebras (resp. groups) of type (R), see, e.g., the survey by Vinberg,
Gorbatcevich, and Onishchik [148].

13.1.1. Lie algebras that are difficult to control. For any Lie group G and
any system affine in control

=1

on (G, the controllability of the homogeneous part

m
I'y = {Zusz |UiE]R}
i=1
is sufficient for the controllability of ' on G. We call a Lie algebra L difficult to
control if any affine in control system [' C L and its homogeneous part [y are si-
multaneously controllable or noncontrollable (on the connected simply connected
Lie group G corresponding to L). In Lie algebras L that are difficult to control,
the drift term A in an affine system I' C L does not help in control, which is not
the case for general Lie algebras.
There is an expanding chain of classes of Lie algebras that are difficult to
control:
Abelian C nilpotent C completely solvable. (13.1)

The Abelian case is Corollary 9.1, the nilpotent one is Theorem 9.4, and the
completely solvable one is Theorem 13.1.

On the other hand, the Lie algebra of the group E(2;R) of motions of the
plane is solvable, but not completely solvable and is not difficult to control; see
Example 15.2.

By the hypersurface principle (Theorem 12.2), all Lie algebras satisfying the
following property:

{ any subalgebra | C L, [ # L, is contained } (13.2)

in a codimension one subalgebra of L

are difficult to control. The author does not know, whether this inclusion is
strict. By Lemma 13.1, completely solvable Lie algebras satisfy property (13.2).
The natural question is, whether there are Lie algebras difficult to control not
contained in chain (13.1)? If yes, can this chain be continued by any reasonable
class of Lie algebras? The theory on codimension one subalgebras of Lie algebras
of Hofmann [62, 63, 65] can be important for this question.

13.1.2. Subalgebras of codimension one and two. The solution of the
controllability problem for completely solvable Lie groups (see Sec. 13) is based
on the following fact: any proper subalgebra of a real completely solvable Lie
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algebra is contained in a codimension one subalgebra. On the other hand, any
proper subalgebra of a real solvable Lie algebra is included in some subalgebra of
codimension one or two.

This suggests the following approach to the controllability on solvable Lie
groups. Project a system along the connected subgroup corresponding to the
indicated codimension one or two subalgebra. Then (1) if this group is closed
and normal, we obtain a right-invariant system on a one- or two-dimensional Lie
group (such systems are transparent); (2) if this subgroup is closed, we obtain a
nonlinear system on a one- or two-dimensional smooth manifold (such systems
are tractable by the nonlinear controllability theory); (3) and if this subgroup
is not closed, then try to apply and develop the theory of control systems on
foliations.

14. Lie Groups Differing from their Derived Subgroups

Lie algebras L that satisfy the condition L # L form a wide class that
contains the class of solvable Lie algebras but does not coincide with it; for
example, gl(n;R) is not solvable and has the derived subalgebra si(n;R). On the

other hand, if a Lie algebra L is semisimple, then I = LM, The converse is
not true: the Lie algebra of infinitesimal motions of the three-dimensional space
¢(2;R) = R® X s0(3;R) is not semisimple, although it coincides with its derived
subalgebra.

In this section, we present controllability conditions for single-input systems

'={A+uB|ueR}=A+RBCL (14.1)

on a Lie group G that does not coincide with its derived subgroup G). Conse-
quently, we assume that L # L.

14.1. Notation and definitions. First, we introduce the notation connected
with eigenvalues and eigenspaces of the adjoint operator ad B in L.
The derived subalgebra and the second derived subalgebra are

LO=[r,L], L®=[L" 1O}
the complexifications of L and L"), i = 1,2, are
L.=L®zCc LY=LYgc

the adjoint representations and operators are
ad : L — End(L), (ad B)X = [B,X] VX €L,
ad. : L. — End(L.), (ad. B)X = [B,X] VX € L

spectra of the operators ad B|, ), i = 1,2, are

Spt” = {a € C|Ker (ad. B|, ) —ald) # {0} };
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real and complex spectra of the operators ad B|, ), i = 1,2, are
Sp® =spnr,  Spl? =SpP\r

complex eigenspaces of ad. B| 7 (1) are
L.(a) = Ker (ach|L(1) — aId) :

real invariant subspaces of ad B|, 1), which are one-dimensional for real a € Sp,(nl)
and two-dimensional for complex a € Spgl), are

L(a) = (Le(a) + Le(@)) N L;
complex root subspaces of ach|L(i), 1 =1,2, are

L9(a) = | Ker (ad, B|

C
N=1

— aId)N;

2

real invariant subspaces of ad Bl ), i = 1,2, real analogues of the complex root
subspaces, are

L9a) = (L (a) + LY @) N L;
components of L corresponding to the real eigenvalues of ad B|pw,i=1,2, are
L) =3 {1%) |aespf’ }.

The subalgebras L(Y) and L® are ideals of L, so they are (ad B)-invariant, and
the restrictions ad B|, ) and ad Bl ) are well defined.
In the following lemma, we collect several simple statements about decom-

position of the subalgebras L™ and L® into sums of invariant subspaces of the
adjoint operator ad B.

Lemma 14.1.
1) LO=SL1O®0) | aecSp?, Ima>0Y,i=1,2
(
(2) sp® c spt, spl? c spiM;
(3) L®(a) c LW (a) for any a € Sp?;
(4) L < LY,

(5) Sp® c spM 4-sp).

Proof. It is obtained by the standard linear-algebraic arguments. In addition,
Jacobi’s identity is applied in item (5).
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Consider the quotient operator
adB : LW/L® - 1) /?
defined as follows:

(adB) (X +L®) = (ad B)X + L® vX € LW

Analogously, for a € Sp!), we define the quotient operator in the quotient
root space:

ad B(a) : LV(a)/L?(a) = L (a) /L) (a),
(ad B(a)) (X + L?(a)) = (ad B)X + L? (a) VX € L1 (a),
and its complexification:

ad. B(a) : L{V(a)/L{ (a) = L (a)/LP(a),
(ade B(a)) (X + L? (a)) = (ad, B) X + Lg%) VX € L0 (a).

Definition 14.1. Let a € Sp'". Denote by j(a) the geometric multiplicity of
the eigenvalue a of the operator ad, B(a) in the vector space LV (a)/L® (a).

Remarks.

(a) For a € Sp), the number j(a) is equal to the number of Jordan blocks of
the operator ad B(a) in the space L") (a)/L® (a).

(b) If an eigenvalue a € Sp!V) is simple, then j(a) = 0 for a € Sp® and j(a) = 1
for a € SptV) \Sp(2)

Assume that L = L) ®RB for some B in L (this assumption will be justified
by Theorem 14.1 below). Then, by Lemma 14.1,

L=rB& LY =rB&Y "{LM(a)|aecSp", ma>0}, (14.2)
that is why any element X € L can uniquely be decomposed as follows:
X=Xp+Y {X()|acsp?, ma>0}, XpeRrB, X(a)e LM (a).

We will consider such decomposition for the uncontrolled vector field A of the
system I':

A= AB+Z{ ) | a € SpV ImaZO}.

Denote by A(a) the canonical projection of the vector A(a) € L (a) onto
the quotient space L((a)/L® (a).
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Definition 14.2. Let L = LM @ RB, a € Sp'V, and let j(a) = 1. We say that
a vector A € L has the zero a-top if

A(a) € (ad B(a) - a1d) (LM (a)/L?)(a))

In the opposite case, we say that A has a nonzero a-top. We use the corresponding
notations: top(A4,a) = 0 or top(4,a) # 0.

Remark. Geometrically, if a vector A has a nonzero a-top, then the vector
ﬁ(a) has a nonzero component corresponding to the highest adjoint vector in

the (single) Jordan chain of the operator ad B(a). Due to nonuniqueness of the
Jordan base, this component is nonuniquely determined, but its property to be
zero is basis-independent.

Definition 14.3. A pair of complex numbers («, 3), Rea < Re 3, is called an
N-pair of eigenvalues of the operator ad B if the following conditions hold:

(1) a, 8 € SpWY,

(2) L2(a) ¢ 3 {1L0(a), LYB)] | a,b € SpY, Rea, Reb ¢ [Rea,Re ] },

(3) L2(B3) ¢ Y {[LV(a), LV (1)] | a,b € SpY, Rea, Reb ¢ [Rea,Re ] }.

Remark. In other words, to generate both root spaces L® () and L (3) for

an N-pair (o, 3), we need at least one root space L()(y) with Revy € [a, 8]. In
Theorem 14.2 below, N-pairs are the strongest obstruction to controllability under
the necessary conditions of Theorem 14.1. In some generic cases, the property of
absence of real N-pairs can be verified by using Lemma 14.5.

14.2. Necessary controllability conditions.

14.2.1. Formulation of results. It turns out that the controllability on simply-

connected Lie groups G with G # G is a very strong property: it imposes
essential restrictions both on the group G and on the system I'.

Theorem 14.1. Let a connected Lie group G be simply-connected, and let its

Lie algebra L satisfy the condition L # L. If a right-invariant system T' C L is
controllable, then

(1) dim L) = dim L — 1;
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(5) Spt c Sp +Sp™);
(6) j(a) <1 for all a € SpY;
(7) top(A, a) # 0 for all a € Sp™ for which j(a) = 1.

The notations j(a) and top(A,a) used in Theorem 14.1 are introduced in
Definitions 14.1 and 14.2.

Remarks.

(a) The first condition is a characterization of the state space G but not of the
system I'. It means that no single-input system I' = { A + uB} can be

controllable on a simply-connected Lie group G with dim G < dim G — 1.
That is, to control on such a group, one has to increase the number of

inputs. This agrees with the general lower estimate m > dim G — dim G(")
for the number of the controlled vector fields By, ..., B,, that are necessary
for controllability of the multi-input system I' = {A + X", u;B; } on a
simply-connected group G, see Theorem 9.3.

(b) Conditions (3)—(7) are nontrivial only for Lie algebras L with L® # L)
(in particular, for solvable noncommutative L). If L&) = L) then these
conditions are obviously satisfied.

(c) The third condition means that j(a) = 0 for all a € Sp); that is why

condition (6) is nontrivial only for a € Sp{V.

(d) By the same reason, the inclusion a € Sp!) in condition (7) can be replaced

by a € Spgl). Note that if j(a) = 0, then, by the formal Definition 14.2, the
vector A has the zero a-top.

(e) The fourth and fifth conditions are implied by the third one but are easier
to verify. The simple (and strong) “arithmetic” necessary controllability
condition (5) can be verified by considering the spectrum of the operator
ad B|L(1)-

(f) For solvable Lie algebras L, under conditions (1) and (2), the spectrum

Sp) = Sp(ad B|,w) is the same for all B ¢ L) modulo homothety. Then
conditions (4) and (5) depend on L but not on B.

(g) For the case of a simple spectrum of the operator ad B|; ), the necessary
controllability conditions take respectively the more simple form.

Corollary 14.1. Let a Lie group G be simply-connected, and let its Lie algebra

L satisfy the condition L # LY. Assume that the spectrum Sp™ is simple. If a
right-invariant system I' C L is controllable, then
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(1) dim L") = dim L — 1,
(2) B¢ LD,

(3) Spi?) = Sp{Y,

(4) spl" c spt) +sp™,

(5) A(a) # 0 for all a € Sp™M \ Sp?.

14.2.2. Outline of the proof of Theorem 14.1. The main tools for obtain-
ing the necessary controllability conditions given in Theorem 14.1 are the rank
controllability condition (Theorem 2.3) and the hypersurface principle (Theo-
rem 12.2).

First, the following auxiliary propositions are proved.

Lemma 14.2.  Let L be a Lie algebra such that L # LY, and let B € L.
Assume that

(1) dim LM < dim L — 1 or
(2) Be LW or
(3) LW ®RB =L and L # LW,

Then there exists a codimension one subalgebra of L containing B.

Lemma 14.3. Let L be a Lie algebra, and let A,B € L. Let L = RB & L.

Assume that there exists an eigenvalue a € Sp™") such that
(1) j(a) > 1 or

(2) j(a) =1 and top(A,a) = 0.

Then Lie(A, B) # L.

Now Theorem 14.1 follows. If one of its conditions (1)—(5) is violated, then,
by Lemma 14.2 and Theorem 12.2, the reachable set A is contained in the closed
semigroup of the Lie group G bounded by a codimension one subgroup of G.
If one of the conditions (6) and (7) does not hold, then, by Lemma 14.3 and
Theorem 2.3, the set A lies in a proper connected subgroup of G with the Lie
algebra Lie(T).

14.3. Sufficient controllability conditions.

14.3.1. Formulation of results. Under the necessary assumptions of Theo-
rem 14.1, there exist many sufficient controllability conditions. Notice that the
assumption on the simple connectedness can now be removed. So, the sufficient
conditions below are completely Lie-algebraic, i.e., local; this is in contrast to the
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global assumption (the finiteness of center of ) essential for sufficient controlla-
bility conditions for semisimple Lie groups G (see Sec. 8).

Theorem 14.2. Let I' C L be a right-invariant system on a connected Lie
group G. Assume that the following conditions hold:

(1) dim L") = dim L — 1;
(2) B¢ LW,

(3) L@ = LW,

(4) dim Le(a) = 1 for all a € SptY;
(5) top(A,a) # 0 for all a € SpY;
(6) the operator ad B|ya) has no N-pairs of real eigenvalues.

Then the system I' is controllable on the Lie group G.

The notation top(A,a) and the notion of N-pair used in Theorem 14.2 are
introduced in Definitions 14.2 and 14.3.

Remarks.

(a) Conditions (1)—(3) are necessary for controllability in the case of a simply
connected G # G: see Theorem 14.1.

(b) Conditions (4) and (5) are close to the necessary conditions (6) and (7) of
Theorem 14.1, respectively. Notice that the fourth condition means that all
complex eigenvalues of ad Bl ) are geometrically simple.

(c) Conditions (2) and (5) are open, i.e., they are preserved under small pertur-
bations of A and B.

(d) The most restrictive of the conditions (1)—(6) is the last one. It can be shown
that the smallest dimension of L(!) in which this condition is satisfied and
preserved under small perturbations of spectrum of ad B|; ) for solvable L
is 6. This can be used to obtain a classification of controllable systems I on
lower-dimensional simply connected solvable Lie groups G; see Sec. 16.

(e) The technically complicated condition (6) can be replaced with a more sim-
ple and more restrictive one, and sufficient conditions can be given as in
Corollary 14.2 below.

(f) Under the additional assumption of simplicity of the spectrum Sp™", the
sufficient controllability conditions take the even more simple form presented
in Corollary 14.3 below.
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Corollary 14.2. Assume that the following conditions hold for a system I C L
on a Lie group G-

(1) dim LY = dim L — 1;

(2) B¢ LW;

(4) dim Le(a) = 1 for all a € SptY;

(5) top(A,a) # 0 for all a € SptY;

(6) SpM = & or Sp € {Rez > 0} or Sp(V € {Rez < 0}.
Then the system T' is controllable on G.

Corollary 14.3. Assume that the following conditions hold for a system I C L
on a Lie group G:

(1) dim LY = dim L — 1;

(2) B¢ LY,

(3) the spectrum SpV) is simple;

(4) Sp® = Sp{;

(5) A(a) # 0 for all a € SptV;

(6) SplV =& or SpV c {Rez > 0} or Spt) € {Rez < 0}.
Then the system I' is controllable on G.

14.3.2. Outline of the proof of Theorem 14.2. This theorem is obtained
via the Lie saturation technique; see Sec. 4: a sequence of increasing lower bounds
of the tangent cone LS(T") to the closure of the attainable set A at the identity e
is shown to stabilize at the whole Lie algebra L.

The crucial role in the proof is played by the following proposition.

Lemma 14.4. Let C € LS(T') N LW. Assume that for any a € SplV, the
following conditions hold:

(1) dim L.(a) = 1 and
(2) top(C,a) # 0 or L (a) C LS(T).
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Assume additionally that for the number
r =max{Rea | a € SpV, C(a) #0}
(or r =min{ Rea | a € SpV, C(a) #0}),
we have r ¢ SpV) or C(r) = 0. Then
LS(T) D > { LW(a) |aeSpV, Rea=r a#r } .

Now the idea of the proof of Theorem 14.2 can be outlined as follows. In
view of (14.2), the Lie algebra L splits into the direct sum of the line RB and
the root spaces L(V(a), a € Sp'Y). We show that the Lie saturate LS(I") coincides
with L. First of all, it easy to see that RB C LS(I'). Then we prove on the
contrary that L) (a) c LS(T) for all a € Sp"). Indeed, assume that there exist
numbers

n = min {Rea | a e SpM, LW (a) ¢ LS(T) } :
m = max {Rea | a € SpY, LW (a) ¢ LS(T) }

and consider the closed interval [n, m] C R. Then Lemma 14.4 implies that n, m is
an N-pair of real eigenvalues of the operator ad B|,); this contradicts hypothesis
(6) of Theorem 14.2. The theorem is proved.

Corollaries 14.2 and 14.3 follow from Theorem 14.2 and the following proposi-
tion, which gives simple conditions that guarantee the nonexistence of real N-pairs
of eigenvalues.

Lemma 14.5. Assume that B ¢ LW and LV = L®. Then any one of the
following conditions is sufficient for the operator ad B| ) not to have real N-pairs
of eigenvalues:

(1) Sp = & or
(2) Spt € {Rez > 0} or
(3) SpM € {Rez < 0}.

The controllability conditions of Theorems 14.1 and 14.2 for Lie groups
G # GW yield a complete description of controllability for several particu-
lar classes of Lie groups: meta-Abelian ones, some subgroups of the group of
affine transformations of R™, and lower-dimensional simply-connected solvable
Lie groups. These results are presented in Secs. 15 and 16.

14.4. Remarks. The results of this section are due to Sachkov [120].
The results of Hofmann [64] on compact elements in solvable Lie algebras
might be helpful in order to understand the controllability on solvable Lie groups

without the assumption on the simple connectedness that is essential for necessary
controllability conditions in this section.
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15. Meta-Abelian Lie Groups
Lie algebras L having derived series of length 2:
L> LW > 1@ ={0},

are called meta-Abelian. A Lie group with a meta-Abelian Lie algebra is also
called meta-Abelian.

A meta-Abelian Lie algebra is obviously solvable. Thus results of the previ-
ous section yield controllability conditions for meta-Abelian Lie groups.

Theorem 15.1. Let G be a meta-Abelian connected Lie group. Then the
following conditions are sufficient for controllability of a system I' = A4+RB C L
on G-

(1) dim LW =dim L — 1;

(2) B ¢ LY

(3) SpiM = g;

(4) dim Le(a) = 1 for all a € SptY;

(5) top(A,a) # 0 for all a € SptV.

If the group G is simply connected, then conditions (1)—(5) are also necessary for
controllability of the system I" on G.

The notation top(A, a) was introduced in Definition 14.2.
Proof. The sufficiency follows from Corollary 14.2.

In order to prove the necessity for the simply-connected GG, assume that I' is
controllable. Then (1) and (2) follow from items (1) and (2) of Theorem 14.1.

Condition (3) follows from item (3) of Theorem 14.1 and from the meta-
Abelian property of G:

LW =18 c1® = {0}

Condition (4). For any a € Sp{!), we have L(®(a) = {0}; that is why j(a)
is equal to geometric multiplicity of the eigenvalue a of the operator ad B| LO)(a)s
i.e., to dim L.(a). By item (6) of Theorem 14.1, we have j(a) = 1; that is why
dim L.(a) = 1.

Condition (5). For any a € Sp{!), we have j(a) = 1; then, by item (7) of
Theorem 14.1, top(A, a) # 0.

Example 15.1. Let V be a finite-dimensional real vector space, and let [ C
gl(V') be a linear Lie algebra. Consider their semidirect sum L = V X [. It is a

subalgebra of the Lie algebra of the group of affine transformations of the space
V since L C V- xgl(V). If [ is Abelian, then L is meta-Abelian:

LW =1vx {0}, L® ={o}.
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In the next subsection, we study in detail a particular case where [ is one-
dimensional.

15.1. Semidirect products. Let V' be a real finite-dimensional vector space,
dimV = n, and let M be a nonzero linear operator in V. Consider the meta-
Abelian Lie algebra L(M), which is the semidirect sum of the Abelian Lie algebra
V' with the one-dimensional Lie algebra RM. This Lie algebra can be represented
by (n+ 1) x (n + 1) matrices:

L(M):{(Agt 8>|tE]R,bE]R”}Cg[(n+1;]R). (15.1)
Denote by G(M) the connected Lie subgroup of GL(n + 1;R) corresponding to
L(M). It is the semidirect product of the vector Lie group R" with the one-
dimensional Lie group G = {exp(Mt) | t € R}. Elements of the group G(M)
are the matrices

< exp(Mt) p

0 1>, tER, pERY

thus, G(M) can be viewed as a subgroup of the group Aff(n;R) of affine trans-
formations of R” generated by the one-parameter group of automorphisms G,
and all translations p € R*. The group G(M) is not simply-connected iff the
one-parameter subgroup G is periodic; this obviously occurs iff

(15.2)

the matrix M is semisimple,
Sp(M) =ir- (ki,...,k,) forsomer eR, (ki,..., k,) € 2"

Remark. If conditions (15.2) hold, then, by Theorem 7.1, on semidirect prod-
ucts of vector spaces with compact Lie groups, a system I' C L(M) is controllable
on G(M) if and only if it has a full rank: Lie(I") = L(M).

On the other hand, the controllability test for simply-connected meta-Abelian
Lie groups (Theorem 15.1) implies the following controllability conditions for the

universal covering G(M) and for the group G(M) itself.

Theorem 15.2. Let M be a nonzero n x n matriz, G = G(M), and let
L =L(M). A system T' = A+ RB C L is controllable on G if and only if the
following conditions hold:

(1) the matriz M has a purely complex spectrum;
(2) B¢ LY,
(3) span(B, A, (ad B)A, ..., (ad B)*'A) = L.

For the group G(M), conditions (1)~(3) are sufficient for controllability. If con-

ditions (15.2) are violated, then (1)—(3) are equivalent to the controllability on
G(M).
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Example 15.2. Let G = E(2;R) be the Euclidean group of motions of the plane
R%. Tts Lie algebra L = ¢(2;R) is spanned by the matrices A; = Fy3, Ay = Ebg3,
and A3 = Egl - E12 and has form (].5].)

It is solvable (in fact, meta-Abelian):
LW = span(A;, A,) D L® = {0},
but not completely solvable:
Sp(ad A3) = {£1, 0}.
The Lie group E(2;R) = G(M) is connected but not simply-connected; compare
with (15.2).
Consider the system I' = A + RB C ¢(2;R) on E(2;R), the simply-connected

covering of E(2; R). A complete characterization of controllability of I on E(2; R)
is derived from Theorem 15.2.

Theorem 15.3. A system I' = A+ RB C ¢(2;R) is controllable on E(2;R) if
and only if the vectors A and B are linearly independent and B ¢ span(A;, As).

Compare the controllability conditions for E(2;R) with the following condi-
tions for E(2;R) derived from Theorem 7.1.

Theorem 15.4. A system I’ = A+RB C ¢(2;R) is controllable on E(2;R) if and
only if the vectors A and B are linearly independent and {A, B} ¢ span(Aj, As).

15.2. Affine systems. Given any matrix A € M(n;R) and any vector b € R,
consider the affine system

T = uAxr + b, reER", wu€eR (%)

According to Sec. 3.3, such system is subordinated to the linear action of the
group G(A) C Aff(n; R) described in the previous subsection.

This observation in combination with the controllability results for right-in-
variant systems on Lie groups of the form G(A) lead us to complete controllability
conditions for affine systems .

Theorem 15.5. The system X s globally controllable on R if and only if the
following conditions hold:

(1) the matriz A has a purely complex spectrum and

(2) span(b, Ab, ..., A""'h) = R".
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Proof. Sufficiency. Consider the right-invariant system I' = A+ RB C L(A)
on the Lie group G(A), where the matrices A, B € L(A) are given by

(40) m-(18)

The affine system ¥ is induced by the right-invariant system I'. On the other
hand, the group of affine transformations G(A) C Aff(n;R) acts transitively on
R", since it contains all translations. By Corollary 3.3, if the right-invariant
system I is controllable on G(A), then the affine system ¥ is controllable on R".
By Theorem 15.2, the system IT' is controllable on G(A); thus, the sufficiency
follows.

Necessity. If one of the conditions (1) and (2) of Theorem 15.5 is violated,
then the system X has codimension 1 or 2 invariant subspaces in R".
15.3. Remarks. The results of this section were obtained by Sachkov [120].

16. Small-Dimensional Simply Connected Solvable Lie Groups

Given a Lie algebra L, there is the “largest” connected Lie group G having
Lie algebra L, the simply-connected one. All other connected Lie groups with
Lie algebra L are “smaller” than G in the sense that they are quotients G/C,
where (' is a discrete subgroup of center of G. A right-invariant system I' C L
can thus be considered on any of these groups, and the simply-connected group
G is the most difficult to control among them. Hence, given a right-invariant
system I" on a Lie group (or a homogeneous space of a Lie group) H, it is natural

first to study its controllability on the simply-connected covering H of H. If

T is controllable on H, then it is obviously controllable on H (and on all its
homogeneous spaces); in the opposite case, one should use particular geometric
properties of H (e.g., the existence of periodic one-parameter subgroups) to verify
the controllability of I' on H. It is obvious and remarkable that controllability
conditions on a simply-connected Lie group G should have a completely Lie-
algebraic form: they are completely determined by the Lie algebra L and its
subset T' (see, e.g., Theorems 9.4, 13.1, 14.1, 15.1, and 15.2).
This motivates the following definition.

Definition 16.1. A system ' C L is called controllable if it is controllable on
a (unique) connected simply-connected Lie group with Lie algebra L.

The next definition makes sense at least for solvable Lie algebras in lower
dimensions.

Definition 16.2. A Lie algebra L is called controllable if there exist A, B € L
such that the system I' = A + RB is controllable.

Indeed, it turns out that controllability conditions on solvable Lie groups
(Secs. 11 and 14) imply that for solvable lower-dimensional Lie algebras L,
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(1) the existence of a controllable single-input system I' C L, i.e., controllability
of L, is a strong restriction on L;

(2) if L is controllable, then almost all pairs (A, B) € L x L give rise to control-
lable systems I' = A + RB;

(3) the controllability of a system I' C L depends primarily on L but not on T

Moreover, these results yield a complete description of controllability in lower-
dimensional solvable Lie algebras presented in the following subsections.

Up to dimension 6, we describe all solvable Lie algebras L that are control-
lable, and give controllability tests for single-input systems ' = A+ RB C L
(the only gap in this picture is the class Lg ;v of six-dimensional Lie algebras not

completely studied).
The general “bird’s-eye view” of controllable small-dimensional solvable Lie
algebras is as follows:

dim L =1 the (unique) Lie algebra is controllable;
dim L = 2 the two Lie algebras are noncontrollable;
dim L = 3 there is one family of controllable Lie algebras L3(\), A € C\ R;
dim L = 4 there is one family of controllable Lie algebras Ly(\), A € C\ R;
dim L. = 5 there are two families of controllable Lie algebras:

L Lsr(A p), A, € C\ R, A # i, i,

2. Ly r1(A), A € C\ Ry
dim L. = 6 there are five families of controllable Lie algebras:

L Le (A p), Ay jp € C\ R, X # pu, i,

2. Lerr(A p, k), A,p € C\R, ReA=Repu, A # u, i, k € r\ {0},

3. Legrr(\ k1), \€ C\ (RUIR), k,l € R, k> + 1> #0,

4. Lev (N k1), € C\ (RUIR), k,l €R, k* +1* #0,

5. Ley (MK, 1), € C\ (RUIR), k,l € R, k* +1*> #0,

and one exceptional class Lg rv(bi), b € R\ {0}, containing both controllable and
noncontrollable Lie algebras.

All controllable Lie algebras L are presented by a scheme in the complex plane C
containing eigenvalues of the adjoint operator ad B|,q), B € L\ LM, and arrows
between these eigenvalues describing Lie brackets between eigenvectors of the
operator ad B|,q) (these schemes are given at the very end of this section). Notice

that for solvable Lie algebras L with codimension one subalgebras L(!) (and only
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such solvable Lie algebras may be controllable, see condition (1) of Theorem 14.1),
spectra of all adjoint operators ad B|; ), B € L\ L"), are homothetic with respect
to the origin 0 € C, and the homothety equivalence class of spectra of ad B|;u),
B e L\ LW, is determined not by B € L\ L(") but by L itself (in fact, by the
isomorphism class of L).

Now we present the classification of controllability in lower-dimensional solv-
able Lie algebras. These results are obtained by virtue of controllability conditions
of Secs. 11, 12, and 14. The proofs are outlined up to the first nontrivial dimen-
sion 3: for dimensions 4-6 the idea of proofs is analogous to the 3-dimensional
case but the argument is much longer.

16.1. One-dimensional Lie groups. A unique one-dimensional Lie algebra is
Abelian and isomorphic to R.

Theorem 16.1. The one-dimensional Lie algebra R is controllable.
A system I' = A4+ RB C R s controllable if and only if B # 0.

Proof. Apply Corollary 9.1.

16.2. Two-dimensional Lie groups. There are two nonisomorphic two-dimen-
sional Lie algebras: the Abelian R? and the solvable non-Abelian Sy = span(z, y),

[z,y] = y.

Theorem 16.2. Both two-dimensional Lie algebras R and S, are not control-

lable.

Proof. Both R? and S, are completely solvable; thus, Theorem 13.1 can be
applied.

16.3. Three-dimensional Lie groups.

Construction 16.1. The Lie algebra L3(\), A € C\ R (Fig. 2).
Ly ()\) = Span(xa Y, Z)a

ad x|span(y,z) = ( Z _ab ) , )\ =qa-+ bZ

The Lie algebra L3()) is schematically represented in Fig. 2 by the eigen-
values A\, A\ € C and realifications of the eigenvectors y,z € L3()) of the adjoint
operator ad z|span(y,2)-

Theorem 16.3. Let L = L3(\), A € C\ R, and let A,B € L. The system
I'=A+RB C L is controllable if and only if the following conditions hold:

(1) B¢ LY,
(2) the vectors A and B are linearly independent.

Proof. Sufficiency. We show that all the hypotheses of Corollary 14.3 hold.
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Conditions (1) and (2) are obviously satisfied.
Condition (3). Consider the decomposition B = Byx + B,y + B,z. We have

Sp(l) = Sp(ad B|,0)) = B - Sp(ad z|,0)) = By - {\, A}.

B ¢ LW is equivalent to B, # 0; thus, the spectrum Sp™ is simple.
Condition (4): Sp = SplV) = .
Condition (5), A(a) # 0 for all @ € Sp(!), means that the vector A has a

nonzero projection onto L(!) along the line RB, i.e., that A and B are linearly
independent.

Condition (6): Sp{!) = @.
Now it follows from Corollary 14.3 that the system I' is controllable.
The necessity follows from Corollary 14.1.

Theorem 16.4. A three-dimensional solvable Lie algebra is controllable if and
only if it is isomorphic to Lz(\), A € C\ R.

Proof. Sufficiency. The set of systems I' that satisfy conditions (1) and (2)
of Theorem 16.3 is nonempty.
Necessity. Let ' = A+ RB C L be a controllable system. By Theorem 14.1,

dim LY = 2 and B ¢ L. The derived subalgebra L") is nilpotent and two-
dimensional; thus, it is Abelian. Consequently, Sp,(?) c Sp®? = @. Thus,

Sp) =Sp(ad B|; ) = {\ A}, A=a+ifeC\R
Then there exist a basis y, z of the plane L") such that
[B,yl = ay+ Bz, [B,z] = =Py +az
Taking into account that L") is Abelian, we obtain that L ~ Ls()).

16.4. Four-dimensional Lie groups.

Construction 16.2. The Lie algebra L,(\), A € C\ R (Fig. 3).

a —b 0
adl‘|span(y,z,w) = b a O 3 )\ =a + bZ,
0 0 2a

ly, z] = w.

The arrows in the schematic representation of the Lie algebra Ly()) in Fig. 3
mean that the Lie bracket of the vectors y and z gives the vector w.

Theorem 16.5. Let L = Ly(\), A € C\ R, and let A,B € L. The system
I'=A+RB C L is controllable if and only if the following conditions hold:

1. B¢ LW,
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2. A(\) % 0.

Theorem 16.6. A four-dimensional solvable Lie algebra is controllable if and
only if it is isomorphic to Ly(\), X € C\ R.

16.5. Five-dimensional Lie groups.

Construction 16.3. The Lie algebra Ls ;(\, 1), A\, p € C\ R (Fig. 4).

Ls (A, p) = span(z,y, z,u,v),
a —b 0 0

ad Zspan (y,2u0) = 8 8 (c) _Od . A=a+bi, p=c+di
0 0 d c

Construction 16.4. The Lie algebra Lj ;7(A), A € C\ R (Fig. 5).

Ls r1(X) = span(z,y, 2, u,v),

a —b 0 O

b a 0 O .
aJd-'L'|spa‘n(y,z,u,v) = 1 0 a —b y A= a+ bi.

0 1 b a

The circles around the eigenvalues )\, A in Fig. 5 mean that they have dou-
ble algebraic multiplicity. (Notice that according to the previous matrix, their
geometric multiplicity is simple.)

Theorem 16.7. Let L = L5 (A, p), A\, p € C\' R, X\ # p, i, and let A,B € L.
The system I' = A+RB C L is controllable if and only if the following conditions
hold:

1. B¢ LW;
2. A(X) #0 and A(p) # 0.

Theorem 16.8. Let L = L5 ;;(A), A € C\ R, and let A,B € L. The system
I'=A+RB C L is controllable if and only if the following conditions hold:

1. B¢ LW,

2. top(A4, \) # 0.

Remark. The notation top(A, A) # 0 in Theorem 16.8 (and in Theorem 16.14
below) means that the vector A has a nonzero component corresponding to the
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higher order root space of the operator ad B|,q) corresponding to its eigenvalue
A

Theorem 16.9. A five-dimensional solvable Lie algebra is controllable if and
only if it is isomorphic to Ls (A, ), A, p € C\R, X # p, i, or Ls rr(N), A € C\R.

16.6. Six-dimensional Lie groups.

Construction 16.5. The Lie algebra Lg ; (A, 1), A\, p € C\ R (Fig. 6).

LB,I()\, :U’) = Span(xa Y,z,u,, U}),

a —b 0 0 O
b a 0 0 0
a'd-'L.|span(y,z,u,v,w) = 0 0 ¢ —d O ) A=a+ bl, n=c+ dZ,
0 0 d ¢ 0
0 0 0 0 2a

ly, 2] = w.

Construction 16.6. The Lie algebra Lg ;7(A, i1, k), A, 1t € C\ R, Re A = Re p,
ker\ {0} (Fig. 7).

LG,II()\a My k) = span(x, Yy,z,u,v, ’UJ),

a —b 0 0 0
b a 0 0 0
ad z|span(y,rupwy = | 0 0 a —d 0 |, A=a+bi, p=a+di,
0 0 d a O
0O 0 0 0 2a

ly,z] =w, [u,v] = kw.

Construction 16.7. The Lie algebra Lg ;77(\, k,1), A € C\ (RUIR), k,[ € R,
k? + 1% # 0 (Fig. 8).

L6,III()\7 k, l) = span(x, Y,z,u,v, ’U)),

a —b 0 0 O
b a 0 0 O
ad zlspan(y, oy = | 0 0 3a —b 0 |, A=a+bi,
0 0 b 3a O
0 0 0 0 2a

[w,y] = ku+ v, [w,z]=—lu+kz.

Construction 16.8. The Lie algebra Lg v (A, k,1), A € C\ (RUIR), k,l € R,
k* +1? # 0 (Fig. 9).

LB,IV()U k; l) - span(w, Yy, z,u, v, ’U)),
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a —b 0 0 0
b a 0 0 0
adx|span(y,z,u,v,w) = 0 0 —a —b 0 ) A=a+ bZ,
0 0 b —a O
0o 0 0 0 O
[y,v] = —[Z,U] = kwa [yau] = [Z,U] = lw.

Construction 16.9. The Lie algebra Lgy (X, k1), A € C\ (RUR), kI € R,
k2 + 12 # 0 (Fig. 10).

Le v (A k, 1) = span(z,y, z,u,v,w)

a —b 0 0 0
b a 0 0 O
aJdx|spaun(y,z,u,v,w) = 1 0 a —=b O , A=a+ b,
0 1 b a O
0O 0 0 0 2a
[y, 2] = kw, [y, u] = [2,v] = lw.

Construction 16.10. The class of Lie algebras Lgy (i), b € R\ {0} (Fig. 11).
A Lie algebra L belongs to the class Lgy(bi) if
L = span(z,y, z,u,v,w);
LW = span(y, 2, u, v, w);
Sp(ad x| m) = {£bi, 0};
both eigenvalues +b: have double algebraic multiplicity;

we LY,

The class Lg 1 contains a lot of nonisomorphic Lie algebras in which multi-
plication can not be described in detail as in Lie algebras Lg L,y

Theorem 16.10. Let L = Lg (A, i), A\, ;s € C\ R, X # p, i, and let A, B € L.
The system I' = A+RB C L is controllable if and only if the following conditions
hold:

1. B¢ LW;
2. A(N) #0 and A(p) # 0.

Theorem 16.11. Let L = Lg;r(\, 1, k), A\,p € C\ R, ReX = Rep, XA # u, [,
k € R\ {0}, and let A, B € L. The system T' = A+RB C L is controllable if and
only if the following conditions hold:

1. B¢ LW,

82



2. A(X) #0 and A(p) # 0.

Theorem 16.12. Let L = Lg1(\ k1), \€ C\ (RUIR), k,l €R, k*+1*#0,
and let A, B € L. The system I' = A+ RB C L is controllable if and only if the
following conditions hold:

1. B¢ LW,
2. A(\) # 0.

Theorem 16.13. Let L = Lg v (AN k1), A€ C\ (RUIR), k,l ER, k* +1*#0,
and let A, B € L. The system I' = A+ RB C L is controllable if and only if the
following conditions hold:

1. B¢ LW,
2. A(N) # 0 and A(—\) # 0.
Theorem 16.14. Let L = Lgv(\ k1), A€ C\ (RUIR), k,l € R, k? + 1% # 0,

and let A,B € L. The system I' = A+ RB C L s controllable if and only if the
following conditions hold:

1. B¢ LW;

2. top(4, \) # 0.
Remark.  The class Lgy(bi), b € R\ {0}, contains both controllable and
noncontrollable Lie algebras.

Theorem 16.15. Let a siz-dimensional solvable Lie algebra L do not belong
to the class Lgyvi(bi), b € R\ {0}. Then L is controllable if and only if it is
wsomorphic to one of the following Lie algebras:

L Le (A p), A jp € C\ R, X # pu, fi;

2. Legr(A p, k), A,y € C\R, ReA=Rep, A\ # pu, i, k € R\ {0};
3. Leir(M\ k), e C\ (RUIR), k,l € R, k* +[* # 0;

4. Legv(\ k1), \e C\ (RUiR), k,I €R, k* +1* # 0;

5. Lov(A\ K, 1), A€ C\ (RUIR), k,l €R, k2 + 12 # 0.
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Controllable solvable Lie algebras up to dimension 6:

% A , A
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16.7. Remarks. The classification of small-dimensional controllable solvable
Lie algebras is due to Sachkov [122, 123].

A natural next step would be a complete and visual classification of con-
trollable systems on general small-dimensional Lie algebras by synthesizing the
“semi-simple” and “solvable” theory via Levi decomposition (Kupka [92]).

17. Final remarks

In this section, we collect some references related to the subject of this survey:

Surveys and reference works on controllability of right-invariant systems on
Lie groups: Chong and Lawson [42], Kupka [92], Sachkov [122], Sallet [125, 126,
127].

Textbooks and surveys on geometric control theory: Agrachev, Vakhrameev,
and Gamkrelidze [4], Andereev [6], Brockett [37], Casti [40], Gauthier [47], Jur-
djevic [79], Sussmann [141], Vakhrameev [144], Vakhrameev and Sarychev [145].

Textbooks and surveys on Lie groups and Lie algebras: Bourbaki [34, 35],
Varadarajan [146], Vinberg and Onishchik [147], Vinberg, Gorbatcevich, and On-
ishchik [148].

Textbooks on Lie semigroup theory: Hofmann and Lawson [66], Hilgert and
Neeb [59], Hilgert, Hofmann and Lawson [58].

Controllability of nonlinear systems: Agrachev [3], Bacciotti and Stefani [23],
Basto Gongalves [18, 19, 20, 21], Bianchini and Stefani [24], Hermann [50], Her-
mes [51, 52, 53|, Hermes and Kawski [54], Kawski [84], Krener [86], Levitt and
Sussmann [95], Lobry [97, 98], Stefani [137], Sussmann [142], Sussmann and Ju-
rdjevic [139], Tretyak [143].

Controllability of bilinear and affine systems: Adda [1], Adda and Sallet [2],
Bacciotti [22], Bonnard [25, 26|, Boothby [30], Brockett [38], Bruni, Di Pillo, and
Koch [39], Koditschek and Narendra [85], Elliott and Tarn [45], Imbert, Clique,
and Fossard [69], Joo and Tuan [72], Jurdjevic and Sallet [82], Kucera [89, 90,
91], Lepe [96], Lobry [99], Piechottka [111], Piechottka and Frank [112], Rink and
Méhler [113], Sachkov [114, 115, 116, 117, 119].
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Linear and bilinear systems on Lie groups: Ayala and Tirao [15], Ayala and
Jiron [14], Ayala and Hacibekiroglu [16], Ayala, Rojo, and Soto [17], Markus [100].

Motion planning on Lie groups and their representation spaces: Krishnapra-
sad and Tsakiris [87, 88|, Leonard [106], Leonard and Krishnaprasad [107, 108],
Sarti, Walsh, and Sastry [131], Walsh, Montgomery, and Sastry [149], Zelikin [153,
154, 155, 156].

Control problems on Lie groups: Bonnard [27], Cheng, Dayawansa, and
Martin [41], Enos [46], Hirschorn [61], Jurdjevic [75, 76, 77, 78], Lovric [109],
Mittenhuber [101, 103], Monroy-Pérez [104], Sussmann [138], Yakovenko [150,
151], Yatcenko [152].
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