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Discrete symmetries in the generalized Dido problem

Yu. L. Sachkov

Abstract. The generalized Dido problem is considered — a model of the
nilpotent sub-Riemannian problem with the growth vector (2, 3, 5). The
group of discrete symmetries in this problem is constructed as an extension
of the reflection group of the standard mathematical pendulum. The action of
these symmetries in the inverse image and image of the exponential map is
studied.

Bibliography: 16 titles.

§ 1. Introduction

1.1. Statement of the problem. As is well known, the classical Dido problem
can be stated as follows. We are given two points on the plane connected by
a curve γ0, and a number S. It is required to connect these points by a shortest
curve γ so that the domain on the plane bounded by the curves γ0 and γ has
algebraic area S. The solution of this problem is an arc of a circle or a segment of
a straight line connecting the given points [1], [2].

We consider the following natural generalization of Dido’s problem. Suppose that
we are given two points (x0, y0), (x1, y1) ∈ R2 connected by some curve γ0 ⊂ R2, a
number S ∈ R, and a point c = (cx, cy) ∈ R2. It is required to find a shortest curve
γ ⊂ R2 connecting the points (x0, y0) and (x1, y1) such that the domain bounded
by the curves γ0 and γ has the given algebraic area S and centre of mass c.

In [3] it was shown that this problem can be reformulated as an optimal control
problem in 5-dimensional space with 2-dimensional control and integral criterion:

q̇ = u1X1 + u2X2, q = (x, y, z, v, w) ∈M = R5, u = (u1, u2) ∈ U = R2,

q(0) = q0 = 0, q(t1) = q1,

l =
∫ t1

0

√
u2

1 + u2
2 dt→ min,

where the vector fields for the controls have the form

X1 =
∂

∂x
− y

2
∂

∂z
− x2 + y2

2
∂

∂w
, X2 =

∂

∂y
+
x

2
∂

∂z
+
x2 + y2

2
∂

∂v
.

This research was carried out with the support of the Russian Foundation for Basic Research
(grant no. 05-01-00703-a).

The author is also grateful for support to Scuola Internazionale Superiore di Studi Avanzati
(Trieste, Italy), where this research was started.

AMS 2000 Mathematics Subject Classification. Primary 53C17; Secondary 17B66, 49J15,
53C22, 93C15.



236 Yu. L. Sachkov

From the invariant viewpoint, this is the sub-Riemannian problem

q̇ ∈ ∆q,

q(0) = q0, q(t1) = q1,

l =
∫ t1

0

√
〈q̇, q̇〉 dt→ min,

where
∆q = span(X1(q), X2(q)), q ∈M,

is a distribution in which the scalar product 〈 · , · 〉 is defined by the fields X1, X2

as an orthonormal basis:

〈Xi, Xj〉 = δij , i, j = 1, 2.

This problem is nilpotent: the fields X1, X2 generate a 5-dimensional nilpotent Lie
algebra Lie(X1, X2) = span(X1, X2, X3, X4, X5), where

X3 = [X1, X2] =
∂

∂z
+ x

∂

∂v
+ y

∂

∂w
,

X4 = [X1, X3] =
∂

∂v
, X5 = [X2, X3] =

∂

∂w
,

TqM = span(X1, X2, X3, X4, X5)(q).

All the non-trivial commutators in this Lie algebra are exhausted by the following
three:

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = X5,

that is, Lie(X1, X2) is a free nilpotent Lie algebra of length 3 with two generators.
The flag of the distribution ∆

∆ ⊂ ∆2 = [∆,∆] ⊂ ∆3 = [∆,∆2] ⊂ · · · ⊂ TM,

has the form

∆ = L1 = span(X1, X2),

∆2 = L1 ⊕ L2 = span(X1, X2, X3),

∆3 = L1 ⊕ L2 ⊕ L3 = span(X1, X2, X3, X4, X5).

Therefore the growth vector of the distribution ∆

(n1, n2, . . . , nN ), ni = dim ∆i(q), nN = dim Lie(∆)(q),

is equal to (2, 3, 5).
Thus, (∆, 〈 · , · 〉) is a nilpotent sub-Riemannian structure with the growth

vector (2, 3, 5). It is a local quasihomogeneous nilpotent approximation of an
arbitrary sub-Riemannian structure on a 5-dimensional manifold with the growth
vector (2, 3, 5) (see [4], [5], as well as [6]). As shown in [7], such a nilpotent
structure is unique. The generalized Dido problem is a model of the nilpotent sub-
Riemannian problem with the growth vector (2, 3, 5).
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1.2. Known results. The present paper is a continuation of [3], [7]; we shall
constantly use the results of these papers.

In [3] we proved the existence of optimal controls in the generalized Dido problem.
By using the Pontryagin maximum principle in the invariant form [8] we constructed
a Hamiltonian system for the normal extremals and found the abnormal extremals.
We calculated the continuous symmetries of the problem in [7]. By using them, in [3]
we showed that the exponential map is factorized by the action of a two-parameter
symmetry group (of rotations and dilatations). The normal Hamiltonian system
was integrated in terms of the Jacobian elliptic functions. The abnormal geodesics
are optimal up to infinity. Small arcs of normal geodesics are optimal, but large
arcs, generally speaking, are not; the points where a geodesic ceases to be optimal
are called cut points.

1.3. Contents of the paper. In this paper we begin the search for the cut points
in the generalized Dido problem. It is known that normal geodesics may cease to
be optimal for two reasons: either different geodesics of equal length intersect at a
given point (Maxwell points), or a family of geodesics has an envelope (conjugate
points). For problems with a rich symmetry group the Maxwell points can be sought
as the fixed points of the composite of the exponential map and symmetries: if a
symmetry permutes geodesics but fixes their common end-point, then this end-point
is a Maxwell point.

In the present paper we construct the group of discrete symmetries of the expo-
nential map in the generalized Dido problem. This is a dihedral group, which arises
as a result of the existence of reflections in the phase plane of the standard pen-
dulum. After reduction by the two-dimensional group of continuous symmetries,
the vertical part of the Hamiltonian system of the Pontryagin maximum principle
becomes the system of the standard pendulum. We extend the reflections of the
standard pendulum to reflections in the inverse image and image of the exponential
map. These discrete symmetries have a simple geometric meaning for the Euler
elastics — the projections of geodesics onto the plane (x, y): the reflections of elas-
tics in the centre of a chord, in the chord itself, and in the perpendicular bisector
of the chord. Discrete symmetries are factorized by the action of rotations and
dilatations. The action of reflections has an especially simple representation in the
special elliptic coordinates generated by the phase flow of the standard pendulum.

The procedure for extending the symmetries of the standard pendulum to sym-
metries of the exponential map is of a general nature and can be applied to a
number of optimal control problems in which an independent subsystem of the
Hamiltonian system of the Pontryagin maximum principle has a non-trivial sym-
metry group; this category includes, for example, the well-known problem of a
sphere rolling on a plane [9].

The description of discrete symmetries of the exponential map in the generalized
Dido problem obtained in the present paper will be used for a complete description
of the Maxwell points corresponding to these symmetries and for finding certain
conjugate points along geodesics. Thus, an upper estimate will be obtained for the
cut time on all the geodesics. These results will be expounded in the subsequent
papers [10], [11].
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We used the system “Mathematica” [12] to carry out complicated calculations
and to produce illustrations in this paper.

The author is grateful to A.A. Agrachev for posing the problem and for useful
discussions during the work.

§ 2. Reflections

2.1. Reflections of the field of directions of the standard pendulum. As
is well known [3], for the generalized Dido problem the vertical part of the normal
Hamiltonian system of the Pontryagin maximum principle reduces (after factoriza-
tion by two symmetries) to the standard pendulum equation{

θ̇ = c, θ ∈ S1;
ċ = − sin θ, c ∈ R.

(1)

It is easy to see that the following reflections of the cylinder S1 × R preserve the
field of directions of the pendulum (see Fig. 1):

ε1 : (θ, c) 7→ (θ,−c),
ε2 : (θ, c) 7→ (−θ, c),
ε3 : (θ, c) 7→ (−θ,−c).

Figure 1. Reflections in the phase plane of the pendulum

The reflections ε1 and ε2 change the direction of time, and ε3 preserves the
direction of time on the trajectories of the pendulum. These reflections generate
the dihedral group (the symmetry group of a rectangle)

D2 = {Id, ε1, ε2, ε3}

with the multiplication table

ε1 ε2 ε3

ε1 Id ε3 ε2

ε2 ε3 Id ε1

ε3 ε2 ε1 Id

Then we extend step-by-step the action of the reflections εi so that they become
symmetries of the exponential map: Exp ◦ εi = εi ◦ Exp (see Proposition 2.6).
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2.2. Reflections of the trajectories of the standard pendulum. The action
of the symmetries εi can be extended to the set of trajectories of the pendulum
equation (preserving the direction of time). Let

γ = {(θs, cs) | s ∈ [0, t]}

be a smooth curve on the phase cylinder of the standard pendulum S1 × R. We
define the maps of curves as follows:

ε1 : γ 7→ γ1 = {(θ1s , c1s) | s ∈ [0, t]} = {(θt−s,−ct−s) | s ∈ [0, t]},
ε2 : γ 7→ γ2 = {(θ2s , c2s) | s ∈ [0, t]} = {(−θt−s, ct−s) | s ∈ [0, t]},
ε3 : γ 7→ γ3 = {(θ3s , c3s) | s ∈ [0, t]} = {(−θs,−cs) | s ∈ [0, t]}.

Proposition 2.1. The group of reflections D2 = {Id, ε1, ε2, ε3} preserves the fam-
ily of trajectories of the standard pendulum (1).

Proof. The proposition is proved by straightforward differentiation. For example,
for ε1 we obtain

d

ds
θ1s =

d

ds
θt−s = −θ̇t−s = −ct−s = c1s,

d

ds
c1s =

d

ds
(−ct−s) = ċt−s = − sin θt−s = − sin θ1s .

Thus, if a curve γ is a trajectory of the pendulum, then the curves γ1, γ2, γ3

are also trajectories of the pendulum (see Fig. 2).

Figure 2. Reflections of the trajectories of the pendulum

2.3. Reflections of the trajectories of the generalized pendulum. In [3] it was
shown that the vertical part of the normal Hamiltonian system of the Pontryagin
maximum principle for the generalized Dido problem is the system of equations of
a generalized pendulum 

θ̇ = c, θ ∈ S1;
ċ = −α sin(θ − β), c ∈ R;
α̇ = 0, α > 0;
β̇ = 0, β ∈ S1.

(2)
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We consider smooth curves of the form

γ = {(θs, cs, α, β) | s ∈ [0, t], α, β = const}

in the phase space of the generalized pendulum. We extend the action of the
reflections εi to the family of such curves as follows:

ε1 : γ 7→ γ1 = {(θ1s , c1s, α, β1)} = {(θt−s,−ct−s, α, β)},
ε2 : γ 7→ γ2 = {(θ2s , c2s, α, β2)} = {(−θt−s, ct−s, α,−β)},
ε3 : γ 7→ γ3 = {(θ3s , c3s, α, β3)} = {(−θs,−cs, α,−β)}.

Proposition 2.2. The group of reflections D2 = {Id, ε1, ε2, ε3} preserves the fam-
ily of trajectories of the generalized pendulum (2).

Proof. The proof reduces to differentiation in the same way as for Proposition 2.1.

2.4. Reflections of normal extremals. As shown in [3], the normal Hamilton-
ian system of the Pontryagin maximum principle has triangular form under the
parametrization λ = (h1, . . . , h5; q) ∈ T ∗M : the subsystem for the coordinates
(h1, . . . , h5) ∈ T ∗q M in a fibre of the cotangent bundle is independent of the point
q ∈M (recall that hi(λ) = 〈λ,Xi(q)〉). This independent vertical subsystem on the
level surface of the Hamiltonian H = (h2

1+h2
2)/2 = 1/2 is written in the coordinates

(θ, c, α, β) ∈ T ∗q M as the generalized pendulum (2), where h1 = cos θ, h2 = sin θ,
h3 = c, h4 = α sinβ, h5 = −α cosβ. We extend the action of the reflections εi

from the vertical subsystem to the complete Hamiltonian system.
Let ν = (λ, t) ∈ N = C × R+ be a point in the inverse image of the exponential

map
Exp: N 7→M, Exp(λ, t) = π ◦ et ~H(λ) = qt,

where C = {H = 1/2} ∩ T ∗q0
M is the initial cylinder for the extremals. Then

λs = es ~H(λ), s ∈ [0, t], is the corresponding normal extremal, Exp(ν) = π(λt) = qt.
Henceforth, es ~H denotes the flow of the Hamiltonian field ~H with Hamiltonian H.
We write down the extremal in coordinates as λs = (θs, cs, α, β; qs). Then the
normal Hamiltonian system of the Pontryagin maximum principle takes the form

λ̇s = ~H(λs) :



θ̇s = cs;
ċs = −α sin(θs − β);
α̇ = 0;
β̇ = 0;
q̇s = cos θs X1(qs) + sin θs X2(qs).

(3)

In § 2.3 we defined the action of reflections on a trajectory of the vertical sub-
system:

εi : {(θs, cs, α, β)} 7→ {(θi
s, c

i
s, α, β

i)}, i = 1, 2, 3, s ∈ [0, t].

We extend this action to the trajectories of the normal Hamiltonian system (3):

εi : {λs} = {(θs, cs, α, β; qs)} 7→ {λi
s} = {(θi

s, c
i
s, α, β

i; qi
s)},

i = 1, 2, 3, s ∈ [0, t],
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where the curve qi
s is the solution of the Cauchy problem for the reflected controls

q̇i
s = cos θi

s X1(qi
s) + sin θi

s X2(qi
s), s ∈ [0, t],

qi
0 = q0.

Clearly, the following assertion holds.

Proposition 2.3. The group of reflections D2 = {Id, ε1, ε2, ε3} preserves the fam-
ily of trajectories of the normal Hamiltonian system (3).

The action of reflections on the geodesics qs will be described in §§ 2.6, 2.7.

2.5. Reflections in the inverse image of the exponential map. In § 2.4 we
defined the action of the reflections εi on the normal extremals λs = es ~H(λ)

εi : λs 7→ λi
s, s ∈ [0, t]. (4)

Our aim is to represent the reflections as symmetries of the exponential map
Exp(λ, t) = π ◦ et ~H(λ).

We now define the action of reflections in the inverse image of the exponential
map. We set

εi : C × R+ → C × R+, (λ, t) 7→ (λi, t),

where λi = λi
0 is the initial point of the corresponding reflected extremal (4). In

coordinates we have

ε1 : (θ, c, α, β, t) 7→ (θ1, c1, α, β1, t) = (θt,−ct, α, β, t), (5)

ε2 : (θ, c, α, β, t) 7→ (θ2, c2, α, β2, t) = (−θt, ct, α,−β, t), (6)

ε3 : (θ, c, α, β, t) 7→ (θ3, c3, α, β3, t) = (−θ,−c, α,−β, t). (7)

We should now like to define the action of reflections in the image of the expo-
nential map as

εi : M →M, qt 7→ qi
t.

But it is not clear a priori that the point qi
t is uniquely determined by the point qt.

To verify this fact we examine the action of reflections on geodesics.

2.6. Reflections of Euler elastics. System (3) shows that the projections of
the normal geodesics qs onto the plane (x, y) satisfy the differential equations

ẋs = cos θs,

ẏs = sin θs,

where the angle θs is in turn a solution of the pendulum equation

θ̈s = −α sin(θs − β), α, β = const.

Such curves (xs, ys) are called Euler elastics; they were discovered by Euler as
the stationary profiles of an elastic rod. The elastics are the extremals of the

functional
1
2

∫
γ

κ2(s) ds for planar curves, where κ is the curvature of a curve γ
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(see, for example, [9], [13]). The Euler elastics (the projections of solutions of the
generalized Dido problem) form, up to rotations and dilatations, a one-parameter
family of curves connecting a straight line and a circle (the projections of solutions
of the classical Dido problem). Sketches of various types of elastics were given in [3].

Let qs = (xs, ys, zs, vs, ws), s ∈ [0, t], be a geodesic, and let

qi
s = (xi

s, y
i
s, z

i
s, v

i
s, w

i
s), s ∈ [0, t], i = 1, 2, 3,

be its images under the action of reflections (see § 2.4). The curves (xs, ys) and
(xi

s, y
i
s) are Euler elastics. The action of the reflections εi on these curves is

described in the following proposition.

Proposition 2.4. We have
1) (x1

s, y
1
s) = (xt − xt−s, yt − yt−s), s ∈ [0, t];

2) (x2
s, y

2
s) = (xt − xt−s, yt−s − yt), s ∈ [0, t];

3) (x3
s, y

3
s) = (xs,−ys), s ∈ [0, t].

Proof. We consider only the action of ε1; the reflections ε2, ε3 can be examined in
similar fashion. We have

x1
s =

∫ s

0

cos θ1r dr =
∫ s

0

cos θt−r dr =
∫ t

t−s

cos θr dr.

Taking into account that

xt−s =
∫ t−s

0

cos θr dr,

we obtain

x1
s + xt−s =

∫ t

0

cos θr dr = xt,

that is,
x1

s = xt − xt−s, s ∈ [0, t].

Similarly we obtain
y1

s = yt − yt−s, s ∈ [0, t].

Remark. We note the graphic meaning of the action of reflections on elastics
{(xs, ys) | s ∈ [0, t]} in the case (xt, yt) 6= (x0, y0).

By the equality

ε1 :
(
xs

ys

)
(a)7→

(
xt−s

yt−s

)
(b)7→

(
xt − xt−s

yt − yt−s

)
=

(
x1

s

y1
s

)
the reflection ε1 is the composite of two transformations: (a) the inversion of time
on the elastic, and (b) the reflection of the plane (x, y) in the centre pc = (xt/2, yt/2)
of the chord of the elastic, that is, of the straight segment connecting its initial point
(x0, y0) = (0, 0) and end-point (xt, yt) (see Fig. 3).
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Figure 3. The reflection ε1 of an elastic in the centre of the chord pc

For the reflection ε2 we have the decomposition

ε2 :
(
xs

ys

)
(a)7→

(
xt−s

yt−s

)
(b)7→

(
xt

yt

)
+

(
− cos 2χ − sin 2χ
− sin 2χ cos 2χ

) (
xt−s

yt−s

)
(c)7→

(
cos 2χ sin 2χ
− sin 2χ cos 2χ

) [(
xt

yt

)
+

(
− cos 2χ − sin 2χ
− sin 2χ cos 2χ

) (
xt−s

yt−s

)]
=

(
xt − xt−s

yt−s − yt

)
=

(
x2

s

y2
s

)
,

where χ is the polar angle of the point (xt, yt):

cosχ =
xt√
x2

t + y2
t

, sinχ =
yt√

x2
t + y2

t

.

In other words, the reflection ε2 acts on elastics as the composite of three trans-
formations: (a) the inversion of time on the elastic, (b) the reflection of the plane
(x, y) in the perpendicular bisector l⊥ of the chord, and (c) the rotation through
the angle (−2χ) (see Fig. 4).

Figure 4. The reflection ε2 of an elastic in the perpendicular bisector l⊥
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The reflection ε3 is represented as follows:

ε3 :
(
xs

ys

)
(a)7→

(
cos 2χ sin 2χ
sin 2χ − cos 2χ

) (
xs

ys

)
(b)7→

(
cos 2χ sin 2χ
− sin 2χ cos 2χ

) [(
cos 2χ sin 2χ
sin 2χ − cos 2χ

) (
xs

ys

)]
=

(
xs

−ys

)
=

(
x3

s

y3
s

)
;

this is the composite of (a) the reflection of the plane (x, y) in the chord of the
elastic, and (b) the rotation through the angle (−2χ), that is, the reflection in
the chord l (see Fig. 5).

Figure 5. The reflection ε3 of an elastic in the chord l

Thus, modulo the inversion of time on elastics and rotations of the plane (x, y),
we have

i) ε1 is the reflection of an elastic in the centre of the chord;
ii) ε2 is the reflection of an elastic in the perpendicular bisector of the chord;
iii) ε3 is the reflection of an elastic in the chord.

2.7. Reflections of the end-points of geodesics. We now describe the action
of the reflections εi on the end-points of geodesics qt = (xt, yt, zt, vt, wt).

Proposition 2.5. We have
1) (x1

t , y
1
t , z

1
t , v

1
t , w

1
t ) = (xt, yt,−zt, vt − xtzt, wt − ytzt);

2) (x2
t , y

2
t , z

2
t , v

2
t , w

2
t ) = (xt,−yt, zt,−vt + xtzt, wt − ytzt);

3) (x3
t , y

3
t , z

3
t , v

3
t , w

3
t ) = (xt,−yt,−zt,−vt, wt).

Proof. We shall prove equality 1); the other two equalities can be considered in
similar fashion. The equality (x1

t , y
1
t ) = (xt, yt) follows from Proposition 2.4. Next,

taking into account the same proposition and the equalities ẋ = cos θ, ẏ = sin θ,
ż = (xẏ− ẋy)/2, by virtue of the normal Hamiltonian system (3) in the coordinates
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(x, y, z, v, w) we obtain

z1
t =

1
2

∫ t

0

(
− cos θt−s(yt − yt−s) + sin θt−s(xt − xt−s)

)
ds

=
1
2

∫ t

0

(− cos θt−syt + sin θt−sxt) ds

− 1
2

∫ t

0

(− cos θt−syt−s + sin θt−sxt−s) ds

= −1
2
xtyt +

1
2
ytxt +

1
2

∫ 0

t

(− cos θsys + sin θsxs) ds

= −zt.

The equalities v1
t = vt − xtzt and w1

t = wt − ytzt can be proved in similar fashion.

Proposition 2.5 shows that the end-point of the reflected geodesic qi
t is uniquely

determined by the end-point of the original geodesic qt. Therefore we can define
the action of reflections on the end-points of geodesics as the maps

εi : M →M, εi : qt → qi
t.

Proposition 2.5 describes the action of this map in the coordinates (x, y, z, v, w)
on M .

Remark. The reflection

ε3 : (x, y, z, v, w) 7→ (x,−y,−z,−v, w)

is a symmetry of the nilpotent sub-Riemannian structure (∆, 〈 · , · 〉) defined by the
fields X1, X2 as an orthonormal basis. This reflection acts on the basis as

ε3∗ : (X1, X2) 7→ (X1,−X2),

that is, this is the reflection of the plane ∆ in the straight line RX1.

2.8. Reflections as symmetries of the exponential map. The definition of
the action of the reflections εi in the inverse image and image of the exponential
map implies that the reflections are symmetries of the exponential map. We thus
obtain the following.

Proposition 2.6. The following diagrams are commutative:

C × R+
Exp−−−−→ Myεi

yεi

C × R+
Exp−−−−→ M,

(λ0, t)
Exp−−−−→ qtyεi

yεi

(λi
0, t)

Exp−−−−→ qi
t,

that is,
εi ◦ Exp = Exp ◦ εi, i = 1, 2, 3.
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§ 3. The symmetry group of the exponential map

Along with the discrete symmetry group D2 = {Id, ε1, ε2, ε3}, the exponential
map has the continuous two-parameter symmetry group eR~h0 ◦ eRZ , where

h0(λ) = 〈λ,X0(q)〉, X0 = −y ∂
∂x

+ x
∂

∂y
− w

∂

∂v
+ v

∂

∂w
,

Z = ~hY + e, hY (λ) = 〈λ, Y (q)〉,

Y = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
+ 3v

∂

∂v
+ 3w

∂

∂w
, e =

5∑
i=1

hi
∂

∂hi
.

Indeed, according to Assertion 4.2 in [3],

es~h0 ◦ erZ ◦ et ~H(λ) = et′ ~H ◦ es~h0 ◦ erZ(λ), t′ = ter,

whence by using the canonical projection π : T ∗M →M , π(λ) = q, we obtain

esX0 ◦ erY ◦ Exp(λ, t) = Exp(es~h0 ◦ erZ(λ), t′). (8)

We define the natural action of continuous symmetries in the inverse image of the
exponential map:

es~h0 : C × R+ → C × R+, (λ, t) 7→ (es~h0(λ), t),

erZ : C × R+ → C × R+, (λ, t) 7→ (erZ(λ), ter).

From this definition and equality (8) we obtain the following.

Proposition 3.1. The following diagrams are commutative:

C × R+
Exp−−−−→ Myes~h0

yesX0

C × R+
Exp−−−−→ M,

C × R+
Exp−−−−→ MyerZ

yerY

C × R+
Exp−−−−→ M,

that is,
esX0 ◦ Exp = Exp ◦es~h0 , erY ◦ Exp = Exp ◦erZ .

Thus, the group generated by reflections, rotations, and dilatations

G = 〈ε1, ε2, ε3, es~h0 , erZ〉

preserves the exponential map. We now find the commutation relations in the
group G. The flows of the fields ~h0 and Z commute with each other [3]. The
reflections εi also commute with each other (see the multiplication table in § 2.1).
We now determine the rules of commutation of discrete and continuous symmetries.

Proposition 3.2. In the inverse image of the exponential map C×R+ the following
commutation relations hold :

es~h0 ◦ ε1 = ε1 ◦ es~h0 , es~h0 ◦ ε2 = ε2 ◦ e−s~h0 , es~h0 ◦ ε3 = ε3 ◦ es~h0 ,

erZ ◦ εi = εi ◦ erZ , i = 1, 2, 3.
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Proof. The proposition can be proved by a straightforward calculation using the
expressions for the action of reflections (5)–(7) and the continuous symmetries

es~h0 : (θ, c, α, β, t) 7→ (θ + s, c, α, β + s, t),

erZ : (θ, c, α, β, t) 7→ (θ, ce−r, αe−2r, β, ter)

in the inverse image of the exponential map.

Corollary 3.1. In the image of the exponential map M the following commutation
relations hold :

esX0 ◦ ε1 = ε1 ◦ esX0 , esX0 ◦ ε2 = ε2 ◦ e−sX0 , esX0 ◦ ε3 = ε3 ◦ esX0 ,

erY ◦ εi = εi ◦ erY , i = 1, 2, 3.

Remark. We denote the inverse image of the exponential map by N = C × R+.
We consider the quotient spaces of the inverse image and image of the exponential
map, as well as the corresponding canonical projections:

N ′′ = N/G~h0,Z , π′′0 : N → N ′′,

M ′′ = M/GX0,Y , π′′1 : M →M ′′,

where G~h0,Z = 〈es~h0 , erZ〉 and GX0,Y = 〈esX0 , erY 〉 are two-parameter groups of
continuous symmetries in N and M , respectively; see [3]. Proposition 3.2 and
Corollary 3.1 allow us to define the action of reflections in the quotient spaces

εi : N ′′ → N ′′, εi : M ′′ →M ′′

so that the following diagram is commutative:

N
Exp //

π′′
0

��

εi

""DD
DD

DD
DD

M

π′′
1

��

εi

""EE
EE

EE
EE

N
Exp //

π′′
0

��

M

π′′
1

��

N ′′ Exp′′
//

εi
!!DD

DD
DD

DD
M ′′

εi

""EE
EE

EE
EE

N ′′
Exp′′

// M ′′

§ 4. Action of reflections in the inverse image of the exponential map

In [3] the so-called elliptic coordinates were introduced in subdomains of the
phase space of the pendulum. These coordinates are generated by the “action–angle”
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coordinates for the standard pendulum. One of these coordinates is time on the
trajectories of the pendulum, and the second is the reparametrized energy of
the pendulum. In this section we recall the construction of elliptic coordinates
(with certain corrections and additions); then using these coordinates we describe
the action of reflections in the inverse image of the exponential map.

The twenty-sixth of the “Lectures on dynamics” of C. Jacobi [14] is called
“Elliptic coordinates” and begins with the well-known words:

“The main difficulty in the integration of these differential equations is
the introduction of convenient variables, there being no general rule for
finding them. Therefore one has to adopt the opposite approach and,
after finding a remarkable substitution, to seek the problems for which
this substitution can be successfully used”.

Note that the coordinates introduced below are unrelated to Jacobi’s elliptic coordi-
nates. Moreover, our procedure was opposite to that described by Jacobi: we had to
introduce our elliptic coordinates specifically for parametrizing the sub-Riemannian
geodesics [3] and finding the Maxwell points [10], [11]. Elliptic coordinates lift the
veil of complexity over the problems governed by the pendulum equation and open
their solution to our eyes (see Fig. 6). Here we have an important intersection
point with Jacobi: our coordinates are introduced by using the Jacobian elliptic
functions [15], [16]. Another important moment will be the study of the conjugate
points, that is, the solutions of the Jacobi equation, along geodesics [11].

Figure 6. Grid of elliptic coordinates

4.1. Elliptic coordinates in the initial cylinder. Recall [3] that the set of
initial points of the extremals is a cylinder — the phase space of the generalized
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pendulum (2)

C = T ∗q0
M ∩H−1

(
1
2

)
= {(θ ∈ S1, c ∈ R, α > 0, β ∈ S1)},

and the energy of the generalized pendulum is equal to

E =
c2

2
− α cos(θ − β) ∈ [−α,+∞).

In [3] we introduced the partition of the cylinder C into the subsets

C =
7⋃

i=1

Ci, Ci ∩ Cj = ∅, i 6= j,

C1 = {λ ∈ C | α 6= 0, E ∈ (−α, α)},
C2 = {λ ∈ C | α 6= 0, E ∈ (α,+∞)},
C3 = {λ ∈ C | α 6= 0, E = α, θ − β 6= π},
C4 = {λ ∈ C | α 6= 0, E = −α},
C5 = {λ ∈ C | α 6= 0, E = α, θ − β = π},
C6 = {λ ∈ C | α = 0, c 6= 0},
C7 = {λ ∈ C | α = c = 0}.

In the subsets C1, C2, C3 the elliptic coordinates (k, ϕ, α, β) are introduced as
follows:

C1 =
{
k ∈ (0, 1), ϕ

(
mod

4K√
α

)
, α > 0, β(mod2π)

}
,

k =

√
E + α

2α
=

√
sin2 θ − β

2
+
c2

4α
∈ (0, 1),sin

θ − β

2
= s1k sn(

√
αϕ);

c

2
= k

√
α cn(

√
αϕ),

s1 = sgn cos
θ − β

2
.

In this case,

cos
θ − β

2
= s1 dn(

√
αϕ).

Henceforth we use the Jacobian elliptic functions sn, cn, dn (see [15], [16]).
We partition the domain C2 into the two connected components

C±2 = {λ ∈ C | α > 0, E ∈ (α,+∞), sgn c = ±1}.
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Then

C±2 =
{
k ∈ (0, 1), ϕ

(
mod

2Kk√
α

)
, α > 0, β(mod2π)

}
,

k =

√
2α

E + α
=

(√
sin2 θ − β

2
+
c2

4α

)−1

∈ (0, 1),
sin

θ − β

2
= s2 sn

√
αϕ

k
;

c

2
= s2

√
α

k
dn

√
αϕ

k
,

s2 = sgn c.

In this case,

cos
θ − β

2
= cn

√
αϕ

k
.

In the domain C2 we shall also use the coordinates (k, ψ, α, β), where ψ = ϕ/k.
Then

C±2 =
{
k ∈ (0, 1), ψ

(
mod

2K√
α

)
, α > 0, β(mod2π)

}
.

We also partition the set C3 into the two connected components

C±3 = {λ ∈ C | α > 0, E = α, sgn c = ±1}.

Then

C±3 =
{
ϕ ∈ R, α > 0, β(mod2π)

}
,

sin
θ − β

2
= s1s2 tanh(

√
αϕ);

c

2
= s2

√
α

cosh(
√
αϕ)

,
s1 = sgn cos

θ − β

2
, s2 = sgn c.

In this case,

cos
θ − β

2
= s1

1
cosh(

√
αϕ)

.

In Fig. 6 we depicted the grid of elliptic coordinates in the phase plane of the
standard pendulum (α = 1, β = 0). In the domain C1 (oscillations of the pendulum
with a low energy E < 1) we depicted the curves k = const, ϕ/K = const; in the
domain C2 (rotations of the pendulum with a higher energy E > 1) we depicted
the curves k = const, ψ/K = const; these domains are separated by the set C3

(motions of the pendulum with the critical energy E = 1) consisting of the two
separatrices k = 1.

4.2. Elliptic coordinates in the inverse image of the exponential map. In
accordance with the partition of the initial cylinder C =

⋃7
i=1 Ci we consider the

partition of the inverse image of the exponential map

N =
7⋃

i=1

Ni, Ni = Ci × R+.
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In similar fashion, along with the partition into the connected components

Ci = C+
i ∪ C−i , C±i = Ci ∩ {sgn c = ±1}, i = 2, 3, 6,

we shall consider the partitions

Ni = N+
i ∪N−

i , N±
i = C±i × R+, i = 2, 3, 6.

We define the elliptic coordinates in the subsets N1, N2, N3:

N1 = {(k, ϕ, α, β, δ)},
N2 = {(k, ψ, α, β, δ)},
N3 = {(ϕ, α, β, δ)},
δ = t

√
α .

Remark. The elliptic coordinates are suited to the action of continuous symme-
tries; rotations and dilatations have an especially simple form in these coordinates.
Indeed, in the coordinates N = {(θ, c, α, β, t)} we have

~h0 =
∂

∂θ
+

∂

∂β
, Z = −c ∂

∂c
− 2α

∂

∂α
+ t

∂

∂t
;

hence in the coordinates Nj = {(k, ϕ, α, β, δ)} we have

~h0 =
∂

∂β
, Z = −2α

∂

∂α
.

The functions (k, ϕ, δ) are coordinates in the quotient spaces N ′′
j , j = 1, 2, 3.

4.3. Action of reflections in N . We now describe the action of the reflections
εi : Nj →Nj in the elliptic coordinates. Let ν ∈ N ; we set νi = εi(ν) ∈ N .

Proposition 4.1. 1) If ν = (k, ϕ, α, β, t) ∈ N1, then νi = (k, ϕi, α, βi, t) ∈ N1,
i = 1, 2, 3, and

ϕ1 + ϕt =
2K√
α

(
mod

4K√
α

)
, β1 = β,

ϕ2 + ϕt = 0
(

mod
4K√
α

)
, β2 = −β,

ϕ3 − ϕ =
2K√
α

(
mod

4K√
α

)
, β3 = −β.

2) If ν = (k, ψ, α, β, t) ∈ N2, then νi = (k, ψi, α, βi, t) ∈ N2, i = 1, 2, 3; moreover

ν ∈ N±
2 ⇒ ν1 ∈ N∓

2 , ν
2 ∈ N±

2 , ν
3 ∈ N∓

2 ,

and

ψ1 + ψt = 0
(

mod
2K√
α

)
, β1 = β,

ψ2 + ψt = 0
(

mod
2K√
α

)
, β2 = −β,

ψ3 + ψ = 0
(

mod
2K√
α

)
, β3 = −β.
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3) If ν = (ϕ, α, β, t) ∈ N3, then νi = (ϕi, α, βi, t) ∈ N3, i = 1, 2, 3; moreover,

ν ∈ N±
3 ⇒ ν1 ∈ N∓

3 , ν2 ∈ N±
3 , ν3 ∈ N∓

3 ,

and
ϕ1 + ϕt = 0, β1 = β,

ϕ2 + ϕt = 0, β2 = −β,
ϕ3 + ϕ = 0, β3 = −β.

Proposition 4.1 is illustrated in Fig. 7–9 (in the case α = 1, β = 0).

Figure 7. Reflections in C1

Figure 8. Reflections in C2

Proof. We prove only part 1), since the other two parts can be proved in similar
fashion.

The reflections εi preserve the domain N1 due to the fact that

εi : E → E, ε1, ε3 : c 7→ −c, ε2 : c 7→ c,

which follows from equalities (5)–(7).
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Figure 9. Reflections in C3

Next, from equality (5) we obtain θ1 = θt and c1 = −ct, whence, taking into
account the construction of elliptic coordinates (§ 4.1) we have

sn(
√
αϕ1) = sn(

√
αϕt), cn(

√
αϕ1) = − cn(

√
αϕt);

hence,

ϕ1 + ϕt =
2K√
α

(
mod

4K√
α

)
.

The expressions for the action of the other reflections in the elliptic coordinates can
be obtained in similar fashion.

§ 5. The action of reflections in the image of the exponential map

5.1. Decomposition and coordinates in M and M ′′. In order to obtain
a simple description of the action of reflections in the image of the exponential
map it is convenient to use special coordinates in M suited to the action of the
symmetries X0 and Y . We now describe their construction.

Recall that
M = {q} = R5

x,y,z,v,w, q0 = (0, 0, 0, 0, 0).

We introduce polar coordinates in the planes (x, y) and (v, w):

x = r cosχ, y = r sinχ; v = ρ cosω, w = ρ sinω.

In the domain {r > 0, ρ > 0} the angle

γ = χ− ω

is defined. We consider the following subsets of M :

M = M0 ∪ {q0}, M0 = M \ {q0} = {r2 + z2 + ρ2 > 0},
M0 = M1 ∪M2 ∪M+

3 ∪M−
3 ,

M1 = {r > 0}, M2 = {ρ > 0}, M±
3 = {±z > 0}.
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We describe the desired coordinates in the charts M1, M2, M±
3 of the

manifold M0:

M1 = {(r > 0, χ ∈ S1, P,Q,R)},

P =
z

2r2
, Q =

xv + yw

r4
=

ρ

r3
cos γ, R =

−yv + xw

r4
=

ρ

r3
sin γ;

M2 = {(ρ > 0, ω ∈ S1, P ′, Q′, R′)},

P ′ =
z

2ρ2/3
, Q′ =

xv + yw

ρ4/3
=

r

ρ1/3
cos γ, R′ =

−yv + xw

ρ4/3
=

r

ρ1/3
sin γ;

M±
3 = {(r′ > 0, χ ∈ S1, ρ′ > 0, ω ∈ S1)},

r′ =
r

|z|1/2
, ρ′ =

ρ

|z|3/2
.

In addition,

M±
3 = {(±z > 0, χ ∈ S1, r′ > 0, ρ′ > 0, γ ∈ S1)}

= {(±z > 0, χ ∈ S1, P ′′, Q′′, R′′)},

P ′′ =
r′2 − ρ′2√
r′2 + ρ′2

, Q′′ =
r′ρ′√
r′2 + ρ′2

cos γ, R′′ =
r′ρ′√
r′2 + ρ′2

sin γ.

In the coordinates (r, χ, z, ρ, ω) in the domain M1 ∩M2 = {r > 0, ρ > 0} the
continuous symmetries take the form

X0 =
∂

∂χ
+

∂

∂ω
, Y = r

∂

∂r
+ 2z

∂

∂z
+ 3ρ

∂

∂ρ
.

In the coordinates (r, χ, P,Q,R) in the domain M1 we obtain

X0 =
∂

∂χ
, Y = r

∂

∂r
;

hence the quotient space M ′′
1 is parametrized by the coordinates (P,Q,R). Simi-

larly, in the domain M2 = {(ρ, ω, P ′, Q′, R′)} we have

X0 =
∂

∂ω
, Y = 3ρ

∂

∂ρ

and therefore M ′′
2 = {(P ′, Q′, R′)}, while in the domains M±

3 = {z, χ, P ′′, Q′′, R′′)}
we have

X0 =
∂

∂χ
, Y = 2z

∂

∂z

and therefore M±
3

′′
= {(P ′′, Q′′, R′′)}.
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We consider the following partition of M into invariant sets of the group of
continuous and discrete symmetries G:

M = {q0} ∪M1 ∪M4 ∪M±
5 ,

where the domain M1 = M \ {q0} = {r > 0} was defined above, while

M4 = M2 \M1 = {r = 0, ρ > 0},
M±

5 = M±
3 \ (M1 ∪M4) = {r = 0, ρ = 0, ±z > 0}.

The coordinates in M1 and M ′′
1 were described above, while

M4 = {(ρ > 0, ω ∈ S1, P ′)}, M ′′
4 = {P ′},

M±
5 = {±z > 0}, M±

5

′′
= {z = ±1}.

5.2. Action of reflections in M . We describe the action of the reflections

εi : M →M, q = (x, y, z, v, w) 7→ qi = (xi, yi, zi, vi, wi)

in the coordinates introduced in § 5.1.

Proposition 5.1. We have
1) q = q0 ⇒ qi = q0, i = 1, 2, 3;
2) q = (r, χ, P,Q,R) ∈M1 ⇒ qi = (r, χi, P i, Qi, R) ∈M1, and

χ1 = χ (mod2π), P 1 = −P, Q1 = Q− 2P,

χ2 + χ = 0 (mod2π), P 2 = P, Q2 = −Q+ 2P,

χ3 + χ = 0 (mod2π), P 3 = −P, Q3 = Q− 2P ;

3) q = (ρ, ω, P ′) ∈M4 ⇒ qi = (ρ, ωi, P ′
i) ∈M4, and

ω1 = ω (mod2π), P ′
1 = −P ′,

ω2 + ω = π (mod2π), P ′
2 = P ′,

ω3 + ω = π (mod2π), P ′
3 = −P ′;

4) q = z ∈M5 ⇒ qi = zi ∈M5, and

q ∈M±
5 ⇒ q1 ∈M∓

5 , q
2 ∈M±

5 , q
3 ∈M∓

5 ,

z1 = −z, z2 = z, z3 = −z.

Proof. By Proposition 2.5 the reflections act in M as follows:

ε1 : (x, y, z, v, w) 7→ (x, y,−z, v − xz,w − yz),

ε2 : (x, y, z, v, w) 7→ (x,−y, z,−v + xz,w − yz),

ε3 : (x, y, z, v, w) 7→ (x,−y,−z,−v, w).

The assertion of part 1) is obvious; we now prove part 2). It is immediately clear
that the reflections preserve the distance r, and therefore also the domain M1.
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Next, the reflection ε1 does not alter the vector (x, y), and therefore it does not
alter the angle χ either. Finally,

P 1 =
−z
2r2

= −P,

Q1 =
x(v − xz) + y(w − yz)

r4
=
xv + yw

r4
− (x2 + y2)z

r4
= Q− 2P,

R1 =
−y(v − xz) + x(w − yz)

r4
=
−yv + xw

r4
= R.

The remaining assertions can be proved in similar fashion.

Remark. It is clear from part 2) of Proposition 5.1 that in the domain M1 (which is
an open everywhere dense subset of M) the reflections εi can be particularly simply
represented in the following coordinates in the quotient space M ′′

1 :

P =
z

2r2
, Q− P =

xv + yw − zr2/2
r4

, R =
−yv + xw

r4
;

namely,

ε1 : P 7→ −P, Q− P 7→ Q− P, R 7→ R,

ε2 : P 7→ P, Q− P 7→ −Q+ P, R 7→ R,

ε3 : P 7→ −P, Q− P 7→ Q− P, R 7→ R.

In other words, in the plane (P, Q − P ) the discrete symmetries εi act as the
reflections in the coordinate axes P = 0 and Q−P = 0. This explains the important
role that the surfaces z = 0 and V = xv+ yw− zr2/2 = 0 will play in the study of
the Maxwell strata. The subsequent papers [10], [11] are devoted to this study.
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