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The Maxwell set in the generalized Dido problem

Yu. L. Sachkov

Abstract. The generalized Dido problem is considered — a model of the
nilpotent sub-Riemannian problem with the growth vector (2, 3, 5). We study
the Maxwell set, that is, the locus of the intersection points of geodesics
of equal lengths. A general description is obtained for the Maxwell strata
corresponding to the symmetry group of the exponential map generated by
rotations and reflections. The invariant and graphic meaning of these strata
is clarified.

Bibliography: 19 titles.

§ 1. Introduction

1.1. Statement of the problem. The present paper is devoted to the study
of optimality of geodesics in the generalized Dido problem. The problem can be
formulated as follows. Suppose that we are given two points (x0, y0), (x1, y1) ∈ R2

connected by some curve γ0 ⊂ R2, a number S ∈ R, and a point c = (cx, cy) ∈ R2.
One needs to find a shortest curve γ ⊂ R2 connecting the points (x0, y0) and (x1, y1)
such that the domain bounded by the two curves γ0 and γ has the prescribed
algebraic area S and centre of mass c.

It was shown in [1] that this problem can be reformulated as an optimal control
problem in 5-dimensional space with 2-dimensional control and the integral criterion

q̇ = u1X1 + u2X2, q = (x, y, z, v, w) ∈M = R5, u = (u1, u2) ∈ U = R2,

q(0) = q0 = 0, q(t1) = q1,

l =
∫ t1

0

√
u2

1 + u2
2 dt→ min,

where the vector fields for the controls have the form

X1 =
∂

∂x
− y

2
∂

∂z
− x2 + y2

2
∂

∂w
, X2 =

∂

∂y
+
x

2
∂

∂z
+
x2 + y2

2
∂

∂v
.

From the invariant viewpoint, this is the sub-Riemannian problem defined by
the distribution

∆q = span(X1(q), X2(q)), q ∈M,
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with a scalar product 〈 · , · 〉 in which the fields X1, X2 form an orthonormal basis:

〈Xi, Xj〉 = δij , i, j = 1, 2.

The Lie algebra generated by the fields X1, X2 is a free nilpotent Lie algebra of
length 3 with two generators. The distribution ∆ has the flag

∆ ⊂ ∆2 = [∆,∆] ⊂ ∆3 = [∆,∆2] = TM

and the growth vector (2, 3, 5) = (dim ∆q, dim ∆2
q, dim ∆3

q).
Thus, (∆, 〈 · , · 〉) is a nilpotent sub-Riemannian structure with the growth vector

(2, 3, 5). This structure is a local quasihomogeneous nilpotent approximation of an
arbitrary sub-Riemannian structure on a 5-dimensional manifold with the growth
vector (2, 3, 5) (see [2], [3], as well as [4]). As shown in [5], such a nilpotent structure
is unique. The generalized Dido problem is a model of the nilpotent sub-Riemannian
problem with the growth vector (2, 3, 5).

1.2. Known results. We continue the study of the generalized Dido problem
started in [1], [5], [6].

In [5] and [6], respectively, the groups of continuous and discrete symmetries
in this problem were found: there is a two-parameter continuous symmetry group
(rotations and dilatations), as well as a discrete symmetry group of order 4 (reflec-
tions).

A parametrization of the sub-Riemannian geodesics (extremal trajectories) by
the Jacobi elliptic functions was obtained in [1]. The abnormal geodesics are optimal
up to infinity, while the normal ones, generally speaking, are optimal on finite time
intervals.

1.3. Contents of the paper. A point at which a geodesic ceases to be optimal
is called a cut point. It is known that a normal geodesic can cease to be opti-
mal either because another geodesic with the same value of the functional comes
to some point of it (a Maxwell point), or because a family of geodesics has an
envelope (a conjugate point). In the present paper we find the Maxwell points
corresponding to the symmetry group preserving time on the geodesics (rotations
and reflections). Namely, we find two hypersurfaces in the state space M contain-
ing all such Maxwell points. Computer-aided calculations show that it is on these
hypersurfaces that geodesics cease to be optimal. We clarify the invariant meaning
of these hypersurfaces in terms of the sub-Riemannian structure, as well as their
graphic meaning for the Euler elastics (the projections of geodesics onto the plane
(x, y)).

Localization of the intersection points of geodesics with the hypersurfaces found
in this paper will be the subject of the subsequent paper [7]. For that we shall need
the more complicated technique of elliptic functions, which is avoided in this paper.

We used the system “Mathematica” [8] to carry out complicated calculations
and to produce the illustrations in this paper.

The author is grateful to A.A. Agrachev for posing the problem and for useful
discussions during the work.
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§ 2. The Maxwell set

We begin by recalling some notions and notation introduced in the preceding
papers [1], [6]. It follows from the Pontryagin maximum principle [9] that the
extremals in the generalized Dido problem are the trajectories of the Hamiltonian
system λ̇ = ~H(λ), λ ∈ T ∗M , with the Hamiltonian H = (h2

1 + h2
2)/2, where

hi(λ) = 〈λ,Xi(q)〉. The geodesics are the projections of the extremals in the cotan-
gent bundle T ∗M onto the state space M : qt = π(λt), λt = et

~H(λ). Henceforth,
et
~H denotes the flow of the Hamiltonian field ~H with the Hamiltonian H. Since the

Hamiltonian H is homogeneous, it is sufficient to consider the restriction of
the Hamiltonian flow to the level surface H = 1/2 and therefore it is sufficient to
take initial covectors λ in the initial cylinder C = {H = 1/2}∩T ∗q0M . All the infor-
mation about the geodesics is contained in the exponential map Exp: C×R+ →M

given by Exp(λ, t) = π ◦ et ~H(λ) = qt.

2.1. Optimality of normal geodesics. The Maxwell set in the inverse image
of the exponential map is defined as follows:

MAX =
{
(λ, t) ∈ C × R+ | ∃ λ̃ ∈ C, λ̃ 6= λ : Exp(λ̃, t) = Exp(λ, t)

}
.

An inclusion (λ, t1) ∈ MAX means that two distinct geodesics

qs = Exp(λ, s) 6≡ q̃s = Exp(λ̃, s), s ∈ [0, t1],

of the same sub-Riemannian length l = t1 intersect at the point qt1 = q̃t1 (see
Fig. 1).

Figure 1. Non-optimalality of the geodesic qs after the Maxwell point qt1

The Maxwell set is closely related to optimality of geodesics: a geodesic cannot
be optimal after an intersection with another geodesic of the same length. The
following proposition was proved by Jacquet [10]. We give it with proof for the
sake of completeness of the exposition.

Proposition 2.1. Let qs and q̃s be two distinct geodesics : qs 6≡ q̃s, s ∈ [0, t1]. If
qt1 = q̃t1 , then for any t2 > t1 the geodesic qs, s ∈ [0, t2], is not optimal.

In other words, for any t2 > t1 there exists a geodesic q̂s, s ∈ [0, t̂ ], of a smaller
sub-Riemannian length than that of qs, s ∈ [0, t2], connecting q0 and qt2 (see Fig. 1).
Therefore any geodesic qs = Exp(λ, s) is non-optimal after the Maxwell time t1,
(λ, t1) ∈ MAX.
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Proof. We prove Proposition 2.1 arguing by contradiction. Suppose that for some
t2 > t1 the geodesic qs, s ∈ [0, t2], is optimal. Then the broken geodesic

q′s =

{
q̃s, s ∈ [0, t1];
qs, s ∈ [t1, t2]

is also optimal. But all the geodesics in the generalized Dido problem are analytic
curves. Therefore it follows from the identity q′s ≡ qs, s ∈ [t1, t2], that q′s ≡ qs,
s ∈ [0, t2], whence q̃s ≡ qs, s ∈ [0, t1]; a contradiction.

Remark. The exponential map is a Lagrangian map [11]. It follows from the the-
ory of Lagrangian singularities that in our problem normal geodesics cease to be
optimal at the first Maxwell point (that is, they are optimal up to and including
this point and non-optimal after it). However, it is difficult to find the first Maxwell
point. We shall investigate optimality of normal geodesics as follows:

1) we shall find certain subsets of the Maxwell set — the Maxwell strata MAXi,
i = 0, . . . , 3, generated by the symmetries of the exponential map that do not
alter time (the rotation ~h0 and the reflections εi);

2) we shall prove that along every normal extremal the first conjugate point is
encountered not earlier than the first intersection with the Maxwell strata
MAXi;

3) we shall prove that the first point on a normal extremal in the Maxwell strata
MAXi is a cut point (a point of loss of optimality).

This method of investigation of optimality was successfully applied for solving sev-
eral problems of sub-Riemannian geometry [12], [13]. In the present paper we solve
problem 1).

As noted in the book [11], the term Maxwell set originates “in connection with
the Maxwell rule of the van der Waals theory, according to which phase transition
takes place at a value of the parameter for which two maxima of a certain smooth
function are equal to each other”.

2.2. The Maxwell strata generated by rotations and reflections. In [6]
we defined and studied the reflections εi, i = 1, 2, 3, — the discrete symmetries
of the exponential map εi : N→N , εi : M→M , Exp ◦ εi = εi ◦ Exp. We set
νi = εi(ν) for ν = (λ, t) ∈ N = C × R+. Along with the discrete symmetry
group D2 = {Id, ε1, ε2, ε3}, the exponential map has the continuous two-parameter
symmetry group G~h0,Z

= eR~h0 ◦ eRZ (see [1]), where

h0(λ) = 〈λ,X0(q)〉, X0 = −y ∂

∂x
+ x

∂

∂y
− w

∂

∂v
+ v

∂

∂w
,

Z = ~hY + e, hY (λ) = 〈λ, Y (q)〉,

Y = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
+ 3v

∂

∂v
+ 3w

∂

∂w
, e =

5∑
i=1

hi
∂

∂hi
.
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We define the Maxwell strata generated by the rotations ~h0 and the reflections εi:

MAX0 =
{
ν ∈ N | ∃σ ∈ R : ν̃ = eσ

~h0(ν) 6= ν, Exp(ν̃) = Exp(ν)
}
,

MAXi =
{
ν ∈ N | ∃σ ∈ R : ν̃ = eσ

~h0(νi) 6= ν, Exp(ν̃) = Exp(ν)
}
, i = 1, 2, 3.

By the definition of the Maxwell set,

MAXi ⊂ MAX, i = 0, 1, 2, 3.

Here we give a general description of the sets MAXi, while the detailed description
of these sets will be obtained in the subsequent paper [7].

From a more general viewpoint we shall analyse the Maxwell set corresponding
to the symmetry group generated by rotations and reflections. Let G be some group
acting in the inverse image and image of the exponential map:

g : N → N, g : M →M, g ∈ G.

The group G is called a symmetry group of the exponential map if for any g ∈ G
the following diagram is commutative:

N
g−−−−→ N

Exp

y yExp

M
g−−−−→ M,

that is, Exp ◦ g = g ◦ Exp. Suppose that the group G preserves time:

g(λ, t) = (λ′, t), (λ, t) ∈ N, g ∈ G.

We define the Maxwell set corresponding to the group G to be the set

MAXG =
{
ν ∈ N | ∃ g ∈ G : ν̃ = g(ν) 6= ν, Exp(ν̃ ) = Exp(ν)

}
.

Clearly, MAXG ⊂ MAX for any symmetry group of the exponential map that
preserves time. (One can define the Maxwell set for a group acting only in the
inverse image of the exponential map; but if the action of the group is undefined
in the image of the exponential map, then finding this set seems to be difficult.)

In our problem, the group generated by rotations and reflections

G = G~h0,ε
= 〈es~h0 , ε1, ε2, ε3〉

is a symmetry group of the exponential map preserving time. By the commutation
rules in the group G~h0,ε

([6], Proposition 3.2) every element of this group has the

form g = es
~h0 or g = es

~h0 ◦ εi; hence,

MAXG~h0,ε
=

3⋃
i=0

MAXi .
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2.3. Factorization of the Maxwell strata. The strata MAXi are factorized
by the action of the group G~h0,Z

= eR~h0 ◦ eRZ in the same fashion as the whole
Maxwell set:

MAXi
Id−−−−→ N

Exp−−−−→ Myπ′′
0

yπ′′
0

yπ′′
1

MAX′′i
Id−−−−→ N ′′ Exp′

−−−−→ M ′′.

This is a consequence of the following assertion.

Proposition 2.2. The Maxwell strata MAXi are invariant under rotations and
dilatations :

es
~h0 ◦ erZ(MAXi) = MAXi, i = 0, . . . , 3, s, r,∈ R.

Proof. In the case i = 0 the assertion obviously follows from the rules of commuta-
tion of the continuous symmetries and the exponential map ([6], Proposition 3.1).

We consider the case i = 2 (as Proposition 3.1 in [6] shows, the cases i = 1, 3
are simpler than this one). Let ν ∈ MAX2; then for some σ ∈ R the following
conditions hold:

ν̃ = eσ
~h0(ν2) 6= ν, Exp(ν̃ ) = Exp(ν).

It is easy to see that then for ν1 = es
~h0 ◦ erZ(ν) and σ1 = σ + 2s the conditions

ν̃1 = eσ1~h0(ν2
1) 6= ν1, Exp(ν̃1) = Exp(ν1)

hold, that is, ν1 = es
~h0 ◦ erZ(ν) ∈ MAX2.

§ 3. Multiple points of the exponential map

Each Maxwell stratum MAXi consists of multiple points of the exponential map
that are not fixed points for the corresponding continuous or discrete symmetry.
In this and the following sections we find, respectively, the multiple points of the
exponential map and the fixed points of symmetries.

We define the following function on the state space, which is important for what
follows:

V = xv + yw − z
r2

2
.

The origin of this function was explained in [6] (see the remark at the end of § 5.2).
This function is invariant under rotations and is homogeneous of order 4 under
dilatations:

X0V = 0, Y V = 4V. (1)

It follows from Proposition 2.5 in [6] that the function V is preserved, up to a sign,
by reflections:

V ◦ ε1 = V, V ◦ ε2 = −V, V ◦ ε3 = −V.

Note that similar properties are also enjoyed by the function z:

X0z = 0, Y z = 2z, (2)

z ◦ ε1 = −z, z ◦ ε2 = z, z ◦ ε3 = −z.
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3.1. Derivation of equations for multiple points. Recall [6] that we use the
notation qi = εi(q), where q, qi ∈ M . In the planes (x, y) and (v, w) we use
the polar coordinates: x = r cosχ, y = r sinχ, v = ρ cosω, w = ρ sinω.

In the following assertion we obtain equations of the hypersurfaces containing
the Maxwell strata MAXi.

Proposition 3.1. The following hold :

1) eσX0(q1) = q ⇔ z = 0,

{
σ = 0 for r2 + ρ2 > 0;
∀σ for r2 + ρ2 = 0,

2) eσX0(q2) = q ⇔ V = 0,


σ = 2χ for r > 0;
σ = 2ω − π for r = 0, ρ > 0;
∀σ for r = ρ = 0,

3) eσX0(q3) = q ⇔ z = V = 0,


σ = 2χ for r > 0;
σ = 2ω − π for r = 0, ρ > 0;
∀σ for r = ρ = 0.

Proof. We use the formulae for the action of reflections in coordinates on M
(see [6], Proposition 2.5).

1) The assertion follows from the relations

ε1 : (x, y, z, v, w) 7→ (x, y, −z, v − xz, w − yz),

esX0 : (x, y, z, v, w) 7→ (x cos s− y sin s, x sin s+ y cos s, z,
v cos s− w sin s, v sin s+ w cos s). (3)

2) Recall that

ε2 : (x, y, z, v, w) 7→ (x,−y,−z,−v + xz,w − yz).

Let r > 0. Then the equality (x, y) = (x cos s + y sin s, x sin s − y cos s) means
that s = 2χ, that is,

cos s =
x2 − y2

x2 + y2
, sin s =

2xy
x2 + y2

.

But then the system of equations

(−v + xz) cos s− (w − yz) sin s = v, (−v + xz) sin s+ (w − yz) cos s = w

can be rewritten in the form

xV = 0, yV = 0,

which is equivalent to the equality V = 0.
Let r = 0, ρ > 0. In this case the equality

(v, w) = (−v cos s+ w sin s, −v sin s+ w cos s)

means that s = 2ω − π. Moreover, the equality r = 0 implies V = 0.
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Finally, in the case r = ρ = 0 both equalities hold: esX0(q2) = q for any σ, as
well as V = 0.

3) Recall that
ε3 : (x, y, z, v, w) 7→ (x,−y,−z,−v, w).

The assertion follows from part 2) by the fact that the reflections ε3 and ε2 coincide
under the condition z = 0, which is necessary for the equality esX0(q3) = q to hold.

To describe the Maxwell stratum MAX0 we shall need the following assertion,
which obviously follows from formula (3).

Proposition 3.2. Let s 6= 2πn, n ∈ N. Then

eσX0(q) = q ⇔ r2 + ρ2 = 0.

3.2. The graphic meaning of multiple points for the Euler elastics. As
shown in [1], in the generalized Dido problem the projections of normal geodesics qs
onto the plane (x, y) satisfy the differential equations

ẋs = cos θs,
ẏs = sin θs,

where the angle θs in turn is a solution of the pendulum equation

θ̈s = −α sin(θs − β), α, β = const. (4)

Such curves (xs, ys) are called Euler elastics; they were discovered by Euler as the
stationary profiles of an elastic rod. The elastics are extremals of the functional
1
2

∫
γ

κ2(s) ds for planar curves, where κ is the curvature of a curve γ (see, for exam-

ple, [14], [15]). The Euler elastics (the solutions of the generalized Dido problem)
form, up to rotations and dilatations, a one-parameter family of curves connecting
the straight line and the circle (the solutions of the classical Dido problem [16]).
Depending on the value of the energy E = c2/2−α cos(θ−β) of the pendulum (4),
elastics can be inflectional (with inflection points) for E < α (pendulum’s oscil-
lations with low energy), and non-inflectional for E > α (pendulum’s rotations
with high energy). Corresponding to the critical value of the energy E = α there
is a critical non-inflectional elastic (for θ − β 6= π, a non-periodic motion of the
pendulum on the separatrix) and a straight line (for θ − β = π, the unstable equi-
librium position of the pendulum. Finally, corresponding to the minimum of the
energy E = −α there is also an elastic that is a straight line (the stable equilibrium
position of the pendulum). Sketches of elastics of various types are given in [1].

The functions z, V and the equations z = 0, V = 0, as well as the equation
r2 + ρ2 = 0 have a graphic meaning for the Euler elastics.

We complete the arc of an elastic with the initial point O and end-point R to a
closed curve by constructing the segment RO (see Fig. 2). Then the function z at
the point R is equal to the algebraic area of the oriented domain bounded by the
arc of the elastic OR and its chord RO, that is, to the algebraic sum of the areas of
the connected components of this domain (the area of a component is taken with
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Figure 2. z = +S1 − S2 + S3 − · · ·

sign “+” if we go round it in the positive direction, and with sign “−” if we go
round it in the negative direction). Indeed, along the elastic we have

z =
1
2

∫
x dy − y dx =

1
2

∫
r2 dχ =

∑
±Si.

The equality z = 0 means that the arc of the elastic and its chord bound a domain of
zero algebraic area. This equality trivially holds for the arcs of an elastic centred at
its inflection points (see § 4.2, Fig. 5). Such elastics are fixed points of the reflection
ε1 : N1 7→ N1. For finding the Maxwell points it is important to find the non-trivial
solutions of the equation z = 0; it is such an arc of an elastic that is depicted in
Fig. 2: for this arc, z = S1 − S2 + S3 = 0.

We now clarify the graphic meaning of the variable V . Using the formulae for
the coordinates of the centre of mass of a segment of an elastic for z 6= 0 (see [1])

cx =
1
z

(
v − r2

6
y

)
, cy =

1
z

(
w +

r2

6
x

)
, (5)

we obtain the factorization

V = xv + yw − z
r2

2
= z

(
xcx + ycy −

r2

2

)
= z

〈
~r,~c− ~r

2

〉
= zr

〈
~er,~c−

~r

2

〉
.

Here ~r = (x, y) is the radius-vector of the end-point of the elastic, ~er = ~r/r, and
~c = (cx, cy) is the radius-vector of the centre of mass of the segment of the elastic.
In Fig. 3 we have

−−→
OR = ~r,

−−→
OM =

~r

2
,

−−→
OC = ~c,

−−→
MC = ~c− ~r

2
,

MP = l⊥ is the perpendicular bisector of the chord OR, and P is the pro-
jection of the centre of mass C onto the perpendicular bisector l⊥. Therefore
PC = 〈~er,~c− ~r/2〉 is the distance from the centre of mass C to the perpendicular
bisector MP . Consequently, for z 6= 0 the equality V = 0 means that the centre of
mass of the segment of the elastic lies on the perpendicular bisector of the chord.



604 Yu. L. Sachkov

This equality is trivially satisfied for elastics centred at a vertex (see §§ 4.3, 4.4,
Figs. 7, 9, 11, 13). Such elastics are fixed points of the reflections ε2 : Ni 7→ Ni,
i = 1, 2, 3.

Figure 3. V = zr〈~er,~c − ~r/2〉

We now clarify the graphic meaning of the equation r2 + ρ2 = 0. The equation
r2 = 0 means that the elastic is a closed curve (the initial point coincides with the
end-point, and the tangents at the initial point and the end-point are, generally
speaking, different). Next, we use the expressions (5) for the centre of mass of a
segment of an elastic. It is easy to see from these expressions that for z 6= 0 the
equation r2 + ρ2 = 0 means that cx = cy = 0. In other words, the centre of mass
of the segment of the elastic coincides with its initial point. Thus, the equation
r2 + ρ2 = 0 means (for z 6= 0) that the elastic is closed and the centre of mass of
its segment coincides with the initial point and the end-point. We call such elastics
remarkable. We shall show in [7] that there exist only non-inflectional remarkable
elastics (for λ ∈ C2).

3.3. The invariant meaning of multiple points. We now clarify the invariant
meaning of the hypersurfaces z = 0 and V = 0 and the curve r2 + ρ2 = 0 for the
sub-Riemannian structure (∆, 〈 · , · 〉).

Remark. We point out that the nilpotent sub-Riemannian structure (∆,〈 · , · 〉) with
the growth vector (2, 3, 5) defined by the orthonormal basis (X1, X2) determines the
left-invariant basis fields (X1, X2) themselves on the Lie group M uniquely up to
orthogonal transformations in the plane ∆. Therefore the vector fields (X1, . . . , X5)
are determined by the sub-Riemannian structure (∆, 〈 · , · 〉) uniquely up to the
rotations

(X1, X2, X3, X4, X5) 7→ (cosϕX1 + sinϕX2, − sinϕX1 + cosϕX2, X3,

cosϕX4 + sinϕX5, − sinϕX4 + cosϕX5)

and the reflections

(X1, X2, X3, X4, X5) 7→ (X1,−X2,−X3,−X4, X5).
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3.3.1. Invariant description of the hypersurface z = 0. The manifold

Sz = {q ∈M | z = 0}

admits an invariant description in terms of the centre of the Lie group M

Z = Z(M) = {q ∈M | q · q′ = q′ · q ∀ q′ ∈M} = eRX4 · eRX5

= {(x = 0, y = 0, z = 0, v, w) | v, w ∈ R}

and the subset of M filled with the one-parameter subgroups tangent to the distri-
bution ∆

eR∆ = {etX | X ∈ ∆, t ∈ R}.

Proposition 3.3. The following holds : Sz = Z · eR∆.

Proof. The one-parameter subgroups that are tangent to the distribution ∆ can be
described either as abnormal geodesics or as normal geodesics for λ ∈ C4, C5, C7

(see [1]). Therefore,

eR∆ =
{(

t cosϕ, t sinϕ, 0,
t3

6
sinϕ , − t

3

6
cosϕ

) ∣∣∣∣ t ∈ R, ϕ ∈ S1

}
;

consequently,

Z · eR∆ =
{(

t cosϕ, t sinϕ, 0,
t3

6
sinϕ+ v, − t

3

6
cosϕ+ w

)}
= {z = 0} = Sz.

Thus, the surface Sz is a certain extension of the set eR∆ filled with abnormal
geodesics, which are straight lines in the plane (x, y). A graphic indication of this
fact is that straight lines sweep out a domain of zero area: along abnormal geodesics,
z ≡ 0.

3.3.2. Invariant description of the hypersurface V = 0. The hypersurface

SV = {q ∈M | V = 0}

can be described as a certain extension of the subset of M filled with normal
geodesics corresponding to the Heisenberg case [17] (λ ∈ C4 ∪ C5 ∪ C6), which are
straight lines and circles in the plane (x, y). A graphic indication of this fact is
that the centre of mass of a disc segment lies on the perpendicular bisector of the
chord: the identity V ≡ 0 holds along the geodesics corresponding to λ ∈ C6.

We define the following subsets of M :

S1
V = {q ∈M | V = 0, r 6= 0},
S0
V = {q ∈M | V = 0, r = 0} = {q ∈M | r = 0},
K = {qt | q̇t = cos θtX1(qt) + sin θtX2(qt), θ̈t = 0, q0 = Id},
K1 = K \ S0

V ,
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vector fields in M :

X6 =
∂

∂z
+
x

2
∂

∂v
+
y

2
∂

∂w
= X3 −

x

2
X4 −

y

2
X5,

X7 = y
∂

∂v
− x

∂

∂w
= yX4 − xX5,

and a distribution on M :

LV (q) = span
(
X0(q), Y (q), X6(q), X7(q)

)
⊂ TqM, q ∈M.

We claim that the distribution LV is invariantly determined by the sub-Riemannian
structure (∆, 〈 · , · 〉), and the set SV is the closure of the orbit (maximal integral
manifold) of this distribution passing through any point of the set K1, which obvi-
ously is invariantly determined by the structure (∆, 〈 · , · 〉).

Lemma 3.1. The distribution LV is involutive.

Proof. A straightforward calculation shows that the distribution LV is closed with
respect to the Lie bracket:

[X0, Y ] = 0, [X0, X6] = 0, [X0, X7] = 0,
[Y,X6] = −2X6, [Y,X7] = −2X7, [X6, X7] = 0.

Lemma 3.2. If q ∈ S1
V , then dimLV (q) = 4.

Proof. We write down the basis vectors of the distribution LV as columns with
respect to the basis ∂/∂x, . . . , ∂/∂w:

MV (q) := (X0(q), Y (q), X6(q), X7(q)) =



−y x 0 0
x y 0 0
0 2z 1 0
−v 3v

x

2
y

w 3w
y

2
−x


.

It is easy to see that rankMV (q) = 4 for x2 + y2 6= 0.

Lemma 3.3. The vector field W = X6 is uniquely determined from the vector
fields X1, . . . , X5 by the following conditions :

1) W ∈ span(X3, X4, X5);

2) [W,X1] = −1
2
X4, [W,X2] = −1

2
X5;

3) W (Id) = X3(Id).

Proof. It can be verified directly that conditions 1)–3) are satisfied for the field
W = X6. Let us show that there are no other fields satisfying these conditions.

We expand condition 1):

W = aX3 + bX4 + cX5, a, b, c ∈ C∞(M).
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Using the Jacobi identity we obtain from conditions 2) the equalities [W,X3] =
[W,X4] = [W,X5] = 0. Therefore,

[W,X4] = −avX3 − bvX4 − cvX5 = 0,
[W,X5] = −awX3 − bwX4 − cwX5 = 0,

whence a = a(x, y, z), b = b(x, y, z), c = c(x, y, z). Next,

[W,X3] = −azX3 − bzX4 − czX5 = 0;

consequently, a = a(x, y), b = b(x, y), c = c(x, y). Finally,

[W,X1] = −aX4 − axX3 − bxX4 − cxX5 = −1
2
X4,

[W,X2] = −aX5 − ayX3 − byX4 − cyX5 = −1
2
X5,

whence

ax = 0, a+ bx =
1
2
, cx = 0,

ay = 0, by = 0, cy + a =
1
2
.

From condition 3) we obtain

a(0) = 1, b(0) = c(0) = 0.

Consequently,

a ≡ 1, b = −1
2
x, c = −1

2
y,

that is, W = X6.

Lemma 3.4. The vector field W = X7 is uniquely determined from the vector
fields X1, . . . , X5 by the following conditions :

1) W ∈ span(X4, X5);
2) [W,X1] = X5, [W,X2] = −X4;
3) W (Id) = 0.

Proof. It is easy to see that the field W = X7 satisfies conditions 1)–3).
Similarly to the proof of Lemma 3.3 we expand condition 1):

W = aX4 + bX5, a, b ∈ C∞(M),

and obtain from condition 2) that [W,X3] = [W,X4] = [W,X5] = 0, whence a =
a(x, y), b = b(x, y), c = c(x, y). Next, it follows from condition 2) that

ax = 0, ay = 1, bx = −1, by = 0,

and from condition 3) that a(0, 0) = b(0, 0) = 0. Therefore, a = y, b = −x, that is,
W = X7.
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Lemma 3.5. The vector field W = Y is uniquely determined from the vector fields
X1, . . . , X5 by the following conditions :

1) W ∈ Sym(∆);
2) [W,X1] = −X1, [W,X2] = −X2;
3) W (Id) = 0.

Proof. We use the results of [5], where the 14-dimensional Lie algebra Sym(∆) = g2

of infinitesimal symmetries of the planar nilpotent distribution with the growth
vector (2, 3, 5) was calculated:

W ∈ Sym(∆) ⇔ W =
14∑
i=1

aiYi, ai = const,

where the basis fields Yi were described in [5], Theorem 6. Since Yi(Id) = 0,
i = 6, . . . , 14, we obtain from condition 3) that

a1 = · · · = a5 = 0.

Next, from the formulae for commutation of the fields Yi with the basis fields of
the sub-Riemannian structure (∆, 〈 · , · 〉) (see the end of the proof of Lemma 5.2
in [5]) we obtain that

[W,X1] = −X1 ⇔ a6(−4xy2 + 4yz) + a7(24xy − 12z) + a8(−432xz + 324v)

− 36xa9 −
1
3
ya10 + a13 + a14 ≡ −1,

a6(−2y3) + a718y2 + a8(−648u) + a9(−54y) + 54a11 ≡ 0,

whence
a6 = · · · = a11 = 0, a13 + a14 = −1.

Next,

[W,X2] = −X2 ⇔ a12

(
− 1

54

)
= 0, a14 = 1;

consequently,
a12 = 0, a13 = −2, a14 = 1.

Therefore the field W = −2Y13 + Y14 is uniquely determined by conditions 1)–3).

It is easy to see that the fields ±X6, X7, Y are uniquely determined by the
sub-Riemannian structure (∆, 〈 · , · 〉). In Assertion 4.1 in [1] it was shown that
the generator of rotations X0 is also uniquely determined by this structure.

Corollary 3.1. The distribution LV is uniquely determined by the sub-Riemannian
structure (∆, 〈 · , · 〉).

Lemma 3.6. The following hold :
1) S1

V is a smooth 4-dimensional submanifold of M ;
2) the equality TqS1

V = LV (q) holds for any q ∈ S1
V ;

3) the manifold S1
V is connected.
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Proof. Part 1) follows from the fact that

gradV =
(
v − zx, w − zy, −r

2

2
, x, y

)
6= 0 for r2 6= 0.

2) The fields in LV are tangent to the manifold S1
V , since

X0V = X6V = X7V = 0, Y V = 4V,

and the equality TqS1
V = LV (q) follows from Lemma 3.2.

3) The action of the rotations X0 and dilatations Y takes any point q ∈ S1
V to

a point q′ = (x′, y′, z′, v′, w′), where x′ = 1, y′ = 0, z′ = 2v′, and the whole plane
{x = 1, y = 0, z = 2v} is filled in this fashion. Therefore the connectedness of the
manifold S1

V follows from the connectedness of this plane.

We denote by OF (q) the orbit of a point q ∈M under the action of the flows of
the vector fields of a family F ⊂ VecM :

OF (q) =
{
etNfN ◦ · · · ◦ et1f1(q) | fi ∈ F , ti ∈ R, N ∈ N

}
,

and by OF (N) the orbit of the set N ⊂M :

OF (N) =
⋃
q∈N

OF (q)

(see the description of the basic properties of an orbit in the books [9], [15]). We
denote by cl(N) the topological closure of the set N ⊂M .

We can now give an invariant description of the manifold S1
V and the set SV .

Proposition 3.4. The following hold :
1) S1

V = OLV
(q) for any point q ∈ K1;

2) S1
V = OLV

(K1);
3) SV = cl(S1

V );
4) SV = cl(OLV

(K)).

Proof. 1) Let q = (x, y, z, v, w) be any point in K1. Then q belongs to the geodesic
corresponding to a covector λ ∈ C6 ∪ C3 ∪ C4 ∪ C7 and, as shown in [1], up to
rotations and dilatations,

x = sin t, y = 1− cos t, z =
t− sin t

2
,

v =
cos 2t− 4 cos t+ 3

4
, w =

sin 2t− 4 sin t+ 2t
4

or

x = t, y = z = v = 0, w = − t
3

6
.

A straightforward calculation shows that V (q) = 0; therefore, q ∈ S1
V .

The inclusion S1
V ⊂ OLV

(q) follows from the connectedness of S1
V and the equal-

ity TqS1
V = LV (q).
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We now prove the reverse inclusion OLV
(q) ⊂ S1

V . Arguing by contradiction,
suppose that there exists a point q1 ∈ OLV

(q) \ S1
V . Then either q1 ∈ S0

V or
V (q1) 6= 0. The inclusion q1 ∈ S0

V is impossible, since the set S0
V is invariant under

the flows of the fields in LV . The inequality V (q1) 6= 0 is impossible, since the
level surface {V (q) = 0} is also invariant under the fields in LV . The inclusion
OLV

(q) ⊂ S1
V and therefore the equality OLV

(q) = S1
V are proved.

Part 2) immediately follows from part 1).
3) It follows from the inclusion S1

V ⊂ SV that cl(S1
V ) ⊂ cl(SV ) = SV . We now

prove the reverse inclusion SV ⊂ cl(S1
V ). In view of the decomposition SV = S1

V ∪S0
V

it is sufficient to prove the inclusion S0
V ⊂ cl(S1

V ).
Let q = (0, 0, z, v, w) ∈ S0

V . If ρ2 = v2 +w2 6= 0, then a sequence of points of the
form

(x′, y′, z′, v′, w′), x′ = r′ cosχ′, y′ = r′ sinχ′, cos(χ′ − ω) =
z

2ρ
r′, r′ → 0,

converges to the point q and belongs to the manifold S1
V . If ρ2 = 0, then for such

points one can take points of the form

(x′, 0, z, v′, 0), v′ =
z

2
x′, x′ → 0.

We have proved the inclusions S0
V ⊂ cl(S1

V ), SV ⊂ cl(S1
V ) and the equality S1

V =
cl(SV ).

4) We obtain from the preceding parts the equalities

SV = cl(OLV
(q)) ∀ q ∈ K1,

SV = cl(K1).

But K = K1 ∪ S0
V ; therefore,

OLV
(K) = OLV

(K1) ∪ OLV
(S0
V ) = OLV

(K1) ∪ S0
V .

It follows from the inclusion S0
V ⊂ SV that SV = cl(OLV

(K)).

3.3.3. Invariant description of the curve r2 + ρ2 = 0. The curve

Sr2+ρ2 = {q ∈M | r2 + ρ2 = 0}

admits the following simple invariant description: it is the trajectory of the field

X3 = [X1, X2] =
∂

∂z
+ x

∂

∂v
+ y

∂

∂w

passing through the initial point q0 — the identity element Id of the Lie group M .

Proposition 3.5. We have the equality Sr2+ρ2 = eRX3(Id).

Proof. Since X3

∣∣
Sr2+ρ2

= ∂/∂z, the field X3 is tangent to the curve Sr2+ρ2 and

eRX3(Id) = {(0, 0, z, 0, 0) | z ∈ R} = Sr2+ρ2 .

It follows from the remark at the beginning of § 3.3 that the curve Sr2+ρ2 is
invariantly determined by the sub-Riemannian structure (∆, 〈 · , · 〉).
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§ 4. Fixed points of symmetries
in the inverse image of the exponential map

4.1. Fixed points of rotations in N . It is obvious that the rotations

es
~h0 : (θ, c, α, β, t) 7→ (θ + s, c, α, β + s, t) (6)

have no fixed points in N for s 6= 2πn, n ∈ N.

4.2. Fixed points of reflections in N1. We shall be using the elliptic coordi-
nates k, ϕ, and ψ, as well as the polar coordinates α, β in the initial cylinder C
(see [1], [6]). For that we need the Jacobi elliptic functions cn, sn (see [18], [19]).

Let ν = (k, ϕ, α, β, t) ∈ N1; then by Proposition 4.1 in [6] we have

νi = εi(ν) = (k, ϕi, α, βi, t) ∈ N1.

The fixed points of reflections in the domain N1 can be expressed in terms of the
following invariant of the two-parameter symmetry group G~h0,Z

:

τ =
√
α (ϕ+ ϕt)

2
=
√
αϕ+

δ

2
.

Theorem 4.1. Let ν ∈ N1. The following hold :
1) eσ

~h0(ν1) = ν ⇔ cn τ = 0, σ = 0;
2) eσ

~h0(ν2) = ν ⇔ sn τ = 0, σ = 2β;
3) eσ

~h0(ν3) = ν is impossible.

Proof. In the elliptic coordinates the equality eσ~h0(νi) = ν takes the form

eσ
~h0(νi) = (k, ϕi, α, βi + σ, t) = (k, ϕ, α, β, t) = ν,

which is equivalent to the equalities

ϕi = ϕ, βi + σ = β. (7)

Part 1). According to Proposition 4.1 in [6] the equalities (7) can be rewritten in
the form

ϕ+ ϕt =
2K√
α

(
mod

4K√
α

)
, σ = 0,

where K is the complete elliptic integral of the second kind [18], [19], which is
equivalent to

τ = K (mod 2K), σ = 0,
that is,

cn τ = 0, σ = 0.
Part 1) of the proposition is proved; the other two parts can be proved in similar
fashion.

Remark. We point out the graphic meaning of the fixed points of the reflections
εi : N1 → N1 for the standard pendulum in the plane (θ, c) and the inflectional
Euler elastics in the plane (x, y).

1) The equality cn τ = 0 is equivalent to the equality c = 0 — these are the
inflection points of elastics (zeros of the curvature c). See Figs. 4, 5.

2) The equality sn τ = 0 is equivalent to the equality θ = 0 — these are the
vertices of elastics (extrema of the curvature c). See Figs. 6, 7.
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Figure 4. cn τ = 0, ν ∈ N1

Figure 5. An inflectional elastic with centre at an inflection point

4.3. Fixed points of reflections in N2. Let ν=(k, ψ, α, β, t)∈N2; then by
Proposition 4.1 in [6] we have

νi = εi(ν) = (k, ψi, α, βi, t) ∈ N2.

In the domain N2 we consider the following invariant of the group G~h0,Z
:

τ =
√
α (ψ + ψt)

2
=
√
αψ +

δ

2k
.

Theorem 4.2. Let ν ∈ N2. The following hold :
1) eσ

~h0(ν1) = ν is impossible;
2) eσ

~h0(ν2) = ν ⇔ sn τ cn τ = 0, σ = 2β;
3) eσ

~h0(ν3) = ν is impossible.

Proof. First we consider parts 1), 3). If i = 1, 3, then we obtain from Proposition 4.1
in [6] that

ν ∈ N±
2 ⇒ νi, eσ

~h0(νi) ∈ N∓
2 ;

therefore the equality eσ~h0(νi) = ν is impossible.
Part 2). We have

ν ∈ N±
2 ⇒ ν2, eσ

~h0(ν2) ∈ N±
2
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Figure 6. sn τ = 0, ν ∈ N1

Figure 7. An inflectional elastic with centre at a vertex

Figure 8. sn τ = 0, |c| = max, ν ∈ N2

Figure 9. A non-inflectional elastic with centre at a vertex
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Figure 10. sn τ = 0, |c| = min, ν ∈ N2

Figure 11. A non-inflectional elastic with centre at a vertex

Figure 12. τ = 0, ν ∈ N3

Figure 13. A critical elastic with centre at a vertex
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and the equality eσ~h0(ν2) = ν in the elliptic coordinates takes the form

ψ + ψt = 0
(

mod
2K√
α

)
, σ = 2β,

which is equivalent to
τ = 0 (modK), σ = 2β,

that is,
sn τ cn τ = 0, σ = 2β.

Remark. We point out the graphic meaning of the fixed points of the reflections ε2 :
N2 → N2. The equality sn τ cn τ = 0 is equivalent to the equalities θ = 0 (mod π),
|c| = max,min — these are the vertices of non-inflectional elastics (extrema of the
curvature c). See Figs. 8–11.

There do not exist fixed points of ε1 : N2 → N2, since the elastics corresponding
to N2 have no inflection points; this is why they are called non-inflectional.

4.4. Fixed points of reflections in N3. Let ν = (ϕ, α, β, t) ∈ N3; then

νi = εi(ν) = (ϕi, α, βi, t) ∈ N3.

On the set N3, the invariant τ is obtained by passing to the limit as k → 1−0 from
both domains N1, N2:

τ =
√
α (ϕ+ ϕt)

2
=
√
αϕ+

δ

2
.

Theorem 4.3. Let ν ∈ N3. The following hold :
1) eσ

~h0(ν1) = ν is impossible;
2) eσ

~h0(ν2) = ν ⇔ τ = 0, σ = 2β;
3) eσ

~h0(ν3) = ν is impossible.

Proof. The proof is similar to the proof of Theorem 4.2.

Remark. The graphic meaning of the fixed points of the reflections ε2 : N3→N3:
the equality τ = 0 means that θ = 0, |c| = max — these are the vertices of critical
elastics (extrema of the curvature c). See Figs. 12, 13.

There do not exist fixed points of ε1 : N3 → N3, since critical elastics have no
inflection points.

4.5. Fixed points of reflections in N6.

Theorem 4.4. Let ν = (θ, c, α, β, t) ∈ N6. The following hold :
1) eσ

~h0(ν1) = ν is impossible;
2) eσ

~h0(ν2) = ν ⇔ σ = 2θ + ct (mod 2π);
3) eσ

~h0(ν3) = ν is impossible.

Proof. Let ν = (θ, c, α, β, t) ∈ N6. If i = 1, 3, then

ν ∈ C±6 ⇒ νi, eσ
~h0(νi) ∈ C∓6 ;
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therefore the equality eσ~h0(νi) = ν is impossible. Next,

ν ∈ C±6 ⇒ ν2, eσ
~h0(ν2) ∈ C±6

and the equality

eσ
~h0(ν2) = eσ

~h0(−θt, ct, t) = (σ − θ − ct, c, t) = (θ, c, t) = ν

is equivalent to the equality σ = 2θ + ct.

§ 5. General description of the Maxwell strata MAXi

We summarize the analysis of the Maxwell strata corresponding to rotations and
reflections. We obtain the following assertions from the results of §§ 3, 4.

Theorem 5.1. Let ν = (λ, t) ∈ N . Then

ν ∈ MAX0 ⇔ rt = ρt = 0.

Proof. The assertion follows from Proposition 3.2 by the fact that the rotations (6)
have no fixed points in N .

Theorem 5.2. Let ν = (λ, t) ∈ N1. Then

ν ∈ MAX1 ⇔


a) zt = 0, cn τ 6= 0, τ =

√
α ϕ+ϕt

2

or
b) qt = q0.

Remark. In the subsequent paper [7] we shall prove that case b) of Theorem 5.2 is
not realized.

Proof. First we consider the case α = 1, β = 0. Recall that by the definition of the
Maxwell stratum the inclusion ν = (λ, t) ∈ MAX1 means that for some σ ∈ R we
have

eσ
~h0(ν1) 6= ν, eσX0(q1t ) = qt.

Conditions under which the above inequality and equality hold were found in Propo-
sition 3.1 and Theorem 4.1.

First let r2t + ρ2
t > 0. Suppose that ν ∈ MAX1. Then zt = 0 and σ = 0 (see

Theorem 4.1). By Proposition 3.1 we have cn τ 6= 0. Conversely, if zt = 0 and
cn τ 6= 0, we choose σ = 0 and obtain ν ∈ MAX1.

Let r2t + ρ2
t = 0. If ν ∈ MAX1, then by Theorem 4.1 we obtain zt = 0; hence

qt = 0 = q0. Conversely, if zt = 0, then we take any σ 6= 0 and obtain ν ∈ MAX1.
In the general case the assertion follows from the special case α = 1, β = 0 due

to the invariance of the Maxwell stratum MAX1 under rotations and dilatations.

Theorem 5.3. Let ν = (λ, t) ∈ N1. Then

ν ∈ MAX2 ⇔


a) Vt = 0, sn τ 6= 0, τ =

√
α ϕ+ϕt

2

or
b) rt = ρt = 0.
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Proof. As in the preceding theorem, it is sufficient to consider only the case α = 1,
β = 0, and use in this case Proposition 3.1 and Theorem 4.1.

Necessity. Let ν ∈ MAX2. Then Vt = 0. We now prove that sn τ 6= 0 or
rt = ρt = 0.

Let rt > 0; we prove that sn τ 6= 0. Arguing by contradiction, suppose that
sn τ = 0. Then from the parametrization of the geodesics [1] we obtain yt = 0.
Therefore, χt = 0 (mod π); consequently, σ = 2χt = 0 (mod 2π) = 2β. But then
sn τ 6= 0, a contradiction.

Let rt = 0, ρt > 0; then σ = 2ωt − π. If sn τ = 0, then from the explicit
formulae for the geodesics [1] we obtain xt|sn τ=0 = 2(2E(p)− p) = 0, where E(p) is
a Jacobi elliptic function, p = t/2, and vt = 0. This means that ωt = π/2 (mod π);
therefore, σ = 0 (mod 2π) = 2β. Consequently, again sn τ 6= 0, a contradiction.
The necessity is proved.

Sufficiency. Let r2t + ρ2
t 6= 0, Vt = 0, and sn τ 6= 0. Then, choosing σ = 2χt (for

rt > 0) or σ = 2ωt − π (for rt = 0, ρt > 0), we verify that ν ∈ MAX2.

Theorem 5.4. Let ν = (λ, t) ∈ N1. Then

ν ∈ MAX3 ∩N1 ⇔ zt = Vt = 0.

Proof. The assertion follows from Proposition 3.1, Theorem 4.1, and the invariance
of the Maxwell stratum MAX3 under the group G~h0,Z

.

Theorem 5.5. Let ν = (λ, t) ∈ N2. Then

ν ∈ MAX1 ⇔ zt = 0.

Proof. The proof is similar to the proof of Theorem 5.4.

Theorem 5.6. Let ν = (λ, t) ∈ N2. Then

ν ∈ MAX2 ⇔


a) Vt = 0, sn τ cn τ 6= 0, τ =

√
α ψ+ψt

2

or
b) rt = ρt = 0.

Proof. As before, we consider only the case α = 1, β = 0.
Let rt > 0.
Necessity : if ν ∈ MAX2, then Vt = 0 and σ = 2χt. If sn τ cn τ = 0, then yt = 0;

therefore χt = πn and σ = 2πn = 2β (mod 2π); a contradiction.
Sufficiency : if Vt = 0 and sn τ cn τ 6= 0, then we choose σ = 2χt and obtain

ν ∈ MAX2.
Let rt = 0 and ρt > 0.
Necessity : if ν ∈ MAX2, then Vt = 0 and σ = 2ωt − π. If sn τ cn τ = 0, then

vt = 0; therefore ωt = π/2 (mod π) and σ = 0 (mod 2π); a contradiction.
Sufficiency : if Vt = 0 and sn τ cn τ 6= 0, then we set σ = 2ωt − π and obtain

ν ∈ MAX2.
Let rt = ρt = 0. Then Vt = 0 and choosing any σ 6= 0 we obtain ν ∈ MAX2.
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Theorem 5.7. Let ν = (λ, t) ∈ N2. Then

ν ∈ MAX3 ⇔ zt = Vt = 0.

Proof. The proof is similar to the proof of Theorem 5.4.

Theorem 5.8. Let ν = (λ, t) ∈ N3. Then

ν ∈ MAX1 ⇔ zt = 0.

Proof. The proof is similar to the proof of Theorem 5.4.

Theorem 5.9. Let ν = (λ, t) ∈ N3. Then

ν ∈ MAX2 ⇔


a) Vt = 0, τ 6= 0, τ =

√
α ϕ+ϕt

2

or
b) rt = ρt = 0.

Proof. The proof is similar to the proof of Theorem 5.6.

Theorem 5.10. Let ν = (λ, t) ∈ N3. Then

ν ∈ MAX3 ⇔ zt = Vt = 0.

Proof. The proof is similar to the proof of Theorem 5.4.

Remark. We point out the graphic meaning of the description of the Maxwell strata
in Theorems 5.1–5.10.

The equalities rt = ρt = 0 defining the stratum MAX0 (Theorem 5.1) mean that
the elastic is closed (xt = yt = 0), while the centre of mass of its segment coincides
with the initial point (cx = cy = 0). The rotation of such an elastic through any
angle s 6= 2πn produces a new elastic with the same end-point, area, and centre of
mass.

Modulo rotations, the reflection ε2 of the elastic in the perpendicular bisector
of the chord l⊥ acts on its end-point (x, y), area z, and centre of mass (cx, cy) as
follows:

ε2 : (x, y, z, cx, cy) 7→ (x, y, z, c2x, c
2
y), (8)

where ε2 : (cx, cy) 7→ (c2x, c
2
y) is the reflection of the centre of mass in the perpen-

dicular bisector l⊥. Recall that the equality V = 0 means that (cx, cy) ∈ l⊥, that
is, (c2x, c

2
y) = (cx, cy); and the equalities sn τ = 0, ν ∈ N1; sn τ cn τ = 0, ν ∈ N2;

τ = 0, ν ∈ N3, mean that the equality V = 0 is trivially valid when the elastic is
centred at a vertex. Therefore the condition of part a) of Theorems 5.3, 5.6, 5.9
means that the centre of mass of the segment of the elastic lies on the perpendic-
ular bisector of the chord and the elastic is centred at a non-vertex. It is obvious
that the reflection in the perpendicular bisector takes such an elastic to another
elastic with the same initial point, end-point, area, and centre of mass (the map (8)
becomes the identity map); this is a point of the stratum MAX2. The condition of
part b) of Theorems 5.3, 5.6, 5.9 determines a point of the stratum MAX0.
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The reflection ε1 of the elastic in the centre of the chord l acts on its end-point
(x, y) and area z as follows:

ε1 : (x, y, z) 7→ (x, y,−z);

Therefore the equality zt = 0 (Theorems 5.2, 5.4, 5.5, 5.7, 5.8, 5.10) must necessarily
hold at the points of the strata MAX1, MAX3. We could not complement this
argument by an analysis of the location of the centre of mass (as above, for the
strata MAX0, MAX2), since for z = 0 the segment of an elastic has no finite centre
of mass — in this case the centre of mass goes away to infinity or is not defined at
all.

Theorem 5.11. We have MAXi ∩Nj = ∅, i = 0, 1, 2, 3, j = 4, 5, 7.

Proof. The geodesics qs = Exp(λ, s) corresponding to λ ∈ C4∪C5∪C7 are optimal
on the whole ray s ∈ [0,+∞) (see [1]); therefore they do not contain Maxwell
points.

Theorem 5.12. We have MAXi ∩N6 = ∅, i = 0, 1, 2, 3.

Proof. Since the Maxwell strata are invariant under the action of the groupG~h0,Z
, it

is sufficient to consider only the case c = 1, θ = 0. Then the geodesic is parametrized
as follows [1]:

xt = sin t, yt = 1− cos t, zt =
t− sin t

2
,

vt =
cos 2t− 4 cos t+ 3

4
, wt =

sin 2t− 4 cos t+ 2t
4

.

0) Let t > 0; we claim that r2t + ρ2
t 6= 0. If r2t = 0, then t = 2πn, n ∈ N. But

then wt = πn 6= 0. Thus, r2t + ρ2
t 6= 0; therefore MAX0 ∩N6 = ∅.

1) We have zt 6= 0 for t > 0; consequently, MAX1 ∩N6 = ∅.

2.a) Let ν ∈ MAX2 ∩N6 and r2t > 0; then σ = 2χt = t. But from the inequality
eσ
~h0(ν2) 6= ν we obtain that σ 6= 2θ + ct = t; a contradiction.

2.b) Let ν ∈ MAX2 ∩N6 and rt = 0, ρt > 0. Then t = 2πn, n ∈ N. Therefore,
vt = 0, wt = 0, ωt = π/2 (modπ), σ = 2ωt − π = t (mod 2π). Consequently,
eσ
~h0(ν2) = ν; a contradiction.

2.c) As shown in part 0), r2t + ρ2
t 6= 0 for ν ∈ N6. Thus, MAX2 ∩N6 = ∅.

3) We have zt 6= 0 for t > 0; consequently, MAX3 ∩N6 = ∅.

We now summarize the present paper: we put together all the results on the
Maxwell strata obtained in Theorems 5.1–5.12.
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Theorem 5.13. 1) Let ν ∈ N1. Then

1.0) ν ∈ MAX0 ⇔ rt = ρt = 0;

1.1) ν ∈ MAX1 ⇔


a) zt = 0, cn τ 6= 0, τ =

√
α ϕ+ϕt

2

or
b) qt = q0;

1.2) ν ∈ MAX2 ⇔


a) Vt = 0, sn τ 6= 0, τ =

√
α ϕ+ϕt

2

or
b) rt = ρt = 0;

1.3) ν ∈ MAX3 ⇔ zt = Vt = 0.

2) Let ν ∈ N2. Then

2.0) ν ∈ MAX0 ⇔ rt = ρt = 0;
2.1) ν ∈ MAX1 ⇔ zt = 0;

2.2) ν ∈ MAX2 ⇔


a) Vt = 0, sn τ cn τ 6= 0, τ =

√
α ψ+ψt

2

or
b) rt = ρt = 0;

2.3) ν ∈ MAX3 ⇔ zt = Vt = 0.

3) Let ν ∈ N3. Then

3.0) ν ∈ MAX0 ⇔ rt = ρt = 0;
3.1) ν ∈ MAX1 ⇔ zt = 0;

3.2) ν ∈ MAX2 ⇔


a) Vt = 0, τ 6= 0, τ =

√
α ϕ+ϕt

2

or
b) rt = ρt = 0;

3.3) ν ∈ MAX3 ⇔ zt = Vt = 0.

4) We have MAXi ∩Nj = ∅, i = 0, . . . , 3, j = 4, . . . , 7.

The study of solubility of the equations defining the Maxwell strata, as well as
localization of their roots will be the contents of the subsequent paper [7].
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