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Complete description of the Maxwell strata
in the generalized Dido problem

Yu. L. Sachkov

Abstract. The generalized Dido problem is considered — a model of the
nilpotent sub-Riemannian problem with the growth vector (2, 3, 5). The
Maxwell set is studied, that is, the locus of the intersection points of geodesics
of equal length. A complete description is obtained for the Maxwell strata
corresponding to the symmetry group of the exponential map generated by
rotations and reflections. All the corresponding Maxwell times are found and
located. The conjugate points that are limit points of the Maxwell set are
also found. An upper estimate is obtained for the cut time (time of loss of
optimality) on geodesics.

Bibliography: 12 titles.

§ 1. Introduction

1.1. Statement of the problem. The present paper is devoted to the study of
the optimality of geodesics in the generalized Dido problem. This problem can be
formulated as follows. Suppose that we are given two points (x0, y0), (x1, y1) ∈ R2

connected by some curve γ0 ⊂ R2, a number S ∈ R, and a point c = (cx, cy) ∈ R2.
It is required to find a shortest curve γ ⊂ R2 connecting the points (x0, y0) and
(x1, y1) such that the domain bounded by the two curves γ0 and γ has the prescribed
algebraic area S and centre of mass c.

In [1] we showed that this problem can be reformulated as the following optimal
control problem in 5-dimensional space with a 2-dimensional control and an integral
criterion:

q̇ = u1X1 + u2X2, q = (x, y, z, v, w) ∈M = R5, u = (u1, u2) ∈ U = R2,

q(0) = q0 = 0, q(t1) = q1,

l =
∫ t1

0

√
u2

1 + u2
2 dt→ min,

where the vector fields at the controls have the form

X1 =
∂

∂x
− y

2
∂

∂z
− x2 + y2

2
∂

∂w
, X2 =

∂

∂y
+
x

2
∂

∂z
+
x2 + y2

2
∂

∂v
.
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From the invariant viewpoint, this is a sub-Riemannian problem given by the
distribution

∆q = span(X1(q), X2(q)), q ∈M

with scalar product 〈 · , · 〉 with respect to which the fields X1, X2 form an ortho-
normal basis:

〈Xi, Xj〉 = δij , i, j = 1, 2.

The Lie algebra generated by the fields X1, X2 is a free nilpotent Lie algebra of
length 3 with two generators. The distribution ∆ has the flag

∆ ⊂ ∆2 = [∆,∆] ⊂ ∆3 = [∆,∆2] = TM

and the growth vector (2, 3, 5) = (dim ∆q,dim ∆2
q,dim ∆3

q).
Thus, (∆, 〈 · , · 〉) is a nilpotent sub-Riemannian structure with the growth vector

(2, 3, 5). It is a local quasihomogeneous nilpotent approximation of an arbitrary
sub-Riemannian structure on a 5-dimensional manifold with the growth vector
(2, 3, 5) (see [2], [3], as well as [4]). As shown in [5], such a nilpotent structure
is unique. The generalized Dido problem is a model of the nilpotent sub-Rieman-
nian problem with the growth vector (2, 3, 5).

1.2. Known results. We continue the study of the generalized Dido problem
started in [1], [5]–[8].

In [5] and [7] we found, respectively, the groups of continuous and discrete sym-
metries in this problem: there is a two-parameter continuous symmetry group (rota-
tions and dilations), as well as a discrete symmetry group of order 4 (reflections).

In [1] we obtained a parametrization of sub-Riemannian geodesics (extremal
trajectories) by the Jacobi elliptic functions. The abnormal geodesics are optimal
up to infinity, and the normal ones, generally speaking, on finite time intervals. A
point where a geodesic ceases to be optimal is called a cut point. It is known that a
normal geodesic can cease to be optimal either because another geodesic with the
same value of the functional hits some point on it (a Maxwell point), or because
the family of geodesics has an envelope (a conjugate point).

In [8] we found the Maxwell strata MAXi corresponding to the symmetry group
preserving time on geodesics (rotations and reflections): the two hypersurfaces
z = 0 and V = 0 that contain these Maxwell strata were produced in the state
space M , the invariant meaning of these hypersurfaces was clarified in terms of the
sub-Riemannian structure, as well as their graphical significance for Euler elastics
(the projections of geodesics onto the (x, y)-plane).

1.3. Contents of the paper. The purpose of the present paper is a complete
analysis of the roots of the equations z = 0 and V = 0 along geodesics.

We study solubility of these equations; in some cases they have no roots. In
those cases where these equations are soluble, for each root we indicate an interval
containing it, locating the roots. Moreover, on each of these intervals the corre-
sponding root proves to be a zero of a certain monotonic function. This provides
an effective algorithm for the approximate calculation of these roots.

On each geodesic we find the first point that belongs to the Maxwell strata
MAXi. On the geodesics that do not contain points of these strata we find the
conjugate points that are limits of Maxwell points.



Complete description of the Maxwell strata in the generalized Dido problem 903

Thus, on each normal geodesic (apart from certain exceptional ones) we
indicate either the first point of the strata MAXi or the first of the conjugate points
found before. But a normal geodesic cannot be optimal after Maxwell points and
conjugate points. We thus obtain an upper estimate for the cut time along geodesics.
On the exceptional geodesics this estimate is trivial (+∞). The estimate obtained
— Theorem 6.1— is the main result of this paper.

Computer calculations show that our upper estimate is in fact equal to the cut
time. So far this conjecture has been proved only for some of the geodesics.

We used the system “Mathematica” [9] to carry out complicated calculations
and to produce the figures in this paper.

1.4. Information from the preceding papers. We recall some definitions and
facts in [1], [5]–[8].

It follows from the Pontryagin maximum principle [10] that the extremals in the
generalized Dido problem are the trajectories of the Hamiltonian system λ̇ = ~H(λ),
λ ∈ T ∗M , with HamiltonianH = (h2

1+h2
2)/2, hi(λ) = 〈λ,Xi(q)〉. The geodesics are

the projections of extremals in the cotangent bundle T ∗M onto the state space M :
qt = π(λt), λt = et ~H(λ). Henceforth, et ~H denotes the flow of the Hamiltonian
field ~H with Hamiltonian H.

Since the Hamiltonian H is homogeneous, it is sufficient to consider the restric-
tion of the Hamiltonian flow to the level surface H = 1/2 and therefore to take
initial covectors λ in the initial cylinder C = {H = 1/2} ∩ T ∗q0

M . All the informa-
tion about the geodesics is contained in the exponential map Exp: C × R+→M ,
Exp(λ, t) = π ◦ et ~H(λ) = qt.

The projections of the geodesics onto the plane (x, y) satisfy the differential
equations

ẋ = cos θ, ẏ = sin θ, θ̈ = −α sin(θ − β), α, β = const;

such curves are called Euler elastics.
In [7] we defined and studied the reflections εi, i = 1, 2, 3; these are the discrete

symmetries of the exponential map εi : N → N , εi : M → M , Exp ◦εi = εi ◦ Exp.
We denote ν = (λ, t) ∈ N = C×R+, νi = εi(ν). Along with the discrete symmetry
group D2 = {Id, ε1, ε2, ε3}, the exponential map has the continuous two-parameter
symmetry group G~h0,Z = eR~h0 ◦ eRZ (see [1]), where

h0(λ) = 〈λ,X0(q)〉, X0 = −y ∂

∂x
+ x

∂

∂y
− w

∂

∂v
+ v

∂

∂w
,

Z = ~hY + e, hY (λ) = 〈λ, Y (q)〉,

Y = x
∂

∂x
+ y

∂

∂y
+ 2z

∂

∂z
+ 3v

∂

∂v
+ 3w

∂

∂w
, e =

5∑
i=1

hi
∂

∂hi
.

The Maxwell strata generated by the rotations ~h0 and reflections εi are defined
as follows:

MAX0 =
{
ν ∈ N | ∃σ ∈ R : ν̃ = eσ~h0(ν) 6= ν, Exp(ν̃) = Exp(ν)

}
,

MAXi = {ν ∈ N | ∃σ ∈ R : ν̃ = eσ~h0(νi) 6= ν, Exp(ν̃) = Exp(ν)}, i = 1, 2, 3.
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A geodesic cannot be optimal after a Maxwell point. The points on geodesics which
correspond to the Maxwell strata belong to the following sets ([8], Theorem 5.13):

(λ, t) ∈ MAX0 ⇒ r2t + ρ2
t = 0,

(λ, t) ∈ MAX1 ⇒ zt = 0,
(λ, t) ∈ MAX2 ⇒ Vt = 0,
(λ, t) ∈ MAX3 ⇒ zt = Vt = 0,

where r2 = x2 + y2, ρ2 = v2 + w2, V = xv + yw − zr2/2. In this paper we solve
the equations z = 0, V = 0, and r2 + ρ2 = 0, which define the Maxwell strata.

§ 2. Maxwell strata in the domain N1

By the equalities X0V = 0, Y V = 4V and X0z = 0, Y z = 2z (see [8], (1), (2))
the functions z, V can be transformed by continuous symmetries as follows:

(esX0)∗z = z, (erY )∗z = e2rz, (esX0)∗V = V, (erY )∗V = e4rV.

Therefore the hypersurfaces z = 0, V = 0 are invariant under the symmetry group
GX0,Y = eRX0 ◦ eRY . The existence of a two-parameter symmetry group of the
exponential map enables one to reduce the procedure of solving the equations z = 0,
V = 0. Namely, let ν = (λ, t) ∈ N ; then for any s, r we have

ν̂ = es~h0 ◦ erZ(ν) = (es~h0 ◦ erZ(λ), t′) ∈ N, t′ = ter.

Setting Exp(ν̂) = q̂t′ = (x̂t′ , ŷt′ , ẑt′ , v̂t′ , ŵt′) we obtain

zt = 0 ⇔ ẑt′ = 0, Vt = 0 ⇔ V̂t′ = 0. (1)

Therefore we can first solve the equations z = 0, V = 0 for any representative
ν′′ ∈ N ′′ and then obtain the solutions for any ν ∈ N by using relations (1).

The initial cylinder C = {λ ∈ T ∗q0
M | h2

1(λ) + h2
2(λ) = 1} can be parametrized

by the coordinates (θ, c, α, β) where

h1 = cos θ, h2 = sin θ, h3 = c, h4 = α sinβ, h5 = −α cosβ.

We also use the elliptic coordinates in the inverse image of the exponential map
introduced in [7]: time along the pendulum ϕ and the reparametrized energy of the
pendulum k (as well as ψ = ϕ/k).

Recall the partition of the cylinder C into subsets introduced in [1]:

C =
7⋃

i=1

Ci, Ci ∩ Cj = ∅, i 6= j,

C1 = {λ ∈ C | α 6= 0, E ∈ (−α, α)},
C2 = {λ ∈ C | α 6= 0, E ∈ (α,+∞)},
C3 = {λ ∈ C | α 6= 0, E = α, θ − β 6= π},
C4 = {λ ∈ C | α 6= 0, E = −α},
C5 = {λ ∈ C | α 6= 0, E = α, θ − β = π},
C6 = {λ ∈ C | α = 0, c 6= 0},
C7 = {λ ∈ C | α = c = 0},
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where

E =
c2

2
− α cos(θ − β) ∈ [−α,+∞)

is the energy of the generalized pendulum θ̈ = −α sin(θ − β). In accordance with
the partition of the cylinder C =

⋃7
i=1 Ci we have the partition of the inverse image

of the exponential map N =
⋃7

i=1Ni, where Ni = Ci × R+.

2.1. Roots of the equation z = 0 for ν ∈ N1. If ν = (k, ϕ, α, β, t) ∈ N1, then
ν̂ = e−β~h0 ◦ e(−1/2 ln α)Z(ν) = (k, ϕ, 1, 0, δ) ∈ N1 can be taken as a representative
ν′′ ∈ N ′′

1 .
In [1] we showed that for ν ∈ N1, α = 1, β = 0

ϕt = ϕ+ t,

x = 2(E(ϕt)− E(ϕ))− (ϕt − ϕ),
z = 2k(snϕt dnϕt − snϕ dnϕ)− k(cnϕ+ cnϕt)x.

Henceforth we use the Jacobi elliptic functions sn(u, k), cn(u, k), dn(u, k), E(u, k)
(see [11], [12]).

We pass to the new coordinates

τ =
ϕt + ϕ

2
= ϕ+

t

2
, p =

ϕt − ϕ

2
=
t

2
,

ϕ = τ − p, ϕt = τ + p.

By the addition formulae for elliptic functions we obtain

x = 2(E(τ + p)− E(τ − p))− 2p

= 4E(p)− 2p− 4k2

∆
sn2 τ sn p cn p dn p,

∆ = 1− k2 sn2 τ sn2 p,

z =
4k
∆

cn τ fz(p), (2)

fz(p) = sn p dn p− (2E(p)− p) cn p.

The following lemma and especially the constant k0 introduced in it will be
important for the description of roots of the equations z = 0, V = 0. Recall that

E(k) =
∫ π/2

0

√
1− k2 sin2 t dt, K(k) =

∫ π/2

0

dt√
1− k2 sin2 t

are the complete elliptic integrals of the first and second kind, respectively; see
[11], [12].

Lemma 2.1. The equation

2E(k)−K(k) = 0, k ∈ [0, 1),

has a unique root k0 ∈ (0, 1). Moreover,

k ∈ [0, k0) ⇒ 2E −K > 0,
k ∈ (k0, 1) ⇒ 2E −K < 0.
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Proof. It is obvious that E(k) is decreasing and K(k) is increasing; hence
2E(k) − K(k) is decreasing for k ∈ [0, 1). This proves the uniqueness of the
root k0. Its existence follows from the values of the functions at the end-points
of the interval:

k = 0 ⇒ K(k) = E(k) =
π

2
⇒ 2E(k)−K(k) =

π

2
,

k → 1− 0 ⇒ K(k) → +∞, E(k) → 1 ⇒ 2E(k)−K(k) → −∞.

Remark. The graph of the function k 7→ 2E(k)−K(k) is given in Fig. 1. Computer
calculations show that k0 ≈ 0.909.

Figure 1. Definition of the number k0

Figure 2. Periodic elastic, k = k0

Corresponding to the value of the parameter k = k0 there is a unique periodic
Euler elastic (see Fig. 2).

It is clear from the factorization (2) that to investigate the roots of the equation
z = 0 it is important to study the roots of the equation fz(p) = 0.

Proposition 2.1. For any k ∈ [0, 1) the function

fz(p, k) = sn p dn p− (2E(p)− p) cn p

has denumerably many roots pz
n, n ∈ Z. These roots are odd in n:

pz
−n = −pz

n, n ∈ Z;

in particular, pz
0 = 0. The roots pz

n are located as follows :

pz
n ∈ (−K + 2Kn,K + 2Kn), n ∈ Z.
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In particular, the roots pz
n are monotonic in n:

pz
n < pz

n+1, n ∈ Z.

Moreover, for n ∈ N

k ∈ [0, k0) ⇒ pz
n ∈ (2Kn,K + 2Kn),

k = k0 ⇒ pz
n = 2Kn,

k ∈ (k0, 1) ⇒ pz
n ∈ (−K + 2Kn, 2Kn),

where k0 is the unique root of the equation 2E(k)−K(k) = 0 (see Lemma 2.1).

Proof. We calculate the values of fz(p) at the points that are multiples of K.
Let p = 4Kn; then sn p = 0, cn p = 1, dn p = 1, E(p) = 4nE, and therefore
fz(p) = −4n(2E − K). Proceeding similarly, we obtain a table of values of the
function fz(p) at the quarters of the period of the standard pendulum:

p 4Kn K + 4Kn 2K + 4Kn 3K + 4Kn

fz(p) −4n(2E −K) k′ (2 + 4n)(2E −K) −k′

Here k′ =
√

1− k2 ∈ (0, 1] is the complementary modulus of the elliptic functions.
Next, we define the function

gz(p) =
fz(p)
cn p

=
sn p dn p

cn p
− 2E(p) + p, p 6= K + 2Kn.

A straightforward calculation shows that

g′z(p) =
sn2 p dn2 p

cn2 p
.

We calculate the limits at the end-points of the intervals:

p→ −K + 4Kn± 0 ⇒ fz(p) → −k′, cn p→ ±0 ⇒ gz(p) → ∓∞,

p→ K + 4Kn± 0 ⇒ fz(p) → k′, cn p→ ∓0 ⇒ gz(p) → ∓∞.

This means that the function gz(p) increases from −∞ to +∞ on each interval

(−K + 2Kn,K + 2Kn), n ∈ Z, n 6= 0;

hence it has a unique root

pz
n ∈ (−K + 2Kn,K + 2Kn), n ∈ Z.

At points of the form p = K + 2Kn, n ∈ Z, where the function gz(p) is undefined,
we have fz(p) = ±k′ 6= 0. Consequently, the function fz(p) vanishes only at the
points pz

n, n ∈ Z.
The fact that the roots pz

n are odd in n follows from the fact that the function
fz(p) is odd in p. The fact that the roots pz

n are monotonic in n follows from the
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fact that each of the mutually disjoint intervals (−K + 2Kn,K + 2Kn) contains
exactly one root pz

n.
It remains to locate the positive roots pz

n with respect to the midpoints 2Kn.
As calculated above, fz(2Kn) = (−1)n−12n(2E −K), n ∈ Z.

Let k < k0; then 2E(k) − K(k) > 0. First we consider the case n = 2m ∈ N.
Then fz(4Km) < 0, gz(4Km) < 0, and therefore pz

n > 2Kn. If n = 2m − 1 ∈ N,
then fz(4Km− 2K) > 0, gz(4Km− 2K) < 0, and again pz

n > 2Kn.
For k > k0 we have 2E(k)−K(k) > 0 and therefore pz

n < 2Kn.
Finally, for k = k0 we obtain 2E(k)−K(k) = 0 and pz

n = 2Kn.

The graphs of the function fz(p) for the different values of k are given in Figs. 3–5.

Figure 3. p 7→ fz(p), k ∈ [0, k0), λ ∈ C1

Figure 4. p 7→ fz(p), k ∈ (k0, 1), λ ∈ C1

Proposition 2.1 asserts that the algebraic area of the segment of an inflectional
elastic changes sign infinitely many times (see [8], § 3.2).

Corollary 2.1. The first positive root p = pz
1 of the equation fz(p) = 0 is located

as follows :

k ∈ [0, k0) ⇒ pz
1 ∈ (2K, 3K),

k = k0 ⇒ pz
1 = 2K,

k ∈ (k0, 1) ⇒ pz
1 ∈ (K, 2K).
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Figure 5. p 7→ fz(p), k = k0, λ ∈ C1

In Fig. 6 we give the graph of the function k 7→ pz
1(k), and in Fig. 7, the graph

of the function k 7→ pz
1(k)/K(k). Recall that the value p = 2K corresponds to a

complete revolution of the pendulum; this value is marked on the ordinate axis in
Fig. 7.

Figure 6. k 7→ pz
1, λ ∈ C1

Figure 7. k 7→ pz
1/K, λ ∈ C1
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From equality (2) and Proposition 2.1 we obtain the following assertion.

Corollary 2.2. Let ν ∈ N1 ∩ {α = 1, β = 0}. Then

zt = 0 ⇔


cn τ = 0, τ = ϕ+

t

2
,

or
t = 2pz

n, n ∈ Z,

where the pz
n are the roots of the function fz(p) described in Proposition 2.1.

2.2. Roots of the equation V = 0 for ν ∈ N1. Let ν ∈ N1, α = 1, β = 0. In
the coordinates

τ = ϕ+
t

2
, p =

t

2
we have

x =
1
∆

(2∆(2E− p)− 4k2 sn2 τ cn p sn p dn p), (3)

y =
1
∆

4k dn τ sn τ sn p dn p, (4)

z =
4k cn τ

∆
(sn p dn p− (2E− p) cn p),

V =
2k sn τ dn τ

∆
fV (p), (5)

fV (p) =
4
3

sn p dn p(−p− 2(1− 2k2 + 6k2 cn2 p)(2E− p) + (2E− p)3

+ 8k2 cn p sn p dn p) + 4 cn p(1− 2k2 sn2 p)(2E− p)2,

∆ = 1− k2 sn2 τ sn2 p.

Proposition 2.2. For any k ∈ [0, 1) the equation fV (p, k) = 0 has denumerably
many roots pV

n , n ∈ Z. These roots are odd and monotonic in n. For n ∈ N the
roots pV

n are located as follows :

pV
n ∈ [2Kn, 2K(n+ 1)).

Moreover,

k 6= k0 ⇒ pV
n ∈ (2Kn, 2K(n+ 1)),

k = k0 ⇒ pV
n = 2Kn.

Proof. We define the function

gV (p) =
fV (p)

sn p dn p
, p 6= 2Kn. (6)

A straightforward calculation shows that

(gV (p))′ = −4
(fz(p))2

sn2 p dn2 p
; (7)

hence the function gV (p) decreases on each interval p ∈ (2K(n− 1), 2Kn).
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First we consider the case k 6= k0. We calculate the limits at the end-points of
the intervals:

p→ 4Kn± 0, n 6= 0 ⇒ fV → 64n2(2E −K)2 > 0, sn p→ ±0
⇒ gV → ±∞,

p→ ±0 ⇒ fV → 0, gV → 0,

p→ 2K + 4Kn± 0 ⇒ fV → −4(4n+ 2)2(2E −K)2 < 0, sn p→ ∓0
⇒ gV → ±∞.

Let n ∈ N. Then

p→ 2Kn± 0 ⇒ gV (p) → ±∞,

on each interval (2Kn, 2K(n + 1)) the function gV (p) decreases from +∞ to −∞
and therefore has one root pV

n . If n = 0, then

p→ +0 ⇒ gV (p) → 0, p→ 2K − 0 ⇒ gV (p) → −∞,

on the interval (0, 2K) the function gV (p) decreases from 0 to −∞ and therefore
has no roots.

We return to the function fV (p). For n ∈ N we have

fV (2Kn) = (−1)n16n2(2E −K) 6= 0;

in addition, fV (0) = 0. Therefore all the non-negative roots of the function fV (p)
are given by p = pV

n , n = 0, 1, 2, . . . .
We now consider the case k = k0; then 2E(k) −K(k) = 0. The function fV (p)

vanishes at the points p = 2Kn, n = 0, 1, 2, . . . ; we claim that there are no other
non-negative roots. If p → 2Kn, n = 0, 1, 2, . . . , then gV (p) → −(8/3)Kn. If we
extend the function gV (p) by continuity to the points p = 2Kn, then gV (p) decreases
from 0 to −∞ for p ∈ [0,+∞). Therefore gV (p) < 0 for p > 0. Consequently, in
the case k = k0 the function fV (p) vanishes only at the points p = pV

n = 2Kn.
The fact that the roots pV

n are odd in n follows from the fact that the function
fV (p) is even in p. The monotonicity of pV

n in n follows from the fact that the
intervals [2Kn, 2K(n+ 1)), n ∈ N, are disjoint for different n.

Proposition 2.2 asserts that the centre of mass of the segment of an inflectional
elastic crosses the perpendicular bisector of the chord infinitely many times (see [8],
§ 3.2).

The graphs of the function p 7→ fV (p) for various k are given in Figs. 8, 9.

Corollary 2.3. For any k∈ [0, 1) the first positive root p= pV
1 of the equation

fV (p) = 0 is located as follows :

k 6= k0 ⇒ pV
1 ∈ (2K, 4K),

k = k0 ⇒ pV
1 = 2K.

In Figs. 10, 11 we give the graphs of the functions k 7→ pV
1 (k), k 7→ pV

1 (k)/K(k).
On the ordinate axis in Fig. 11 the points pV

1 /K = 2 and 4 are marked, which
correspond to one and two complete revolutions of the pendulum.

From Proposition 2.2 and equality (5) we obtain the following assertion.
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Figure 8. p 7→ fV (p), k 6= k0, λ ∈ C1

Figure 9. p 7→ fV (p), k = k0, λ ∈ C1

Figure 10. k 7→ pV
1 , λ ∈ C1

Corollary 2.4. Let ν ∈ N1, α = 1, β = 0. Then

Vt = 0 ⇔


sn τ = 0, τ = ϕ+

t

2
,

or

t = 2pV
n , n ∈ Z,

where the pV
n are the roots of the function fV (p) described in Proposition 2.2.
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Figure 11. k 7→ pV
1 /K, λ ∈ C1

2.3. Relative positions of the roots of the equations z = 0 and V = 0
for ν ∈ N1. In order to determine the first Maxwell time along a geodesic it is
important to know which of the equations zt = 0, Vt = 0 has a root that is the first
one occurring on this geodesic. In this subsection we answer this question.

First we describe the curve {fz = 0}.

Lemma 2.2. The curve {(p, k) ∈ R × [0, 1) | fz(p) = 0, p 6= 0} is smooth. It has
tangent parallel to the p-axis only at the points (p, k) = (2Kn, k0), n 6= 0. At the
points (p, k) = (pz

n(0), 0) this curve has tangent parallel to the k-axis.

Proof. We have ∂fz/∂p = (2E− p) dn p sn p. Thereforefz = 0,
∂fz

∂p
= 0

⇔


2E− p =

sn p dn p
cn p

,

sn2 p dn2 p

cn p
= 0

⇔

{
2E− p = 0,
p = 2Kn

⇔

{
2n(2E −K) = 0,
p = 2Kn

⇔

 n = 0
or
k = k0, p = 2Kn.

Therefore for (p, k) 6= (2Kn, k0) the curve {fz = 0} is smooth and its tangent is
not parallel to the p-axis.

We now calculate the other partial derivative:

∂fz

∂k
= − 1

kk′2
{
dn p sn p[k2 + (2E− p)(E− (1− k2)p)]

+ cn p[E(1− 2k2(1 + sn2 p)) + p(−1 + k2(1 + s2))]
}
.

For k = k0, p = 2Kn we have sn p = 0, cn p = ±1, dn p = 1, E = p/2; therefore

∂fz

∂k

∣∣∣∣
k=k0, p=2Kn

= ± Kn

k0k′0
2 6= 0 for n 6= 0.

Therefore at the points (p, k) = (2Kn, k0) the curve {fz = 0} is smooth and has
tangent parallel to the p-axis.

Finally, for k = 0 we have ∂fz/∂k = 0; therefore at the points (p, k) = (pz
n, 0),

n 6= 0, the curve {fz = 0} has tangent parallel to the k-axis.
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Remark. Naturally, the component {fz = 0, p = 0} = {p = 0} is a smooth
one-dimensional manifold, although along this component we have

fz(0, k) =
∂fz

∂p
(0, k) =

∂fz

∂k
(0, k) = 0.

Proposition 2.3. For every n ∈ N the function p = pz
n(k) is continuous for k ∈

[0, 1), and smooth for k ∈ [0, k0) ∪ (k0, 1). If k = k0, then dpz
n/dk = ∞. If k = 0,

then dpz
n/dk = 0. If k → 1− 0, then pz

n → +∞.

Proof. The first three assertions follow from Lemma 2.2, and the fourth from
the inclusion pz

n ∈ (−K + 2Kn,K + 2Kn) (see Proposition 2.1) and the limit
limk→1−0K = +∞.

Proposition 2.4. For every n ∈ N there exists a number kn ∈ (0, k0) such that

k ∈ [0, kn) ⇒ pz
n(k) < pV

n (k),

k = kn ⇒ pz
n(k) = pV

n (k),

k ∈ (kn, k0) ⇒ pz
n(k) > pV

n (k).

Proof. Suppose that k ∈ [0, k0) and therefore

2E(k)−K(k) > 0.

Let n = 2m+ 1; the case of even n is quite similar. We have

fz(2Kn) = 2n(2E −K) > 0,
fz(2K(n+ 1)) = −2(n+ 1)(2E −K) < 0,

fV (2Kn) = −4n2(2E −K)2 < 0,

fV (2K(n+ 1)) = 4(n+ 1)2(2E −K)2 > 0.

From this and the fact that each function fz(p), fV (p) has a unique zero in the
interval (2Kn, 2K(n+ 1)) it follows that

pz
n(k) < pV

n (k) ⇔ fV (pz
n(k), k) < 0. (8)

Next,

fV

∣∣
fz=0

= fV

∣∣
E=(p cn p+sn p dn p)/(2 cn p)

= sn p dn p(dn2 p− k2 sn2 p cn2 p)− p cn3 p =: hV (p).

Therefore relation (8) can be rewritten in the form

pz
n(k) < pV

n (k) ⇔ αn(k) < 0, (9)

where
αn(k) := hV (pz

n(k), k).

The function αn(k) is continuous for k ∈ [0, k0] and differentiable for k ∈ (0, k0).
We now calculate its values at the end-points of this interval.
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We have αn(0) = hV (pz
n(0), 0), hV (p, 0) = sn p−p cn3 p, fz(p, 0) = sn p−p cn p.

Therefore

p = pz
n(0) ⇒ sn p = p cn p ⇒ hV (p, 0) = p cn p sn2 p. (10)

But pz
n = pz

2m+1 ∈ ((4m+ 2)K, (4m+ 3)K); therefore cn p < 0. Consequently, the
last equality in (10) yields

αn(0) = hV (pz
n(0), 0) = p cn p sn2 p < 0.

At the other end-point of the interval we have

αn(k0) = hV (pz
n(k0), k0) = hV (2nK(k0), k0).

If p = 2nK = (4m + 2)K, then sn p = 0, cn p = −1, dn p = 1, and therefore
hV (2nK, k) = p = 2nK > 0.

Thus, αn(0) < 0, αn(k0) > 0. We shall prove that α′n(k) > 0 for k ∈ (0, k0);
then αn(k) has a unique zero kn ∈ (0, k0) and this proposition will be proved (see
relation (9)).

We have

dαn

dk
=
d

k
hV (pz

n(k), k) =
(
∂hV

∂k

∂fz

∂p
− ∂hV

∂p

∂fz

∂k

)(
∂fz

∂p

)−1

,

since fz(pz
n(k), k) ≡ 0. Next,

∂fz

∂p

∣∣∣∣
fz=0

= (2E− p) sn p dn p
∣∣
2E−p=sn p dn p/ cn p

=
sn2 p dn2 p

cn p

∣∣∣∣
p=pz

n

< 0;

therefore

dαn

dk
> 0 ⇔ β :=

(
∂hV

∂k

∂fz

∂p
− ∂hV

∂p

∂fz

∂k

)∣∣∣∣
fz=0

< 0.

A straightforward calculation gives

β =
3 sn p dn p
2kk′2 cn p

β1,

β1 := cn3 p sn p dn p (1 + 2k2 cn2 p)p− p2 cn4 p

− 2k2 sn2 p dn2 p(dn4 p+ k2k′
2 sn4 p).

By the inclusion pz
n = pz

2m+1 ∈ (2K + 4Km, 3K + 4Km) we obtain the inequalities
sn(pz

n) < 0, cn(pz
n) < 0, whence

β
∣∣
fz=0

< 0 ⇔ β1

∣∣
fz=0

< 0.

Next,

β1 = β2 − 2k2 sn2 p dn2 p(dn4 p+ k2k′
2 sn4 p)

< β2 := p cn3 p[sn p dn p(1 + 2k2 cn2 p)− p cn p].
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It remains to prove that β2|fz=0 < 0: if this is the case, then β1|fz=0 < 0 and
therefore α′n(k) > 0 for k ∈ (0, k0).

We have

β2 = p cn3 p β3, β3 := sn p dn p(1 + 2k2 cn2 p)− p cn p.

Since cn p|fz=0 = cn(pz
n) < 0, it remains to prove that β3|fz=0 > 0. Next,

β3 = fz − 2 cn p β4, β4 := p− E− k2 cn p sn p dn p;

therefore to complete the proof of this proposition it is sufficient to show that
β4(p) > 0 for p ∈ (2nK, (2n+ 1)K) 3 pz

n.
We have

∂β4

∂p
= k2(−1 + sn2 p(2k2 + 3 dn2 p)) > −k2;

therefore for p ∈ (2nK, (2n+ 1)K) we obtain

β4(p) = β4(2nK) +
∫ p

2nK

∂β4

∂p
dp > 2(K − E)− k2(p− 2K)

> 2(K − E)− k2K = (2− k2)K − 2E(k) = −ϕV (k).

It is sufficient to prove that ϕV (k) = 2E(k)− (2− k2)K(k) < 0 for k ∈ (0, 1). This
is shown in the following Lemma 2.3, which completes the proof of this proposition.

Lemma 2.3. The function

ϕV (k) = 2E(k)− (2− k2)K(k)

is negative for k ∈ (0, 1).

Proof. We have ϕV (0) = 0 and

dϕV

dk
= − k

1− k2
ϕ1

V (k), ϕ1
V (k) := E − (1− k2)K.

Therefore it is sufficient to show that ϕ1
V (k) > 0 for k ∈ (0, 1). But this follows

from the fact that ϕ1
V (0) = 0 and dϕ1

V /dk = kK > 0.

Fig. 12 depicts the graph of the sequence kn, n = 0, 1, . . . . Computer calculations
show that kn → k0 monotonically as n → ∞; therefore it would be more natural
to denote k0 = k∞. We point out that k1 ≈ 0.802.

We obtain the following description of the relative positions of the roots p = pz
n,

pV
n of the equations fz = 0, fV = 0 for various k.

Proposition 2.5. For every n ∈ N

k ∈ [0, kn) ⇒ pz
n(k) < pV

n (k),

k = kn ⇒ pz
n(k) = pV

n (k),

k ∈ (kn, k0) ⇒ pz
n(k) > pV

n (k),

k = k0 ⇒ pz
n(k) = pV

n (k) = 2Kn,

k ∈ (k0, 1) ⇒ pz
n(k) < pV

n (k).
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Figure 12. The graph of n 7→ kn, λ ∈ C1

Proof. The disposition of the roots on the interval k ∈ [0, k0) was proved in Propo-
sition 2.4. It follows from Propositions 2.1, 2.2 that pz

n(k) < 2Kn < pV
n (k) for

k ∈ (k0, 1). The equality of roots for k = k0 follows from the same propositions.

In Fig. 13 we present the graphs of the functions k 7→ pz
1(k), k 7→ pV

1 (k), and
in Fig. 14, of the functions k 7→ pz

1(k)/K(k), k 7→ pV
1 (k)/K(k). On the ordinate

axis in Fig. 14 we have marked the points corresponding to a whole number of
revolutions of the pendulum.

Figure 13. k 7→ pz
1, p

V
1 , λ ∈ C1

Figure 14. k 7→ pz
1/K, pV

1 /K, λ ∈ C1
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We can now give a description of the curve {fV = 0}.

Lemma 2.4. The curve γV = {(p, k) ∈ (0,+∞)× [0, 1) | fV (p) = 0} is smooth. It
has tangent parallel to the p-axis only at the points (p, k) = (pV

n (kn), kn), n ∈ N.

Proof. It follows from Proposition 2.2 that the curve γV decomposes into infinitely
many connected components

γV ∩ {p ∈ [2Kn, 2K(n+ 1))} = {p = pV
n (k) | k ∈ [0, 1)}, n ∈ N.

We fix any n ∈ N, and let p ∈ [2Kn, 2K(n+ 1)).
First we consider the case k ∈ [0, 1) \ {kn, k0}. According to Propositions 2.2

and 2.4 we have p ∈ (2Kn, 2K(n + 1)) on the curve γV . For p 6= 2Kn, taking
equality (6) into account we obtain fV (p) = gV (p) sn p dn p and therefore f ′V =
g′V sn p dn p + gV (sn p dn p)′. The identity gV ≡ 0 holds on the curve γV . Taking
equality (7) into account we obtain

f ′V
∣∣
γV

= g′V sn p dn p = − 4f2
z

sn p dn p
,

which is non-zero for k 6= kn, k0. Therefore the curve γV is smooth for k 6= kn, k0.
If (p, k) = (2Kn, k0), then by a straightforward calculation we obtain

f ′V (p) = ±8
3
Kn 6= 0;

therefore the curve γV is also smooth for k = k0.
For k 6= kn we have f ′V (p) 6= 0; consequently, the tangent to the curve γV at

these points is not parallel to the p-axis.
Finally, consider the point (p, k) = (pV

n (kn), kn). From the equations fz = 0,
fV = 0 at this point we obtain the equalities

E =
p cn p+ sn p dn p

2 cn p
, p =

sn p dn p
cn3 p

(dn2 p− k2 sn2 p cn2 p).

Using these equalities we calculate the derivatives at this point:

∂fV

∂p
= 0,

∂fV

∂k
= −2 sn4 p dn4 p(1− (1− cn4 p)k2)

k(1− k2) cn5 p
6= 0.

Therefore for k = kn the curve γV is smooth and has tangent parallel to the p-axis.

Proposition 2.6. For every n ∈ N the function p = pV
n (k) is continuous for k ∈

[0, 1), and smooth for k ∈ [0, kn) ∪ (kn, 1). If k = kn, then dpV
n /dk = ∞. If

k → 1− 0, then pV
n → +∞.

Proof. The first two assertions follow from Lemma 2.4, and the third from the
inclusion pV

n ∈ [2Kn, 2K(n + 1)) (see Proposition 2.2) and the fact that
limk→1−0K = +∞.
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Remark. Lemma 2.2 characterizes the point k = k0 as the unique value k ∈ [0, 1)
at which the smooth curve {fz = 0} has tangent parallel to the p-axis, that is,

dpz
n

dk
(k0) = ∞.

Similarly, Lemma 2.4 characterizes the values k = kn for the curve {fV = 0}: this
curve has tangent parallel to the p-axis only at these points, that is,

dpV
n

k
(dkn) = ∞.

As mentioned above, the value k = k0 has a clear graphical meaning for elastics:
to this value there corresponds the unique periodic elastic-eight (see Fig. 2). But
the graphical meaning of the values k = kn, n ∈ N, is not at all obvious. To these
values there correspond non-periodic elastics with z = V = 0. In other words,
according to § 3.2 in [8] the segment of the elastic has zero algebraic area z = 0,
while its centre of mass (cx, cy) = (v − r2y/6, w + r2x/6)/z tends to infinity in the
direction (c∞x , c

∞
y ) = (v − r2y/6, w + r2x/6), orthogonal to the chord:

V = xv + yw = xc∞x + yc∞y = 0 ⇔ (x, y) ⊥ (c∞x , c
∞
y ).

The shortest such elastic (for k = k1) is depicted in Fig. 2 in [8].

In the domain C1 we define the function that determines the first Maxwell time:

p1(k) = min{pz
1(k), p

V
1 (k)}, k ∈ (0, 1), λ ∈ C1. (11)

According to Proposition 2.5, in the domain C1 we have

p1(k) =

{
pz
1(k), k ∈ (0, k1] ∪ [k0, 1);
pV
1 (k), k ∈ [k1, k0].

From Propositions 2.3, 2.6 we obtain the following description of the regularity
properties of the function p1(k).

Corollary 2.5. Let λ ∈ C1. The function p1(k) is continuous on the interval (0, 1),
while at the end-points, limk→+0 p1(k) = pz

1(0) and limk→1−0 p1(k) = +∞. This
function is smooth at all points of the interval (0, 1) except for k1 and k0, where its
one-sided derivatives are calculated as follows :

(p1)′−(k1) = (pz
1)
′(k1) <∞, (p1)′+(k1) = (pV

1 )′(k1) = ∞,

(p1)′−(k0) = (pV
1 )′(k0) <∞, (p1)′+(k0) = (pz

1)
′(k0) = ∞.

If we extend p1(k) by continuity to k = 0 by the value pz
1(0), then we obtain

(p1)′+(0) = 0.

2.4. Roots of the equation r2 + ρ2 = 0 for ν ∈ N1.

Lemma 2.5. If ν = (λ, t) ∈ N1, then r2t + ρ2
t 6= 0.
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Proof. Suppose that r2t + ρ2
t = 0. Then

yt =
4k
∆

sn p dn p sn τ dn τ = 0 ⇒ sn p = 0 or sn τ = 0.

First consider the case sn p = 0 ⇔ p = 2Kn, n ∈ N. Then

xt

∣∣
p=2Kn

= 2(2E− p)
∣∣
p=2Kn

= 0.

But
wt

∣∣
sn p=0, 2E−p=0

= −2
3
p 6= 0.

Thus, the equality r2t + ρ2
t = 0 is impossible in the case sn p = 0.

Now consider the case sn τ = 0 ⇔ τ = 2Kn, n ∈ N. Then

xt

∣∣
τ=2Kn

= 2(2E− p) = 0,

wt

∣∣
τ=2Kn

=
2
3
(−p+ 8k2 cn p sn p dn p) = 0.

The assertion now follows from the fact that this system of equations has no roots
(this is proved in Lemma 2.6, which follows).

Lemma 2.6. The system of equations

f1(p, k) := 2E− p = 0,

f2(p, k) := −p+ 8k2 cn p sn p dn p = 0

has no solutions for p > 0, k ∈ (0, 1).

We define the functions

g1(u, k) := 2E(u, k)− F (u, k),

g2(u, k) := 8k2 cosu sinu
√

1− k2 sin2 u− F (u, k),

where

F (u, k) =
∫ u

0

dt√
1− k2 sin2 t

, E(u, k) =
∫ u

0

√
1− k2 sin2 t dt

are elliptic integrals of the first and second kind, respectively. In view of the
equalities g1(am p, k) = f1(p, k) and g2(am p, k) = f2(p, k), to prove Lemma 2.6
it is required to show that the system g1 = g2 = 0 is inconsistent for u > 0,
k ∈ (0, 1). Recall that the amplitude u = am(p, k) is the inverse function of the
elliptic integral p = F (u, k); see [11].

Lemma 2.7. The curve {g1(u, k) = 0} is smooth and is entirely contained in the
domain {k > 1/

√
2 , u > u∗}, where u∗ ∈ (2π/5, π/2) is the unique root of

the equation g1(u, 1) = 0 on the interval u ∈ (0, π/2). Moreover,

g1(u, k) = 0, u > 0, k ∈ (0, 1] ⇔ k = kg1(u), u ∈ [u∗,+∞),

where k = kg1(u) is a smooth function, kg1(u∗) = 1.
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Proof. We note the limit values of the elliptic integrals of the first and second kind:

F (u, 1) =
1
2

ln
1 + sinu
1− sinu

, E(u, 1) = sinu, u ∈
[
0,
π

2

)
.

Therefore,

g1(u, 1) = 2 sinu− 1
2

ln
1 + sinu
1− sinu

, u ∈
[
0,
π

2

)
.

It is easy to see that the function g1(u, 1) has a unique zero u∗ on the interval
u ∈ (0, π/2). Indeed, its derivative

∂

∂u
g1(u, 1) =

cos 2u
cosu

is positive for u ∈ [0, π/4), and negative for u ∈ (π/4, π/2). We have g1(0, 1) = 0;
therefore g1(u, 1) > 0 for u ∈ (0, π/4). But

lim
u→π/2+0

g1(u, 1) = −∞;

therefore the function g1(u, 1) is strictly decreasing from g1(π/4, 1) > 0 to −∞
for u ∈ [π/4, π/2). The existence of a unique zero u∗ ∈ (π/4, π/2) is proved.
Calculating the value g1(2/5π, 1) ≈ 0.005 > 0 we conclude that u∗ ∈ (2π/5, π/2).

Next,

∂g1
∂k

= −2k
∫ u

0

sin2 t√
1− k2 sin2 t

dt− k

∫ u

0

sin2 t

(1− k2 sin2 t)3/2
dt < 0. (12)

Therefore the function g1(u, k) is decreasing in k, and the curve {g1 = 0, k ∈ (0, 1),
u > 0} is smooth.

To locate this curve we calculate the values of the function g1 at the boundary
of the strip:

g1(u, 0) = u, u ∈ [0,+∞),

lim
k→1−0

g1(u, k) =



g1(u, 1) > 0, u ∈ (0, u∗);
g1(u∗, 1) = 0, u = u∗;

g1(u, 1) < 0, u ∈
(
u∗,

π

2

)
;

−∞, u ∈
[
π

2
,+∞

)
.

Taking into account the sign of the derivative (12) we conclude that g1(u, k) > 0
for u ∈ (0, u∗), and

g1(u, k) = 0 ⇔ k = kg1(u)

for u ∈ [u∗,+∞), k ∈ (0, 1], where the function k = kg1(u) is continuous for u > u∗,
and smooth for u > u∗ (see a sketch of the curve g1 = 0 in Fig. 15).

It remains to prove that k > 1/
√

2 on the curve g1(u, k) = 0. We have

∂g1
∂u

=
1− 2k2 sin2 u√

1− k2 sin2 u
> 0 for k <

1√
2

and for k =
1√
2
, u 6= πn;
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Figure 15. The curves g1 = 0 and g2 = 0; ν ∈ N1

therefore g1 increases in u for k61/
√

2 . But g1(0, k)=0; consequently, g1(u, k)>0
for k 6 1/

√
2 .

Lemma 2.8. If u > 2π/5, k > 1/
√

2 , then g2(u, k) < 0.

Proof. a) Let u ∈ [π/2+πn, π+πn], n = 0, 1, 2, . . . , and u > 0. Then cosu sinu 6 0,
F (u, k) > 0, and therefore g2(u, k) < 0.

b) Let u ∈ [π + πn, 3π/2 + πn], n ∈ N, k > 1/
√

2 . Then

F (u, k) > F

(
π,

1√
2

)
= 2K

(
1√
2

)
= 2

(Γ(1/4))2

4
√
π

= 3.7 . . . > 3.7,

8k2 cosu sinu
√

1− k2 sin2 u 6 4 sin 2u

√
1− 1

2
sin2 u =: 4α(u).

By using standard analytical methods one can prove that α(u) < 0.9 for u ∈ [π+πn,
3π/2 +πn]; then g2(u, k) < 4 · 0.9− 3.7 < 0 for u ∈ [π+πn, 3π/2 +πn], k > 1/

√
2 .

c) Let u ∈ [2/5π, π/2], k > 1/
√

2 . We consider the function

α1(k) = k2
√

1− k2 sin2 u , k ∈
[

1√
2
, 1

]
.

It is easy to see that

α1(k) 6 α

( √
2√

3 sinu

)
=

2
3
√

3 sin2 u

and therefore

α1(k) 6
2

3
√

3 sin2(2π/5)
=

16
3
√

3 (5 +
√

5)
= 0.42 . . . 6 0.43.

Next,

sin 2u 6 sin
(

4π
5

)
=

√
5−

√
5

2
√

2
= 0.58 . . . < 0.59.

Thus,
4k2 sin 2u

√
1− k2 sin2 u 6 4× 0.43× 0.59 = 1.01 . . . < 1.02.
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Furthermore, F (u, k) > F (2π/5, 1/
√

2 ) = 1.52 . . . > 1.52. Therefore g2(u, k) 6
1.02− 1.52 < 0 for u ∈ [2π/5, π/2], k > 1/

√
2 .

We can now prove Lemma 2.6.

Proof of Lemma 2.6. By Lemma 2.7 the curve g1(u, k) = 0 is entirely contained
in the domain {k > 1/

√
2 , u > 2π/5}. But Lemma 2.8 implies that the curve

g2(u, k) = 0 does not intersect this domain. Therefore the system of equations
g1(u, k) = g2(u, k) = 0 is inconsistent, as is the system f1(p, k) = f2(p, k) = 0 given
in the hypothesis of Lemma 2.6. The graphs of g1(u, k) = 0 and g2(u, k) = 0 are
given in Fig. 15.

2.5. Complete description of the Maxwell strata in the domain N1. From
Theorem 5.13 in [8] and Lemma 2.5 we obtain a general description of the Maxwell
strata in the domain N1.

Theorem 2.1. The following hold :
0) MAX0 ∩N1 = ∅;
1) MAX1 ∩N1 = {(λ, t) ∈ N1 | zt = 0, cn τ 6= 0};
2) MAX2 ∩N1 = {(λ, t) ∈ N1 | Vt = 0, sn τ 6= 0};
3) MAX3 ∩N1 = {(λ, t) ∈ N1 | zt = Vt = 0},

where τ =
√
α (ϕ+ t/2).

From this theorem and Corollaries 2.2, 2.4 we obtain a complete description of
the Maxwell strata in N1.

Theorem 2.2. The following hold :

1) MAX1 ∩N1 =
{

(λ, t) ∈ N1

∣∣∣ t =
2pz

n√
α
, n ∈ N, cn τ 6= 0

}
;

2) MAX2 ∩N1 =
{

(λ, t) ∈ N1

∣∣∣ t =
2pV

n√
α
, n ∈ N, sn τ 6= 0

}
;

3) MAX3 ∩N1 =
{

(λ, t) ∈ N1

∣∣∣ (k, t) =
(
k0,

4Kn√
α

)
or (k, t) =

(
kn,

2pz
n√
α

)
=

(
kn,

2pV
n√
α

)
, n ∈ N

}
,

where τ =
√
α (ϕ+ t/2) and the roots pz

n, pV
n are defined in Propositions 2.1, 2.2.

We define the first Maxwell time corresponding to the stratum MAXi:

tMAXi
1 (λ) = inf{t > 0 | (λ, t) ∈ MAXi}, i = 0, 1, 2, 3,

and the first Maxwell time corresponding to all the strata MAXi:

tMAX
1 (λ) = min{tMAXi

1 , i = 0, 1, 2, 3}.
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Theorem 2.3. Let λ ∈ C1. Then

k ∈ (0, k1) ∪ (k0, 1), cn τ 6= 0 ⇒ tMAX
1 = tMAX1

1 =
2√
α
p1 =

2√
α
pz
1,

k ∈ (0, k1) ∪ (k0, 1), cn τ = 0 ⇒ tMAX
1 = tMAX2

1 =
2√
α
pV
1 ,

k ∈ (k1, k0), sn τ 6= 0 ⇒ tMAX
1 = tMAX2

1 =
2√
α
p1 =

2√
α
pV
1 ,

k ∈ (k1, k0), sn τ = 0 ⇒ tMAX
1 = tMAX1

1 =
2√
α
pz
1,

k = k1, k0, sn τ 6= 0 ⇒ tMAX
1 = tMAX1

1 = tMAX3
1

=
2√
α
p1 =

2√
α
pz
1 =

2√
α
pV
1 ,

k = k1, k0, cn τ 6= 0 ⇒ tMAX
1 = tMAX2

1 = tMAX3
1

=
2√
α
p1 =

2√
α
pz
1 =

2√
α
pV
1 ,

where τ =
√
α (ϕ+ t/2) and the roots pz

1, p
V
1 are defined in Propositions 2.1, 2.2.

Proof. This follows from Theorem 2.2 and the estimates of the roots pz
1, p

V
1 in

Proposition 2.5.

§ 3. Maxwell strata in the domain N2

3.1. Roots of the equation z = 0 for ν ∈ N2. Let ν = (λ, t) ∈ N2, α = 1,
β = 0. Then (see [1])

x =
2
k

(
E(ψt)− E(ψ)− 2− k2

2
(ψt − ψ)

)
,

z = 2(snψt cnψt − snψ cnψ)− 1
k

(dnψ + dnψt)x,

ψt = ψ +
t

k
.

We pass to the variables

τ =
ψ + ψt

2
= ψ +

t

2k
, p =

ψt − ψ

2
=

t

2k
.

From the addition formula for elliptic functions we obtain

x =
4
k

E− 4k
∆

sn2 τ sn p cn p dn p− 2(2− k2)
k

p,

z =
2

k∆2
dn τ (2k sn p cn p(cn2 τ − sn2 τ dn2 p)−∆ dn p x) =

2 dn τ
k∆

fz(p), (13)

fz(p) =
2
k

[dn p((2− k2)p− 2E) + k2 sn p cn p],

∆ = 1− k2 sn2 τ sn2 p.
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Proposition 3.1. The function fz(p) has no root p 6= 0.

Proof. The function

gz(p) :=
fz(p)
dn p

has the same zeros as fz(p). But

g′z(p) =
k4 cn2 p sn2 p

dn2 p
> 0

(equality holds only for p = Kn, n ∈ Z); therefore gz(p) is increasing on the entire
real line. Taking into account that gz(0) = 0 we obtain gz(p) 6= 0 and therefore
also fz(p) 6= 0 for p 6= 0.

From equality (13) and Proposition 3.1 we obtain the following.

Corollary 3.1. Let ν = (λ, t) ∈ N2 ∩ {α = 1, β = 0}. Then the equation zt = 0
has no roots.

In other words, the segments of non-inflectional elastics have non-zero algebraic
area (see [8], § 3.2).

3.2. Roots of the equation V = 0 for ν ∈ N2. Let ν ∈ N2, α = 1, β = 0.
Then

V = xv + yw − 1
2
zr2 =

2 cn τ sn τ
k2∆

fV (p), (14)

fV (p) =
4
3
{
3 dn p (2E− (2− k2)p)2 + cn p

[
8E3 − 4E(4 + k2)− 12E2(2− k2)p

+ 6E(2− k2)2p2 + p(16− 4k2 − 3k4 − (2− k2)3p2)
]
sn p

− 2 dn p (−4k2 + 3(2E− (2− k2)p)2) sn2 p

+ 12k2 cn p(2E− (2− k2)p) sn3 p− 8k2 sn4 p dn p
}
. (15)

Proposition 3.2. For any k ∈ (0, 1) the function fV (p) given by equality (15) has
denumerably many zeros p = pV

n (k), n ∈ Z. The roots pV
n are odd and monotonic

in n. The positive roots are located as follows :

pV
n ∈ (Kn,K +Kn), n ∈ N.

Proof. Consider the function

gV (p) :=
fV (p)

sn p cn p
, p 6= Kn, n ∈ Z. (16)

We have

g′V (p) = − k2

sn2 p cn2 p
(fz(p))2 < 0. (17)

Consequently, the function gV (p) is decreasing on each interval p ∈ (Kn,K +Kn),
n ∈ Z. We calculate the limits of gV (p) at the end-points of these intervals.
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Let n ∈ N. Then

fV (2nK) = 8nϕ2
V (k) > 0, fV ((2n+ 1)K) = −4(2n+ 1)k′ϕ2

V (k) < 0, (18)

where ϕV (k) = 2E(k)− (2− k2)K(k) < 0 by Lemma 2.3. Next,

lim
p→2Kn±0

sn p cn p = ±0, lim
p→K+2Kn±0

sn p cn p = ∓0.

Consequently,
lim

p→Kn±0
gV (p) = ±∞, n ∈ N.

To calculate the limit as p→ 0 we observe that

fV (p) = − 4
45
k8p6 + o(p6), sn p cn p = p+ o(p), p→ 0,

and therefore
gV (p) = − 4

45
k8p5 + o(p5) → −0 as p→ +0.

Thus, the function gV (p) decreases from 0 to −∞ on the interval (0,K), and
from +∞ to −∞ on the intervals (Kn,K + Kn), n ∈ N. Therefore the function
gV (p) has a unique root p = pV

n on each interval (Kn,K + Kn), n ∈ N. The
function fV (p) has the same zeros, since fV (Kn) 6= 0 (see (18)).

The fact that the roots of the function fV (p) are odd follows from the fact that
this function is even in p and from the equality fV (0) = 0.

Proposition 3.2 describes the points where the centre of mass of a segment of
a non-inflectional elastic crosses the perpendicular bisector of the chord (see [8],
§ 3.2).

Fig. 16 shows the graph of the function p 7→ fV (p), and Figs. 17, 18 show the
graphs of the functions k 7→ pV

1 , k 7→ pV
1 /K. On the ordinate axis in Fig. 18 we

have marked the points p/K ∈ Z corresponding to a whole number of revolutions
of the pendulum.

Figure 16. The graph of p 7→ fV (p), λ ∈ C2

We now describe the regularity properties of the curve {fV = 0} and of the
functions p = pV

n (k) defining this curve.
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Figure 17. The graph of k 7→ pV
1 , λ ∈ C2

Figure 18. The graph of k 7→ pV
1 /K, λ ∈ C2

Lemma 3.1. The curve γV = {(p, k) ∈ (0,+∞)× (0, 1) | fV (p, k) = 0} is smooth
and its tangent is nowhere parallel to the p-axis. The functions p = pV

n (k), k ∈
(0, 1), n ∈ N, are smooth.

Proof. By Proposition 3.2, on the curve γV we have sn p cn p 6= 0 and therefore
fV (p) = sn p cn p gV (p) (see (16)). Taking into account (17) we obtain

f ′V (p)
∣∣
γV

= sn p cn p g′V (p) 6= 0.

We now analyse the asymptotic behaviour of the functions p = pV
n (k) at the

end-points of the interval (0, 1).

Proposition 3.3. If k → 1− 0, then pV
n (k) → +∞ for every n ∈ N.

Proof. This follows from the inclusion pV
n ∈ (Kn,K + Kn) (see Proposition 3.2)

and the fact that limk→1−0K = +∞.

Proposition 3.4. The function

f0
V (p) :=

1
512

[
(32p2 − 1) cos 2p− 8p sin 2p+ cos 6p

]
has denumerably many zeros p = pV

n (0), n ∈ Z. The roots pV
n (0) are odd and

monotonic in n. The positive roots are located as follows :

pV
n (0) ∈

(
π

2
n,
π

2
(n+ 1)

)
, n ∈ N. (19)
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Extend the roots p = pV
n (k), k ∈ (0, 1) (see Proposition 3.2) by the value p =

pV
n (0) for k = 0. Then the function p = pV

n (k) is smooth on the interval k ∈ [0, 1)
and (pV

n )′+(0) = 0.

Proof. We observe that

f0
V

(
π

2
n

)
=

(−1)n

64
π2n2, n ∈ Z.

Next, the function

g0
V (p) :=

f0
V (p)

sin p cos p

is decreasing on each interval (πn/2, π(n+ 1)/2), n ∈ Z, since

(g0
V (p))′ = − (sin 4p− 4p)2

256 sin2 p cos2 p
< 0, p 6= π

2
n.

We calculate the limits of this function at the end-points of the intervals:

n 6= 0 ⇒ g0
V (p) → ±∞ as p→ π

2
n± 0,

n = 0 ⇒ g0
V (p) → ∓0 as p→ ±0.

Hence the function g0
V (p) has a unique root on each interval (πn/2, π(n + 1)/2),

n ∈ N. The function g0
V (p) is negative on the interval (0, π/2). All the zeros of the

function f0
V (p) are exhausted by the roots pV

n (0). The assertions on the location
and monotonicity of the roots follow from the preceding arguments; the fact that
the roots are odd in n follows from the fact that the function f0

V (p) is even.
The fact that the extended function p = pV

n (k) is smooth at k = 0 follows from
the Taylor expansion

fV (p, k) = k8f0
V (p) +O(k10), k → 0, (20)

which can be obtained from the asymptotics of elliptic functions given in the Sup-
plement and from the regularity of the roots p = pV

n (0) of the function f0
V (p). The

equality (pV
n )′+(0) = 0 follows from the expansion (20) and the regularity of the

positive roots of the function f0
V (p).

From equality (14) and Proposition 3.2 we obtain the following.

Proposition 3.5. Let ν = (λ, t) ∈ N2 ∩ {α = 1, β = 0}. Then

V = 0 ⇔


sn τ cn τ = 0, τ = ψ +

t

2k
,

or

t = 2k pV
n , n ∈ N,

where the roots pV
n are defined in Proposition 3.2.
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3.3. Roots of the equation r2 + ρ2 = 0 for ν ∈ N2.

Lemma 3.2. Let ν ∈ N2. If r2t + ρ2
t = 0, then fV (p) = 0.

Proof. Let r2t + ρ2
t = 0. If r2t = x2

t + y2
t = 0, then Vt = xtvt + ytwt − ztr

2
t /2 = 0.

We use the factorization (14).
a) If cn τ sn τ 6= 0, then we obtain from the factorization (14) that fV (p) = 0.
b) Suppose that sn τ = 0. We have

xt

∣∣
sn τ=0

=
2
k

(2E− (2− k2)p) = 0 ⇒ E =
2− k2

2
p, (21)

wt

∣∣
sn τ=0, E=(2−k2)p/2

=
2
3k

(8 cn p sn p dn p− k2p) = 0

⇒ p =
8
k2

cn p sn p dn p. (22)

One can verify directly that

E =
2− k2

2
p, p =

8
k2

cn p sn p dn p ⇒ fV (p) = 0.

c) The case cn τ = 0 is considered in similar fashion. First we note that

xt

∣∣
cn τ=0

=
2
k

(2E− (2− k2)p)− 4k
dn p

cn p sn p = 0

⇒ E =
2− k2

2
p+

k2

dn p
cn p sn p, (23)

wt

∣∣
cn τ=0, E=(2−k2)p/2+(k2/ dn p) cn p sn p

= − 2
3k

(
p+ 8(1− k2)

cn p sn p
k2 dn3 p

)
= 0

⇒ p = −8(1− k2)
cn p sn p
k2 dn3 p

. (24)

Then we verify directly that

E =
2− k2

2
p+

k2

dn p
cn p sn p, p = −8(1− k2)

cn p sn p
k2 dn3 p

⇒ fV (p) = 0.

We introduce notation for the functions that appeared in equalities (21)–(24):

f1(p) = 2E− (2− k2)p, f2(p) = 8 cn p sn p dn p− k2p,

f3(p) = 2E− (2− k2)p− 2k2 cn p sn p
dn p

, f4(p) = p+ 8(1− k2)
cn p sn p
k2 dn3 p

.

From the proof of Lemma 3.2 we obtain the following assertion.

Corollary 3.2. Let ν ∈ N2. Then

r2t + ρ2
t = 0 ⇔


sn τ = 0, f1(p) = f2(p) = 0
or
cn τ = 0, f3(p) = f4(p) = 0.
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We now analyse the structure of the set

S12 := {(p, k) ∈ R× (0, 1) | f1(p, k) = f2(p, k) = 0}.

We set

g1(u) = 2E(u)− (2− k2)F (u), g2(u) = 8 cosu sinu
√

1− k2 sin2 u− k2F (u),

so that fi(p) = gi(am p), i = 1, 2. We have the Taylor expansion

g2(u, k) =
∞∑

n=0

gn
2 k

2n, k ∈ [0, 1),

g0
2 = 4 sin 2u, g1

2 = −(u+ 2 sin2 u sin 2u),

gn
2 =

(2n− 3)!!
2n−1n!

(
n

∫ u

0

sin2n−2 t dt+ 2 sin2n u sin 2u
)
.

Lemma 3.3. The following hold :
1) g1

2(u) < 0 for u > 0;
2) gn+1

2 (u) < gn
2 (u) for u > 0;

3) gn
2 (u) < 0 for u > 0, n ∈ N;

4) ∂g2/∂k < 0 for u > 0, k ∈ (0, 1).

Proof. Part 1) can be proved by standard analytical methods.
Part 2) can be proved by an elementary transformation of the difference gn+1

2 −gn
2

using the identity∫
sinn t dt =

sinn+1 t cos t
n+ 1

+
n+ 2
n+ 1

∫
sinn+2 t dt, n 6= −1.

Part 3) follows immediately from parts 1) and 2).
Part 4) follows from part 3) in view of the expansion

∂g2
∂k

= 2
∞∑

n=1

gn
2 k

2n−1, k ∈ [0, 1).

Taking into account the explicit expression for g0
2(u) we obtain the following

assertion from part 4) of the preceding lemma and from the implicit function
theorem.

Corollary 3.3. The curve {g2(u) = 0} is smooth and is contained in the domain{
u ∈

(
πn,

π

2
+ πn

)
, n = 0, 1, 2, . . . , k ∈ (0, 1)

}
.

There exists a function k = kg2(u) that is smooth on the intervals u ∈ (πn, π/2+πn)
and continuous at their end-points such that

g2(u, k) = 0 ⇔ k = kg2(u),

and kg2(πn+ 0) = kg2(π/2 + πn− 0) = 0.
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Lemma 3.4. The set of points {g1 = g2 = 0} is contained in the domain{
u ∈

(
πn,

π

2
+ πn

)
, n ∈ N

}
.

Proof. From Corollary 3.3 we obtain the inclusion

{g2 = 0} ⊂ {u ∈ (πn, π/2 + πn), n = 0, 1, 2, . . . }.

It remains to prove that u /∈ (0, π/2) on the set {g1(u) = g2(u) = 0}. This follows
from Lemma 3.2 and Proposition 3.2: we obtain successively

{f1(p) = f2(p) = 0} ⊂ {fV (p) = 0} ⊂ {p ∈ (Kn,K +Kn), n ∈ N};

therefore p /∈ (0,K) for f1(p) = f2(p) = 0.

Lemma 3.5. The set of points {g1 = g2 = 0} is denumerable and each strip
{u ∈ (πn, π/2 + πn)}, n ∈ N, contains at least one point of this set.

Remark. Computer calculations show that each strip {u ∈ (πn, π/2 + πn)}, n ∈ N,
contains exactly one point of the set {g1 = g2 = 0} (see the graphs of the curves
{g1 = 0} and {g2 = 0} in Fig. 19).

Figure 19. The curves g1 = 0 and g2 = 0; ν ∈ N2

The arcs of the elastics corresponding to the values of the parameters (p, τ, k)
such that sn τ = 0, f1(p, k) = f2(p, k) = 0 satisfy the equalities r2t + ρ2

t = 0, that
is, xt = yt = vt = wt = 0. Taking into account the expression for the centre of
mass of the segment of the elastic cx = (v− r2y/6)/z, cy = (w+ r2x/6)/z (see [1])
we obtain xt = yt = cx = cy = 0: this is a closed elastic bounding a domain with
centre of mass at the initial point of the elastic (we called such elastics remarkable).
Lemma 3.5 asserts that there exist denumerably many non-inflectional remarkable
elastics. Note that the stratum MAX0 does not intersect the sets Ni, i = 1, 3, . . . , 7;
therefore no inflectional and critical elastics are remarkable. In Fig. 20 we depict
the shortest remarkable elastic, which corresponds to the intersection point of the
curves f3 = 0 and f4 = 0 in the domain p ∈ (K, 2K). This is the shortest of all
the closed smooth curves bounding a domain with centre of mass at the initial point
of this curve.
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Figure 20. A shortest remarkable elastic

Proof of Lemma 3.5. It is sufficient to show that the function ϕ(u) := g1(u, kg2(u))
changes sign on each interval u ∈ (πn, π/2 + πn). To begin, we consider the first
interval u ∈ (π, 3π/2).

From the Taylor expansions

g1(u) = 2(2E − (2− k2)K) + k2(u− π) + o(u− π),

g2(u) = −2k2K + (8− k2)(u− π) + o(u− π)

we obtain the asymptotics of the curves near the point (u, k) = (π, 0):

g1 = 0: u− π = − 2
k2

(2E − (2− k2)K)︸ ︷︷ ︸
>0

+o(1),

g2 = 0: u− π =
2k2K

8− k2︸ ︷︷ ︸
>0

+o(1).

The inequality (8 − k2)((2 − k2)K − 2E) > k4K, k ∈ (0, 1), which is proved in
Lemma 3.6 below, and the expansion

g1(u, k) = sinu cosu︸ ︷︷ ︸
>0

k2 + o(k2) (25)

imply that ϕ(u) < 0 as u→ π + 0.
In a similar fashion we can determine the sign of ϕ(u) as u→ 3π/2−0. We have

g1(u) = 3(2E − (2− k2)K)− k2

k′

(
u− 3π

2

)
+ o

(
u− 3π

2

)
,

g2(u) = −3k2K − 8− 7k2

k′

(
u− 3π

2

)
+ o

(
u− 3π

2

)
,

and therefore

g1 = 0: u− 3π
2

=
3k′

k2
(2E− (2− k2)K) + o(1),

g2 = 0: u− 3π
2

= −3k′k2K

8− 7k2
+ o(1).
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From the asymptotics (25) and the inequality (8− 7k2)(2E − (2− k2)K) > −k4K,
k ∈ (0, 1), which is proved in Lemma 3.6 below, it now follows that ϕ(u) > 0 as
u→ 3π/2− 0.

The function ϕ(u) changes sign on each interval (πn, π/2 + πn); one can prove
this fact similarly using the asymptotics

g1(u) = 2n(2E − (2− k2)K) + k2(u− πn) + o(u− πn),

g2(u) = −2nk2K + (8− k2)(u− πn) + o(u− πn),

g1(u) = (2n+ 1)(2E − (2− k2)K)− k2

k′

(
u− (2n+ 1)π

2

)
+ o

(
u− (2n+ 1)π

2

)
,

g2(u) = −(2n+ 1)k2K − 8− 7k2

k′

(
u− (2n+ 1)π

2

)
+ o

(
u− (2n+ 1)π

2

)
.

We now prove the inequalities that we used above in the proof of Lemma 3.5.

Lemma 3.6. The following hold :
1) (8− k2)((2− k2)K − 2E) > k4K , k ∈ (0, 1);
2) (8− 7k2)(2E − (2− k2)K) > −k4K , k ∈ (0, 1).

Proof. 1) For the function α1(k) := (8− k2)((2− k2)K − 2E)− k4K we have

α1(0) = 0, α′1(k) =
6k

1− k2
α2(k),

α2(k) := (2− k2)E − 2(1− k2)K,
α2(0) = 0, α′2(k) = −3k(E −K) > 0,

and therefore α1(k) > 0, k ∈ (0, 1).
2) Similarly, define the function α3(k) := (8−7k2)(2E− (2−k2)K)+k4K; then

α3(0) = 0, α′3(k) = −18k(2E − (2− k2)K) > 0,

since ϕV (k) = 2E(k) − (2 − k2)K(k) < 0 (see Lemma 2.3). Therefore α3(k) > 0,
k ∈ (0, 1).

Lemma 3.5 can be reformulated as follows.

Corollary 3.4. The set of points S12 = {f1 = f2 = 0} is denumerable and each
domain {p ∈ (2Kn,K + 2Kn)} contains at least one point of this set.

Remark. Computer calculations show that the set

S34 := {(p, k) | f3(p, k) = f4(p, k) = 0}

has the same structure as the set S12 examined above. The fact that the functions
f3, f4 6≡ βf3 are analytic implies that the set S34 is countable.

An important consequence of the analysis of the set S12 is that S12 is non-empty.
Hence the stratum MAX0 ∩N2 is non-empty (see Theorem 3.1). All the other strata
MAX0 ∩Nj , j 6= 2, are empty. This means that only the geodesics that are projected
to non-inflectional elastics (ν ∈ N2) connect the initial point q0 with the fixed points
of rotations {X0 = 0} = {r2 + ρ2 = 0}. This is important for understanding the
structure of optimal synthesis in the generalized Dido problem.
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3.4. Complete description of the Maxwell strata in the domain N2.

Theorem 3.1. Let (λ, t) ∈ N2. Then

(λ, t) ∈ MAX0 ⇔


f1(p) = f2(p) = 0, sn τ = 0
or
f3(p) = f4(p) = 0, cn τ = 0,

where p =
√
α t/(2k), τ =

√
α (ψ + t/(2k)). The set MAX0 ∩N2 is denumerable

and is contained in the set MAX2 ∩N2.

Proof. The fact that the set MAX0 ∩N2 is denumerable obviously follows from
Theorem 5.13 in [8], Corollaries 3.2 and 3.4, and the fact that the set S34 is countable
(see the remark after Corollary 3.4).

Let ν ∈ MAX0 ∩N2. Let us prove that ν ∈ MAX2. We can assume that α = 1,
β = 0. By Theorem 5.1 in [8] we have r2t + ρ2

t = 0, whence we obtain fV (p) = 0 by
Lemma 3.2. By Theorem 5.13 in [8] we have ν ∈ MAX2 provided that eσ~h0(ν2) 6= ν.
But it is clear from Theorem 4.2 in [8] that this inequality holds for any σ 6= 0.

Theorem 3.2. The following holds : MAX1 ∩N2 = MAX3 ∩N2 = ∅.

Proof. This follows from Theorem 5.13 in [8] and Corollary 3.1.

Theorem 3.3. Let (λ, t) ∈ N2. Then

(λ, t) ∈ MAX2 ⇔


fV (p) = 0, sn τ cn τ 6= 0
or

(λ, t) ∈ MAX0,

where p =
√
α t/(2k), τ =

√
α (ψ + t/(2k)). The positive roots p = pV

n , n ∈ N, of
the function fV (p) are described in Proposition 3.2.

Proof. This follows from Theorem 5.13 in [8] and the factorization (14).

We now describe the first Maxwell points along geodesics for λ ∈ C2. By anal-
ogy with the domain C1 we introduce notation for the first Maxwell time in the
domain C2:

p1(k) = pV
1 (k), k ∈ (0, 1), λ ∈ C2.

Theorem 3.4. Let λ ∈ C2. Then

sn τ cn τ 6= 0 ⇒ tMAX
1 (λ) = tMAX2

1 (λ) =
2k√
α
p1 =

2k√
α
pV
1 ,

sn τ = 0 ⇒ tMAX
1 (λ) = tMAX0

1 (λ) = min
{

2k√
α
pV

n

∣∣∣ f1(pV
n ) = f2(pV

n ) = 0
}
,

cn τ = 0 ⇒ tMAX
1 (λ) = tMAX0

1 (λ) = min
{

2k√
α
pV

n

∣∣∣ f3(pV
n ) = f4(pV

n ) = 0
}
.

Proof. This follows from Theorems 3.1–3.3.
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§ 4. Maxwell strata in N3

We shall use the fact that the parametrisation of geodesics for λ ∈ C3 is obtained
from the formulae for geodesics for λ ∈ C1, by passing to the limit k → 1− 0.

4.1. Roots of the equation z = 0 for ν ∈ N3.

Proposition 4.1. Let (λ, t) ∈ N3. Then the equation zt = 0 has no roots.

Proof. It is sufficient to consider the case α = 1, β = 0. We pass to the limit
k → 1− 0 in equality (2):

zt =
4

∆ cosh τ
fz(p),

∆ = 1− tanh2 τ tanh2 p > 0,

p =
t

2
, τ = ϕ+

t

2
,

fz(p) =
p− tanh p

cosh p
> 0;

therefore zt > 0 for t > 0.

4.2. Roots of the equation V = 0 for ν ∈ N3.

Proposition 4.2. Let (λ, t) ∈ N3. Then

Vt = 0 ⇔ τ = 0, τ =
√
α

(
ϕ+

t

2

)
.

Proof. We pass to the limit k → 1− 0 in the factorization (5):

V =
2 tanh τ
∆ cosh τ

fV (p, 1), (26)

gV (p, 1) =
cosh p
tanh p

fV (p, 1), p > 0,

(gV (p, 1))′ = −4 cosh2 p

tanh2 p
(fz(p, 1))2 < 0, p > 0.

Therefore the function gV (p, 1) is decreasing for p∈(0,+∞). But limp→0 gV (p, 1)=0;
therefore gV (p, 1) < 0 and fV (p, 1) < 0 for p > 0. The assertion now follows from
the factorization (26).

4.3. Roots of the equation r2 + ρ2 = 0 for ν ∈ N3.

Proposition 4.3. If (λ, t) ∈ N3, then the equation r2t + ρ2
t = 0 has no roots.

Proof. Let (λ, t) ∈ N3, α = 1, β = 0, r2t + ρ2
t = 0. From the factorization (4) we

obtain
yt =

4 tanh p tanh τ
∆ cosh p cosh τ

= 0;

therefore τ = 0. Then xt|τ=0 = 2(2 tanh p − p) = 0. Consequently, tanh p = p/2.
Finally,

wt

∣∣
τ=0, tanh p=p/2

=
2
3

(
8

tanh p
cosh2 p

− p

)
= 0.
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But it is easy to prove that the system of equations

2 tanh p− p = 0, 8
tanh p
cosh2 p

− p = 0

has no positive roots. The contradiction thus obtained completes the proof.

4.4. Complete description of the Maxwell strata in N3.

Proposition 4.4. The following holds : MAXi ∩N3 = ∅, i = 0, 1, 2, 3.

Proof. This follows from Theorem 5.13 in [8] and Propositions 4.1–4.3.

§ 5. Conjugate points

5.1. Limit points of the Maxwell set. A geodesic qt is said to be strictly normal
if it is the projection of at least one normal extremal λt but is not the projection
of any abnormal extremal. In the generalized Dido problem the strictly normal
geodesics are those corresponding to λ ∈ Ci, i = 1, 2, 3, 6. The geodesics corre-
sponding to λ ∈ Ci, i = 4, 5, 7, are not strictly normal, since abnormal extremals
are projected to them (see [1]).

A point qt of a strictly normal geodesic qs = Exp(λ, s), s ∈ [0, t], is said to be
conjugate to the point q0 along the geodesic qs if ν = (λ, t) is a critical point of the
exponential map.

It is known that a strictly normal geodesic cannot be optimal after a conjugate
point [10]. At the first conjugate point the geodesic ceases to be locally optimal, and
at the first Maxwell point it ceases to be globally optimal. In this section we find
conjugate points on the geodesics corresponding to λ ∈ Ci, i = 1, 2, 6, that contain
no Maxwell points. These conjugate points are limits of pairs of the corresponding
Maxwell points.

Proposition 5.1. Suppose that νn, ν
′
n ∈ N , νn 6= ν′n, Exp(νn) = Exp(ν′n), n ∈ N.

If both sequences {νn}, {ν′n} converge to some point ν = (λ, t) and the geodesic
qs = Exp(λ, s) is strictly normal, then the end-point qt = Exp(ν) of this geodesic is
a conjugate point.

Proof. If ν is a regular point of the exponential map, then its restriction to a
small neighbourhood of the point ν is a diffeomorphism. By the hypothesis of
this proposition the exponential map is not bijective in any neighbourhood of the
point ν. Consequently, ν is a critical point of the map Exp and its image qt =
Exp(λ, t) is a conjugate point.

It is convenient to introduce the following set, which we call the double closure
of the Maxwell set :

CMAX =
{
ν ∈ N | ∃ {νn = (λn, tn)}, {ν′n = (λ′n, tn)} ⊂ N : νn 6= ν′n,

Exp(νn) = Exp(ν′n), n ∈ N, lim
n→∞

νn = lim
n→∞

ν′n = ν
}
.

It is obvious that νn ∈ MAX; therefore CMAX ⊂ cl(MAX).
Proposition 5.1 asserts that if ν = (λ, t) ∈ CMAX and the geodesic qs =

Exp(λ, s) is strictly normal, then its end-point qt is a conjugate point.
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By analogy with the set CMAX we define the following subsets of it— the double
closures of Maxwell strata:

CMAXi =
{
ν ∈ N | ∃ {νn} ⊂ N, σn ∈ R : νn 6= ν′n = eσn

~h0 ◦ εi(νn),

Exp(νn) = Exp(ν′n), n ∈ N, lim
n→∞

νn = lim
n→∞

ν′n = ν
}
.

Since νn ∈ MAXi, we have the inclusion CMAXi ⊂ cl(MAXi).

5.2. Conjugate points in N1.

Proposition 5.2. Let ν = (λ, t) ∈ N1 be a point such that

fz(p) = 0, cn τ = 0, p =
√
α
t

2
, τ =

√
α

(
ϕ+

t

2

)
.

Then ν ∈ CMAX1.

Proof. The point ν = (k, p, τ, α, β) is the limit of the sequences

ν±n = (k, p, τ ± 1/n, α, β), n ∈ N,

and ν−n = ε1(ν+
n ) 6= ν+

n , Exp(ν+
n ) = Exp(ν−n ) by Proposition 4.1 in [7] and Propo-

sition 3.1 in [8].

Proposition 5.3. Let ν = (λ, t) ∈ N1 be a point such that

fV (p) = 0, sn τ = 0, p =
√
α
t

2
, τ =

√
α

(
ϕ+

t

2

)
.

Then ν ∈ CMAX2.

Proof. It is easy to see that the double closures CMAXi, as well as the strata MAXi,
are invariant under the rotations ~h0 and dilations Z; therefore we can set α = 1,
β = 0.

The point ν = (k, p, τ, α = 1, β = 0) is the limit of the sequences ν±n =
(k, p, τ ± 1/n, 1, 0). According to Theorem 5.13 in [8] we have νn ∈ MAX2 and

ν′n = eσn
~h0(ν−n ) 6= ν+

n , Exp(ν′n) = Exp(νn),

where the rotation angles σn are determined by part 2) of Proposition 3.1 in [8]:
σn = 2χn for rn > 0, and σn = 2ωn − π for rn = 0, ρn > 0 (the case rn = ρn = 0
is impossible by Lemma 2.5).

Suppose that r > 0 for the geodesic corresponding to ν. Then σn→σ=2χ. From
the factorization (4) we obtain y = 0; therefore χ ≡ 0 (modπ) and σ = 0.

Now suppose that r = 0 and ρ > 0. Then σn → σ = 2ω − π. From the explicit
formulae for geodesics [1] we obtain v = 0 for λ ∈ C1; therefore ω ≡ π/2 (modπ)
and σ = 0.

Thus, in any case, σ = 0. Consequently,

ν′n = ν−n 6= ν+
n , Exp(ν−n ) = Exp(ν+

n ), ν±n → ν,

and therefore ν ∈ CMAX2.
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We define the following sets:

MAXij = (MAXi ∪CMAXi) ∩Nj . (27)

From Theorem 2.2 and Propositions 5.2, 5.3 we obtain the partitions of the sets
MAXi1 into connected components:

MAX11 =
{

(λ, t) ∈ N1

∣∣∣ fz(p) = 0, p =
t
√
α

2

}
=

∞⋃
n=1

MAXn
11,

MAXn
11 =

{
(λ, t) ∈ N1

∣∣∣ t =
2pz

n√
α

}
, (28)

MAX21 =
{

(λ, t) ∈ N1

∣∣∣ fV (p) = 0, p =
t
√
α

2

}
=

∞⋃
n=1

MAXn
21,

MAXn
21 =

{
(λ, t) ∈ N1

∣∣∣ t =
2pV

n√
α

}
. (29)

5.3. Conjugate points in N2.

Proposition 5.4. The following holds : CMAX1 ∩N2 = ∅.

Proof. This follows from the equality MAX1 ∩N2 = ∅.

Proposition 5.5. Suppose that ν = (λ, t) ∈ N2 is a point such that

fV (p) = 0, sn τ cn τ = 0, p =
√
α
t

2k
, τ =

√
α

(
ψ +

t

2k

)
.

Then ν ∈ CMAX2.

Proof. The proof is similar to the proof of Proposition 5.3.

From Theorems 3.2, 3.3 and Propositions 5.4, 5.5 we obtain the following parti-
tion of the sets MAXi2 (see (27)) into connected components:

MAX12 = ∅,

MAX22 =
{

(λ, t) ∈ N2

∣∣∣ fV (p) = 0, p =
t
√
α

2k

}
=

∞⋃
n=1

MAXn
22,

MAXn
22 =

{
(λ, t) ∈ N2

∣∣∣ t =
2kpV

n√
α

}
. (30)

5.4. Conjugate points in N3.

Proposition 5.6. The following holds :

CMAX1 ∩N3 = CMAX2 ∩N3 = ∅.

Proof. We shall prove the equality CMAX1 ∩N3 = ∅; the proof of the other equality
is similar, but simpler. Arguing by contradiction, suppose that there exists a point
ν ∈ MAX2 ∩N3. Then one can find a sequence of points νn ∈ MAX2 ∩N1 or νn ∈
MAX2 ∩N2. Let νn ∈ MAX2 ∩N1; in the case νn ∈ MAX2 ∩N2 the proof is similar.
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Using the symmetries ~h0, Z we can assume that νn = (kn, pn, τn, α = 1, β = 0),
where fV (pn) = 0. By Proposition 2.2 we have pn > 2K(kn). Since νn → ν ∈ N3,
we obtain kn → 1; therefore K(kn) → +∞, pn → +∞, and tn → +∞. This
contradiction to the condition νn → ν completes the proof of the proposition.

5.5. Conjugate points in N6.

Proposition 5.7. The following holds : CMAX1 ∩N6 = ∅.

Proof. This follows from the equality MAX1 ∩N2 = MAX1 ∩N6 = ∅.

Proposition 5.8. Let ν = (θ, c 6= 0, α = 0, t ) ∈ N6 be a point such that

t =
4
|c|
p, f0

V (p) = 0,

where the function f0
V (p) is defined in Proposition 3.4. Then ν ∈ CMAX2.

Proof. Taking into account the symmetries ~h0 and Z we can set θ = 0, c = ±1.
We consider only the case c = 1, since the case c = −1 is quite similar. Thus,
ν = (θ = 0, c = 1, α = 0, t ).

Let ν = (θ, c, α, β) ∈ MAX2 ∩N+
2 , ν2 = ε2(ν) = (θ2, c2, α, β2, t), where by

Theorem 3.3

t =
2k√
α
, p = pV

n (k), k ∈ (0, 1), τ =
√
α

k

(
ϕ+

t

2

)
6= Km, m ∈ N,

τ2 =
√
α

k

(
ϕ2 +

t

2

)
, β2 = −β.

Then by the definition of the Maxwell stratum we have

ν̃ = eσ~h0(ν2) 6= ν, Exp(ν) = Exp(ν̃),

where by Proposition 3.1 in [8]

σ = 2χ for r > 0, σ = 2ω − π for r = 0, ρ > 0 (31)

(we choose ν ∈ N2 so that r2 + ρ2 6= 0).
Let k → 0 and α → α = 0 so that

√
α/k = 1/2. According to Proposition 3.4

we have p = pV
n (k) → pV

n (0) = p. Hence, t = 2kp/
√
α→ 4p = t.

Let β = const. We set ϕ = −β. Obviously, we can choose ϕ→ ϕ so that

τ =
√
α

k

(
ϕ+

t

2

)
6= Km.

We claim that for this choice we obtain lim ν = lim ν̃ = ν; this will complete the
proof of the proposition.

We use the expressions for elliptic coordinates in the domain C+
2 in [7], § 4.1:

sin
θ − β

2
= sn

√
α

k
, cos

θ − β

2
= cn

√
α

k
, (32)

c

2
=
√
α

k
dn

√
α

k
. (33)
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Then
√
αϕ/k → ϕ/2. Using (33) we obtain c→ 1 = c; using (32), (θ−β)/2 → ϕ/2.

Therefore θ → ϕ+ β = 0 = θ. Thus,

ν = (θ, c, α, β, t) → ν = (θ = 0, c = 1, α = 0, t ).

For the point ν2 = (θ2, c2, α, β2, t) we obtain c2 → c from equality (33). According
to equality (6) in [7] we have θ2 = −θt and therefore θ2 → −θt, where θt is the first
component of the solution of the pendulum equation corresponding to ν:

θ̇t = ct, ċt = 0, θ0 = 0, c0 = 1 ⇒ θt = t, ct = 1.

Consequently, θ2 → −θt = −t. Thus,

ν2 = (θ2, c2, α, β2, t) → ν 2 = (−t, c = 1, α = 0, t ).

We now find the limit of the rotation angle σ; see (31). Consider the geodesic-
circle corresponding to the covector (θ = 0, c = 1, α = 0) ∈ C6:

xt = sin t, yt = 1− cos t. (34)

By equality (19) we obtain t = 4p = 4pV
n (0) ∈ (2πn, 2π(n+1)). Therefore t 6= 2πm;

consequently, rt =
√
x2

t
+ y2

t
> 0. In other words, the first of equalities (31) holds,

which implies σ = 2χ → σ = 2χt. From equalities (34) we obtain χt = t/2;
consequently, σ = t. We can now complete the proof:

ν̃ = eσ~h0(ν2) → eσ~h0(ν 2) = et~h0(−t, c = 1, α = 0, t ) = (0, 1, 0, t ) = ν;

therefore ν ∈ CMAX2.

§ 6. Cut time

Let λ ∈ C and let qs = Exp(λ, s) be the corresponding normal geodesic. The
cut time on the geodesic qs is defined to be the number

tcut(λ) = sup{t > 0 | qs, s ∈ [0, t], is optimal}.

The point qt, t = tcut(λ), is called the cut point. The cut time is the instant when
a geodesic ceases to be optimal. All the geodesics in the generalized Dido problem
are regular; therefore any small arc on one is optimal. In other words, tcut(λ) > 0
for all λ ∈ C.

6.1. Estimate of the cut time. In this subsection we bring together the results
obtained in this paper and estimate the cut time from above. To do this, we define
the following function on the initial cylinder C:

t : C → (0,+∞], λ 7→ t(λ),

λ ∈ C1 ⇒ t =
2√
α
p1(k) = min

{
2√
α
pz
1(k),

2√
α
pV
1 (k)

}
,

λ ∈ C2 ⇒ t =
2k√
α
p1(k) =

2k√
α
pV
1 (k),

λ ∈ C6 ⇒ t =
4
|c|
pV
1 (0),

λ ∈ Ci, i = 3, 4, 5, 7 ⇒ t = +∞.
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Theorem 6.1. For any λ ∈ C we have the estimate tcut(λ) 6 t(λ).

Proof. Let λ ∈ C1∪C2∪C3∪C6; then the geodesic qs = Exp(λ, s) is strictly normal.
According to Proposition 2.1 in [8] and Proposition 5.1, if (λ, t) ∈ MAX∪CMAX,
then the geodesic qs is not optimal on any interval s ∈ [0, t + ε], ε > 0, that is,
tcut(λ) 6 t. To prove this theorem we will show that the pair (λ, t(λ)) belongs to
one of the sets MAXi or CMAXi for any covector λ ∈ C.

Let λ ∈ C1. If k ∈ (0, k1) ∪ (k0, 1), then

cn τ 6= 0 ⇒ t(λ) =
2√
α
pz
1 = tMAX1

1 (λ) (Theorem 2.3),

cn τ = 0 ⇒ (λ, t(λ)) =
(
λ,

2√
α
pz
1

)
∈ CMAX1 (Proposition 5.2).

If k ∈ (k1, k0), then

sn τ 6= 0 ⇒ t(λ) =
2√
α
pV
1 = tMAX2

1 (λ) (Theorem 2.3),

sn τ = 0 ⇒ (λ, t(λ)) =
(
λ,

2√
α
pV
1

)
∈ CMAX2 (Proposition 5.3).

Finally, if k = k1, k0, then

t(λ) =
2√
α
pz
1 = tMAX3

1 (λ) (Theorem 2.3).

Let λ ∈ C2; then

cn τ sn τ 6= 0 ⇒ t(λ) =
2k√
α
pV
1 = tMAX2

1 (λ) (Theorem 3.4),

cn τ sn τ = 0 ⇒ (λ, t(λ)) =
(
λ,

2k√
α
pV
1

)
∈ CMAX2 (Proposition 5.5).

Let λ ∈ C6; then

(λ, t(λ)) =
(
λ,

4pV
1 (0)
|c|

)
∈ CMAX2 (Proposition 5.8).

If λ ∈ C3, then there is nothing to prove, since t(λ) = +∞; note that in this
case MAXi = CMAXi = ∅ (Propositions 4.4, 5.6).

If λ ∈ C4∪C5∪C6, then there is also nothing to prove; in this case the geodesics
qs are optimal on the entire ray s ∈ [0,+∞) and tcut(λ) = t(λ) = +∞.

Computer calculations corroborate the following.

Conjecture. For any λ ∈ C we have the equality tcut(λ) = t(λ).

We aim to prove this conjecture in a subsequent paper. At present it has only
been proved for some of the geodesics.
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6.2. Properties of the function t. To obtain a global representation of the
function t it is convenient to define the following function on the cylinder C:

κ =

√
α2 +

(E + α)2

4
, (35)

and to extend the functions introduced earlier:

k =

{
0, λ ∈ C4 ∪ C6;
1, λ ∈ C3 ∪ C5,

p1(k) =

{
pV
1 (0), λ ∈ C6;

+∞, λ ∈ C3 ∪ C4 ∪ C5 ∪ C7.

Theorem 6.2. The function t : C → (0,+∞] is invariant under the flow of the
generalized pendulum and under rotations, it is also homogeneous of order 1 under
dilations. We have the global representation

t(λ) =
2 4
√

1 + k4

√
κ

p1(k), λ ∈ C. (36)

The function t is continuous on C\C4 and discontinuous on C4; but after extension
by continuity the function t becomes smooth on C4. The function t is smooth in
the domains C1 \ {k = k1, k0} and C2 ∪ C6. The function t ceases to be smooth
on the surfaces C1 ∩ {k = k1} and C1 ∩ {k = k0}.

Proof. The invariance of the function t under the flow of the generalized pendulum
θ̈ = −α sin(θ − β) (the vertical part of the Hamiltonian system of the Pontryagin
maximum principle) follows from the fact that, for λ ∈ C1 ∪ C2, the value t(λ)
depends only on the invariants of the generalized pendulum k, α, and for λ ∈ C6, the
value t(λ) depends only on the coordinate c, which is constant for the generalized
pendulum on C6. It is easy to see that the function t is invariant under rotations
and is homogeneous of order 1 under dilations: ~h0t = 0, Zt = t; this follows from
the invariance of the Maxwell strata under the flows of these fields.

We now prove formula (36). Both the function t and the right-hand side of
this formula are invariant under the flow of the generalized pendulum and under
rotations; therefore it is sufficient to prove equality (36) in the quadrant

K+ = {θ = β = 0, c > 0, α > 0} ⊂ C.

In this quadrant we introduce the generalized polar coordinates (κ, η), κ > 0,
η ∈ [0, π/2] as follows:

c2 = 4κ cos η, α = κ sin η,

κ2 = α2 +
c4

16
, tan η =

4α
c2
. (37)

It is obvious that in the quadrant K+ the function κ is given by equality (35):

θ = β = 0 ⇒ E =
c2

2
− α ⇒ α2 +

c4

16
= α2 +

(E + α)2

4
.
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If λ ∈ C1 ∩K+, then k = |c|/(2
√
α) =

√
cot η and therefore η = arccot k2 and

sin η =
1√

1 + k4
, cos η =

k2

√
1 + k4

.

Consequently,

c2 =
4κk2

√
1 + k4

, α =
κ√

1 + k4
,

and we finally obtain

t
∣∣
C1∩K+

=
2√
α
p1(k) =

2 4
√

1 + k4

√
κ

p1(k).

If λ ∈ C2 ∩K+, then k = 2
√
α/|c| =

√
tan η and therefore η = arctan k2 and

sin η =
k2

√
1 + k4

, cos η =
1√

1 + k4
.

Thus,

c2 =
4κ√

1 + k4
, α =

κk2

√
1 + k4

,

whence

t
∣∣
C2∩K+

=
2k√
α
p1(k) =

2 4
√

1 + k4

√
κ

p1(k).

If λ ∈ C6 ∩K+, then k = 0, κ = c2/4, p1(0) = pV
1 (0), and therefore

t
∣∣
C6∩K+

=
4
|c|
pV
1 (0) =

2 4
√

1 + k4

√
κ

p1(k).

Finally, for λ ∈ Ci ∩K+, i = 3, 4, 5, 7, the validity of formula (36) follows from
the equalities t(λ) = +∞ and p1(1) = +∞.

By the properties of the invariance under the flow of the generalized pendulum
and under rotations the global representation (36) is proved on the entire cylinder C.

The continuity of the function t in the domains C1, C2 follows from the continuity
of the function p1(k) (see Corollary 2.5 and Lemma 3.1). The continuity of t on C6

follows from the continuity of the root pV
1 (k), λ ∈ C2, at the point k = 0. The

continuity t on C7 follows from the fact that κ → 0 as λ → λ ∈ C7, and the
function 4

√
1 + k4 p1(k) is isolated from zero from below, and therefore t(λ) →

+∞ = t(λ). The continuity of t on Ci, i = 3, 5, can be proved in similar fashion.
On the set C4 the function t is discontinuous:

λ ∈ C4 ⇒ lim
λ→λ

t(λ) =
2pz

1(+0)√
κ(λ)

< +∞ = t(λ).

But if we redefine t|C4 = 2pz
1(0)/

√
α by continuity, then the function t becomes

smooth on C4. This follows from the fact that the function p1(k) redefined by
continuity has zero right derivative at the point k = 0 (see Corollary 2.5).
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The smoothness of t in the domains C1 ∩ {k 6= k1, k0}, C2 and the loss of
smoothness on the surfaces C1 ∩ {k = k1}, C1 ∩ {k = k0} follow from the corre-
sponding assertions on the smoothness of the function p1(k) (see Corollary 2.5 and
Lemma 3.1).

The smoothness of t at the points of C6 follows from the fact that pV
1 (k) = O(k2),

k → 0, λ ∈ C2 (see Proposition 3.4).

All the peculiarities of the behaviour of the function t mentioned in Theorem 6.2
can be clearly seen in Fig. 21.

Figure 21. The graph of k 7→ t|κ=1 = 2 4
√

1 + k4 p1(k)

6.3. Maxwell strata in the image of the exponential map. We define the
Maxwell set and Maxwell strata in the image of the exponential map as follows:

Max = Exp(MAX), Maxi = Exp(MAXi).

From Theorems 2.1, 3.1, 3.3 and Lemma 3.2 we obtain the inclusions

Max1 ⊂ {z = 0}, Max2 ⊂ {V = 0},
Max3 ⊂ {z = V = 0}, Max0 ⊂ {r = ρ = 0}.

We define the first components of the Maxwell strata in the image of the expo-
nential map to be the images of the corresponding first components MAX1

ij ⊂ N
(see (28)–(30)):

Max1
ij = Exp(MAX1

ij) ⊂M ;

we also define their projections onto the quotient space by rotations and dilations
M ′′ = π′′1 (M), π′′1 : q 7→ eRX0 ◦ eRY (q):

(Max1
ij)
′′ = π′′1 (Max1

ij) ⊂M ′′.

In Figs. 22–25 we have depicted the first components (Max1
11)

′′, (Max1
21)

′′,
(Max1

22)
′′. To do this, in the chart {ρ > 0}′′ of the manifold M ′′, we have taken
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Figure 22. The set (Max1
11)

′′

Figure 23. The set (Max1
21)

′′
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Figure 24. The set (Max1
11)

′′ ∪ (Max1
21)

′′

the following coordinates rectifying the hypersurfaces {z = 0}′′, {V = 0}′′:

P2 = P ′(Q′2 +R′2) =
zr2

2ρ4/3
,

Q2 = Q′ − P ′(Q′2 +R′2) =
xv + yw − zr2/2

ρ4/3
,

R2 = R′ =
−yv + xw

ρ4/3
,
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Figure 25. The set (Max1
22)

′′

while the coordinates

P ′ =
z

2ρ2/3
, Q′ =

xv + yw

ρ4/3
, R′ =

−yv + xw

ρ4/3

in the chart {ρ > 0}′′ of the manifold M ′′ ∼= S3 were introduced in [6].
In the sketches of each of the sets (Max1

11)
′′ and (Max1

21)
′′ (Figs. 22 and 23) one

can clearly see the three subdomains corresponding to different intervals of values
of the parameter k. There is a domain that has non-compact intersection with the
chart {ρ > 0}′′: this is the ‘exterior’ domain extending to infinity (k ∈ (k0, 1)).
There are also two compact ‘interior’ domains: the upper one (k ∈ (k1, k0)), and
the lower one (k ∈ (0, k1)). The interior points of all the three domains are Maxwell
points, and the boundary edges are conjugate points. The interior points of the
set (Max1

22)
′′ in Fig. 25 are also Maxwell points; the boundary edges consist of

conjugate points, as well as of limit points of the Maxwell set.

Supplement: derivatives and asymptotics
of the Jacobi elliptic functions

In this supplement for the Jacobi elliptic functions sn(u, k), cn(u, k), dn(u, k),
E(u, k) we give the partial derivatives with respect to the parameter k, as well as
the Taylor expansions as k → 0, which we used in this paper. The expansions were
obtained by the method of indeterminate coefficients from the formulae for partial
derivatives. A detailed exposition of the theory of elliptic functions can be found
in the books [11], [12].
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Derivatives of the Jacobi elliptic functions with respect to the param-
eter:

∂ snu
∂k

=
1
k
u cnu dnu+

k

1− k2
snu cn2 u− 1

k(1− k2)
E(u) cnu dnu,

∂ cnu
∂k

= −1
k
u snu dnu− k

1− k2
sn2 u cnu+

1
k(1− k2)

E(u) snu dnu,

∂ dnu
∂k

= − k

1− k2
sn2 u dnu− ku snu cnu+

k

1− k2
E(u) snu cnu,

∂E(u)
∂k

=
k

1− k2
snu cnu dnu− ku sn2 u− k

1− k2
E(u) cn2 u.

Asymptotics of the Jacobi elliptic functions:

snu = s0(u) + k2s2(u) + k4s4(u) + k6s6(u) + k8s8(u) +O(k10), k → 0,
s0(u) = sinu,

s2(u) =
1
8

cosu(sin 2u− 2u),

s4(u) =
1

128
(
(8− 4u2 + 9 cos 2u+ cos 4u) sinu− 6u(2 cosu+ cos 3u)

)
,

s6(u) =
1

3072
(
8u(u2 − 21) cosu− 3u(39 cos 3u+ 5 cos 5u+ 22u sinu+ 18u sin 3u)

+ 3 cos2 u(53 sinu+ 14 sin 3u+ sin 5u)
)
,

s8(u) =
1

49152
{
u[(128u2 − 1845) cosu+ 18(−83 + 12u2) cos 3u

− 21(15 cos 5u+ cos 7u)−2u(951− 4u2+1122 cos 2u+150 cos 4u) sinu]

+ 3 cos2 u[553 sinu+ 185 sin 3u+ 22 sin 5u+ sin 7u]
}
;

cnu = c0(u) + k2c2(u) + k4c4(u) + k6c6(u) + k8c8(u) +O(k10), k → 0,
c0(u) = cosu,

c2(u) =
1
8

sinu(2u− sin 2u),

c4(u) =
1

256
(
−(9 + 8u2) cosu+ 8 cos 3u+ cos 5u+ 16u sinu+ 12u sin 3u

)
,

c6(u) =
1

12288
[
−27(11 + 8u2) cosu+ 6(41− 36u2) cos 3u+ 48 cos 5u

+ 3 cos 7u+ 8u(111− 4u2 + 132 cos 2u+ 15 cos 4u) sinu
]
,

c8(u) =
1

196608
{
[−3594− 2256u2 + 32u4] cosu

+ 3[943 cos 3u+ 230 cos 5u+ 24 cos 7u+ cos 9u]
+ 4u[−2u(486 cos 3u+ 75 cos 5u+ 56u sinu+ 108u sin 3u)

+ 3(281 sinu+ 498 sin 3u+ 7(15 sin 5u+ sin 7u))]
}
;

dnu = d0(u) + k2d2(u) + k4d4(u) + k6d6(u) + k8d8(u) +O(k10), k → 0,
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d0(u) = 1,

d2(u) = −1
2

sin2 u,

d4(u) = − 1
32

sinu(5 sinu+ sin 3u− 8u cosu),

d6(u) =
1

1024
(
−44 + (31− 32u2) cos 2u+ 12 cos 4u+ cos 6u

+ 72u sin 2u+ 16u sin 4u
)
,

d8(u) =
1

49152
[
−1407 + (900− 1344u2) cos 2u+ (444− 384u2) cos 4u

+ 60 cos 6u+ 3 cos 8u+ 16u(147−16u2+102 cos 2u+ 9 cos 4u) sin 2u
]
;

E(u) = E0(u) + k2E2(u) + k4E4(u) + k6E6(u) + k8E8(u) +O(k10), k → 0,
E0(u) = u,

E2(u) =
1
4
(sin 2u− 2u),

E4(u) =
1
64

(−4u− 8u cos 2u+ 4 sin 2u+ sin 4u),

E6(u) =
1

1024
(
−32u+ 33 sin 2u− 8u(9 cos 2u+ 2 cos 4u+ 4u sin 2u)

+ 12 sin 4u+ sin 6u
)
,

E8(u) =
1

49152
[
8u(−291 + 32u2) cos 2u+ 3(−4(82u+ 68u cos 4u+ 6u cos 6u

+ (−85 + 112u2) sin 2u+ (−37 + 32u2) sin 4u− 5 sin 6u) + sin 8u)
]
.

The author is grateful to A.A. Agrachev for posing the problem and for useful
discussions in the course of this work.
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