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Complete description of the Maxwell strata
in the generalized Dido problem

Yu. L. Sachkov

Abstract. The generalized Dido problem is considered — a model of the
nilpotent sub-Riemannian problem with the growth vector (2,3,5). The
Maxwell set is studied, that is, the locus of the intersection points of geodesics
of equal length. A complete description is obtained for the Maxwell strata
corresponding to the symmetry group of the exponential map generated by
rotations and reflections. All the corresponding Maxwell times are found and
located. The conjugate points that are limit points of the Maxwell set are
also found. An upper estimate is obtained for the cut time (time of loss of
optimality) on geodesics.
Bibliography: 12 titles.

8§ 1. Introduction

1.1. Statement of the problem. The present paper is devoted to the study of
the optimality of geodesics in the generalized Dido problem. This problem can be
formulated as follows. Suppose that we are given two points (xo,%o), (1,y1) € R?
connected by some curve vy C R?, a number S € R, and a point ¢ = (c,, cy) € R2.
It is required to find a shortest curve v C R? connecting the points (x¢,yo) and
(21,y1) such that the domain bounded by the two curves v and v has the prescribed
algebraic area S and centre of mass c.

In [1] we showed that this problem can be reformulated as the following optimal
control problem in 5-dimensional space with a 2-dimensional control and an integral
criterion:

g =u1 X1 + usXo, q=(z,y,z,v,w) € M =R’ u=(uy,us) € U=R?
q(0) =q =0, q(t1)=q,

ty
lz/ \/u? + u3 dt — min,
0

where the vector fields at the controls have the form
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From the invariant viewpoint, this is a sub-Riemannian problem given by the
distribution
A, = span(Xi(q), X2(q)), qgeM

with scalar product (-,-) with respect to which the fields X;, X5 form an ortho-
normal basis:
(X, XY = 045, i, =1,2.

The Lie algebra generated by the fields X3, X5 is a free nilpotent Lie algebra of
length 3 with two generators. The distribution A has the flag

ACA?=[AA]CA3=[AAY=TM

and the growth vector (2,3,5) = (dim A,, dim A2, dim A2).

Thus, (A, (-,-)) is a nilpotent sub-Riemannian structure with the growth vector
(2,3,5). It is a local quasihomogeneous nilpotent approximation of an arbitrary
sub-Riemannian structure on a 5-dimensional manifold with the growth vector
(2,3,5) (see [2], [3], as well as [4]). As shown in [5], such a nilpotent structure
is unique. The generalized Dido problem is a model of the nilpotent sub-Rieman-
nian problem with the growth vector (2, 3,5).

1.2. Known results. We continue the study of the generalized Dido problem
started in [1], [5]-[8].

In [5] and [7] we found, respectively, the groups of continuous and discrete sym-
metries in this problem: there is a two-parameter continuous symmetry group (rota-
tions and dilations), as well as a discrete symmetry group of order 4 (reflections).

In [1] we obtained a parametrization of sub-Riemannian geodesics (extremal
trajectories) by the Jacobi elliptic functions. The abnormal geodesics are optimal
up to infinity, and the normal ones, generally speaking, on finite time intervals. A
point where a geodesic ceases to be optimal is called a cut point. It is known that a
normal geodesic can cease to be optimal either because another geodesic with the
same value of the functional hits some point on it (a Maxwell point), or because
the family of geodesics has an envelope (a conjugate point).

In [8] we found the Maxwell strata MAX; corresponding to the symmetry group
preserving time on geodesics (rotations and reflections): the two hypersurfaces
z = 0 and V = 0 that contain these Maxwell strata were produced in the state
space M, the invariant meaning of these hypersurfaces was clarified in terms of the
sub-Riemannian structure, as well as their graphical significance for Euler elastics
(the projections of geodesics onto the (z,y)-plane).

1.3. Contents of the paper. The purpose of the present paper is a complete
analysis of the roots of the equations z = 0 and V' = 0 along geodesics.

We study solubility of these equations; in some cases they have no roots. In
those cases where these equations are soluble, for each root we indicate an interval
containing it, locating the roots. Moreover, on each of these intervals the corre-
sponding root proves to be a zero of a certain monotonic function. This provides
an effective algorithm for the approximate calculation of these roots.

On each geodesic we find the first point that belongs to the Maxwell strata
MAX;. On the geodesics that do not contain points of these strata we find the
conjugate points that are limits of Maxwell points.
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Thus, on each normal geodesic (apart from certain exceptional ones) we
indicate either the first point of the strata MAX; or the first of the conjugate points
found before. But a normal geodesic cannot be optimal after Maxwell points and
conjugate points. We thus obtain an upper estimate for the cut time along geodesics.
On the exceptional geodesics this estimate is trivial (+00). The estimate obtained
— Theorem 6.1 —is the main result of this paper.

Computer calculations show that our upper estimate is in fact equal to the cut
time. So far this conjecture has been proved only for some of the geodesics.

We used the system “Mathematica” [9] to carry out complicated calculations
and to produce the figures in this paper.

1.4. Information from the preceding papers. We recall some definitions and
facts in [1], [5]-[8].

It follows from the Pontryagin maximum principle [10] that the extremals in the
generalized Dido problem are the trajectories of the Hamiltonian system A = H (N,
A € T* M, with Hamiltonian H = (h2+h3)/2, h;(A) = (), X;(q)). The geodesics are
the projections of extfemals in the cotangent bundle T* M onto the state space M:
@ = m(\), Ay = e ()\). Henceforth, e denotes the flow of the Hamiltonian
field H with Hamiltonian H.

Since the Hamiltonian H is homogeneous, it is sufficient to consider the restric-
tion of the Hamiltonian flow to the level surface H = 1/2 and therefore to take
initial covectors A in the initial cylinder C' = {H = 1/2} N T,y M. All the informa-
tion about the geodesics is contained in the exponential map Exp: C x Ry — M,
Exp(\,t) = moetf () = ¢.

The projections of the geodesics onto the plane (z,y) satisfy the differential
equations

& =cosf, 7=sinh, 0=—asin(d—7p), «, 3 = const;

such curves are called Fuler elastics.

In [7] we defined and studied the reflections €, i = 1,2, 3; these are the discrete
symmetries of the exponential map £: N — N, ¢: M — M, Expoe’ = &’ o Exp.
We denote v = (\,t) € N = C xR, v* = &(v). Along with the discrete symmetry
group Dy = {Id, e!,£2,£3}, the exponential map has the continuous two-parameter

= eRho o ¢RZ (see [1]), where

0 7] 0 0
ho(A) = (A, Xo(q)), XO:*9%+$8TU*U)%+U%a

Z=hy+e,  hy(\)=(\Y(q),

symmetry group Gj

0 0 0 0 0 0
Y=0—+y—+2z— = - =S "h—.
xaeryaer P B Bwo, e ; I

The Maxwell strata generated by the rotations EO and reflections £* are defined
as follows:

MAXo={rveN|JoeR: V= e"f“’(l/) # v, Exp(v) = Exp(v)},
MAX; = {v € N |30 € R: ¥ = "M () £ v, Exp(¥) = Exp(v)}, i=1,2,3.
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A geodesic cannot be optimal after a Maxwell point. The points on geodesics which
correspond to the Maxwell strata belong to the following sets ([8], Theorem 5.13):
(\t) € MAXy = ri+pi=0,
(M) e MAXy = 2z =0,
(M) e MAX, = V=0,
()\72‘3) S MAX3 = z=V;=0,
where 12 = 22 + 9%, p? = v2 + w?, V = zv + yw — 2r?/2. In this paper we solve
the equations z =0, V = 0, and r2 4 p? = 0, which define the Maxwell strata.

§ 2. Maxwell strata in the domain N,
By the equalities XoV =0, YV =4V and Xoz = 0, Yz = 2z (see [§], (1), (2))
the functions z, V' can be transformed by continuous symmetries as follows:

(eng)*z =z, (erY)*Z _ eZTZ7 (eon)*V — ‘/, (€TY>*V _ e4rV

Therefore the hypersurfaces z = 0, V = 0 are invariant under the symmetry group
Gx,y = %00 e®Y The existence of a two-parameter symmetry group of the
exponential map enables one to reduce the procedure of solving the equations z = 0,
V =0. Namely, let v = (\,t) € N; then for any s, r we have

p=ehoo e?(v) = (esrLo oe?(\),t) €N, t = te".
Setting Exp(V) = qv = (T, Yr, 21, V¢, Wy ) We obtain
2=0 & Z =0, V,=0 & Vy=0. (1)

Therefore we can first solve the equations z = 0, V = 0 for any representative
V" € N” and then obtain the solutions for any v € N by using relations (1).
The initial cylinder C' = {\ € T;f M | hi(X) + h3(X) = 1} can be parametrized
by the coordinates (6, ¢, a, 3) where
hy =cosf, ho=sinf, hz=c, hyg=asinf, hs=—acosp.

We also use the elliptic coordinates in the inverse image of the exponential map
introduced in [7]: time along the pendulum ¢ and the reparametrized energy of the
pendulum % (as well as ¢ = p/k).

Recall the partition of the cylinder C into subsets introduced in [1]:

7
i=1

Ci={ eC|a#0, Fe€(—a,a)},
Co={ eC|a#0, F€ (a,+00)},
C3={\eC|a#0, E=a, 0 — (3 #T7},
Ci={r eC|a#0, E=—a},

Cs={ eC|la#0, E=a,0—-p=m},
Co={ eC|la=0, c#0},

Cr={ eC|a=c=0},
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where
2

E = % —acos(d — B) € [—a, +0)

is the energy of the generalized pendulum 6 = —asin(@ — 3). In accordance with
the partition of the cylinder C = Ui?:l C; we have the partition of the inverse image
of the exponential map N = UZ:1 N;, where N; = C; x R,
2.1. Roots of the equation z = 0 for v € Ny. If v = (k, ¢, a, 3,t) € Ny, then
D= e—ﬁﬁo ° e(—1/21na)Z(V) _
V' e Ny.

In [1] we showed that for v € Ny, a =1, =10

(k,¢,1,0,0) € Ny can be taken as a representative

Yt =¥ + t7
v = 2(E(pr) = E(p)) = (¢r — ¢),
z=2k(snyr dnyy —snp dny) — k(cnp + cnoy)z.
Henceforth we use the Jacobi elliptic functions sn(u, k), en(u, k), dn(u, k), E(u, k)

(see [11], [12]).

We pass to the new coordinates

_ et +7 _pr—p
2 5 P 2 27

p=7T-D $t =T+Dp.

By the addition formulae for elliptic functions we obtain

z=2(E(r+p) —E(r—p))—2p
4k*
:4E(p)—2p—f sn”7 snp cnp dnp,

A=1-k?sn’7 sn’p,

z:%crwfz(p), (2)
f2(p) =snp dup — (2E(p) — p) cnp.

The following lemma and especially the constant kg introduced in it will be
important for the description of roots of the equations z = 0, V' = 0. Recall that

w/2
(k) = / V1 — k2sin® t dt, /
0 1-— k2 sin?

are the complete elliptic integrals of the first and second kind, respectively; see
[11], [12].
Lemma 2.1. The equation
2E(k) — K(k) =0, ke 0,1),
has a unique root ko € (0,1). Moreover,
kel0,ky) = 2E-K >0,
ke (ky,1) = 2E-K<O.
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Proof. Tt is obvious that E(k) is decreasing and K(k) is increasing; hence
2E(k) — K(k) is decreasing for k € [0,1). This proves the uniqueness of the
root kg. Its existence follows from the values of the functions at the end-points
of the interval:

k=0 ~  K(k)= E(k) =
k—-1-0 = K(k)— +o0, E(k)—1 = 2E(k)—K(k)— —oc.

Remark. The graph of the function k — 2E(k) — K (k) is given in Fig. 1. Computer
calculations show that kg ~ 0.909.

2B(k) — K (k)

Figure 1. Definition of the number ko

Figure 2. Periodic elastic, k = ko

Corresponding to the value of the parameter k = kg there is a unique periodic
Euler elastic (see Fig. 2).

It is clear from the factorization (2) that to investigate the roots of the equation
z = 0 it is important to study the roots of the equation f,(p) = 0.

Proposition 2.1. For any k € [0,1) the function
f=(p, k) =snp dnp — (2E(p) — p)cnp
has denumerably many roots p7,, n € Z. These roots are odd in n:
Prn=-Pn,  NEL
in particular, p§ = 0. The roots pZ are located as follows:

p € (—K +2Kn,K + 2Kn), n € 7.
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In particular, the roots pZ are monotonic in n:
Pr < Dpits n e 2.
Moreover, for n € N

kel0,ky) = p;e€(2Kn,K+2Kn),
k=ko = prZQK’rL,
ke (ko,1) = p;e(—K+2Kn,2Kn),

where ko is the unique root of the equation 2E(k) — K (k) = 0 (see Lemma 2.1).

Proof. We calculate the values of f.(p) at the points that are multiples of K.
Let p = 4Kn; then snp = 0, cnp = 1, dnp = 1, E(p) = 4nE, and therefore
f2(p) = —4n(2E — K). Proceeding similarly, we obtain a table of values of the
function f,(p) at the quarters of the period of the standard pendulum:

P 4Kn K +4Kn 2K +4Kn 3K +4Kn
f2(p) | —4n(2F — K) K (24 4n)(2E — K) —K

Here k' = v/1 — k2 € (0,1] is the complementary modulus of the elliptic functions.
Next, we define the function

3 d
_ f:(p) _sup P _9E(p)+p,  p#K+2Kn.

cnp cnp

9z (p)

A straightforward calculation shows that

2 2
sn”p dn”p
9:p) = — 5 —

cn?p
We calculate the limits at the end-points of the intervals:

p— —K+4Kn+0 = f.(p)— —k,cnp—=+0 = g.(p) — Foo,
p—>K+4Kn+0 = f.p)—k, amp—>F0 = g.(p) — Foo.

This means that the function g.(p) increases from —oo to +00 on each interval
(=K +2Kn,K +2Kn), ne€Z, n#o0;
hence it has a unique root
pZ € (—K +2Kn,K +2Kn), n € Z.

At points of the form p = K + 2Kn, n € Z, where the function g, (p) is undefined,
we have f.(p) = £k’ # 0. Consequently, the function f,(p) vanishes only at the
points pZ, n € Z.

The fact that the roots p? are odd in n follows from the fact that the function
f2(p) is odd in p. The fact that the roots p? are monotonic in n follows from the
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fact that each of the mutually disjoint intervals (—K + 2Kn, K + 2Kn) contains
exactly one root pZ.

It remains to locate the positive roots p? with respect to the midpoints 2Kn.
As calculated above, f,(2Kn) = (—1)""12n(2E — K), n € Z.

Let k < ko; then 2E(k) — K(k) > 0. First we consider the case n = 2m € N.
Then f,(4Km) < 0, g.(4Km) < 0, and therefore pZ > 2Kn. If n =2m — 1 € N,
then f,(4Km —2K) > 0, g.(4Km — 2K) < 0, and again pZ > 2Kn.

For k > ko we have 2E(k) — K (k) > 0 and therefore p? < 2Kn.

Finally, for k = ko we obtain 2E(k) — K (k) = 0 and pZ = 2Kn.

The graphs of the function f.(p) for the different values of k are given in Figs. 3-5.

f=(p)

Figure 3. p— f.(p), k€[0,ko), N € C

f(p)

p
41K bHK \ 6K

Figure 4. p+— f.(p), k € (ko,1), A€ C4

Proposition 2.1 asserts that the algebraic area of the segment of an inflectional
elastic changes sign infinitely many times (see [8], §3.2).

Corollary 2.1. The first positive root p = p% of the equation f.(p)=0 is located
as follows:

ke [kaO) = pi € (2K7 3K)7

k =k = pi =2K,

k€ (ko,1) = pfe(K,2K).
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f=(p)

Figure 5. p+— f.(p), k=ko, A€ C1

In Fig. 6 we give the graph of the function k — pf(k), and in Fig. 7, the graph
of the function k — p5(k)/K (k). Recall that the value p = 2K corresponds to a
complete revolution of the pendulum; this value is marked on the ordinate axis in

Fig. 7.

P1
9 L
8 L
7 L
6 L
5 L
L L L | o \/ k
0.2 0.4 0.6 0.8 1
Figure 6. k+— pi, A€ Cy
pi/
3 [
2.5+
2e
1.5 ¢
1 1 1 1 k/.
0.2 0.4 0.6 0.8 ko 1

Figure 7. k—pi/K, A€ C:
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From equality (2) and Proposition 2.1 we obtain the following assertion.
Corollary 2.2. Letv e NyN{a=1, 3 =0}. Then
t
cn 7 =0, T=<p+§,
z2=0 < or
t=2p;, nez,
where the pZ are the roots of the function f,(p) described in Proposition 2.1.

2.2. Roots of the equation V =0 for v € N;. Let ve Nj,a=1,3=0. In
the coordinates

ot ot
7—_90 2a p_2
we have
1
x = Z(QA@E —p) —4k?sn® 7 cnp snp dnp), (3)
1
y:Z4kdnTsnTsnpdnp, (4)

4k
2= = Lisup dnp — (2E — p)enp),

ksntdnT
= 2T b (), 5)

4
fvip) = 3 Sup dnp(—p — 2(1 — 2k? 4 6k cn? p)(2E — p) + (2E — p)?
+8k*cnp snp dnp) +4cenp(l — 2k*sn? p)(2E — p)?,
A=1-k%*sn’7sn’p.

Proposition 2.2. For any k € [0,1) the equation fy(p,k) = 0 has denumerably
many roots pY. , n € Z. These roots are odd and monotonic in n. For n € N the
roots pY are located as follows:

pY € [2Kn,2K(n +1)).
Moreover,
k#ky = pY € (2Kn,2K(n+1)),
k=ky = p, =2Kn.
Proof. We define the function

gv(p)=m, p# 2Kn. (6)

A straightforward calculation shows that

(f:(p)*

/
=4 :
(v ) =155 0

hence the function gy (p) decreases on each interval p € (2K (n — 1),2Kn).
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First we consider the case k # ko. We calculate the limits at the end-points of
the intervals:

p—4Kn+0, n#0 = fyr —64n?(2E - K)?>>0, snp— 0
= gy — *£oo,

p— £0 = fv—0, gv—0,

p— 2K +4Kn=+0 = fv— —4(4n+2)*(2E - K)* <0, snp— F0
= gy — *oo.

Let n € N. Then
p—2Kn+0 = gy(p) — Loo,

on each interval (2Kn,2K (n + 1)) the function gy (p) decreases from 400 to —oo
and therefore has one root pY . If n = 0, then

p—+0 = gv(p)—0, p—2K—-0 = gy(p) — —o0,

on the interval (0,2K) the function gy (p) decreases from 0 to —oo and therefore
has no roots.
We return to the function fy(p). For n € N we have

fv(2Kn) = (-1)"16n*(2E — K) # 0;

in addition, fi7(0) = 0. Therefore all the non-negative roots of the function fy (p)
are given by p=pY, n=0,1,2,....

We now consider the case k = ko; then 2E (k) — K (k) = 0. The function fy (p)
vanishes at the points p = 2Kn, n = 0,1,2,...; we claim that there are no other
non-negative roots. If p — 2Kn, n =0,1,2,..., then gv(p) — —(8/3)Kn. If we
extend the function gy (p) by continuity to the points p = 2Kn, then gy (p) decreases
from 0 to —oo for p € [0,+00). Therefore gy (p) < 0 for p > 0. Consequently, in
the case k = kg the function fi(p) vanishes only at the points p = p¥ = 2Kn.

The fact that the roots pY are odd in n follows from the fact that the function
fv(p) is even in p. The monotonicity of p! in n follows from the fact that the
intervals [2Kn,2K (n + 1)), n € N, are disjoint for different n.

Proposition 2.2 asserts that the centre of mass of the segment of an inflectional
elastic crosses the perpendicular bisector of the chord infinitely many times (see [8],
§ 3.2).

The graphs of the function p — fy (p) for various k are given in Figs. 8, 9.

Corollary 2.3. For any k€[0,1) the first positive root p=p} of the equation
fv(p) = 0 is located as follows:
Ktk = pf € (2K, 4K),
k=ko = pj =2K.
In Figs. 10, 11 we give the graphs of the functions k — p{ (k), k — p} (k)/K (k).
On the ordinate axis in Fig. 11 the points p} /K = 2 and 4 are marked, which

correspond to one and two complete revolutions of the pendulum.
From Proposition 2.2 and equality (5) we obtain the following assertion.
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fv(p)

24
L 1 1 1 p
K ~—_" 4K 5K \6K

Figure 8. p+— fv(p), k# ko, A€ C1

fv(p)

Figure 9. p+— fv(p), k=ko, N € Ch

1 1 1 1

02 04 06 1

Figure 10. kw—pY, e Ch

Corollary 2.4. Letv e Ny, a=1, 3=0. Then

t
snt =0, T——go+§7
V,=0 < or

where the p¥ are the roots of the function fi (p) described in Proposition 2.2.
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pY /K
4e

L L L

0.2 04 0.6 0.8 ko 1

Figure 11. k+— py /K, A€ Cy

2.3. Relative positions of the roots of the equations z = 0 and V =0
for v € N;. In order to determine the first Maxwell time along a geodesic it is
important to know which of the equations z; = 0, V; = 0 has a root that is the first
one occurring on this geodesic. In this subsection we answer this question.

First we describe the curve {f, = 0}.

Lemma 2.2. The curve {(p,k) € R x [0,1) | f.(p) =0, p # 0} is smooth. It has
tangent parallel to the p-axis only at the points (p, k) = (2Kn, ko), n # 0. At the
points (p, k) = (pz(0),0) this curve has tangent parallel to the k-axis.

Proof. We have 0f,/0p = (2E — p) dup snp. Therefore

snp dnp
fZ:O’ 2E_p: cn ’ 2E—p=0
b p )
afz < 2 2 ad
=0 snpdn”p p=2Kn
ap TLEEP o
cnp
{Qn(QEK) —0, n=0
or
p=2Kn k= ko, p=2Kn.

Therefore for (p, k) # (2Kn, ko) the curve {f, = 0} is smooth and its tangent is
not parallel to the p-axis.
We now calculate the other partial derivative:

of-
Ok

_ —kiﬁ{dnp snplk? + (2E — p)(E — (1 — k2)p)]
+enp[E(1 — 2k3(1 +sn?p)) +p(—1 + E*(1 + 32))]}

For k = kg, p = 2Kn we have snp =0, cup = £1, dnp = 1, E = p/2; therefore

of. K
/ = i% #0 for n # 0.
Ok k=ko,p=2Kn kOkO

Therefore at the points (p, k) = (2Kn, ko) the curve {f, = 0} is smooth and has
tangent parallel to the p-axis.

Finally, for £ = 0 we have 0f,/0k = 0; therefore at the points (p, k) = (pZ,0),
n # 0, the curve {f, = 0} has tangent parallel to the k-axis.
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Remark. Naturally, the component {f., = 0, p = 0} = {p = 0} is a smooth
one-dimensional manifold, although along this component we have

af. _9f. _
5 (0F) = 50K =0,

fz(O’k) =

Proposition 2.3. For every n € N the function p = pZ(k) is continuous for k €
[0,1), and smooth for k € [0,ko) U (ko,1). If k = ko, then dpZ/dk = co. If k =0,
then dp? /dk = 0. If k — 1 — 0, then p? — +oc.

Proof. The first three assertions follow from Lemma 2.2, and the fourth from
the inclusion p? € (=K + 2Kn,K + 2Kn) (see Proposition 2.1) and the limit
limy_,1_o K = +o0.

Proposition 2.4. For every n € N there exists a number ky, € (0, ko) such that
kel0ka) = phk) <py (k)
k =k, = pfz(k) p:f(k‘),
k€ (knko) = pi(k) > py (k).

Proof. Suppose that k € [0, kg) and therefore
2E(k) — K(k) > 0.

Let n = 2m + 1; the case of even n is quite similar. We have

f:(2Kn) =2n(2E — K) > 0,
fz2K(n+1))=-2(n+1)2E - K) <0,
fv(2Kn) = —4n*(2E — K)? < 0,
)

fv(2K(n+1)) =4(n+1)%(2E — K)? > 0.

From this and the fact that each function f,(p), fi(p) has a unique zero in the
interval (2Kn,2K(n + 1)) it follows that

pi(k) <py (k) & fv(p;(k),k) <0. (8)
Next,
fV’fZZO = fV‘E:(ansznp dnp)/(2cnp)
=snp dnp(dn®p — kZsn?p en?p) — pen® p =: hy (p).
Therefore relation (8) can be rewritten in the form
pi(k) <py(k) & an(k) <0, 9)

where
(k) = hv (p;,(k), k).

The function a, (k) is continuous for k € [0, ko] and differentiable for k € (0, ko).
We now calculate its values at the end-points of this interval.
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We have a,(0) = hy (p?(0),0), hy(p,0) =snp—pcn®p, f.(p,0) =snp—pecnp.

Therefore
p=p;(0) = sup=penp = hy(p,0)=penpsn’p. (10)
But pf, = p3,,41 € ((4m + 2)K, (4m + 3)K); therefore cnp < 0. Consequently, the
last equality in (10) yields
an(0) = hv (p;(0),0) = penp sn’p < 0.
At the other end-point of the interval we have
an (ko) = hv (p7.(ko), ko) = hv (2nK (ko), ko).

If p =2nK = (4m + 2)K, then snp = 0, cnp = —1, dup = 1, and therefore
hy(2nK, k) = p=2nK > 0.

Thus, a,(0) < 0, an(ko) > 0. We shall prove that o/, (k) > 0 for k € (0,ko);
then oy, (k) has a unique zero k,, € (0, ko) and this proposition will be proved (see
relation (9)).

We have

do, d, | _ (Ohy Of.  Ohy Of.\ (0f.\

since f.(p%(k),k) = 0. Next,

af, sn?p dn’p
=Q@E-—p)snpduplyp o= <0;
ap o ’2E p=snp dnp/cnp cnp p=pz
therefore
dan L 8hv 8fz ahv afz
a0 e PE <8k B op ok )|, "

A straightforward calculation gives
3snp dnp
2kk'? cnp
B :=cn®psnpdnp(1+2kicn®p)p —p’entp
—2k%sn? p dn? p(dn® p + k2k'* st D).

B: ﬁh

By the inclusion p} = p3,, ., € (2K +4Km, 3K + 4Km) we obtain the inequalities
sn(p;) <0, en(p;) < 0, whence

ﬁ|fz=0 <0 & 51|fz:0 < 0.
Next,

B = By — 2k*sn?p dn? p(dn4p + k2K sn* P)
< By :=pcn® plsnp dnp(1 + 2k* cn? p) — penp.



916 Yu. L. Sachkov

It remains to prove that Ba|r —¢ < 0: if this is the case, then f1];, =0 < 0 and
therefore o, (k) > 0 for k € (0, ko).
We have

Bo=pen®pBs,  B3:=snpdnp(l+2k*cn’p) —penp.
Since cnpl|f,—o = cn(p;) < 0, it remains to prove that B3]z, —o > 0. Next,
By=f.—2cmpfy,  Pai=p—E—k cupsnpdup;

therefore to complete the proof of this proposition it is sufficient to show that
Ba(p) >0 for p e 2nK,(2n+ 1)K) 3 pZ.

We have 96, ) ) , , ;
o = k“(—14sn° p(2k* + 3dn”p)) > —k=;
therefore for p € (2nK, (2n + 1)K) we obtain
5uto) = Ga(ni) + [ S dp > 208 - ) - - 260)

>2(K — E) - k*K = (2 k) K — 2E(k) = —pv (k).
It is sufficient to prove that ¢y (k) = 2E(k) — (2 — k?)K (k) < 0 for k € (0,1). This
is shown in the following Lemma 2.3, which completes the proof of this proposition.

Lemma 2.3. The function

pv (k) = 2B(k) — (2 - k*) K (k)
is negative for k € (0,1).
Proof. We have ¢y (0) = 0 and

d(pv o k

1 1 L . 2
= 1omevk), evk)=E-(1-k)K

Therefore it is sufficient to show that ¢i,(k) > 0 for k € (0,1). But this follows
from the fact that ¢1,(0) = 0 and dyi, /dk = kK > 0.

Fig. 12 depicts the graph of the sequence k,,, n = 0,1, ... . Computer calculations
show that k, — k¢ monotonically as n — oo; therefore it would be more natural
to denote kg = ko,. We point out that k; = 0.802.

We obtain the following description of the relative positions of the roots p = pZ,
py of the equations f, = 0, fy = 0 for various k.

Proposition 2.5. For everyn € N

kel k) = pi(k)<py(k),
k=kn = pi(k) =py (k),
k€ (kn,ko) = pi(k)>py (k)
k= ko = pi(k) = p, (k) = 2Kn,
k€ (k1) = pi(k) <py (k).
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k
L L L L n
5 10 15 20
0.95 |
0.9" .....ooooo
085 *
0.8F°

Figure 12. The graph of n — ky,, A € C;

Proof. The disposition of the roots on the interval k € [0, kg) was proved in Propo-
sition 2.4. Tt follows from Propositions 2.1, 2.2 that pZ (k) < 2Kn < pY (k) for
k € (ko,1). The equality of roots for k = k¢ follows from the same propositions.

In Fig. 13 we present the graphs of the functions k + p%(k), k — p¥ (k), and
in Fig. 14, of the functions k — p#(k)/K(k), k + pY (k)/K (k). On the ordinate
axis in Fig. 14 we have marked the points corresponding to a whole number of
revolutions of the pendulum.

= ot & 1 00 ©

4 e

pi /K
3 -

pi/K
2e
1 -

k1 ko
0.25 0.5 0.75 1

Figure 14. kv pi/K,pY /K, A€ C;
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We can now give a description of the curve {fy = 0}.

Lemma 2.4. The curve vy = {(p, k) € (0,+00) x [0,1) | fy(p) =0} is smooth. It
has tangent parallel to the p-axis only at the points (p,k) = (p¥ (kn), kn), n € N.

Proof. Tt follows from Proposition 2.2 that the curve vy decomposes into infinitely
many connected components

vy N{p € 2Kn,2K(n+1))} = {p:pg(k) | ke€0,1)}, n € N.

We fix any n € N, and let p € [2Kn,2K(n + 1)).

First we consider the case k € [0,1) \ {kn, ko}. According to Propositions 2.2
and 2.4 we have p € (2Kn,2K(n + 1)) on the curve vy. For p # 2Kn, taking
equality (6) into account we obtain fy(p) = gy (p)snp dup and therefore f{, =
gy sup dnp + gy (snp dnp)’. The identity gy = 0 holds on the curve 7y . Taking
equality (7) into account we obtain

Af?

/ 1 _
fv}W =gy snpdnp = 7snp dnp’

which is non-zero for k # k,,, kg. Therefore the curve ~y is smooth for k # k,,, ko.
If (p, k) = (2Kn, ko), then by a straightforward calculation we obtain

Filp) =5 Kn #0;

therefore the curve vy is also smooth for k = k.

For k # ky, we have f{,(p) # 0; consequently, the tangent to the curve vy at
these points is not parallel to the p-axis.

Finally, consider the point (p,k) = (pY (kn),kn). From the equations f, = 0,
fv = 0 at this point we obtain the equalities

d d
:pcnp+snp np’ p:SHP np(dn2pfk2sn2pcn2p).

E
cnd p

2cnp

Using these equalities we calculate the derivatives at this point:

ofv Ofv 72sn4p dn® p(1 — (1 — cn? p)k?)

ap 0 ok k(1 —k2)cn®p 7 0.

Therefore for k = k,, the curve 7y is smooth and has tangent parallel to the p-axis.

Proposition 2.6. For every n € N the function p = pY, (k) is continuous for k €
[0,1), and smooth for k € [0,k,) U (kn,1). If k = ky, then dp) /dk = oco. If
k—1-0, then p} — +oo.

Proof. The first two assertions follow from Lemma 2.4, and the third from the
inclusion pY € [2Kn,2K(n + 1)) (see Proposition 2.2) and the fact that
limg 1o K = +00.
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Remark. Lemma 2.2 characterizes the point & = k¢ as the unique value k € [0,1)
at which the smooth curve {f, = 0} has tangent parallel to the p-axis, that is,

dp;,
dk

(ko) = oo.

Similarly, Lemma 2.4 characterizes the values k = k,, for the curve {fy = 0}: this
curve has tangent parallel to the p-axis only at these points, that is,

dpy,

’ (dky) = oo.

As mentioned above, the value k = kg has a clear graphical meaning for elastics:
to this value there corresponds the unique periodic elastic-eight (see Fig. 2). But
the graphical meaning of the values k = k,, n € N, is not at all obvious. To these
values there correspond non-periodic elastics with z = V' = 0. In other words,
according to §3.2 in [8] the segment of the elastic has zero algebraic area z = 0,
while its centre of mass (cz, ¢,) = (v —r?y/6,w + r’z/6)/z tends to infinity in the

direction (¢5°,¢5°) = (v —ry/6,w 4 r?x/6), orthogonal to the chord:

V=rv+tyw=zxcy +yc;” =0 <& (z,y) L(cF7,¢)).

The shortest such elastic (for k = k1) is depicted in Fig. 2 in [8].

In the domain C; we define the function that determines the first Maxwell time:
pl(k) = mln{pf(k),p}/(k)}, k € (Oa 1)7 A S Cl- (11)

According to Proposition 2.5, in the domain C; we have

_ [pi(k), ke 0,k U ko, 1);
P = {pm), k€ [k, ko).

From Propositions 2.3, 2.6 we obtain the following description of the regularity
properties of the function p; (k).

Corollary 2.5. Let A € Cy. The function p1 (k) is continuous on the interval (0, 1),
while at the end-points, limy,_,yop1(k) = p§(0) and limg_1_op1(k) = +oo. This
function is smooth at all points of the interval (0,1) except for ki and ko, where its
one-sided derivatives are calculated as follows:

(p1)_ (k1) = (p7)' (k1) < o0, (p1)y (k1) = (1) (k1) = oo,
(p1)_(ko) = () (ko) <00, (p1)}i (ko) = (p})' (ko) = oo.
If we extend pi(k) by continuity to k = 0 by the value p¥(0), then we obtain
(p1)’(0) = 0.
2.4. Roots of the equation 72 + p? = 0 for v € N;.
Lemma 2.5. Ifv = (\,t) € Ny, then r? + p? # 0.



920 Yu. L. Sachkov

Proof. Suppose that r2 + p? = 0. Then

4k
yt:anpdnpsannTzo = snp=0 or sn7=0.

First consider the case snp =0 < p=2Kn, n € N. Then

$t| = Q(QE*P)|

p=2Kn

0.

p=2Kn =

But
2

wt}snp:O,QEprO = _gp # 0.

Thus, the equality r? + p? = 0 is impossible in the case snp = 0.
Now consider the case snT =0 < 7=2Kn, n € N. Then

xt|'r:2Kn = 2(2E _p) =0,
2
wt|T:2Kn = g(—p—l— 8k?cnp snp dnp) = 0.

The assertion now follows from the fact that this system of equations has no roots
(this is proved in Lemma 2.6, which follows).

Lemma 2.6. The system of equations
filp, k) :=2E—p=0,
fa(p, k) := —p+8k*cnp snp dnp = 0
has no solutions for p > 0, k € (0,1).
We define the functions

g1(u, k) := 2E(u, k) — F(u, k),
ga(u, k) := 8k*cosu sinuV'1 — k2sin® u — F(u, k),

where

F(u,k):/ L, E(u,k):/ V1 —k2sin® tdt

0 V1—k2sin’t 0

are elliptic integrals of the first and second kind, respectively. In view of the
equalities g1 (amp, k) = fi1(p, k) and go(amp, k) = fo(p, k), to prove Lemma 2.6
it is required to show that the system g; = g2 = 0 is inconsistent for u > 0,
k € (0,1). Recall that the amplitude u = am(p, k) is the inverse function of the
elliptic integral p = F(u, k); see [11].

Lemma 2.7. The curve {g1(u,k) = 0} is smooth and is entirely contained in the
domain {k > 1/v/2, u > wu.}, where u, € (27/5,7m/2) is the unique root of
the equation g1(u,1) =0 on the interval u € (0,7/2). Moreover,

gi(u,k) =0, u>0, ke (0,1 & k=kg(u), u€ [uy,+00),

where k = kg, (u) is a smooth function, kg, (us) = 1.
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Proof. We note the limit values of the elliptic integrals of the first and second kind:

1. 1 i
F(U71)=§1n%7 E(u,1) = sinw, u € {077;).
Therefore,
. 1. 1+4sinu T
gl(u,l)—ZSan_ih’lm, u e |:0,2>

It is easy to see that the function g1(u,1) has a unique zero wu, on the interval
u € (0,7/2). Indeed, its derivative

cos 2u

s,

< 1) =
au! (u,1) cosu

is positive for u € [0,7/4), and negative for u € (7w/4,7/2). We have g1(0,1) = 0;
therefore g1 (u,1) > 0 for u € (0,7/4). But

I 1) = —o0;
wahyo D11 1) = 0
therefore the function gq(u,1) is strictly decreasing from g;(7/4,1) > 0 to —oo
for w € [r/4,7/2). The existence of a unique zero u, € (w/4,7/2) is proved.

Calculating the value g1(2/57,1) =~ 0.005 > 0 we conclude that u, € (27/5,7/2).
Next,

u : 2 u 2
sin“ ¢ sin“ ¢
= -2k ———dt — k —————dt <0. 12
ok /0 V1 — k2sin2t o (1 —k2sin?t)3/2 (12)
Therefore the function g; (u, k) is decreasing in k, and the curve {g; =0, k € (0,1),
u > 0} is smooth.
To locate this curve we calculate the values of the function g; at the boundary
of the strip:

og

g1(u,0) = u, u € [0, 4+00),

g1(u,1) >0,  we (0,u);
gl(u*al)zoa U = Usx;

. . T .
kglln—()gl(u7k) - gl(u71) < Oa u € <’LL*, 2)7

T
—00, u € {7—#00).

2

Taking into account the sign of the derivative (12) we conclude that g1 (u,k) > 0
for u € (0, uy), and
g(uw,k)=0 & k=kg(u)

for u € [u., +00), k € (0,1], where the function k = kg, (u) is continuous for u > u.,
and smooth for u > u, (see a sketch of the curve g; = 0 in Fig. 15).
It remains to prove that k > 1/1/2 on the curve gy (u, k) = 0. We have

)

1 — 2k?sin? 1 1
%:$>O for k< — andfor k=—, u#7n;
du 1 — k2sin?u V2 V2
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792:0

—_— 1 =0

0.2

T

Figure 15. The curves g1 =0 and g2 = 0; v € N3

therefore g; increases in u for k<1/+/2. But g;(0,k)=0; consequently, g;(u, k) >0
for k < 1/\/§

Lemma 2.8. Ifu > 271/5, k > 1/v/2, then go(u, k) < 0.

Proof. a)Letu € [r/2+mn,7+7n],n=0,1,2,...,and u > 0. Then cosusinu < 0,

F(u, k) > 0, and therefore g2(u, k) < 0.
b) Let u € [ +7n,37/2 +mn], n € N, k > 1/y/2. Then

F(u,k) > F(w, \2) = 2K<\}§> = 2@511\;?)2 =3.7..

1
8k? cosu sinu V1 — k2sinu < 4sin2u /1 — §sin2u =:4a(u).

By using standard analytical methods one can prove that a(u) < 0.9 for u € [r+mn,
37/2+ mn]; then go(u, k) < 4-0.9—3.7 < 0 for u € [7+7n,37/2+7n], k > 1/V/2.
c) Let u € [2/57,7/2], k > 1/+/2. We consider the function

1
a1 (k) = k*V1 — k2sinu, ke {\51}

.> 3.7,

It is easy to see that

ai(k) < a<ﬁ§nu) - 3\/§zin2u

and therefore

2 16
ar (k) < - —0.42...<0.43.
1h) < 373 sin2(21/5)  3v3 (5 +v/5)
Next,
47 5—-+5
sin2u <sin( — ) = Y27 Y2 _(58... < 0.59.
11N 2U 1n< 5 > 2\/§
Thus,

4k? sin2u V1 — k2sin® 4 < 4 x 0.43 x 0.59 = 1.01... < 1.02.
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Furthermore, F(u,k) > F(27/5,1/v/2) = 1.52... > 1.52. Therefore go(u,k) <
1.02 — 1.52 < 0 for u € [27/5,7/2], k > 1//2.

‘We can now prove Lemma 2.6.

Proof of Lemma 2.6. By Lemma 2.7 the curve gi(u, k) = 0 is entirely contained
in the domain {k > 1/v/2, u > 27/5}. But Lemma 2.8 implies that the curve
92(u, k) = 0 does not intersect this domain. Therefore the system of equations
g1(u, k) = g2(u, k) = 0 is inconsistent, as is the system f1(p, k) = fa(p, k) = 0 given
in the hypothesis of Lemma 2.6. The graphs of g;(u, k) = 0 and ga(u, k) = 0 are
given in Fig. 15.

2.5. Complete description of the Maxwell strata in the domain N;. From
Theorem 5.13 in [8] and Lemma 2.5 we obtain a general description of the Maxwell
strata in the domain Nj.

Theorem 2.1. The following hold:
O) MAXQ ﬂNl = @;
1) MAX; NNy ={(\,t) € Ny | 22 =0, enT # 0};
2) MAXoNN; ={(\t) € N1 | V; =0, sn7 # 0}
3) MAX3NN; = {()\,t) e N | 2=V, = 0},
where T = Ja (o +t/2).

From this theorem and Corollaries 2.2, 2.4 we obtain a complete description of
the Maxwell strata in V.

Theorem 2.2. The following hold:

2 z
1) MAX; NN, = {(A,t)eNl t = \%, neN, CnT;éO};
2) MAXoNN; = (A t) €N t*% neN, snt #0y;
2 1= ) 1 - \/av ) T )
4Kn
3) MAX3NN; = {(/\,t) e N (k,t) = (k’o, \/a>

2p? 2pY
or (6:0) = (b 22 ) = (i 22 ). men,
where T = \/a (@ +t/2) and the roots p?, pY are defined in Propositions 2.1, 2.2.
We define the first Maxwell time corresponding to the stratum MAX;:
MAK ) = inf{t > 0| (\,t) e MAX,},  i=0,1,2,3,
and the first Maxwell time corresponding to all the strata MAX;:

MAX(\) = min{#}"4% i =0,1,2,3}).
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Theorem 2.3. Let A € Cy. Then

2 2
MAX z
kfe(07k1)u(k071), CHT#O = tll\/[AX:tl 1:ﬁp1:ﬁpl7
2
MAX
ke (07k1) U (k07 1)7 ent =0 = tll\/IAX = tl ' = \/apY7
2 2
MAX
k€ (k1, ko), snt # 0 = tllleX =ty = 7\/5291 = 7\/529}/’
2
MAX, z
ke (k17k0)7 snt =0 = tllleX = tl = \/aplv
k= k‘l, k‘o, sn T 75 0 = tllleX = t11\4AX1 — tll\/[AXQ*
— 2 _ 2 z __ 2 %4
- \/apl - \/apl - \/apl ’
k= kl, k?o, cnT 7é 0 = tllleX = tlllexz = tll\/[AXS

— 2 _ 2 z 2 |4
- \/apl - \/apl - \/apl )
where T = \/a (¢ +1/2) and the roots p%, p} are defined in Propositions 2.1, 2.2.

Proof. This follows from Theorem 2.2 and the estimates of the roots p?, p! in
Proposition 2.5.

§ 3. Maxwell strata in the domain N,

3.1. Roots of the equation z = 0 for v € Ny. Let v = (\t) € Ny, a = 1,
B =0. Then (see [1])

2 2 — k2
o= 2 (B0 - B0 - 50— w),
z:2(snd)tcnwt—sndjcn@/})—%(dnw—i—dnwt)x,
%:ZZJ-I-%.
We pass to the variables
R t =yt
=Ty TVt T2 T

From the addition formula for elliptic functions we obtain

4 ak 2(2 — k?)
m—%E—Ksn Tsnpcnpdnp—Tp,
2 2
z=-——dnT(2ksnp enp(en®7 —sn?7 dn?p) — A dn px) = dn7 f2(p), (13)

kA kA
2
f=(p) = Lldnp((2 = k*)p — 2E) + k*sup enp],

A=1-k?sn?7 sn?p.



Complete description of the Maxwell strata in the generalized Dido problem 925

Proposition 3.1. The function f.(p) has no root p # 0.

Proof. The function

g:(p) == J:ff;)

has the same zeros as f.(p). But

k*cen?p snp
g,lz(p) = 3 =0
dn“p

(equality holds only for p = Kn, n € Z); therefore g,(p) is increasing on the entire
real line. Taking into account that g.(0) = 0 we obtain g,(p) # 0 and therefore
also f,(p) # 0 for p # 0.

From equality (13) and Proposition 3.1 we obtain the following.

Corollary 3.1. Let v = (A\,t) € NaonN{a =1, = 0}. Then the equation z, =0
has mo roots.

In other words, the segments of non-inflectional elastics have non-zero algebraic
area (see [8], § 3.2).

3.2. Roots of the equation V =0 for v € Ny. Let v € Ny, a =1, 8 = 0.
Then

1 2
V=avt+yw—-2r?= N7 N7

= " 14
4
fvip) = 5{3 dnp (2E — (2 — k*)p)® + cnp[8E® — 4E(4 + k%) — 12E%(2 — k?)p

+6E(2 — k%)°p® + p(16 — 4k* — 3k" — (2 — k*)*p®)] snp

—2dnp (—4k? +3(2E — (2 — k*)p)?)sn?p

+12k* enp(2E — (2 — k?*)p) sn® p — 8k%sn p dnp}. (15)
Proposition 3.2. For any k € (0,1) the function fy(p) given by equality (15) has
denumerably many zeros p = pY (k), n € Z. The roots p are odd and monotonic
in n. The positive roots are located as follows:

pY € (Kn,K + Kn), neN.

Proof. Consider the function

gV(p) = fV(p) ) p # Kn, n € Z. (16)
snp cnp
We have
/ k2 2
9 (0) = = o (L) <0, a7

Consequently, the function gy (p) is decreasing on each interval p € (Kn, K + Kn),
n € Z. We calculate the limits of gy (p) at the end-points of these intervals.
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Let n € N. Then

fr(2nK) =8npd (k) >0,  fu((@n+1)K)=—4(2n+ 1)k ¢} (k) <0, (18)
where ¢y (k) = 2E(k) — (2 — k*)K (k) < 0 by Lemma 2.3. Next,

» 211111 Osnp cnp 5 » 11211 N Osnp cnp
Consequently,
hm qgv = iOO7 n e N
p—Kn+0 (p)

To calculate the limit as p — 0 we observe that

4
fvlp) = - k*p® +o(p®), snpenp=p+o(p), p—0,

and therefore

4
gv(p) = -1 k*p° +o(p°) — =0 as p— +0.

Thus, the function gy (p) decreases from 0 to —oco on the interval (0, K), and
from 400 to —oo on the intervals (Kn, K + Kn), n € N. Therefore the function
gv(p) has a unique root p = pY on each interval (Kn,K + Kn), n € N. The
function fy (p) has the same zeros, since fi-(Kn) # 0 (see (18)).

The fact that the roots of the function fy (p) are odd follows from the fact that
this function is even in p and from the equality fi (0) = 0.

Proposition 3.2 describes the points where the centre of mass of a segment of
a non-inflectional elastic crosses the perpendicular bisector of the chord (see [8],
§3.2).

Fig. 16 shows the graph of the function p — fy(p), and Figs. 17, 18 show the
graphs of the functions k +— pY, k +— pY /K. On the ordinate axis in Fig. 18 we
have marked the points p/K € Z corresponding to a whole number of revolutions
of the pendulum.

fv(p)

Ds
— p
K 2K \31{/ 4K

Figure 16. The graph of p — fv(p), A € Cs

We now describe the regularity properties of the curve {fyy = 0} and of the
functions p = pY (k) defining this curve.
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pY
101

N} >~ D o
T

1 1 1 1 1 k
02 04 06 08 1

Figure 17. The graph of k — p}, A € Cs

pY/
Qe
1.5k ﬁ
1e
0.51
! ! ! ! ! k
02 04 06 08 1

Figure 18. The graph of k +— pY /K, A € C»

Lemma 3.1. The curve vy = {(p, k) € (0,+00) x (0,1) | fv(p,k) = 0} is smooth
and its tangent is nowhere parallel to the p-axis. The functions p = pY (k), k €
(0,1), n € N, are smooth.

Proof. By Proposition 3.2, on the curve -y we have snp cnp # 0 and therefore
fv(p) =snp cupgy(p) (see (16)). Taking into account (17) we obtain

fv(@)|,, =snp enpgy (p) # 0.

We now analyse the asymptotic behaviour of the functions p = pY (k) at the
end-points of the interval (0, 1).

Proposition 3.3. If k — 1 —0, then pY (k) — +oo for every n € N.

Proof. This follows from the inclusion p¥ € (Kn,K + Kn) (see Proposition 3.2)
and the fact that limg_,;_o K = +o00.

Proposition 3.4. The function

1
0 () =
fv(P) = 512[
has denumerably many zeros p = pY (0), n € Z. The roots pY (0) are odd and
monotonic in n. The positive roots are located as follows:

Y (0) € (gn, g(n + 1))7 n e N. (19)

(32p® — 1) cos 2p — 8psin 2p + cos Gp]
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Extend the roots p = pY (k), k € (0,1) (see Proposition 3.2) by the value p =
pY (0) for k = 0. Then the function p = pY (k) is smooth on the interval k € [0,1)
and (py,), (0) = 0.

Proof. We observe that

o™ (=1)" 5
—n|= Z.
fv(2n> R n e

Next, the function

0
0 _ _fv(p)
gv(p) = sin p cos p

is decreasing on each interval (mn/2,7(n +1)/2), n € Z, since

sin 4p — 4p)? T
_ Gindp AT,
256 sin” p cos? p 2
We calculate the limits of this function at the end-points of the intervals:

n#£0 = g% (p) — +oo as p—>gnj:0,
n=0 = g%({p)—F0 as p— £0.

Hence the function g% (p) has a unique root on each interval (mn/2,7(n + 1)/2),
n € N. The function g% (p) is negative on the interval (0,7/2). All the zeros of the
function f{(p) are exhausted by the roots py (0). The assertions on the location
and monotonicity of the roots follow from the preceding arguments; the fact that
the roots are odd in n follows from the fact that the function f{(p) is even.

The fact that the extended function p = pY (k) is smooth at k = 0 follows from
the Taylor expansion

fv(p, k) =K fy(p) + O(K'%),  k—0, (20)

which can be obtained from the asymptotics of elliptic functions given in the Sup-
plement and from the regularity of the roots p = p) (0) of the function f{(p). The
equality (p¥)’.(0) = 0 follows from the expansion (20) and the regularity of the
positive roots of the function f(p).

From equality (14) and Proposition 3.2 we obtain the following.

Proposition 3.5. Let v = (\t) € NoNn{a =1, 8=0}. Then
t
-0 - _
SnT cnT , T w+2k,
V=0 < or

t:2kp,‘{, n €N,

where the roots pY are defined in Proposition 3.2.
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3.3. Roots of the equation 72 + p2 = 0 for v € Ns.
Lemma 3.2. Let v € Ny. Ifr} + p? =0, then fy(p) = 0.

Proof. Let r? +p? = 0. If r? = 27 + y? = 0, then V, = z,0, + yywy — 277 /2 = 0.
We use the factorization (14).
a) If cn7 sn7 # 0, then we obtain from the factorization (14) that fi-(p) = 0.
b) Suppose that snT = 0. We have

2 —k?

5P (21)

2E—-(2—-k)p)=0 = E-=

>N

Tt ’sn 7=0 =

wt’snr:O,E=(2—k2)p/2 - %(8 cnp snp dnp — k2p) = O

8
= P= 13 cnpsnp dnp. (22)

One can verify directly that

2k

E
2

8
p. p= gz apsupdup = fv(p)=0.

¢) The case cn 7 = 0 is considered in similar fashion. First we note that

2 4k
2 arrg = F (2B~ (2~ K)p) — G5 enpsnp =0
T P (23)
=—5 P anp cnp snp,
2 aycnpsnply
Wt cn7=0,E=(2—k2)p/2+(k2/dnp)cnp snp _37117 (p+ 8(1 —k )k2 dn3p) =0
cnp snp
= p=-8(1-FK)———. 24
p=-80-KGERL
Then we verify directly that
2—k? k2 cnp snp
E= — =-8(1-k)—7% = =0.
5 P+ anp cnpsnp, p ( )den?’p fv(p)

We introduce notation for the functions that appeared in equalities (21)—(24):

filp) =2E — (2 — k*)p, f2(p) =8 cup snp dnp — k?p,
—9FE — (2 — k2\p — 2 aCnp sSnp — 1— 2%_
f3(p) (2 —k*)p — 2k dup falp) =p+8(1 - k%) e

From the proof of Lemma 3.2 we obtain the following assertion.
Corollary 3.2. Let v € Ny. Then
sut =0, fi(p) = f2(p) =0

rf—l—pf:O & or
ent =0, f3(p) = fa(p) = 0.
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We now analyse the structure of the set

Sio:={(p,k) e R x (0,1) | fi(p, k) = fa(p, k) = 0}.

We set
g1(u) = 2E(u) — (2 — k*)F(u), g2(u) = 8cosu sinuV 1 — k2sin® u — k*F(u),

so that f;(p) = gi(amp), i = 1,2. We have the Taylor expansion

g2(u, k) = Zg?kzn, ke [0,1),
n=0

99 = 4sin 2u, ga = —(u 4+ 2sin? u sin 2u),
2n — 3)!! “
n _ (7 s a2n—2 . 2n .
92 = “on=ip (n/o sin tdt+2sin”"u sm2u>.

Lemma 3.3. The following hold:
1) gi(u) <0 foru>0;
2) g5 (u) < g8 (u) for u> 0;
3) g5(u) <0 foru>0,neN;
4) 0g2/0k <0 foru >0, k€ (0,1).

Proof. Part 1) can be proved by standard analytical methods.
Part 2) can be proved by an elementary transformation of the difference g;”rl —g5
using the identity

son+1
S t cost 2
/sin”tdt:bmn_i_l +Zj:l/sin”+2tdt, n#—1.

Part 3) follows immediately from parts 1) and 2).
Part 4) follows from part 3) in view of the expansion

092

222 =9 P2l k 1).
ak ;QQ 9 S [07 )

Taking into account the explicit expression for ¢g9(u) we obtain the following
assertion from part 4) of the preceding lemma and from the implicit function
theorem.

Corollary 3.3. The curve {g2(u) = 0} is smooth and is contained in the domain

{ue (Wn,;r—i—wn), n=01,2,..., ke(O,l)}.

There exists a function k = kg, (u) that is smooth on the intervals u € (mn,7/2+7n)
and continuous at their end-points such that

gu,k) =0 & k=kg(u),

and kg, (mn 4+ 0) = kg, (7/2 + mn —0) = 0.
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Lemma 3.4. The set of points {g1 = g2 = 0} is contained in the domain

{ue <7rn,72r+7m>, neN}.

Proof. From Corollary 3.3 we obtain the inclusion
{g2=0} C{u e (mn,n/2+7mn), n=0,1,2,...}.

It remains to prove that u ¢ (0,7/2) on the set {g1(u) = ga(u) = 0}. This follows
from Lemma 3.2 and Proposition 3.2: we obtain successively

{filp) = f2(p) =0} C{fv(p) =0} C{p € (Kn, K + Kn), n € N}

therefore p ¢ (0, K) for f1(p) = fa(p) = 0.

Lemma 3.5. The set of points {g1 = g2 = 0} is denumerable and each strip
{u € (mn,7/2+mn)}, n € N, contains at least one point of this set.

Remark. Computer calculations show that each strip {u € (7n,7/2+mn)}, n € N,
contains exactly one point of the set {g; = g2 = 0} (see the graphs of the curves
{g1 = 0} and {g2 = 0} in Fig. 19).

1]? — 92=0
0.8} \‘ — =t
0.6
0.4
0.2 F

m 3 5T i “
5 s 5 2 5 3T 771‘

Figure 19. The curves g1 =0 and g2 = 0; v € Na

The arcs of the elastics corresponding to the values of the parameters (p, 7, k)
such that sn7 = 0, fi(p,k) = fa(p, k) = 0 satisfy the equalities 72 + p? = 0, that
is, xy = y = vy = wy = 0. Taking into account the expression for the centre of
mass of the segment of the elastic ¢, = (v —1r?y/6)/z, ¢, = (w+1r22/6)/z (see [1])
we obtain z; = y; = ¢; = ¢y = 0: this is a closed elastic bounding a domain with
centre of mass at the initial point of the elastic (we called such elastics remarkable).
Lemma 3.5 asserts that there exist denumerably many non-inflectional remarkable
elastics. Note that the stratum MAX( does not intersect the sets N;, i =1,3,...,7;
therefore no inflectional and critical elastics are remarkable. In Fig. 20 we depict
the shortest remarkable elastic, which corresponds to the intersection point of the
curves f3 = 0 and f; = 0 in the domain p € (K,2K). This is the shortest of all
the closed smooth curves bounding a domain with centre of mass at the initial point
of this curve.
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Figure 20. A shortest remarkable elastic

Proof of Lemma 3.5. It is sufficient to show that the function p(u) := g1(u, kg, (u))
changes sign on each interval u € (7n,7/2 + mn). To begin, we consider the first
interval u € (m,37/2).
From the Taylor expansions
g1(u) =22E — (2 = E*)K) + k*(u — 1) + o(u — ),
go(u) = —2k?K + (8 — k) (u — ) + o(u — )

we obtain the asymptotics of the curves near the point (u, k) = (r,0):

g1=0: wu—mw= —E(QE— (2 — k*)K) +o(1),

12
>0
2k’°K
=0: —-T=— 1).
gp=0: u-—m 8—k2+0()
~——
>0

The inequality (8 — k2)((2 — k?)K — 2E) > k*K, k € (0,1), which is proved in
Lemma 3.6 below, and the expansion
g1(u, k) = sinucosu k? + o(k?) (25)
>0

imply that ¢(u) < 0 as u — 7+ 0.
In a similar fashion we can determine the sign of ¢(u) as u — 37/2—0. We have

g1(u) = 3(2E — (2 — KK — f<u— 3;) —|—o<u— 32”)

8 — Tk? 3m 3r

and therefore

!/
=0 u-— 3777 = %(QE— (2 - KHK) +o(1),

3 3KKK

—0: = _2FRR ).
92 =0: u=7 s 7z o)



Complete description of the Maxwell strata in the generalized Dido problem 933

From the asymptotics (25) and the inequality (8 — 7k%)(2E — (2 — k?)K) > —k*K,
k € (0,1), which is proved in Lemma 3.6 below, it now follows that ¢(u) > 0 as
u— 3w/2—0.

The function p(u) changes sign on each interval (wn, /2 + 7n); one can prove
this fact similarly using the asymptotics

g1(u) = 2n(2F — (2 — k*)K) 4+ k*(u — 7n) + o(u — 7n),
ga(u) = —2nk*K + (8 — k%) (u — 7n) + o(u — mn),

gi(u) = 2n+1)(2E — (2 - k) K) — I;:<u— Q";””) +0(u— W)

g2(u) = —(2n + 1)k2K — 8_];’“2 (u_ (2";1)”> +O(u_ (211;1)7r>

We now prove the inequalities that we used above in the proof of Lemma 3.5.

Lemma 3.6. The following hold:
1) 8=k ((2—-k)K —2F) > k*K, k<€ (0,1);
2) (8—Tk*)(2E — (2—-Kk*)K) > —k*K, k€ (0,1).

Proof. 1) For the function oy (k) := (8 — k?)((2 — k?)K — 2E) — k*K we have

Mm(O)=0,  af(k) = T an(h)
as(k) = (2—k*)F —2(1 — KHK,
az(0) =0, ay(k) = —=3k(E - K) >0,

and therefore a4 (k) > 0, k € (0,1).
2) Similarly, define the function a3 (k) := (8 — 7k%)(2E — (2 — k?)K) + k*K; then

az(0) =0,  a4(k)=—18k(2E — (2 - k*)K) > 0,

since ¢y (k) = 2E(k) — (2 — k*)K (k) < 0 (see Lemma 2.3). Therefore as(k) > 0,
ke (0,1).

Lemma 3.5 can be reformulated as follows.

Corollary 3.4. The set of points S12 = {f1 = fo = 0} is denumerable and each
domain {p € (2Kn, K +2Kn)} contains at least one point of this set.

Remark. Computer calculations show that the set

Ssq 1= {(pv k) | f3(pv k) = f4(p’ k) = 0}

has the same structure as the set Si5 examined above. The fact that the functions
f3, fa # Bfs are analytic implies that the set S34 is countable.

An important consequence of the analysis of the set Sy is that S is non-empty.
Hence the stratum MAX, NN; is non-empty (see Theorem 3.1). All the other strata
MAXyNNj, j # 2, are empty. This means that only the geodesics that are projected
to non-inflectional elastics (v € Ny) connect the initial point gg with the fixed points
of rotations {Xo = 0} = {r? + p? = 0}. This is important for understanding the
structure of optimal synthesis in the generalized Dido problem.
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3.4. Complete description of the Maxwell strata in the domain Ns.

Theorem 3.1. Let (A, t) € Ny. Then

filp) = f2(p) =0, snT=0
()‘7t> € MAXO = or

f3(p) = falp) =0, cn7 =0,

where p = Jat/(2k), T = Va (Y +t/(2k)). The set MAXo NNz is denumerable
and is contained in the set MAXs NNs.

Proof. The fact that the set MAXyNNy is denumerable obviously follows from
Theorem 5.13 in [8], Corollaries 3.2 and 3.4, and the fact that the set Ss4 is countable
(see the remark after Corollary 3.4).

Let v € MAXyNN,. Let us prove that v € MAXs. We can assume that a = 1,
B = 0. By Theorem 5.1 in [8] we have r? + p7 = 0, whence we obtain fy (p) = 0 by

Lemma 3.2. By Theorem 5.13 in [8] we have v € MAXj provided that eoho (v?) # v.
But it is clear from Theorem 4.2 in [8] that this inequality holds for any o # 0.

Theorem 3.2. The following holds: MAX; NNy = MAX3NNy = @.
Proof. This follows from Theorem 5.13 in [8] and Corollary 3.1.
Theorem 3.3. Let (\,t) € Ny. Then

fv(p)=0, snTcent #0

(A1) e MAX, < or
()\,t) € MAXy,

where p = Jat/(2k), T = a (¢ +t/(2k)). The positive roots p = pY , n € N, of
the function fy(p) are described in Proposition 3.2.
Proof. This follows from Theorem 5.13 in [8] and the factorization (14).

We now describe the first Maxwell points along geodesics for A € Cy. By anal-
ogy with the domain C; we introduce notation for the first Maxwell time in the
domain Cs:

pi(k)=p{(k), ke(0,1), XeCs.

Theorem 3.4. Let A € Cy. Then

2k
sntent £0 =  HIAXO0) =41 = T2

_ 2 v
\/apl_\/ap17

snt=0 = MAX0) = MARo(y) = min{j%px ‘ filpy) = fa(py) = 0};

enT=0 = HAX0) =MXo)) = min{?/%px ‘ fa(py) = falpy ) = 0}'

Proof. This follows from Theorems 3.1-3.3.
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§ 4. Maxwell strata in N3

We shall use the fact that the parametrisation of geodesics for A € Cj3 is obtained
from the formulae for geodesics for A € C, by passing to the limit £ — 1 — 0.

4.1. Roots of the equation z = 0 for v € Nj.
Proposition 4.1. Let (A, t) € N3. Then the equation z; = 0 has no roots.

Proof. 1t is sufficient to consider the case « = 1, § = 0. We pass to the limit
k — 1 —0 in equality (2):
4
= Rooshr /W)
A =1 —tanh®7 tanh?p > 0,

Zt

t +t
= — T = —_
p R ¥ 9

therefore z; > 0 for ¢ > 0.
4.2. Roots of the equation V = 0 for v € Nj.
Proposition 4.2. Let (\,t) € N3. Then

t
V,i=0 & 7=0, T:\/Zy((p—&—?).

Proof. We pass to the limit k¥ — 1 — 0 in the factorization (5):

2tanh T

- Acosht

cosh p

1) = 1 >0
gv(p,1) tEmhpfv(p, )s p>0,

, 4cosh® p

(gv(p, 1)) :—m(fz(p,l)) <0, p>0.

fV(p71)7 (26)

Therefore the function gy (p, 1) is decreasing for p € (0, +00). But lim,_. gy (p, 1) =0;
therefore gy (p,1) < 0 and fy (p,1) < 0 for p > 0. The assertion now follows from
the factorization (26).

4.3. Roots of the equation r2 4 p? = 0 for v € N3.
Proposition 4.3. If (\,t) € N3, then the equation r? + p? = 0 has no roots.

Proof. Let (\,t) € N3, a =1, 8 =0, 77 + p7 = 0. From the factorization (4) we

obtain
_ 4tanhp tanh7

bl

Yo = A coshp coshr
therefore 7 = 0. Then z;|,—¢ = 2(2tanhp — p) = 0. Consequently, tanhp = p/2.

Finally,
2 tanh p
wt‘TZO, tanhp:p/2 - g (8(3Osh2p a p) - O
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But it is easy to prove that the system of equations

tanh p

2tanhp — p =0, 8 p=20

cosh? p
has no positive roots. The contradiction thus obtained completes the proof.
4.4. Complete description of the Maxwell strata in Nj.
Proposition 4.4. The following holds: MAX; N3 =@,i=0,1,2,3.
Proof. This follows from Theorem 5.13 in [8] and Propositions 4.1-4.3.

§ 5. Conjugate points

5.1. Limit points of the Maxwell set. A geodesic ¢; is said to be strictly normal
if it is the projection of at least one normal extremal \; but is not the projection
of any abnormal extremal. In the generalized Dido problem the strictly normal
geodesics are those corresponding to A € C;, i = 1,2,3,6. The geodesics corre-
sponding to A € C;, i = 4,5,7, are not strictly normal, since abnormal extremals
are projected to them (see [1]).

A point ¢; of a strictly normal geodesic ¢s = Exp(}, s), s € [0,¢], is said to be
conjugate to the point qo along the geodesic qs if v = (A, t) is a critical point of the
exponential map.

It is known that a strictly normal geodesic cannot be optimal after a conjugate
point [10]. At the first conjugate point the geodesic ceases to be locally optimal, and
at the first Maxwell point it ceases to be globally optimal. In this section we find
conjugate points on the geodesics corresponding to A € C;, i = 1, 2,6, that contain
no Maxwell points. These conjugate points are limits of pairs of the corresponding
Maxwell points.

Proposition 5.1. Suppose that vy,v), € N, v, # v, Exp(v,) = Exp(v),), n € N.
If both sequences {vn}, {v,} converge to some point 7 = (A, t) and the geodesic
gs = Exp(\, s) is strictly normal, then the end-point q; = Exp(D) of this geodesic is
a conjugate point.

Proof. If v is a regular point of the exponential map, then its restriction to a
small neighbourhood of the point v is a diffeomorphism. By the hypothesis of
this proposition the exponential map is not bijective in any neighbourhood of the
point 7. Consequently, 7 is a critical point of the map Exp and its image ¢; =
Exp(A,t) is a conjugate point.

It is convenient to introduce the following set, which we call the double closure
of the Mazwell set:

CMAX = {P EN|I{vn=Nn,tn)}, {v =\, th)} CN: v, # 1),
Exp(vn) = Exp(v},), n €N, lim v, = lim v, =7}.

i
—00

It is obvious that v, € MAX; therefore CMAX C cl(MAX).
Proposition 5.1 asserts that if v = (\,t) € CMAX and the geodesic ¢5 =
Exp(], s) is strictly normal, then its end-point ¢; is a conjugate point.
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By analogy with the set CMAX we define the following subsets of it — the double
closures of Maxwell strata:

CMAX; ={rveN|3{v,} CN, o, €R: v, £ v, = ””hooa( ),
Exp(vn) = Exp(v,,), n € N, hm vy = lim v, =7v}.

n—oo

Since v, € MAX;, we have the inclusion CMAX; C cl(MAX;).
5.2. Conjugate points in Nj.
Proposition 5.2. Let v = (\,t) € Ny be a point such that

sz/a(go—l—;).

w\ﬂ

f-(p) =0, cn7T=0, p=+a

Then v € CMAXj;.
Proof. The point v = (k,p, 7, a, 8) is the limit of the sequences

:(k7p77-:|:1/n’a7ﬂ)7 n6N7

and v, = el (v}F) # v,7, Exp(v;7) = Exp(v;,) by Proposition 4.1 in [7] and Propo-
sition 3.1 in [8].

Proposition 5.3. Let v = (\,t) € Ny be a point such that

T—\/a<<p+t>.

t
fV(p):Ov SHTZO, p= fﬁ

2

Then v € CMAX,.

Proof. Tt is easy to see that the double closures CMAX;, as well as the strata MAX,,
are invariant under the rotations hy and dilations Z; therefore we can set o = 1,
8 =0.

The point v = (k, p, 7, a = 1, B = 0) is the limit of the sequences vF =
(k,p,7+£1/n,1,0). According to Theorem 5.13 in [8] we have v, € MAX5 and

v =M wr) £ v, Bxp(v)) = Bxp(va),

where the rotation angles o, are determined by part 2) of Proposition 3.1 in [8]:
on = 2xp for r, >0, and o, = 2w, — 7 for r, =0, p, > 0 (the case r, = p, =0
is impossible by Lemma 2.5).

Suppose that r» > 0 for the geodesic corresponding to v. Then 0,,— o =2x. From
the factorization (4) we obtain y = 0; therefore xy = 0 (modn) and o = 0.

Now suppose that » =0 and p > 0. Then 0,, —» 0 = 2w — m. From the explicit
formulae for geodesics [1] we obtain v = 0 for A € Cj; therefore w = 7/2 (modm)
and o = 0.

Thus, in any case, o = 0. Consequently,

v, =v, v, Exp(y,) =Exp()), v, v

and therefore v € CMAXs.
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We define the following sets:
MAX;; = (MAX,; UCMAX;) N Nj. (27)

From Theorem 2.2 and Propositions 5.2, 5.3 we obtain the partitions of the sets
MAX;; into connected components:

tv/a >
MAX;; = {()\,t) EN | folp)=0, p= Tf } = U MAXY,,
n=1
MAXG = f (v e | e= 22 (28)
11 Ja
tv/a >
MAXy = {()x,t) EN | fu(p)=0, p= Tf } = U MAXY,,
n=1
ZpV

5.3. Conjugate points in N,.

Proposition 5.4. The following holds: CMAX; NNy = &.

Proof. This follows from the equality MAX; NNy = &.
Proposition 5.5. Suppose that v = (\,t) € Na is a point such that

l t
fv(p) =0, sntcnT =0, p:\/aﬁ’ 7-\/&<1/)+2k>_

Then v € CMAX,.
Proof. The proof is similar to the proof of Proposition 5.3.

From Theorems 3.2, 3.3 and Propositions 5.4, 5.5 we obtain the following parti-
tion of the sets MAX;s (see (27)) into connected components:

MAX o = @,
tv/a o
MAX5 = {()x,t) € No ’ fvp)=0,p= % } = U MAXZ,,
n=1
2kpY
MAX?QZ{(A,IJ;)ENQ ‘t: \/Z(%"} (30)

5.4. Conjugate points in N3.
Proposition 5.6. The following holds:

CMAX; NN3 = CMAX,NN; = @.

Proof. We shall prove the equality CMAX; NN3 = &; the proof of the other equality
is similar, but simpler. Arguing by contradiction, suppose that there exists a point
v € MAX5;NN3. Then one can find a sequence of points v, € MAXs NN or v, €
MAX5NN,. Let v, € MAXo NNy, in the case v, € MAX5 NN, the proof is similar.
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Using the symmetries i_io, Z we can assume that v,, = (kn, pn, Th, a =1, §=0),
where fy(p,) = 0. By Proposition 2.2 we have p,, > 2K (k,). Since v,, — v € N3,
we obtain k, — 1; therefore K(k,) — +oo, p, — 400, and t, — +o0o. This
contradiction to the condition v, — v completes the proof of the proposition.

5.5. Conjugate points in Ng.
Proposition 5.7. The following holds: CMAX; NNg = @.
Proof. This follows from the equality MAX; NNy = MAX; NNg = &.
Proposition 5.8. Letv = (0, ¢#0, a =0, t) € Ng be a point such that
P=2p 2B =0,
[2
where the function fO(p) is defined in Proposition 3.4. Then 7 € CMAXs.

Proof. Taking into account the symmetries ho and Z we can set 6 = 0, ¢c = =£1.
We consider only the case ¢ = 1, since the case ¢ = —1 is quite similar. Thus,
v=0=0,¢c=1,a=0, ).

Let v = (6,c,a,3) € MAXoNN,, v? = £2(v) = (02,¢2,a, 3%, t), where by
Theorem 3.3

t= , p:px(k‘), ke (0,1), 72\2&<¢+;>#Km, m € N,

P=2(pag). Peon

BE

k
Then by the definition of the Maxwell stratum we have

7= £v,  Exp(v) = Exp(¥),
where by Proposition 3.1 in [8]
o=2x for r>0, oc=2w—7n for r=0, p>0 (31)

(we choose v € Ny so that r2 + p? # 0).

Let £k — 0 and o« — @ = 0 so that \/a/k = 1/2. According to Proposition 3.4
we have p = pY (k) — pY (0) = p. Hence, t = 2kp/\/a — 4p = .

Let 8 = const. We set = —f3. Obviously, we can choose ¢ — @ so that

T:\{f(cp-l—;) # Km.

We claim that for this choice we obtain limv = limv = 7; this will complete the
proof of the proposition.

We use the expressions for elliptic coordinates in the domain Cy in [7], §4.1:
0-p__Ja 0-5_ a

e va 2
5 sn=— cos — cn=—, (32)

c_Va Va
Yo dn Ve (33)

sin
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Then \/a¢/k — $/2. Using (33) we obtain ¢ — 1 = ¢; using (32), (0—03)/2 — ©/2.
Therefore § — 4+ 3 =0 = 6. Thus,
v=00,c,0,8,t) v =(0=0,¢c=1,a=0,t).
For the point v? = (62,¢2, a, 3%,t) we obtain ¢ — ¢ from equality (332 According
to equality (6) in [7] we have §2 = —@; and therefore §2 — —0;, where 0, is the first
component of the solution of the pendulum equation corresponding to v:
étzét, ét:07 50:0, E():]. = gt:t, 6)5:1.
Consequently, 62 — —f; = —f. Thus,
vi=(0*c%a,p%t) - 2= (-, e=1,a=0,t).
We now find the limit of the rotation angle o; see (31). Consider the geodesic-
circle corresponding to the covector ( =0, ¢ =1, @ = 0) € C:
Ty = sint, 7y, = 1 — cost. (34)
By equality (19) we obtain = 4p = 4pY (0) € (27n,2m(n+1)). Therefore t # 27m;
consequently, 77 = ,/f% + @% > 0. In other words, the first of equalities (31) holds,
which implies ¢ = 2y — @ = 2x;. From equalities (34) we obtain X7 = /2;
consequently, @ = t. We can now complete the proof:
U= 1?) = o m2) = ¢ho(—F, e =1, =0, T) = (0,1,0,1) =7
therefore 7 € CMAX,.

§6. Cut time

Let A € C and let g5 = Exp()\, s) be the corresponding normal geodesic. The
cut time on the geodesic ¢, is defined to be the number

teus(A) =sup{t > 0] g5, s € [0,¢], is optimal}.

The point g, t = teut(A), is called the cut point. The cut time is the instant when
a geodesic ceases to be optimal. All the geodesics in the generalized Dido problem
are regular; therefore any small arc on one is optimal. In other words, tcut(A) > 0
for all A € C.

6.1. Estimate of the cut time. In this subsection we bring together the results
obtained in this paper and estimate the cut time from above. To do this, we define
the following function on the initial cylinder C":

t: C — (0, 4+o0], A= t(A),
Nedr = t=-2 (k) = min 2 (k) 2 V(k)
1 *\/apl - fpl a\/apl )
2k 2k
relCy, = t—\/apl(k) \Fpl (k),
ANeEC; = t:%pr(O),

xed;, i=3,4,5,7 = t=-+o0.
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Theorem 6.1. For any A € C we have the estimate tcyt () < t(A).

Proof. Let A € C1UC2UC35UCs; then the geodesic g5 = Exp(), s) is strictly normal.
According to Proposition 2.1 in [8] and Proposition 5.1, if (A,t) € MAX UCMAX,
then the geodesic g5 is not optimal on any interval s € [0,t + €], € > 0, that is,
teut(A) < t. To prove this theorem we will show that the pair (A, t())) belongs to
one of the sets MAX; or CMAX, for any covector A € C.
Let A€ Cy. If k € (0, k1) U (ko, 1), then
ent#0 = t(\) = pi = A% ()) (Theorem 2.3),

cnt=0 = (A\t(N)=

/‘\E‘w

2 o
T ) € CMAX; (Proposition 5.2).

If k € (k1, ko), then

2
snT#£0 = t(\) = —=py = tMA%2()y) (Theorem 2.3),

Ja
snt=0 = ( ) € CMAX, (Proposition 5.3).

Finally, if k = kq, ko, then

t(\) = % pi =ty""%3(\)  (Theorem 2.3).

Let A € Cy; then

cnTsnT#0 = t(\) = py =A%z () (Theorem 3.4),

Va
2k .
ecnTsnT=0 = (A\t(N\)=[A Tpl € CMAX, (Proposition 5.5).
a

Let A € Cg; then

|4
(A t(N) = <)\, 4p|10|(0)> € CMAX, (Proposition 5.8).

If A € C3, then there is nothing to prove, since t(\) = +o00; note that in this
case MAX; = CMAX,; = @ (Propositions 4.4, 5.6).

If A € C4UC5UC§, then there is also nothing to prove; in this case the geodesics
gs are optimal on the entire ray s € [0,400) and teut(A) = t(A) = +o0.

Computer calculations corroborate the following.
Conjecture. For any A € C we have the equality teyt () = t(A).

We aim to prove this conjecture in a subsequent paper. At present it has only
been proved for some of the geodesics.
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6.2. Properties of the function t. To obtain a global representation of the
function t it is convenient to define the following function on the cylinder C:

(B + o)

2, (3)

K=1/a?+
and to extend the functions introduced earlier:

b — 0, e (CyUCs;
)1, AeCsuCs,

. pY(O), A € Cs;
pi(k) =
+00, AeC3uUCyUCsUCy.

Theorem 6.2. The function t: C — (0,400] is invariant under the flow of the
generalized pendulum and under rotations, it is also homogeneous of order 1 under
dilations. We have the global representation

2V kA
==

The function t is continuous on C\Cy and discontinuous on Cy; but after extension
by continuity the function t becomes smooth on Cy. The function t is smooth in
the domains Cy \ {k = k1,ko} and Cy U Cs. The function t ceases to be smooth
on the surfaces C1 N {k =k1} and Cy N {k = ko}.

t(\) nk), rec. (36)

Proof. The invariance of the function t under the flow of the generalized pendulum
6 = —asin(f — () (the vertical part of the Hamiltonian system of the Pontryagin
maximum principle) follows from the fact that, for A € C; U Cy, the value t()\)
depends only on the invariants of the generalized pendulum k, o, and for A € Cg, the
value t(A) depends only on the coordinate ¢, which is constant for the generalized
pendulum on Cg. It is easy to see that the function t is invariant under rotations
and is homogeneous of order 1 under dilations: hot = 0, Zt = t; this follows from
the invariance of the Maxwell strata under the flows of these fields.

We now prove formula (36). Both the function t and the right-hand side of
this formula are invariant under the flow of the generalized pendulum and under
rotations; therefore it is sufficient to prove equality (36) in the quadrant

K,={=5=0,c>20, a>0}CC.

In this quadrant we introduce the generalized polar coordinates (k,7n), £ > 0,
n € [0,7/2] as follows:

¢ =4k cosn, a = Ksinn,
4
2 9 C Ao
K=« +E’ tann—c—2. (37)

It is obvious that in the quadrant K the function s is given by equality (35):

2 ct (E + a)?
6=5=0 E=5 - P =at
J6] = 5 a = a—|—16 a” + 1
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If \ € C1 N Ky, then k = |c|/(2y/a) = y/cotn and therefore 1 = arccot k? and

1 k?

sinng = ———, CosSN = ——.
=i Tk

Consequently,
9 4kk? K

b a b
V1+ k4 V1+ k4

and we finally obtain

2 2v/1 + k4
t’CmK =—=n(k) =
oxe = U Vi

If A\ € CyN Ky, then k = 2y/a/|c| = y/tann and therefore n = arctan k? and

pl(k).

, k> 1
sinn = ———, cosn = —— .
(s ! V14 k4
Thus,
s 4K o Kkk?
VI VI
whence

2k 2v/1 + k4
toy . = = pi(k) = 2 pi (k).
C:NKy oy NG

If \€ CeN Ky, then k =0, k = c?/4, p;(0) = pY (0), and therefore

4 21 + k*
t’csmlq = le (0) = Tpl(k>-

Finally, for A € C; N K, i = 3,4,5,7, the validity of formula (36) follows from
the equalities t(A) = +oo and p;(1) = +o0.

By the properties of the invariance under the flow of the generalized pendulum
and under rotations the global representation (36) is proved on the entire cylinder C.

The continuity of the function t in the domains C7, Cs follows from the continuity
of the function p; (k) (see Corollary 2.5 and Lemma 3.1). The continuity of t on Cg
follows from the continuity of the root p} (k), A € Cy, at the point k = 0. The
continuity t on C7 follows from the fact that x — 0 as A — X € Cy, and the
function v/1+ k% p1(k) is isolated from zero from below, and therefore t(\) —
+00 = t()). The continuity of t on C;, i = 3,5, can be proved in similar fashion.

On the set C4 the function t is discontinuous:

AeC; = limt(\) = M < +oo = t(\).
A—X k(N

But if we redefine t|c, = 2p5(0)//a by continuity, then the function t becomes
smooth on Cy. This follows from the fact that the function p; (k) redefined by
continuity has zero right derivative at the point k£ = 0 (see Corollary 2.5).
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The smoothness of t in the domains C; N {k # ki,ko}, Ca and the loss of
smoothness on the surfaces C; N {k = k1}, C1 N {k = ko} follow from the corre-
sponding assertions on the smoothness of the function p; (k) (see Corollary 2.5 and
Lemma 3.1).

The smoothness of t at the points of Cg follows from the fact that p} (k) = O(k?),
k — 0, XA € C5 (see Proposition 3.4).

All the peculiarities of the behaviour of the function t mentioned in Theorem 6.2
can be clearly seen in Fig. 21.

t
17.5

15
12.5
10|
7.5

5

251
k1 ko
02 04 06 08 1 08 06 04 02 0
—~ =
Cy Cy Cs,Cs Cy Cs

Figure 21. The graph of k + t|.—1 = 2v/1 + k* p1 (k)

6.3. Maxwell strata in the image of the exponential map. We define the
Mazwell set and Mazwell strata in the image of the exponential map as follows:

Max = Exp(MAX), Max; = Exp(MAX;).
From Theorems 2.1, 3.1, 3.3 and Lemma 3.2 we obtain the inclusions

Max; C {z = 0}, Maxy C {V = 0},

Maxs C {z =V =0}, Maxo C {r = p =0}.

We define the first components of the Maxwell strata in the image of the expo-
nential map to be the images of the corresponding first components MAX%J- CN
(see (28)—(30)):

Maxgj = EXp(MAX}j) C M;

we also define their projections onto the quotient space by rotations and dilations
M = (M), 7'z g 850 0 Y (g):

(Max;;)" = wf (Max;;) € M”.

In Figs. 22-25 we have depicted the first components (Maxi,)”, (Maxs,)”,
(Max3,)”. To do this, in the chart {p > 0}” of the manifold M”, we have taken
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Figure 24. The set (Maxi;)” U (Max3;)”

the following coordinates rectifying the hypersurfaces {z = 0}, {V = 0}":

2

_ / 12 12\ zr
P,=P(Q?+R )_2/)4/3’
v+ yw — 21?2
QQ :Q/_P/(Ql2+R/2) = p4/3 )

—Yyv + Tw

_pl_
Ry =R = PE
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Figure 25. The set (Max3,)”

while the coordinates

;. Z ;T tyw ; TYvt+aw
_2/)2/37 Q= P37 R = pA/3

in the chart {p > 0}" of the manifold M" =2 S3 were introduced in [6].

In the sketches of each of the sets (Maxj,)” and (Maxs,)” (Figs. 22 and 23) one
can clearly see the three subdomains corresponding to different intervals of values
of the parameter k. There is a domain that has non-compact intersection with the
chart {p > 0}”: this is the ‘exterior’ domain extending to infinity (k € (ko,1)).
There are also two compact ‘interior’ domains: the upper one (k € (k1, ko)), and
the lower one (k € (0, k;)). The interior points of all the three domains are Maxwell
points, and the boundary edges are conjugate points. The interior points of the
set (Maxy,)” in Fig. 25 are also Maxwell points; the boundary edges consist of
conjugate points, as well as of limit points of the Maxwell set.

Supplement: derivatives and asymptotics
of the Jacobi elliptic functions

In this supplement for the Jacobi elliptic functions sn(u, k), cn(u, k), dn(u, k),
E(u, k) we give the partial derivatives with respect to the parameter k, as well as
the Taylor expansions as £ — 0, which we used in this paper. The expansions were
obtained by the method of indeterminate coefficients from the formulae for partial
derivatives. A detailed exposition of the theory of elliptic functions can be found
in the books [11], [12].
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Derivatives of the Jacobi elliptic functions with respect to the param-
eter:

Osnu 1 k 9 1

% g v enu dnu+1—7k2 snu cn”u — mE(u)cnu dn u,
% = —%u snu dnu — % sn®u cnu + mE(u)smu dnu,
(’)gzu = ka sn?u dnw — ku snu cnu + WE(u)snu cnu,
8]2:1) _ 1—kk2 snu cnu dnu — ku sn®u — 1—kk2 E(u) cn? u.

Asymptotics of the Jacobi elliptic functions:

snu = so(u) + k%sa(u) + k*sy(u) + kOsq(u) + k®sg(u) + O(k0), k— 0,

so(u) = sinwu,

1
sa(u) = 3 cos u(sin 2u — 2u),

1
sa(u) = 198 ((8 — 4u® + 9 cos 2u + cos 4u) sin u — 6u(2 cos u + cos 3u)),
1
se(u) = 3073 (8u(u® — 21) cosu — 3u(39 cos 3u + 5 cos 5u + 22usin u + 18u sin 3u)

+ 3 cos® u(53sinu + 14 sin 3u + sin 5u)),
1
sg(u) = m{u[(l%?ﬂ — 1845) cos u + 18(—83 + 12u?) cos 3u
— 21(15 cos 5u + cos Tu) —2u(951 — 4u?+1122 cos 2u+150 cos 4u) sin u]

+ 3 cos® u[553 sinu + 185 sin 3u + 22sin 5u + sin 7u] };

enu = co(u) + k%ca(u) + k*eq(u) + kOcg(u) + kBcg(u) + O(K'0), k—0,

co(u) = cosu,
1
co(u) = 3 sin u(2u — sin 2u),

1
ca(u) = = (—(9 + 8u?) cos u + 8 cos 3u + cos 5u + 16usinu + 12usin 3u),

256
1
co(u) = 15958 [—27(11 + 8u?) cos u + 6(41 — 36u>) cos 3u + 48 cos 5u
+ 3cos Tu + 8u(111 — 4u® 4 132 cos 2u + 15 cos 4u) sin u],
1
cs(u) = 96608 {[-3594 — 2256u> + 32u"] cosu

+ 3[943 cos 3u + 230 cos 5u + 24 cos Tu + cos Ju]
+ 4u[—2u(486 cos 3u + 75 cos Su + 56w sin v + 108u sin 3u)
+ 3(281 sinu + 498 sin 3u + 7(15 sin 5u + sin Tu))] };

dnu = do(u) + k2dy(u) + k*dy(u) + kSdg(u) + kBds(u) + O(k0), k—0,
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do(u) = 17
1.,
da(u) = —5sin”u,
1
dy(u) = ~33 sin u(5 sin u + sin 3u — 8u cosu),

1
dg(u) = 107 (—44 + (31 — 32u®) cos 2u + 12 cos 4u + cos 6u

+ 72u sin 2u + 16w sin 4u) ,

1
dg(u) = e [—1407 + (900 — 1344u?) cos 2u + (444 — 384u?) cos 4u

+ 60 cos 6u + 3 cos 8u + 16u(147—16u*+102 cos 2u + 9 cos 4u) sin 2ul;
E(’U,) = Eo(u) + k2E2(U,) + k4E4(u) + k6E6(U) + k?gEg(U> + O(klo), k— 0,
Eo(u) = u,

1
Eo(u) = Z(Sin 2u — 2u),

1
Eq(u) = @(fém — 8u cos 2u + 4 sin 2u + sin4u),
1
E¢(u) = 1094 (—32u + 33sin 2u — 8u(9 cos 2u + 2 cos 4u + 4u sin 2u)

+ 12 sin 4u + sin 6u),

1
Es(u) = ) [8u(—291 + 32u?) cos 2u + 3(—4(82u + 68u cos 4u + 6u cos 6u

+ (=85 + 112u?) sin 2u + (—37 + 32u”) sin 4u — 5 sin 6u) + sin 8u)].

The author is grateful to A. A. Agrachev for posing the problem and for useful
discussions in the course of this work.
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