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CONTROL THEORY ON LIE GROUPS

Yu. L. Sachkov UDC 517.977

Abstract. Lecture notes of an introductory course on control theory on Lie groups. Controllability and

optimal control for left-invariant problems on Lie groups are addressed. A general theory is accompanied

by concrete examples. The course is intended for graduate students, no preliminary knowledge of control

theory or Lie groups is assumed.
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1. Motivation

1.1. Bilinear systems. In the study of controllability of a bilinear control system

ẋ = Ax + uBx, x ∈ Rn, u ∈ R, (1.1)

where A and B are constant n×n matrices, one naturally passes from the system (1.1) for vectors to the

similar system for matrices:

Ẋ = AX + uBX, X n× n matrix, u ∈ R. (1.2)

Such a passage is very natural: recall that in the study of the linear ODE ẋ = Ax, we pass to the matrix

ODE Ẋ = AX, here X is the Cauchy matrix for the linear ODE.

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics. Funda-
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Fig. 1. Fixed and moving frames

There is a clear and important relation between controllability properties of the bilinear system (1.1)

and the matrix system (1.2):

“system (1.2) is controllable ⇒ system (1.1) is controllable”

In the sequel we make this statement precise and remove the quotation marks. But this implication is

clear: if we can control on matrices, the more so we can control on vectors. The important point here is

that dynamics of the matrix system projects to dynamics of the bilinear system: each column x(t) of the

matrix X(t) satisfying the matrix system (1.2) satisfies the bilinear system (1.1).

One may think that matrix systems (1.2) are more complicated then the bilinear ones (1.1), but

this is not the case: the matrix systems evolve on matrix groups (linear Lie groups), while the bilinear

ones just on smooth submanifolds of Rn (homogeneous spaces of linear Lie groups). And the study of

controllability for matrix systems is an easier problem since here the group structure provides powerful

additional techniques. We will clarify all these questions in our course.

1.2. Rotations of a rigid body. Some important control systems in mechanics, physics, geometry

etc. naturally evolve on groups.

Consider rotations of a rigid body in R3 around a fixed point (e.g. rotations of a space satellite around

its center of mass). In order to describe motion of the body, choose a fixed orthonormal frame e1, e2, e3

in the ambient space, and a moving orthonormal frame f1, f2, f3 attached to the body, see Fig. 1.

Then the orientation matrix

X : (e1, e2, e3) 7→ (f1, f2, f3)

is a 3 × 3 orthogonal unimodular matrix. Moreover, it is easy to see that the matrix ẊX−1 = Ω is

skew-symmetric (the angular velocity of the body). So we obtain the equation of motion

Ẋ = ΩX.

If we suppose that we can control the matrix Ω, than the previous system is a matrix control system

similar to (1.2). In the study of such systems, many questions arise, and one of the first ones is, what is

the state space of such systems:

X ∈ ?

We will answer this question in the next section.
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2. Lie Groups and Lie Algebras

2.1. Linear Lie groups. The most important class of Lie groups is formed by linear Lie groups, i.e.,

groups of linear transformations of Rn.

Let X : Rn → Rn be a linear mapping. In a basis e1, . . . , en of Rn, the operator X has a matrix

X = (xij), i, j = 1, . . . , n, which we identify with the operator itself. So we are going to consider groups

of matrices.

Denote the linear space of all n× n matrices with real entries as

M(n, R) = {X = (xij) | xij ∈ R, i, j = 1, . . . , n}.

For short, we will usually denote this space by M(n). The matrix entries xij provide coordinates on

M(n) = Rn2
.

Example 2.1 (general linear group). The general linear group consists of all n× n invertible matrices:

GL(n, R) = GL(n) = {X ∈ M(n) | det X 6= 0}.

The following properties of GL(n) are easily established.

(1) By continuity of determinant, det : M(n) → R, the set GL(n) is an open domain, thus a smooth

submanifold in the linear space M(n).

(2) Further, GL(n) is a group with respect to matrix product. Indeed, if X, Y ∈ GL(n), then the

product XY ∈ GL(n). Further, the identity matrix Id = (δij) (where δij = 1 if i = j and δij = 0 if i 6= j,

the Kronecker symbol) is contained in GL(n). Finally, for a nonsingular matrix X, its inverse X−1 is

nonsingular as well.

(3) Moreover, the group operations in GL(n) are smooth:

(X, Y ) 7→ XY (XY )ij are polynomials in Xij , Yij ,

X 7→ X−1 (X−1)ij are rational functions in Xij .

Definition 2.1. A set G is called a Lie group if:

(1) G is a smooth manifold,

(2) G is a group, and

(3) the group operations in G are smooth.

In the previous example we showed that GL(n) is a Lie group.

Definition 2.2. A Lie group G ⊂ GL(n) is called a linear Lie group.
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A convenient sufficient condition for a set of matrices to form a linear Lie group is given in the following

general proposition.

Theorem 2.1. If G is a closed subgroup of GL(n), then G is a linear Lie group.

Proof. See e.g. [49].

In other words, in order to verify that a set of matrices G ⊂ M(n) is a linear Lie group, it suffices to

show that the following three conditions hold:

(1) G ⊂ GL(n),

(2) G is a group with respect to matrix product, and

(3) G is topologically closed in GL(n) (i.e., G = GL(n) ∩ S, where S is a closed subset in M(n)).

Now we consider several important examples of linear Lie groups in addition to the largest one, GL(n).

In all these cases the hypotheses of Theorem 2.1 are easily verified.

Example 2.2 (special linear group). The special linear group consists of n× n unimodular matrices:

SL(n, R) = SL(n) = {X ∈ M(n) | det X = 1}.

Such matrices correspond to linear operators v 7→ Xv preserving the standard volume in Rn.

Example 2.3 (orthogonal group). The orthogonal group is formed by n× n orthogonal matrices:

O(n) = {X ∈ M(n) | XXT = Id},

where XT denotes the transposed matrix of X. Orthogonal transformations v 7→ Xv preserve the Euclid-

ean structure in Rn.

Since 1 = det(XXT) = det2 X, it follows that orthogonal matrices have determinant detX = ±1.

Example 2.4 (special orthogonal group). Orthogonal unimodular matrices form the special orthogonal

group:

SO(n) = {X ∈ M(n) | XXT = Id, det X = 1}.

Special orthogonal transformations v 7→ Xv preserve both the Euclidean structure and orientation in Rn.

Example 2.5 (affine group). The affine group is defined as follows:

Aff(n) =

X =

 Y b

0 1

 ∈ M(n + 1) | Y ∈ GL(n), b ∈ Rn

 ⊂ GL(n + 1).

Such matrices correspond to invertible affine transformations in Rn of the form v 7→ Y v + b, i.e., a linear

mapping Y plus a translation b.
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Example 2.6 (Euclidean group). The Euclidean group is the following subgroup of the affine group:

E(n) =

X =

 Y b

0 1

 ∈ M(n + 1) | Y ∈ SO(n), b ∈ Rn

 ⊂ GL(n + 1).

Such matrices parametrize orientation-preserving affine isometries v 7→ Y v + b.

Example 2.7 (triangular group). And the last example of a group formed by real matrices: the trian-

gular group consists of all invertible triangular matrices:

T(n) =


X =


∗ ∗ · · · ∗

0 ∗ · · · ∗
...

. . .
...

0 0 · · · ∗

 ∈ GL(n)


= {X = (xij) ∈ M(n) | xij = 0, i > j, xii 6= 0}.

These are matrices of invertible linear operators v 7→ Xv preserving the flag of subspaces

Re1 ⊂ span(e1, e2) ⊂ · · · ⊂ span(e1, . . . , en−1) ⊂ Rn.

Now we pass to complex matrices. Denote the space of all n× n matrices with complex entries as

M(n, C) = {Z = (zjk) | zjk ∈ C, j, k = 1, . . . , n}.

Since any entry decomposes into the real and imaginary parts:

zjk = xjk + iyjk, xjk, yjk ∈ R,

a complex matrix decomposes correspondingly:

Z = X + iY, X = (xjk), Y = (yjk) ∈ M(n, R).

The real coordinates xjk, yjk turn M(n, C) into R2n2
.

The realification of a complex matrix is defined as follows. To any complex matrix of order n corresponds

a real matrix of order 2n:

Z ∼

 X −Y

Y X

 ∈ M(2n, R), Z = X + iY ∈ M(n, C).

The matrix

 X −Y

Y X

 is just the matrix of the real linear operator in R2n = Cn corresponding to Z in

the basis over reals e1, . . . , en, ie1, . . . , ien. So it is natural that realification respects the matrix product:
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if

Z1 = X1 + iY1 ∼

 X1 −Y1

Y1 X1

 , Z2 = X2 + iY2 ∼

 X2 −Y2

Y2 X2

 ,

then

Z1Z2 = X1X2 − Y1Y2 + i(Y1X2 + X1Y2)

∼

 X1X2 − Y1Y2 −X1Y2 − Y1X2

X1Y2 + Y1X2 X1X2 − Y1Y2


=

 X1 −Y1

Y1 X1

 ·

 X2 −Y2

Y2 X2

 .

The realification provides the embedding M(n, C) ⊂ M(2n, R).

Example 2.8 (complex general linear group). The complex general linear group consists of all complex

n× n invertible matrices:

GL(n, C) = {Z ∈ M(n, C) | det Z 6= 0}

=


 X −Y

Y X

 ∈ M(2n, R) |
2

det X +
2

det Y 6= 0

 .

There holds a proposition similar to Theorem 2.1.

Theorem 2.2. If G is a closed subgroup of GL(n, C), then G is a linear Lie group.

Example 2.9 (complex special linear group). The complex special linear group is formed by all complex

n× n unimodular matrices:

SL(n, C) = {Z ∈ M(n, C) | det Z = 1}

=


 X −Y

Y X

 ∈ M(2n, R) | det(X + iY ) = 1

 .

Example 2.10 (unitary group). An important example of a linear Lie group is the unitary group con-

sisting of all n× n unitary matrices:

U(n) = {Z ∈ M(n, C) | Z̄TZ = Id}.

(Here Z̄ denotes the complex conjugate matrix of Z.) Such matrices correspond to linear transformations

that preserve the unitary structure in Cn. Compute the realification of a unitary matrix.
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We have

Z = X + iY, Z̄T = XT − iY T,

thus

Z̄TZ = (XT − iY T)(X + iY ) = (XTX + Y TY ) + i(XTY − Y TX) = Id +i · 0.

Therefore, the realification of the unitary group has the form

U(n) =


 X −Y

Y X

 ∈ M(2n, R) | XTX + Y TY = Id, XTY − Y TX = 0

 .

Compute determinant of a unitary matrix:

1 = det(Z̄TZ) = det Z · det Z = |det Z|2,

so

det Z = eiϕ, ϕ ∈ R.

Example 2.11 (special unitary group). Another important example of a group formed by complex ma-

trices is the special unitary group:

SU(n) = U(n) ∩ SL(n, C) = {Z ∈ M(n, C) | Z̄TZ = Id, det Z = 1}

=


 X −Y

Y X

 ∈ M(2n, R) | XTX + Y TY = Id, XTY − Y TX = 0,det(X + iY ) = 1

 .

2.2. The Lie algebra of a Lie group.

Example 2.12 (TId GL(n)). Consider the tangent space to the general linear group at the identity:

TId GL(n) =
{

Ẋ(0) | X(t) ∈ GL(n), X(0) = Id
}

.

We compute this space explicitly. Since the velocity vector Ẋ(t) = (ẋij(t)) is an n× n matrix, we obtain

Ẋ(0) = (ẋij(0)) = A ∈ M(n).

Thus

TId GL(n) ⊂ M(n).

In order to show that this inclusion is in fact an equality, choose an arbitrary matrix A ∈ M(n). The

curve X(t) = Id+tA belongs to GL(n) for |t| < ε and small ε > 0. Moreover, X(0) = Id and Ẋ(0) = A.

Consequently,

TId GL(n) = M(n).
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The tangent space TId GL(n) is a linear space. Moreover, it is endowed with an additional operation,

commutator of matrices:

[A,B] = AB −BA ∈ M(n), A, B ∈ M(n).

Notice that this operation satisfies the following properties:

(1) bilinearity,

(2) skew-symmetry: [B,A] = −[A,B],

(3) Jacobi identity :

[[A,B], C] + [[B,C], A] + [[C,A], B] = 0.

Definition 2.3. A linear space L endowed with a binary operation [ · , · ] which is:

(1) bilinear,

(2) skew-symmetric, and

(3) satisfies Jacobi identity,

is called a Lie algebra.

The space M(n) with the matrix commutator is a Lie algebra. In order to underline the relation of

this Lie algebra with the Lie group GL(n), this Lie algebra is denoted as gl(n). Summing up,

TId GL(n) = gl(n).

Such a construction has a generalization of fundamental importance.

Definition 2.4. The tangent space to a Lie group G at the identity element is called the Lie algebra of

the Lie group G:

L = TIdG.

We compute the Lie algebras of the Lie groups considered above.

Example 2.13 (Lie algebra of SL(n)). The Lie algebra of the special linear group is denoted by sl(n).

We have

sl(n) = TId SL(n) = {Ẋ(0) | X(t) ∈ SL(n), X(0) = Id}.

Take a curve X(t) = Id +tẊ(0) + o(t) ∈ SL(n), then

1 = det X(t) = det(Id+tẊ(0) + o(t)) = 1 + t tr Ẋ(0) + o(t), t → 0,

so tr Ẋ(0) = 0.

Thus

sl(n) = {A ∈ M(n) | trA = 0},
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the traceless matrices. To be precise, we proved only the inclusion ⊂ . The reverse inclusion we do not

prove here for the sake of time and leave it to the reader as an exercise. This can be done by comparing

dimensions of the linear spaces. (The same remark holds for similar computations in examples below.)

Example 2.14 (Lie algebra of SO(n)). This Lie algebra is denoted as

so(n) = TId SO(n) = {Ẋ(0) | X(t) ∈ SO(n), X(0) = Id}.

We have X(t)XT(t) ≡ Id, thus

0 = Ẋ(0)XT(0)︸ ︷︷ ︸
Id

+X(0)︸ ︷︷ ︸
Id

ẊT(0) = Ẋ(0) + ẊT(0).

Denoting A = Ẋ(0), we obtain A + AT = 0 and

so(n) = {A ∈ M(n) | A + AT = 0},

the skew-symmetric matrices.

In a similar way one computes the Lie algebras in the following three cases.

Example 2.15 (Lie algebra of Aff(n)).

aff(n) = TId Aff(n) =


 A b

0 0

 | A ∈ gl(n), b ∈ Rn

 .

Example 2.16 (Lie algebra of E(n)).

e(n) = TId E(n) =


 A b

0 0

 | A ∈ so(n), b ∈ Rn

 .

Example 2.17 (Lie algebra of T(n)).

t(n) = TId T(n) = {A = (aij) ∈ M(n) | aij = 0, i > j},

the triangular matrices.

Finally compute the Lie algebras of the unitary and the special unitary groups.

Example 2.18 (Lie algebra of U(n)).

u(n) = TId U(n),

and we proceed in the same way as for SO(n). For a curve Z(t) ∈ U(n), Z(0) = Id, we have Z(t)Z̄T(t) ≡ Id.

Thus

0 = Ż(0) Z̄T(0)︸ ︷︷ ︸
Id

+Z(0)︸︷︷︸
Id

¯̇Z
T
(0).
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Denoting A = Ż(0), we obtain A + ĀT = 0, a skew-Hermitian matrix. Consequently,

u(n) = {A ∈ M(n, C) | A + ĀT = 0}.

Example 2.19 (Lie algebra of SU(n)).

su(n) = TId SU(n) = {A ∈ M(n, C) | A + ĀT = 0, trA = 0}.

Summing up, we considered the passage from a Lie group G to the corresponding linear object — the

Lie algebra L of the Lie group G. A natural question on the possibility of the reverse passage is solved

(for linear Lie groups) via matrix exponential.

2.3. Matrix exponential. In order to approach matrix control systems, first consider a matrix ODE:

Ẋ = XA, (2.1)

where A ∈ M(n) is a given matrix. In the case n = 1, solutions to the ODE

ẋ = xa

are given by the exponential:

x(t) = x(0)eat,

ea = 1 + a +
a2

2!
+ · · ·+ an

n!
+ · · · .

For arbitrary natural n, we can proceed in a similar way and define for a matrix A ∈ M(n) its exponential

by the same series:

exp(A) = eA = Id+A +
A2

2!
+ · · ·+ An

n!
+ · · · .

This matrix series converges absolutely, thus it can be differentiated termwise:

(
eAt

)′
=

(
Id+At +

A2t2

2!
+ · · ·+ Antn

n!
+ · · ·

)′

= A +
A2t

1!
+ · · ·+ Antn−1

(n− 1)!
+ · · · = eAtA.

Thus the matrix exponential X(t) = eAt is the solution to the Cauchy problem

Ẋ = XA, X(0) = Id,

and all solutions of the matrix equation (2.1) have the form

X(t) = X(0)eAt.
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Notice that for an arbitrary matrix A ∈ gl(n), its exponential exp(A) ∈ GL(n) since det exp(A) =

exp(trA) 6= 0. So we constructed a (smooth) mapping

exp : gl(n) → GL(n).

We generalize this construction in the following subsection.

2.4. Left-invariant vector fields. We saw that for an arbitrary matrix A ∈ gl(n), the Cauchy problem

Ẋ = XA, X(0) = X0, X ∈ GL(n),

has a (unique) solution of the form

X(t) = X0 exp(tA).

What can we say about a similar problem in any (linear) Lie group G:

Ẋ = XA, X ∈ G ?

Example 2.20. Consider e.g. a Cauchy problem in the special linear group:

Ẋ = XA, X(0) = Id, X ∈ SL(n). (2.2)

By uniqueness, solutions of this ODE must be given, as above, by the matrix exponential, but the question

is whether it is in the Lie group under consideration:

X(t) = exp(tA) ∈ SL(n) ?

It is obvious that in general the answer is negative. Indeed, if X(t) = exp(tA) ∈ SL(n), then

A =
d

dt

∣∣∣∣
t=0

exp(tA) ∈ TId SL(n) = sl(n).

So if A /∈ sl(n), then ODE (2.2) is not well-defined, i.e., the vector field XA is not tangent to the Lie

group SL(n).

What is the tangent space to a Lie group G at its point X? This question has a simple answer given

in the following statement.

Proposition 2.1. Let G be a linear Lie group, L its Lie algebra, and let X ∈ G. Then

TXG = XTIdG = XL = {XA | A ∈ L}.
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Proof. Compute the tangent space

TXG = {Ẋ(0) | X(t) ∈ G, X(0) = X}.

For a smooth curve X(t) starting from X, one easily constructs a curve starting from the identity:

Y (t) = X−1X(t), Y (0) = X−1X = Id .

Then

Ẏ (0) = X−1Ẋ(0) ∈ L.

We denote A = Ẏ (0) ∈ L and get

Ẋ(0) = XA, A ∈ L.

Thus TXG ⊂ XL. Since these linear spaces have the same dimension, we obtain

TXG = XL.

So the left product by X translates the tangent space L at identity to the tangent space XL at the

point X.

Thus for any element

A ∈ L,

the vector

V (X) = XA ∈ TXG, X ∈ G,

i.e., the vector field V (X) is tangent to the Lie group G. So the ODE

Ẋ = XA, X ∈ G, (2.3)

is well-defined and has the solutions

X(t) = X(0) exp(At) ∈ G.

Notice the following important property of ODE (2.3): if a curve X(t) is a trajectory of the field

V (X) = XA, then its left translation Y X(t) is also a trajectory of this ODE for any Y ∈ G. Indeed:

X(t) = X(0) exp(tA),

thus

Y (t) = Y X(t) = Y X(0) exp(tA) = Y (0) exp(tA).
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Fig. 2. Lie bracket of vector fields V and W

Definition 2.5. Vector fields of the form

V (X) = XA, X ∈ G, A ∈ L,

are called left-invariant vector fields on the linear Lie group G.

Suppose we have two left-invariant vector fields on a Lie group G:

A, B ∈ L,

V (X) = XA, W (X) = XB, X ∈ G.

There arises a natural question: what is the Lie bracket of such vector fields? Since the fields V and W

are left-invariant, it is clear that the field [V,W ] is left-invariant as well. In order to compute this field,

recall the definition of Lie bracket of vector fields.

Definition 2.6. Let V and W be smooth vector fields on a smooth manifold M . The Lie bracket (or

commutator) of the fields V , W is the vector field [V,W ] ∈ Vec M such that

[V,W ](X) =
d

d t

∣∣∣∣
t=0

γ(
√

t), X ∈ M,

where the curve γ is defined as follows:

γ(t) = e−tW ◦ e−tV ◦ etW ◦ etV (X),

see Fig. 2.

Here etV denotes the flow of the vector field V :

d

d t
etV (X) = V (etV (X)), etV

∣∣
t=0

(X) = X,

and Vec M denotes the space of all smooth vector fields on a smooth manifold M .

Now we compute the Lie bracket of left-invariant vector fields.

Proposition 2.2. Let G be a linear Lie group, L its Lie algebra, and let A,B ∈ L. Let V (X) = XA and

W (X) = XB be left-invariant vector fields on G. Then

[V,W ](X) = [XA,XB] = X[A,B] = X(AB −BA), X ∈ G.
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Proof. The flows of the left-invariant vector fields are given by the matrix exponential:

etV (X) = X exp(tA), etW (X) = X exp(tB).

Compute the low-order terms of the curve γ from Definition 2.6:

γ(t) = X exp(tA) exp(tB) exp(−tA) exp(−tB)

= X

(
Id+tA +

t2

2
A2 + · · ·

) (
Id+tB +

t2

2
B2 + · · ·

)
(

Id−tA +
t2

2
A2 − · · ·

) (
Id−tB +

t2

2
B2 − · · ·

)
= X

(
Id+t(A + B) +

t2

2
(A2 + 2AB + B2) + · · ·

)
(

Id−t(A + B) +
t2

2
(A2 + 2AB + B2) + · · ·

)
= X(Id+t2[A,B] + · · · ),

thus

γ(
√

t) = X(Id+t[A,B] + · · · ),

notice that it is a smooth curve at t = 0, and

d

d t

∣∣∣∣
t=0

γ(
√

t) = X[A,B].

By Definition 2.6, this is the Lie bracket [XA,XB].

Corollary 2.1. Left-invariant vector fields on a Lie group G form a Lie algebra isomorphic to the Lie

algebra L = TIdG. The isomorphism is defined as follows:

left-invariant vector field XA ∈ Vec G ↔ A ∈ L.

Thus in the sequel we identify these two representations of the Lie algebra of a Lie group G:

(1) L = TIdG, and

(2) L = {left-invariant vector fields on G}.

3. Left-Invariant Control Systems

3.1. Definitions. Let G be a Lie group and L its Lie algebra.

Definition 3.1. A left-invariant control system Γ on a Lie group G is an arbitrary set of left-invariant

vector fields on G, i.e., any subset

Γ ⊂ L. (3.1)
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Example 3.1 (control-affine left-invariant systems). A particular class of left-invariant systems, which

is important for applications is formed by control-affine systems

Γ =

{
A +

m∑
i=1

uiBi | u = (u1, . . . , um) ∈ U ⊂ Rm

}
, (3.2)

where A, B1, . . . , Bm are some elements of L. If the control set U coincides with Rm, then system (3.2)

is an affine subspace of L.

Remark. Throughout these notes, we write a left-invariant control system as (3.1) or (3.2), i.e., as a set

of vector fields, a polysystem. In the classical notation, control-affine systems (3.2) are written as follows:

Ẋ = XA +
m∑

i=1

uiXBi, u = (u1, . . . , um) ∈ U, X ∈ G. (3.3)

Polysystem (3.1) can also be written in such classical notation via a choice of a parametrization of the

set Γ.

Definition 3.2. A trajectory of a left-invariant system Γ on G is a continuous curve X(t) in G defined

on an interval [t0, T ] ⊂ R so that there exists a partition

t0 < t1 < · · · < tN = T

and left-invariant vector fields

A1, . . . , AN ∈ Γ

such that the restriction of X(t) to each open interval (ti−1, ti) is differentiable and

Ẋ(t) = X(t)Ai for t ∈ (ti−1, ti), i = 1, . . . , N.

In the classical notation, this corresponds to piecewise-constant admissible controls. In the study of

global controllability for infinite time we can restrict ourselves by such a class of admissible controls.

Definition 3.3. For any T ≥ 0 and any X in G, the reachable set for time T of a left-invariant system

Γ ⊂ L from the point X is the set AΓ(X, T ) of all points that can be reached from X in exactly T units

of time:

AΓ(X, T ) = {X(T ) | X(·) a trajectory of Γ, X(0) = X}.

The reachable set for time not greater than T ≥ 0 is defined as

AΓ(X,≤ T ) =
⋃

0≤t≤T

AΓ(X, t).
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The reachable (or attainable) set of a system Γ from a point X ∈ G is the set AΓ(X) of all terminal points

X(T ), T ≥ 0, of all trajectories of Γ starting at X:

AΓ(X) = {X(T ) | X(·) a trajectory of Γ, X(0) = X, T ≥ 0} =
⋃
T≥0

AΓ(X, T ).

If there is no ambiguity, in the sequel we denote the reachable sets AΓ(X, T ) and AΓ(X) by A(X, T )

and A(X), respectively.

Definition 3.4. A system Γ ⊂ L is called controllable if, given any pair of points X0 and X1 in G, the

point X1 can be reached from X0 along a trajectory of Γ for a nonnegative time:

X1 ∈ A(X0) for any X0, X1 ∈ G,

or in other words, if

A(X) = G for any X ∈ G.

In the control literature, this notion corresponds to global controllability , or complete controllability .

Although, for left-invariant systems these properties are equivalent to local controllability at the identity,

see Theorem 3.5 below.

3.2. Right-invariant control systems. Similarly to left-invariant vector fields Ẋ = XA, one can

consider right-invariant vector fields of the form Ẏ = BY .

The inversion

i : G → G, i(X) = X−1 = Y,

transforms left-invariant vector fields to right-invariant ones. Indeed, let X(t) be a trajectory of a left-

invariant ODE Ẋ = XA. Compute the ODE for Y (t) = X−1(t). Since Y (t)X(t) = Id, we have

Ẏ (t)X(t) + Y (t)Ẋ(t) = 0, thus

Ẏ (t) = −Y (t)Ẋ(t)X−1(t) = −Y (t)X(t)AY (t) = −AY (t).

Consequently,

Ẋ = XA ⇔ Ẏ = −AY, Y = X−1.

Since X(t) = X0e
tA, then Y (t) = e−tAY0.

Notice that similarly to Proposition 2.1, it is easy to show that TXG = LX, and that the Lie algebra

L = TIdG of a Lie group G can be identified with the Lie algebra of right-invariant vector fields {AX |

A ∈ L} on G.

Exercise 3.1. Prove that the Lie bracket of right-invariant vector fields computes as follows:

[AX, BX] = [B,A]X.
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Definition 3.5. A right-invariant control system on a Lie group G is an arbitrary set of right-invariant

vector fields on G.

Definition 3.6. A control-affine right-invariant control system on a Lie group G has the form

Ẏ = AY +
m∑

i=1

uiBiY, u ∈ U ⊂ Rm, Y ∈ G. (3.4)

The inversion X = Y −1 transforms right-invariant system (3.4) to the left-invariant system

Ẋ = −XA−
m∑

i=1

uiXBi, u ∈ U, X ∈ G.

Summing up, all problems for right-invariant control systems are reduced to the study of left-invariant

systems via inversion.

3.3. Basic properties of orbits and reachable sets. Let G be a linear Lie group, and let L be its

Lie algebra, i.e., the space of left-invariant vector fields on G.

Lemma 3.1. Let A ∈ L and X0 ∈ G. Then the Cauchy problem

Ẋ = XA, X(t0) = X0,

has the solution X(t) = X0 exp((t− t0)A).

Due to this obvious lemma we can obtain a description of an endpoint of a trajectory via product of

exponentials.

Lemma 3.2. Let X(t), t ∈ [0, T ], be a trajectory of a left-invariant system Γ ⊂ L with X(0) = X0. Then

there exist N ∈ N and

τ1, . . . , τN > 0, A1, . . . AN ∈ Γ

such that

X(T ) = X0 exp(τ1A1) · · · exp(τNAN ),

τ1 + · · ·+ τN = T.

Proof. By the definition of a trajectory, there exist N ∈ N and

0 = t0 < t1 < · · · < tN = T, A1, . . . , AN ∈ Γ

such that X(t) is continuous and

t ∈ (ti−1, ti) ⇒ Ẋ(t) = X(t)Ai.
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Consider the first interval:

t ∈ (0, t1) ⇒ Ẋ = X(t)A1, X(0) = X0.

Thus

X(t) = X0 exp(A1t), X(t1) = X0 exp(A1t1).

Further,

t ∈ (t1, t2) ⇒ Ẋ = X(t)A2, X(t1) = X0 exp(A1t1).

Therefore,

X(t) = X0 exp(t1A1) exp((t− t1)A2),

X(t2) = X0 exp(A1t1) exp((t2 − t1)A2)

= X0 exp(A1τ1) exp(τ2A2), τ1 = t1, τ2 = t2 − t1.

We go on in such a way and finally obtain the required representation:

X(tN ) = X(T ) = X0 exp(τ1A1) · · · exp(τNAN ),

τN = tN − tN−1, . . . , τ2 = t2 − t1, τ1 = t1,

τN + · · ·+ τ1 = tN = T.

Now we can obtain a description of attainable sets and derive their elementary properties.

Lemma 3.3. Let Γ ⊂ L be a left-invariant system, and let X be an arbitrary point of G. Then

(1) AΓ(X) = {X exp(t1A1) · · · exp(tNAN ) | Ai ∈ Γ, ti > 0, N ≥ 0};

(2) AΓ(X) = XAΓ(Id);

(3) AΓ(Id) is a subsemigroup of G;

(4) AΓ(X) is an arcwise-connected subset of G;

Proof. Item (1) follows immediately from Lemma 3.2, and item (2) follows from item (1).

(3) Since

AΓ(Id) = {exp(t1A1) · · · exp(tNAN ) | Ai ∈ Γ, ti > 0, N ≥ 0},

then for any X1, X2 ∈ AΓ(Id), the product X1X2 ∈ AΓ(Id).

(4) Any point in AΓ(X) is connected with the initial point X by a trajectory X(t).
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Fig. 3. Attainable set A Fig. 4. Orbit O

Definition 3.7. The orbit of a system Γ through a point X ∈ G is the following subset of the Lie group G:

OΓ(X) = {X exp(t1A1) · · · exp(tNAN ) | Ai ∈ Γ, ti ∈ R, N ≥ 0}, (3.5)

compare with the description of attainable set AΓ(X) given in item (1) of Lemma 3.3.

Obviously,

AΓ(X) ⊂ OΓ(X).

In the orbit, one is allowed to move both forward and backward in time, while in the attainable set only

the forward motion is allowed (see Figs. 3 and 4). The structure of orbits is simpler than that of attainable

sets.

Lemma 3.4. Let Γ ⊂ L be a left-invariant system, and let X be an arbitrary point of G. Then

(1) OΓ(X) = XOΓ(Id);

(2) OΓ(Id) is the connected Lie subgroup of G with the Lie algebra Lie(Γ).

Here and below we denote by Lie(Γ) the Lie algebra generated by Γ, i.e., the smallest Lie subalgebra

of L containing Γ.

Proof. Item (1) follows from (3.5).

(2) First of all, the orbit OΓ(Id) is connected since any point in it is connected with the identity by a

continuous curve provided by the definition of an orbit.

Further, it is easy to see that OΓ(Id) is a subgroup of G. If X, Y ∈ OΓ(Id), then XY ∈ OΓ(Id) as a

product of exponentials. If

X = exp(t1A1) · · · exp(tNAN ) ∈ OΓ(Id),

then

X−1 = exp(−tNAN ) · · · exp(−t1A1) ∈ OΓ(Id).

Finally, Id ∈ OΓ(Id).

It follows from the general Orbit Theorem (see [14], [1]) that OΓ(Id) ⊂ G is a smooth submanifold with

the tangent space TIdOΓ(Id) = Lie(Γ).

Then the orbit OΓ(Id) is a Lie subgroup of G with the Lie algebra Lie(Γ), see [49].

Proposition 3.1. A left-invariant system Γ is controllable iff AΓ(Id) = G.

Proof. By definition, Γ is controllable iff AΓ(X) = G for any X ∈ G. Since AΓ(X) = XAΓ(Id), control-

lability is equivalent to the identity AΓ(Id) = G.
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That is why in the sequel we use the following short notation for the attainable set and orbit from the

identity:

AΓ(Id) = AΓ = A, OΓ(Id) = OΓ = O.

Given any subset l of a vector space V , we denote by span(l) the vector subspace of V generated by l

and by co(l) the positive convex cone generated by the set l.

We denote the topological closure and the interior of a set S by cl S and int S, respectively.

3.4. Normal attainability. If a point Y ∈ G is reachable (or attainable) from a point X ∈ G, then

there exist elements A1, . . . , AN ∈ Γ and t = (t1, . . . , tN ) ∈ RN
+ such that

Y = X exp(t1A1) · · · exp(tNAN ).

We denote

RN
+ = {(s1, . . . , sN ) ∈ RN | si > 0, i = 1, . . . , N}.

That is, the point Y is in the image of the mapping

F : (s1, . . . , sN ) 7→ X exp(s1A1) · · · exp(sNAN ), s = (s1, . . . , sN ) ∈ RN
+ .

The following stronger notion turns out to be important in the study of topological properties of

reachable sets and controllability.

Definition 3.8. A point Y ∈ G is called normally attainable from a point X ∈ G by Γ if there exist

elements A1, . . . , AN in Γ and t ∈ RN
+ such that the mapping

F : RN → G, F (s1, . . . , sN ) = X exp(s1A1) · · · exp(sNAN )

satisfies the following conditions:

(i) F (t) = Y .

(ii) rankDtF = dim G.

That is, the point Y is a regular value of the restriction of the mapping F to a small neighborhood of

the point t.

The point Y is said to be normally attainable from X by A1, . . . , AN .

Lemma 3.5. If a point Y ∈ G is normally attainable from X ∈ G by Γ, then Y ∈ intAΓ(X).

Proof. By the implicit function theorem, the mapping F is open near t. That is, there exists a neighbor-

hood t ∈ V ⊂ RN
+ such that the restriction F |V maps open sets to open sets. Then the set F (V ) is open.

On the other hand, for any s = (s1, . . . , sN ) ∈ RN
+ the point F (s) is in AΓ(X). Thus F (V ) ⊂ AΓ(X) is a

neighborhood of the point Y = F (t).
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Theorem 3.1 (Krener). Let Lie(Γ) = L. Then:

(1) In any neighborhood V of the identity Id ∈ G, there are points normally attainable from Id by Γ;

(2) Consequently, for any neighborhood V 3 Id, the intersection intA ∩ V is nonempty;

(3) In particular, the interior A is nonempty.

Proof. We prove item (1) since items (2) and (3) follow from it.

Denote n = dim L = dim Lie(Γ). If n = 0, everything is clear. Assume that n ≥ 1 and fix a

neighborhood V of the identity Id.

There exists a nonzero element A1 ∈ Γ, otherwise dim Lie(Γ) = 0. Consider the mapping

F1 : s1 7→ exp(s1A1), 0 < s1 < ε1,

for sufficiently small positive ε1. We have
d F1

d s1

∣∣∣∣
s1=0

= A1 6= 0, consequently, rankDs1F1 = 1 for small s1.

The curve

M1 = {F1(s1) | 0 < s1 < ε1}

is a smooth one-dimensional manifold contained in the neighborhood V for sufficiently small positive ε1.

If n = 1, then any point X1 ∈ M1 is normally attainable from Id by A1.

If n > 1, there exist an element A2 ∈ Γ and a point X1 ∈ M1 as close to identity as we wish such that

X1A2 /∈ TX1M1.

Otherwise Lie(Γ)(X1) ⊂ TX1M1 for any X1 ∈ M1 and dim Lie(Γ) ≤ dim M1 = 1, a contradiction. We

have

X1 = exp(t11A1) for some t11 > 0.

Consider the mapping

F2 : (s1, s2) 7→ exp((t11 + s1)A1) exp(s2A2), 0 < si < εi.

For small s > 0 we have rank DsF2 = 2, thus the set

M2 = {F2(s1, s2) | 0 < si < εi, i = 1, 2}

is a smooth two-dimensional manifold that belongs to V for sufficiently small positive ε1 and ε2. If n = 2,

the theorem is proved, since in this case any point of M2 is normally attainable from Id by A1 and A2.

If n > 2, we proceed in a similar manner. There exist A3 ∈ Γ and X2 ∈ M2 close to Id such that

X2A3 /∈ TX2M2.

Otherwise Lie(Γ)(X2) ⊂ TX2M2 for any X2 ∈ M2 and dim Lie(Γ) ≤ 2, a contradiction. We have

X2 = exp(t21A1) exp(t22A2) for some t2i > 0.
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Consider the mapping

F3 : (s1, s2, s3) 7→ exp((t21 + s1)A1) exp((t22 + s2)A2) exp(s3A3), 0 < si < εi.

Since the vector field A3 is not tangent to the manifold M2 at the point X2, the differential DsF3 has

rank 3 for small s > 0. Thus

M3 = {F3(s1, s2, s3) | 0 < si < εi, i = 1, 2, 3}

is a smooth three-dimensional manifold belonging to V for sufficiently small positive εi. In the case n = 3,

the theorem is proved, otherwise we proceed by induction.

As a result of the inductive construction, we find an element An ∈ Γ and a point

Xn−1 = exp(tn−1
1 A1) · · · exp(tn−1

n−1An−1) ∈ Mn−1

sufficiently close to Id such that

Xn−1An /∈ TXn−1Mn−1.

Then the mapping

Fn : (s1, . . . , sn) 7→ exp((tn−1
1 + s1)A1) · · · exp((tn−1

n−1 + sn−1)An−1) exp(snAn), 0 < si < εi,

is an immersion for small s > 0. Consequently, any point Xn ∈ Mn = Im Fn is normally attainable from

Id. Moreover, Xn can be chosen as close to Id as we wish.

Definition 3.9. A system Γ ⊂ L is said to have a full rank (or to satisfy the Lie Algebra Rank Condition)

if

Lie(Γ) = L.

Proposition 3.2. Let Γ ⊂ L. Then

(1) intOA 6= ∅;

(2) moreover, A ⊂ cl intOA.

We denote by intO S the interior of a subset S of the orbit O in the topology of O.

Proof. (a) Assume first that the system Γ has full rank: Lie(Γ) = L, then the orbit O ⊂ G is an open

subset, and the relative interior with respect to O coincides with the interior in G. By Krener’s theorem,

intA 6= ∅, and item (1) of this proposition follows.

We prove item (2). Take any element X ∈ A and any its neighborhood V 3 X. Then the open set

V X−1 is a neighborhood of the identity. By Krener’s theorem, there exists a point Y ∈ V X−1 ∩ intA,

thus Y X ∈ V . Further, since Y ∈ intA, there exists a neighborhood W 3 Y , W ⊂ A. Then the open set
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WX is a neighborhood of the point Y X, moreover, WX ⊂ A. Finally, Y X ∈ intA ∩ V . Consequently,

any neighborhood V of the point X contains points from intA, thus X ∈ cl intA.

(b) If Lie(Γ) 6= L, we consider the restriction of the system Γ to the orbit O, a Lie subgroup of G with

the Lie algebra Lie(Γ). The system Γ is full-rank on O, thus the statement in the case (b) follows from

the case (a).

3.5. General controllability conditions. Let G be a linear Lie group, L its Lie algebra, and Γ ⊂ L

a left-invariant system on G. In this subsection we prove some basic controllability conditions for Γ on G.

Theorem 3.2 (Connectedness Condition). If Γ ⊂ L is controllable on G, then the Lie group G is con-

nected.

Proof. The attainable set A is a connected subset of G.

Example 3.2. The Lie group GL(n) is not connected since it consists of two connected components

GL+(n) and GL−(n), where

GL±(n) = {X ∈ M(n) | sign(detX) = ±1}.

Thus there are no controllable systems on GL(n), but a reasonable question to study is controllability on

its connected component of identity GL+(n).

Example 3.3. Similarly, the orthogonal group O(n) = SO(n) ∪ O−(n) is disconnected, where O−(n) =

{X ∈ O(n) | det X = −1}. So there no controllable systems on O(n); instead, one can study controllability

on SO(n).

Theorem 3.3 (Rank Condition). Let Γ ⊂ L.

(1) If Γ is controllable, then Lie(Γ) = L.

(2) intA 6= ∅ if and only if Lie(Γ) = L.

Proof. (1) If Γ is controllable, then A = G, the more so O = G, thus Lie(Γ) = L.

(2) By Krener’s theorem, if Lie(Γ) = L, then intA 6= ∅.

Conversely, let Lie(Γ) 6= L. Then dimO = dim Lie(Γ) < dim L = dim G. Thus intO = ∅, the more so

intA = ∅.

Theorem 3.4 (Group Test). A system Γ ⊂ L is controllable on a Lie group G iff the following conditions

hold:

(1) G is connected,

(2) Lie(Γ) = L,
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(3) the attainable set A is a subgroup of G.

Proof. The necessity is obvious, we prove sufficiency. If A ⊂ G is a subgroup, then for any element

X ∈ A, its inverse X−1 belongs to A as well. Recall the descriptions of the attainable set and orbit

through identity:

A = {exp(t1A1) · · · exp(tNAN ) | ti ≥ 0, Ai ∈ Γ},

O = {exp(±t1A1) · · · exp(±tNAN ) | ti ≥ 0, Ai ∈ Γ}.

For any exponential exp(tiAi) ∈ A, the inverse

(exp(tiAi))−1 = exp(−tiAi) ∈ A,

thus the attainable set A coincides with the orbit O. But O ⊂ G is a connected Lie subgroup with Lie

algebra Lie(Γ) = L. Then it follows that O = G, see [49]. Thus A = O = G.

Definition 3.10. A control system is called locally controllable at a point X if

X ∈ intA(X).

Theorem 3.5 (Local Controllability Test). A system Γ ⊂ L is controllable on a Lie group G iff the

following conditions hold:

(1) G is connected,

(2) Γ is locally controllable at the identity.

Notice that identity element is always contained in the attainable set, and there may be two cases:

either Id ∈ intA, or Id ∈ ∂A. In the first case the system is controllable, while in the second case not.

Now we prove Theorem 3.5.

Proof. The necessity is obvious, we prove sufficiency. There exists a neighborhood V 3 Id such that

V ⊂ A. Consider the powers of this neighborhood: V n ⊂ A for any n ∈ N. But the Lie group G is

connected, thus it is generated by any neighborhood of identity [49]:⋃
n∈N

V n = G.

Then A ⊃
⋃

n∈N V n = G, thus A = G.

Theorem 3.6 (Closure Test). A system Γ ⊂ L is controllable on a Lie group G iff the following condi-

tions hold:

(1) Lie(Γ) = L,

(2) clA = G.
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Proof. The necessity is straightforward. Let us prove the sufficiency. Consider the time-reversed system

−Γ = {−A | A ∈ Γ}.

Trajectories of the system −Γ are trajectories of the initial system Γ passed in the opposite direction,

thus

A−Γ = {exp(−t1A1) · · · exp(−tNAN ) | ti ≥ 0, Ai ∈ Γ}

=
{
(exp(tNAN ) · · · exp(t1A1))−1 | ti ≥ 0, Ai ∈ Γ

}
= A−1

Γ .

Since Lie(−Γ) = Lie(Γ) = L, it follows that intA−Γ 6= ∅, thus there exists an open subset V ⊂ A−Γ.

Further, by the hypothesis of this theorem, clAΓ = G, thus there exists a point X ∈ AΓ∩V 6= ∅. We have

X ∈ V ⊂ A−Γ = A−1
Γ , thus the open set V −1 ⊂ AΓ is a neighborhood of the inverse X−1. Consequently,

the open set V −1X ⊂ AΓ. But Id = X−1X ∈ V −1X ⊂ AΓ, thus Id ∈ intAΓ, and the system Γ is

controllable by Theorem 3.5.

The previous theorem has important far-reaching consequences. It means that in the study of control-

lability of full-rank systems one can replace the attainable set A by its closure clA. This idea gives rise

to the powerful extension techniques described in the following section.

4. Extension Techniques for Left-Invariant Systems

4.1. Saturate.

Definition 4.1. Let Γ1,Γ2 ⊂ L. The system Γ1 is called equivalent to the system Γ2: Γ1 ∼ Γ2 if

clAΓ1 = clAΓ2 .

It is easy to show that not only the attainable set A, but also its closure is a semigroup.

Lemma 4.1. Let Γ ⊂ L. Then clAΓ is a subsemigroup of G.

Proof. Let X, Y ∈ clAΓ. Then there exist sequences

{Xn}, {Yn} ⊂ AΓ such that Xn → X, Yn → Y as n →∞.

Then

{XnYn} ⊂ AΓ and XnYn → XY as n →∞.

Lemma 4.2. If Γ1 ∼ Γ and Γ2 ∼ Γ, then Γ1 ∪ Γ2 ∼ Γ.
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Proof. We have clAΓ1 = clAΓ2 = clAΓ. The inclusion

clAΓ ⊂ clAΓ1∪Γ2 (4.1)

is obvious in view of the the chain clAΓ = clAΓ1 ⊂ clAΓ1∪Γ2 .

Now we prove the inclusion

AΓ1∪Γ2 ⊂ clAΓ. (4.2)

Take an arbitrary element

X = exp(t1A1) · · · exp(tNAN ) ∈ AΓ1∪Γ2 , ti ≥ 0, Ai ∈ Γ1 ∪ Γ2.

We have

exp(tiAi) ∈ AΓ1 ∪ AΓ2 ⊂ clAΓ,

thus by Lemma 4.1 it follows that X ∈ clAΓ. So inclusion (4.2) is proved, and clAΓ1∪Γ2 ⊂ clAΓ. In view

of inclusion (4.1), it follows that Γ1 ∪ Γ2 ∼ Γ.

The previous lemma allows one to unite equivalent systems. It is then natural to consider the union of

all systems equivalent to a given one.

Definition 4.2. The saturate of a left-invariant system Γ ⊂ L is the following system:

Sat(Γ) = ∪{Γ′ ⊂ L | Γ′ ∼ Γ}.

Proposition 4.1. (1) Sat(Γ) ∼ Γ.

(2) Sat(Γ) = {A ∈ L | exp(R+A) ⊂ clAΓ}.

Item (1) means that the saturate of Γ is the largest left-invariant system on G equivalent to Γ, while

item (2) describes Sat(Γ) as a kind of a tangent object to clAΓ at the identity.

Proof. (1) Obviously, Γ ∼ Γ, thus Γ ⊂ Sat(Γ), so clAΓ ⊂ clASat(Γ). In order to prove the inclusion

ASat(Γ) ⊂ clAΓ, (4.3)

take any element

X = exp(t1A1) · · · exp(tNAN ) ∈ ASat(Γ), ti > 0, Ai ∈ Sat(Γ).

Each element Ai is contained in a system Γi ∼ Γ, thus exp(tiAi) ∈ AΓi ⊂ clAΓ. By the semigroup

property, clAΓ 3 X. Inclusion (4.3) and item (1) follow.

(2) Denote the system

Γ̂ = {A ∈ L | exp(R+A) ⊂ clAΓ}.
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First we prove the inclusion

Γ̂ ⊂ Sat(Γ). (4.4)

We show that Γ̂ ∼ Γ. Consider the representation

A
bΓ

= {exp(t1A1) · · · exp(tNAN ) | ti > 0, Ai ∈ Γ̂}.

Since all exp(tiAi) ∈ clAΓ, it follows that A
bΓ
⊂ clAΓ. Moreover, since Γ ⊂ Γ̂, then AΓ ⊂ A

bΓ
. Thus

clA
bΓ

= clAΓ, hence Γ̂ ∼ Γ. Inclusion (4.4) is proved.

In order to prove the reverse inclusion

Sat(Γ) ⊂ Γ̂, (4.5)

take any element A ∈ Sat(Γ). Then A ∈ Γ′ ∼ Γ. Thus exp(tA) ∈ clAΓ, i.e., A ∈ Γ̂. Inclusion (4.5)

follows. Taking into account inclusion (4.4), we obtain the required equality: Sat(Γ) = Γ̂.

Remark. Unfortunately, the saturate is not the appropriate tangent object to clA responsible for control-

lability: it is possible that Sat(Γ) = L, and nevertheless Γ is not controllable.

Example 4.1 (irrational winding of the torus). The torus is a two-dimensional Abelian Lie group:

G = T2 = S1 × S1 = {(x mod 1, y mod 1)}.

Its Lie algebra is

L = TIdT2 = R2.

Consider the following left-invariant system on G:

Γ = {A}, A = (1, r), r ∈ R \Q.

The attainable set is the irrational winding of the torus:

A = exp(R+A) = {(x mod 1, rx mod 1) | x ≥ 0} 6= T2,

clA = T2.

Thus

Γ ∼ L = Sat(Γ),

although Γ is not controllable on T2. The reason is clear — the rank condition is violated:

Lie(Γ) = RA 6= L.
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4.2. Lie saturate of invariant system. It is the following Lie-generated tangent object to clAΓ that

is responsible for controllability of Γ.

Definition 4.3. Lie saturate of a left-invariant system is defined as follows:

LS(Γ) = Lie(Γ) ∩ Sat(Γ).

The following description of Lie Saturate follows immediately from Proposition 4.1.

Corollary 4.1. LS(Γ) = {A ∈ Lie(Γ) | exp(R+A) ⊂ clAΓ}.

Theorem 4.1 (Lie Saturate Test). A left-invariant system Γ ⊂ L is controllable on a connected Lie

group G if and only if LS(Γ) = L.

Proof. Necessity follows from the definition of the Lie saturate.

Sufficiency. Assume that LS(Γ) = L. The connected Lie group G is generated by the one-parameter

semigroups {exp(tA) | A ∈ L, t ≥ 0} as a semigroup; thus the equality Sat(Γ) = L implies that cl(A) = G.

Since, in addition, the rank condition Lie(Γ) = L holds, then Γ is controllable by Theorem 3.6.

The basic properties of Lie saturate are collected in the following proposition.

Theorem 4.2. (1) LS(Γ) is a closed convex positive cone in L, i.e.,

(1a) LS(Γ) is topologically closed:

cl(LS(Γ)) = LS(Γ),

(1b) LS(Γ) is convex:

A,B ∈ LS(Γ) ⇒ αA + (1− α)B ∈ LS(Γ) ∀ α ∈ [0, 1],

(1c) LS(Γ) is a positive cone:

A ∈ LS(Γ) ⇒ αA ∈ LS(Γ) ∀ α ≥ 0.

Thus,

A,B ∈ LS(Γ) ⇒ αA + βB ∈ LS(Γ) ∀ α, β ≥ 0.

(2) For any ±A, B ∈ LS(Γ) and any s ∈ R,

exp(s adA)B = B + (s adA)B +
(s adA)2

2!
B + . . . +

(s adA)n

n!
B + · · ·

∈ LS(Γ).

(3) If ±A,±B ∈ LS(Γ), then ±[A,B] ∈ LS(Γ).
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(4) If A ∈ LS(Γ) and if the one-parameter subgroup {exp(tA) | t ∈ R} is periodic (i.e., compact), then

−A ∈ LS(Γ).

(5) Moreover, if A ∈ LS(Γ) and if the one-parameter subgroup {exp(tA) | t ∈ R} is quasi-periodic:

exp(R−A) ⊂ cl exp(R+A), (4.6)

then −A ∈ LS(Γ).

We denote by ad A the adjoint operator corresponding to A ∈ L:

adA : L → L, adA : B 7→ [A,B].

Proof. (1a) Take a converging sequence LS(Γ) 3 An → A ∈ L. Since the linear space Lie(Γ) is closed, we

have

An ∈ Lie(Γ) ⇒ A ∈ Lie(Γ).

Further, it follows that Sat(Γ) is closed as well: since An ∈ Sat(Γ), we have

clA 3 exp(tAn) → exp(tA) ∈ clA, t ≥ 0,

and A ∈ Sat(Γ). Thus A ∈ LS(Γ), and LS(Γ) is topologically closed.

(1b) Take any A,B ∈ LS(Γ), α ∈ [0, 1], and consider the convex combination C = αA+βB, β = 1−α.

There holds the following general formula:

exp(tC) = lim
n→∞

(
exp

(α

n
tA

)
exp

(
β

n
tB

))n

,

see e.g. [49], thus C ∈ Sat(Γ), and Sat(Γ) is convex. Since the linear space Lie(Γ) is convex, it follows

that LS(Γ) is convex as well.

(1c) It is easy to show that LS(Γ) is a cone. Take any A ∈ LS(Γ), α > 0. Then exp(tαA) ∈ clA, t ≥ 0,

i.e, αA ∈ LS(Γ).

To prove (2), assume that ±A,B ∈ LS(Γ). Denote the element

Bs = exp(s adA)B, s ∈ R. (4.7)

It is easy to see that this element admits the following representation:

Bs = exp(sA)B exp(−sA). (4.8)

Indeed, the both curves (4.7) and (4.8) are solutions to the Cauchy problem

B0 = B,
d

d s
Bs = [A,Bs].
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Further, it is obvious from (4.7) that Bs ∈ Lie(Γ). Representation (4.8) implies that

exp(tBs) = exp(sA) exp(tB) exp(−sA) ∈ cl(AΓ)

for any t ≥ 0, s ∈ R; thus Bs ∈ LS(Γ) for all s ∈ R.

Now (3) easily follows: if ±A,±B ∈ LS(Γ), then ±et ad AB,±B ∈ LS(Γ), that is why

±[A,B] = ± lim
t→0

et ad AB −B

t
∈ LS(Γ).

(4) follows from the chain

{exp(tA) | t ≥ 0} = {exp(tA) | t ∈ R} ⊂ clAΓ,

which is valid for all A ∈ LS(Γ) with a periodic one-parameter group.

Finally, we prove a more strong property (5). It follows from the quasi-periodic property (4.6) that

exp(−tA) = exp(t(−A)) ∈ cl exp(R+A) ⊂ clAΓ

for any t ≥ 0, thus −A ∈ LS(Γ).

Usually, it is difficult to construct the Lie saturate of a left-invariant system explicitly. That is why

Theorems 4.1 and 4.2 are applied as sufficient conditions of controllability via the following procedure.

Starting from a given system Γ, one constructs a completely ordered ascending family of extensions {Γα}

of Γ, i.e.,

Γ0 = Γ, Γα ⊂ Γβ if α < β.

The extension rules are provided by Theorem 4.2:

(1) given Γα, one constructs Γβ = cl(co(Γα));

(2) for ±A,B ∈ Γα, one constructs Γβ = Γα ∪ eR ad AB;

(3) for ±A,±B ∈ Γα, one constructs Γβ = Γα ∪ R[A,B];

(4, 5) given A ∈ Γα with periodic or quasi-periodic one-parameter group, one constructs Γβ = Γα ∪ RA.

Theorem 4.2 guarantees that all extensions Γα belong to LS(Γ). If one obtains the relation Γα = L at

some step α, then LS(Γ) = L, and the system Γ is controllable by Theorem 4.1.

5. Induced Systems on Homogeneous Spaces

Example 5.1 (bilinear systems). Consider the following right-invariant system on GL+(n):

Γ = A + RB ⊂ gl(n).

In the classical notation, this system has the form

Ẋ = AX + uBX, X ∈ GL+(n), u ∈ R. (5.1)
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Introduce also the following bilinear system:

ẋ = Ax + uBx, x ∈ Rn \ {0}, u ∈ R. (5.2)

We exclude the origin from Rn since linear vector fields vanish at the origin, thus it is an equilibrium for

bilinear systems.

If X(t) is a trajectory of the right-invariant system (5.1) with X(0) = Id, then the curve x(t) = X(t)x0

is a trajectory of the bilinear system (5.2) with x(0) = x0.

Assume that the right-invariant system (5.1) is controllable on GL+(n). Then it is easy to see that

the bilinear system (5.2) is controllable on Rn \ {0}. Indeed, take any two points x0, x1 ∈ Rn \ {0}.

There exists a matrix X1 ∈ GL+(n) such that X1x0 = x1. By virtue of controllability of Γ, there exists

a trajectory X(t) of the right-invariant system such that X(0) = Id, X(T ) = X1 for some T ≥ 0. Then

the trajectory x(t) = X(t)x0 of the bilinear system steers x0 to x1:

x(0) = X(0)x0 = Idx0 = x0, x(T ) = X(T )x0 = X1x0 = x1.

We showed that if the right-invariant system (5.1) is controllable on GL+(n), then the bilinear sys-

tem (5.2) is controllable on Rn \ {0}.

There were three key points in the preceding argument.

(1) The Lie group G = GL+(n) acts on the manifold M = Rn \ {0}, that is, any X ∈ G defines a

mapping

X : M → M, X : x 7→ Xx.

(2) G acts transitively on M :

∀ x0, x1 ∈ M ∃ X ∈ G such that Xx0 = x1.

(3) The bilinear system (5.2) is induced by the right-invariant system (5.1): if X(t) is a trajectory

of (5.1), then X(t)x is a trajectory of (5.2).

This construction generalizes as follows.

Definition 5.1. A Lie group G is said to act on a smooth manifold M if there exists a smooth mapping

θ : G×M → M

that satisfies the following conditions:

(1) θ(Y X, x) = θ(Y, θ(X, x)) for any X, Y ∈ G and any x ∈ M ;

(2) θ(Id, x) = x for any x ∈ M .
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Definition 5.2. A Lie group G acts transitively on M if for any x0, x1 ∈ M there exists X ∈ G such

that θ(X, x0) = x1. A manifold that admits a transitive action of a Lie group is called the homogeneous

space of this Lie group.

Definition 5.3. Let A ∈ L. The vector field θ∗A ∈ Vec M induced by the action θ is defined as follows:

(θ∗A)(x) =
d

dt

∣∣∣∣
t=0

θ(exp(tA), x), x ∈ M.

Example 5.2. The Lie group GL+(n) acts transitively on Rn \ {0} as follows:

θ(X, x) = Xx, X ∈ GL+(n), x ∈ Rn \ {0}.

For a right-invariant vector field V (X) = AX, its flow through the identity is eV t(Id) = exp(At), thus

(θ∗V )(x) =
d

dt

∣∣∣∣
t=0

θ(eV t(Id), x) =
d

dt

∣∣∣∣
t=0

exp(At)x = Ax.

Definition 5.4. Let Γ ⊂ L be a right-invariant system. The system

θ∗Γ ⊂ Vec M,

(θ∗Γ)(x) = {(θ∗A)(x) | A ∈ Γ}, x ∈ M,

is called the induced system on M .

Example 5.3. Let Γ = {A + uB | u ∈ R} ⊂ L be a right-invariant system on a linear Lie group

G ⊂ GL(n). In the classical notation, Γ has the form

Ẋ = AX + uBX, X ∈ G, u ∈ R.

We have θ∗(AX) = Ax, θ∗(BX) = Bx, thus θ∗(AX + uBX) = Ax + uBx. So the induced system θ∗Γ is

bilinear:

ẋ = Ax + uBx, x ∈ Rn \ {0}, u ∈ R.

Lemma 5.1. If X(t) is a trajectory of a right-invariant system Γ, then x(t) = θ(X(t), x0) is a trajectory

of the induced system θ∗Γ for any x0 ∈ M .

Proof. We can consider the case where the whole trajectory X(t) satisfies a single ODE Ẋ = AX(t),

A ∈ Γ, since an arbitrary trajectory of Γ is a concatenation of such pieces. Then X(t) = exp(At)X0 and
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x(t) = θ(exp(At)X0, x0). Then the required ODE is verified by differentiation:

ẋ(t) =
d

d t
θ(exp(At)X0, x0) =

d

d ε

∣∣∣∣
ε=0

θ(exp(A(t + ε))X0, x0)

=
d

d ε

∣∣∣∣
ε=0

θ(exp(Aε), θ(exp(At)X0, x0)︸ ︷︷ ︸
x(t)

)

= (θ∗A)(x(t)).

Theorem 5.1. Let θ be a transitive action of a Lie group G on a manifold M , let Γ ⊂ L be a right-in-

variant system on G, and let θ∗Γ ⊂ Vec M be the induced system on M .

(1) If Γ is controllable on G, then θ∗Γ is controllable on M .

(2) Moreover, if the semigroup AΓ acts transitively on M , then θ∗Γ is controllable on M .

Proof. Item (1) follows from (2), so we prove (2). Take any points x0, x1 ∈ M . The transitivity of action

of AΓ on M means that there exists X ∈ AΓ such that θ(X, x0) = x1. Further, the inclusion X ∈ AΓ

means that some trajectory X(t) of Γ steers Id to X: X(0) = Id, X(T ) = X, T ≥ 0. Then the curve

x(t) = θ(X(t), x0) is a trajectory of θ∗Γ that steers x0 to x1:

x(0) = θ(Id, x0) = x0, x(T ) = θ(X, x0) = x1.

Important applications of Theorem 5.1 are related to the linear action of linear groups G ⊂ GL(n; R)

on the vector space Rn. In this case, the induced systems are bilinear, or more generally, affine systems.

Example 5.4 (G = GL+(R), M = Rn \ {0}). We have

θ(X, x) = Xx,

Γ =

{
A +

m∑
i=1

uiBi

}
⊂ gl(n),

θ∗Γ : ẋ = Ax +
m∑

i=1

uiBix, x ∈ Rn \ {0}.

If A = GL+(n) or A = SL(n), then the bilinear system θ∗Γ is controllable on Rn \{0}. The attainable set

may be even less, for example, in the case A = SO(n)×R+ Id the bilinear system θ∗Γ remains controllable.

Remark. Linear groups acting transitively on Rn \ {0} or Sn are described, see [6–9, 27, 42].

33



Example 5.5 (G = SL(n), M = Rn \ {0}). Similarly,

θ(X, x) = Xx,

Γ =

{
A +

m∑
i=1

uiBi

}
⊂ sl(n),

θ∗Γ : ẋ = Ax +
m∑

i=1

uiBix, x ∈ Rn \ {0}.

If A is transitive on Rn \ {0}, then the bilinear system θ∗Γ is controllable on Rn \ {0}.

Example 5.6 (G = SO(n), M = Sn−1).

θ(X, x) = Xx,

Γ =

{
A +

m∑
i=1

uiBi

}
⊂ so(n),

θ∗Γ : ẋ = Ax +
m∑

i=1

uiBix, x ∈ Sn−1.

Example 5.7 (G = U(n) or SU(n), M = S2n−1).

θ(Z, z) = Zz,

Γ =

{
A +

m∑
i=1

uiBi

}
⊂ u(n) or su(n),

θ∗Γ : ż = Az +
m∑

i=1

uiBiz, z ∈ S2n−1.

Example 5.8 (G = Aff+(n), M = Rn). The connected component of identity in the affine group

Aff+(n) =


 X y

0 1

 ⊂ GL(n + 1)

acts transitively on the space

M = Rn =


 x

1

 ⊂ Rn+1

as follows:

θ

 X y

0 1

 ,

 x

1

 =

 X y

0 1

  x

1

 =

 Xx + y

1

 .

Consider a right-invariant system on G:

Γ =

{
C0 +

m∑
i=1

uiCi

}
, Ci =

 Ai bi

0 0

 ∈ aff(n).
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The induced vector fields are affine:

θ∗

 A b

0 0

  x

1

 =

 Ax + b

0

 ,

and the induced system has the form

θ∗Γ : ẋ = A0x + b0 +
m∑

i=1

ui(Aix + bi), x ∈ Rn.

In particular, for b0 = 0, A1 = · · · = Am = 0, we obtain the linear system

ẋ = A0x +
m∑

i=1

uibi, x ∈ Rn, ui ∈ R. (5.3)

Exercise 5.1. Show that if the Kalman condition holds:

span(b1, . . . , bm; A0b1, . . . , A0bm; . . . ; An−1
0 b1, . . . , A

n−1
0 bm) = Rn,

then the linear system (5.3) is controllable on Rn.

Example 5.9 (G = E(n), M = Rn). This case is completely similar to the case of Aff+(n).

In this section we developed a theory of induced systems for right-invariant systems because of the

important class of bilinear systems ẋ = Ax + uBx, where x ∈ Rn \ {0} is a column vector. Obviously, the

theory of induced systems for left-invariant systems is quite the same; in this case the induced systems

read ẏ = yA + uyB, where y ∈ Rn \ {0} is a row vector.

6. Controllability Conditions for Special Classes of Systems and Lie Groups

6.1. Symmetric systems. We return to the exposition for left-invariant systems Γ ⊂ L on a Lie group

G.

Definition 6.1. A system Γ ⊂ L is called symmetric if

Γ = −Γ,

i.e., together with any element A, this system contains also the sign-opposite element −A.

Given a symmetric system, for any admissible direction of motion A, the motion in the opposite

direction −A is also admissible.

Lemma 6.1. Let Γ = −Γ. Then A = O.
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Proof. We have

O = {exp(±t1A1) · · · exp(±tNAN ) | ti > 0, Ai ∈ Γ} .

But all −Ai ∈ Γ, thus A = O.

Thus the study of controllability for symmetric Γ is reduced to the verification of the rank condition.

Theorem 6.1. A symmetric left-invariant system Γ ⊂ L is controllable on a connected Lie group G if

and only if Lie(Γ) = L.

Proof. The necessity is a general fact. Sufficiency follows since for a full-rank system on a connected Lie

group the orbit coincides with the whole Lie group.

Example 6.1 (control-linear systems). A control-linear system

Γ =

{
m∑

i=1

uiAi | u = (u1, . . . , um) ∈ U ⊂ Rm

}

is symmetric if the set of control parameters U is symmetric with respect to the origin: U = −U ; in

particular, if U = Rm:

Γ = span(A1, . . . , Am) ⊂ L.

Such a system is controllable on a connected Lie group G iff Lie(A1, . . . , Am) = L.

Example 6.2 (symmetric bilinear system). Let A1, . . . , Am ∈ gl(n). Consider the corresponding sym-

metric bilinear system:

ẋ =
m∑

i=1

uiAix, x ∈ Rn \ {0}, ui ∈ R. (6.1)

Denote Lie(A1, . . . , Am) = L, and let G ⊂ GL(n) be the connected Lie subgroup corresponding to the Lie

algebra L. If G acts transitively on Rn \ {0} (or Sn−1), then the bilinear system (6.1) is controllable on

Rn \ {0} (respectively on Sn−1).

6.2. Compact Lie groups. In this section, we consider the case of a Lie group that is compact as a

topological space. For example, the Lie groups SO(n), U(n), SU(n) are compact and connected.

The following simple fact is crucial for the controllability problem on compact Lie groups.

Lemma 6.2. Let a Lie group G be compact, and let A belong to the Lie algebra L. Then the one-parameter

subgroup exp(RA) is quasi-periodic:

exp(R−A) ⊂ cl exp(R+A).
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Proof. Denote X = exp(tA) for an arbitrary fixed t > 0. We have to prove that

exp(−tA) = X−1 ∈ cl exp(R+A).

The sequence {Xn}, n ∈ N, has a converging subsequence in the compact Lie group G:

Xnk → Y ∈ G as k →∞, nk+1 > nk.

Then

Xnk+1−nk−1 = Xnk+1X−nkX−1 → Y Y −1X−1 = X−1 as k →∞.

But nk+1 − nk − 1 ≥ 0, thus X−1 ∈ cl exp(R+A).

Corollary 6.1. Let G be compact, and let Γ ⊂ L. Then LS(Γ) = Lie(Γ).

Proof. We show that LS(Γ) is a Lie algebra. If A,B ∈ LS(Γ), then ±A, ±B ∈ LS(Γ) by Lemma 6.2.

Thus αA + βB ∈ LS(Γ), α, β ∈ R, since LS(Γ) is a cone. Moreover ±[A,B] ∈ LS(Γ). It follows that

LS(Γ) is a Lie subalgebra of L.

Taking into account the chain Γ ⊂ LS(Γ) ⊂ Lie(Γ), we conclude that LS(Γ) = Lie(Γ).

Theorem 6.2. A left-invariant system Γ ⊂ L is controllable on a compact connected Lie group G if and

only if Lie(Γ) = L.

Proof. Apply Corollary 6.1.

Example 6.3 (SO(3)). Let G = SO(3), the set of all 3× 3 real orthogonal matrices with positive deter-

minant. The Lie group G is compact and connected. Its Lie algebra L = so(3) is the set of all 3× 3 real

skew-symmetric matrices.

Take any linearly independent matrices A1, A2 ∈ so(3) and consider the right-invariant system Γ =

{A1, A2}. Notice that the matrices A1, A2, and [A1, A2] span the whole Lie algebra so(3). By Theorem 6.2,

the system Γ is controllable. That is, any rotation in SO(3) can be written as the product of exponentials

exp(t1Ai1) · · · exp(tNAiN ), tj ≥ 0, ij ∈ {1, 2}, N ∈ N. (6.2)

The single-input right-invariant affine in control system

Ẋ = (A1 + uA2)X, u ∈ U ⊂ R, X ∈ SO(3) (6.3)

is also controllable (for any control set U containing more than one element).

Consequently, the induced bilinear system

ẋ = A1x + uA2x, x ∈ S2, u ∈ U

is controllable on the sphere S2.
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Example 6.4 (SO(n)). The previous considerations are generalized to the group G = SO(n) of rotations

of Rn. In this case, the Lie algebra L of G is the set of all n× n skew-symmetric matrices so(n).

Take the matrices A1 =
∑n−2

i=1 (Ei,i+1−Ei+1,i) and A2 = En−1,n−En,n−1. We denote by Eij the n× n

matrix with the only identity in row i and column j, and all other zero entries.

It is easy to show that Lie(A1, A2) = so(n). Thus, even though the group SO(n) is 1
2n(n − 1)-

dimensional, the system

Ẋ = (A1 + uA2)X, X ∈ SO(n), u ∈ U ⊂ R,

in which only one control is involved, is controllable (if the set of control parameters U contains at least

two distinct points).

Notice that the set of pairs (A1, A2) such that Lie(A1, A2) = L is open and dense in L×L (this is valid

for any semisimple Lie algebra L; see [46]). Thus, we can replace the matrices A1 and A2 by an “almost

arbitrary” pair in L× L.

Example 6.5 (SU(2)). For the Lie group G = SU(2), its Lie algebra can be represented as follows:

L = su(2) = span


 i 0

0 −i

 ,

 0 1

−1 0

 ,

 0 i

i 0

 .

For any linearly independent A1, A2 ∈ L, we have [A1, A2] /∈ span(A1, A2), thus Lie(A1, A2) = L. So the

system Γ = {A1 + uA2 | u ∈ U} (where U contains more than one element) is controllable on G = SU(2).

Consequently, the induced bilinear system

ż = A1z + uA2z, z ∈ S3, u ∈ R

is controllable on the sphere S3.

6.3. Semisimple Lie groups.

Definition 6.2. A subspace I ⊂ L is called an ideal of a Lie algebra L if

[I, L] ⊂ I.

Definition 6.3. A Lie algebra L is called simple if it is not Abelian and contains no proper (i.e., distinct

from {0} and L) ideals.

Definition 6.4. A Lie algebra L is called semisimple if it contains no nonzero Abelian ideals.

A semisimple Lie algebra is a direct sum of its simple ideals.

Definition 6.5. A Lie group G is called simple (resp., semisimple) if its Lie algebra L is simple (resp.,

semisimple).
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The Lie groups SL(n) and SU(n) are simple; the Lie groups SO(n), n 6= 4, are simple, while SO(4) is

semisimple.

For the controllability problem, we are interested in the case of SL(n) since the other two groups are

compact and for them controllability is equivalent to the rank condition.

We start from an example of a control system that has the full rank and is not controllable.

Example 6.6. Let G = SL(2) and Γ = A+RB ⊂ sl(2). Here A and B are traceless matrices of the form

A = (aij), a12 > 0, a21 > 0,

B =

 −b 0

0 b

 , b 6= 0.

Let us show first that

Lie(A,B) = L = sl(2). (6.4)

Since dim sl(2) = 3, we have to obtain just one element in Lie(A,B) linearly independent of A and B.

Compute the commutator:

[A,B] = 2b

 0 a12

−a21 0

 ,

now it is obvious that

span(A,B, [A,B]) = sl(2).

Equality (6.4) follows, i.e., the system Γ is full-rank.

In order to show that Γ is noncontrollable on SL(2), we prove that the bilinear system θ∗Γ is noncon-

trollable on R2 \ {0}. The induced system has the form

ẋ = Ax + uBx, x ∈ R2 \ {0}, u ∈ R. (6.5)

It is easy to see that the field Bx is tangent to the axes of coordinates {x1 = 0} and {x2 = 0}. On the

other hand, the field Ax is directed inside the first quadrant R2
+ = {x1 ≥ 0, x2 ≥ 0} on its boundary.

Consequently, R2
+ is an invariant set of the bilinear system (6.5). Thus the induced system θ∗Γ is not

controllable on the homogeneous space R2 \ {0}, hence the right-invariant system Γ is not controllable on

the Lie group SL(2).

The controllability problem on SL(n) is much harder than the one on compact Lie groups. In fact, the

whole machinery of the Lie saturation on Lie groups was developed primarily for the study of controllability

on SL(n). There are no controllability tests in this case, but there are good sufficient conditions for

controllability on SL(n).
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Theorem 6.3. Let G = SL(n) and Γ = A + RB ⊂ sl(n). Suppose that the matrices A = (aij) and B

satisfy the conditions:

(1) a1nan1 < 0;

(2) the matrix A is permutation-irreducible;

(3) B = diag(b1, . . . , bn);

(4) b1 < b2 < · · · < bn;

(5) bi − bj 6= bk − bm for (i, j) 6= (k, m).

Then the system Γ is controllable on the group SL(n).

An n× n matrix A is called permutation-reducible if there exists a permutation matrix P such that

P−1AP =

 A1 A2

0 A3

 ,

where A3 is a k × k matrix with 0 < k < n. An n × n matrix is called permutation-irreducible if it is

not permutation-reducible. Permutation-irreducible matrices are matrices having no nontrivial invariant

coordinate subspaces.

Now we prove Theorem 6.3 (in the case n = 2 only: in the general case the proof is longer but uses

essentially the same ideas [12]).

Proof. In the case n = 2 we have:

A =

 a11 a12

a21 a22

 , a12a21 < 0,

B =

 −b 0

0 b

 , b > 0.

Without loss of generality, we can assume that

a12 > 0, a21 < 0,

in the case of opposite signs the proof is the same.

We show that

LS(Γ) = sl(2) = span(E22 − E11, E12, E21). (6.6)

First of all,

LS(Γ) 3 A + uB

|u|
→u→±∞ ±B ∈ LS(Γ),

thus

A, ±B ∈ LS(Γ).
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That is why

At = exp(t adB)A ∈ LS(Γ), t ∈ R.

Compute the matrix of the adjoint operator

adB : sl(2) → sl(2), B = −b(E11 − E22),

in the basis (6.6). We have

(adB)(E11 − E22) = 0,

(adB)E12 = −2bE12,

(adB)E21 = 2bE21.

Thus the adjoint operator has the diagonal matrix

adB =


0 0 0

0 −2b 0

0 0 2b

 ,

and its exponential is easily computed:

exp(t adB) =


1 0 0

0 exp(−2bt) 0

0 0 exp(2bt)

 .

Further, in the basis (6.6)

A =


a11

a12

a21

 , At = exp(t adB)A =


a11

exp(−2bt)a12

exp(2bt)a21

 ∈ LS(Γ).

Since ±B = ∓b(E11 − E22) ∈ LS(Γ), it follows that ±(E11 − E22) ∈ LS(Γ), and we can kill the first

coordinate of At:

A1
t = At − a11(E11 − E22) =


0

exp(−2bt)a12

exp(2bt)a21

 ∈ LS(Γ).

We go on:

LS(Γ) 3 exp(2bt)A1
t =


0

a12

exp(4bt)a21

 →t→−∞


0

a12

0

 ∈ LS(Γ).
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Consequently,

1
a12


0

a12

0

 = E12 ∈ LS(Γ).

Similarly,

LS(Γ) 3 exp(−2bt)A1
t =


0

exp(−4bt)a12

a21

 →t→+∞


0

0

a21

 ∈ LS(Γ).

Then

1
|a21|


0

0

a21

 = −E21 ∈ LS(Γ).

Summing up,

E12 − E21 ∈ LS(Γ).

But this element generates a periodic one-parameter group:

exp(t(E12 − E21)) =

 cos t sin t

− sin t cos t

 .

That is why

±(E12 − E21) ∈ LS(Γ).

Recall that ±(E11 − E22) ∈ LS(Γ) as well. Thus

±[E12 − E21, E11 − E22] = ∓2(E12 + E21) ∈ LS(Γ).

It follows that

±E12, ±E21,±(E11 − E22) ∈ LS(Γ),

thus LS(Γ) = sl(2), and the system Γ is controllable on SL(2).

There exist generalizations of the previous theorem for the case of complex spectrum of the matrix B

and for general semisimple Lie groups G [2, 15, 16].
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6.4. Solvable Lie groups. For a Lie algebra L, its derived series is the following descending chain of

subalgebras:

L ⊃ L(1) = [L,L] ⊃ L(2) = [L(1), L(1)] ⊃ · · · .

Definition 6.6. A Lie algebra L is called solvable if its derived series stabilizes at zero:

L ⊃ L(1) ⊃ L(2) ⊃ · · · ⊃ L(N) = {0}

for some N ∈ N. A Lie group with a solvable Lie algebra is called solvable.

Example 6.7. The groups T(n) and E(2) are solvable.

There is a general controllability test for right-invariant systems on connected, simply connected solvable

Lie groups (recall that a topological space M is called simply connected if any closed loop in M can be

contracted to a point).

Theorem 6.4. Let a Lie group G be connected, simply connected, and solvable. A right-invariant system

Γ ⊂ L is controllable iff the following two properties hold:

(1) Lie(Γ) = L and

(2) Γ is not contained in a half-space in L bounded by a subalgebra.

If G is not simply connected, conditions (1), (2) remain sufficient for controllability of Γ.

We will prove only the easy part of this test — necessity. Sufficiency is highly nontrivial, its proof may

be found in [19].

And necessity in Theorem 6.4 is a consequence of the following necessary controllability condition for

general (not necessarily solvable) simply connected Lie groups.

Theorem 6.5. Let G be a connected, simply connected Lie group, and let Γ ⊂ L. If Γ is contained in a

half-space in L bounded by a subalgebra, then Γ is not controllable on G.

Proof. Suppose that Γ is contained in a half-space Π ⊂ L bounded by a subalgebra l ⊂ L, dim l = dim L−1.

We have Π = R+A + l for some A ∈ L. There exists a Lie subgroup H ⊂ G with the Lie algebra l. Since

G is simply connected and dim H = dim G− 1, the subgroup H is closed in G. Then the coset space

G/H = {XH | X ∈ G}

is a smooth manifold. Moreover,

dim G/H = dim G− dim H = 1.
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Further, since G is simply connected, its quotient G/H is simply connected as well. Summing up,

G/H = R.

The quotient G/H is a homogeneous space of G: the transitive action is

θ : G×G/H → G/H, θ(Y, XH) = Y XH.

In order to show that Γ is noncontrollable on G, we prove that the induced system θ∗Γ is noncontrollable

on the homogeneous space G/H.

Denote the projection

π : G → G/H, π(X) = XH.

For any C ∈ l we have

θ∗C|π(Id) =
d

d t

∣∣∣∣
t=0

θ(exp(tC),H) =
d

d t

∣∣∣∣
t=0

exp(tC)︸ ︷︷ ︸
∈H

·H

=
d

d t

∣∣∣∣
t=0

π(H) =
d

d t

∣∣∣∣
t=0

π(Id)

= 0.

That is,

θ∗l|π(Id) = 0.

Since Γ ⊂ Π = R+A + l, then

θ∗Γ|π(Id) ⊂ θ∗(R+A + l)|π(Id) = θ∗(R+A)|π(Id) = R+ θ∗A|π(Id) .

So admissible velocities of the induced system θ∗Γ at π(Id) ∈ R belong to a half-line. Thus θ∗Γ is not

controllable on R = G/H and Γ is not controllable on G.

In addition to Theorem 6.4, it would be desirable to have a controllability condition with easy to verify

hypotheses. We give such a condition for a subclass of solvable Lie groups.

Definition 6.7. A solvable Lie algebra is called completely solvable if all adjoint operators adA, A ∈ L,

have only real eigenvalues.

Example 6.8. The triangular algebra t(n) is completely solvable.

Definition 6.8. A Lie algebra is called nilpotent if all adjoint operators ad A, A ∈ L, have only zero

eigenvalues.
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Example 6.9. The Lie group

T0(n) = {X = (xij) | xij = 0 ∀i > j, xii = 1 ∀i}

is nilpotent.

Any nilpotent Lie algebra is completely solvable. An example of a solvable but not completely solvable

Lie algebra is provided by the Lie algebra e(2) of the Euclidean group of the plane.

Theorem 6.6. Let G be a completely solvable, connected, simply connected Lie group, and let

Γ =

{
A +

m∑
i=1

uiBi | ui ∈ R

}
⊂ L.

The system Γ is controllable iff Lie(B1, . . . , Bm) = L.

Proof. Sufficiency. We have

LS(Γ) 3 A + uiB

|ui|
→u→±∞ ±Bi ∈ LS(Γ),

thus

Lie(B1, . . . , Bm) ⊂ LS(Γ).

If Lie(B1, . . . , Bm) = L, then LS(Γ) = L, and Γ is controllable.

Necessity is based upon the following general fact: in a completely solvable Lie algebra L, any subalgebra

l1 ⊂ L, l1 6= L, is contained in a subalgebra l2 ⊃ l1 such that dim l2 = dim l1 + 1, see [31].

Let Lie(B1, . . . , Bm) = l1 6= L. Then there exists a codimension one subalgebra l2 in L containing l1:

l1 ⊂ l2 ⊂ L, dim l2 = dim L− 1.

The system Γ is contained in a larger system:

Γ =

{
A +

m∑
i=1

uiBi

}
⊂ A + Lie(B1, . . . , Bm) = A + l1 ⊂ R+A + l2.

(1) If A /∈ l2, then Π = R+A + l2 is a half-space bounded by the subalgebra l2 and containing Γ. Thus

Γ is not controllable.

(2) And if A ∈ l2, then R+A + l2 = l2 is a subalgebra containing Γ. Thus Γ is not full-rank, thus it is

not controllable.
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6.5. Semi-direct products of Lie groups.

Definition 6.9. Let a Lie group K act linearly on a vector space V . The semi-direct product of V and

K is the Lie group defined as the set

G = V n K = {(v, k) | v ∈ V, k ∈ K}

endowed with the product smooth structure, and the group operation

(v1, k1) · (v2, k2) = (v1 + k1v2, k1k2).

Example 6.10. The Euclidean group E(n) is the semi-direct product Rn n SO(n), this is obvious since

E(n) =


 X y

0 1

 ∈ M(n + 1) | X ∈ SO(n), y ∈ Rn


and  X1 y1

0 1

  X2 y2

0 1

 =

 X1X2 X1y2 + y1

0 1

 .

The following controllability test for semi-direct products can be seen as a generalization of the con-

trollability test for compact Lie groups given in Th. 6.2.

Theorem 6.7. Let K be a compact connected Lie group acting linearly on a vector space V , and let

G = V n K. Assume that the action of K has no nonzero fixed points in V . An invariant system Γ ⊂ L

is controllable on G iff Lie(Γ) = L.

Example 6.11. The group SO(n) has no nonzero fixed points in Rn, thus an invariant system Γ ⊂ e(n)

is controllable on E(n) = Rn n SO(n) iff Γ is full-rank.

We prove Theorem 6.7 in the simplest case G = E(2), Γ = A + RB. The proof in the general case, as

well as a generalization for the case where K has fixed points in V , may be found in [5].

Let G = E(2), Γ = A + RB ⊂ e(2). We have

e(2) = span(e1, e2, e3), e1 = E12 − E21, e2 = E13, e3 = E23.

The multiplication table in L = e(2) is as follows:

[e1, e2] = −e3, [e1, e3] = e2, [e2, e3] = 0, (6.7)

thus the derived series is

L = span(e1, e2, e3) ⊃ L(1) = span(e2, e3) ⊃ L(2) = {0},
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so e(2) is solvable. Further, Sp(ad e1) = {0,±i} 6⊂ R, so e(2) is not completely solvable. It easily follows

from multiplication table (6.7) that span(e2, e3) is the only two-dimensional subalgebra in e(2).

Now we give a controllability test on E(2).

Theorem 6.8. A system Γ = A + RB ⊂ e(2) is controllable on G = E(2) iff the following conditions

hold:

(1) A, B are linearly independent and

(2) {A, B} 6⊂ span(e2, e3).

Proof. Necessity. If A,B are linearly dependent or {A,B} ⊂ span(e2, e3), then Lie(Γ) = Lie(A,B) 6= L,

thus Γ is not controllable.

Sufficiency. Let A, B are linearly independent and {A, B} 6⊂ span(e2, e3). Then there exist linearly

independent Au = A + uB and Av = A + vB such that Au, Av /∈ span(e2, e3). For the element

Au = α1e1 + α2e2 + α3e3, α1 6= 0,

the one-parameter subgroup

exp(sAu) =


cos(α1s) sin(α1s) α2

α1
sin(α1s) + α3

α1
(1− cos(α1s))

− sin(α1s) cos(α1s) α2
α1

(cos(α1s)− 1) + α3
α1

sin(α1s)

0 0 1


is periodic. Since Au ∈ Γ, then ±Au ∈ LS(Γ). Similarly, ±Av ∈ LS(Γ). Thus the subspace l =

Lie(Au, Av) ⊂ LS(Γ). But l is not contained in span(e2, e3) — the only two-dimensional subalgebra in

e(2). Thus l = e(2), LS(Γ) = e(2) = L, and Γ is controllable on E(2).

Now we are able to prove Theorem 6.7 in the simplest case.

Corollary 6.2. A system Γ = A + RB ⊂ e(2) is controllable on E(2) iff Lie(Γ) = e(2).

Proof. Necessity of the rank condition is a general fact. On the other hand, if Lie(Γ) = e(2), then

conditions (1), (2) of Theorem 6.8 are satisfied, thus Γ is controllable on E(2).

7. Pontryagin Maximum Principle for Invariant Optimal Control Problems on Lie Groups

Now we turn to optimal control problems of the form

q̇ = f(q, u), q ∈ M, u ∈ U ⊂ Rm,

q(0) = q0, q(t1) = q1,

J(u) =

t1∫
0

ϕ(q(t), u(t)) dt → min .
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Here M is a smooth manifold, f(q, u) and ϕ(q, u) are smooth, and admissible controls u(t) are measurable

locally bounded.

In order to state the fundamental necessary optimality condition — Pontryagin Maximum Principle [30]

— we recall some basic notions of the Hamiltonian formalism on the cotangent bundle.

7.1. Hamiltonian systems on T ∗M . Let M be a smooth n-dimensional manifold. At any point

q ∈ M , the tangent space TqM has the dual space — the cotangent space T ∗
q M = (TqM)∗. The disjoint

union of all cotangent spaces is the cotangent bundle T ∗M =
⋃

q∈M T ∗
q M , it is a smooth manifold of

dimension 2n. In order to construct local coordinates on T ∗M , take any local coordinates (x1, . . . , xn)

on M . Then dx1q, . . . , dxnq are basis linear forms in T ∗
q M , and any covector λ ∈ T ∗

q M is decomposed

as λ =
∑n

i=1 pidxiq. The 2n-tuple (p1, . . . , pn;x1, . . . , xn) provides local coordinates called canonical

coordinates on the cotangent bundle T ∗M .

The canonical projection π : T ∗M → M maps a covector λ ∈ T ∗
q M to the base point q ∈ M .

The tautological 1-form s ∈ Λ1(T ∗M) is defined as follows. Take any point λ ∈ T ∗M , π(λ) = q, and

any tangent vector ξ ∈ Tλ(T ∗M). Then

〈sλ, ξ〉 = 〈λ, π∗ξ〉.

The symplectic form σ ∈ Λ2(T ∗M) is defined as the differential

σ = ds.

Any smooth function h ∈ C∞(T ∗M) is called a Hamiltonian. The corresponding Hamiltonian vector

field ~h ∈ Vec(T ∗M) is introduced in the following way. The differential dh is a 1-form on T ∗M . On the

other hand, for any vector field V ∈ Vec(T ∗M), one can define the 1-form σ(V, · ) = iV σ ∈ Λ1(T ∗M).

The Hamiltonian vector field corresponding to a Hamiltonian function h is defined as such vector field
~h ∈ Vec(T ∗M) that

dh = −i~hσ.

Example 7.1. In canonical coordinates (p1, . . . , pn;x1, . . . , xn) on T ∗M , we have:

s = p dx =
n∑

i=1

pi dxi,

σ = dp ∧ dx =
n∑

i=1

dpi ∧ dxi.
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For a Hamiltonian h = h(p, x) ∈ C∞(T ∗M), the Hamiltonian system of ODEs λ̇ = ~h(λ) in canonical

coordinates has the form

ṗ = −∂ h

∂ x
,

ẋ =
∂ h

∂ p
.

7.2. Pontryagin Maximum Principle on smooth manifolds. Consider optimal control problem

of the form

q̇ = f(q, u), q ∈ M, u ∈ U ⊂ Rm, (7.1)

q(0) = q0, q(t1) = q1, t1 fixed or free, (7.2)

J(u) =

t1∫
0

ϕ(q(t), u(t)) dt → min . (7.3)

Let λ ∈ T ∗M be a covector, ν ∈ R a parameter, and u ∈ U a control parameter. Introduce the family

of Hamiltonians

hν
u(λ) = 〈λ, f(q, u)〉+ νϕ(q, u).

Theorem 7.1 (Pontryagim maximum principle on smooth manifolds). Let ũ(t), t ∈ [0, t1], be an optimal

control in the problem (7.1)–(7.3) with fixed time t1. Then there exists a Lipschitzian curve λt ∈ T ∗
q̃(t)M ,

t ∈ [0, t1], and a number ν ∈ R such that:

λ̇t =
−→
hν

ũ(t) (λt), (7.4)

hν
ũ(t)(λt) = max

u∈U
hν

u(λt), (7.5)

(λt, ν) 6≡ (0, 0), t ∈ [0, t1], (7.6)

ν ≤ 0. (7.7)

Remark. For the problem (7.1)–(7.3) with free terminal time t1, necessary optimality conditions read

as (7.4)–(7.7) plus the additional equality hν
ũ(t)(λ(t)) ≡ 0.

The proof of Pontryagin Maximum Principle on smooth manifolds may be found in [1].

7.3. Hamiltonian systems on T ∗G. Notice that in general the cotangent bundle T ∗M of a smooth

manifold M is not trivial, i.e., cannot be represented as the direct product E ×M of a vector space E

with M . Although, the cotangent bundle T ∗G of a Lie group G has a natural trivialization. We will

apply this trivialization in order to write Hamiltonian system of PMP for optimal control problems on

Lie groups.

Let E be a vector space of dimension dim E = dim M = n.
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Definition 7.1. A trivialization of the cotangent bundle T ∗M is a diffeomorphism Φ : E ×M → T ∗M

such that:

(1) Φ(e, q) ∈ T ∗
q M, e ∈ E, q ∈ M ,

(2) Φ( · , q) : E → T ∗
q M is a linear isomorphism for any q ∈ M .

At any point (e, q) of the trivialized cotangent bundle E ×M ∼= T ∗M , we have the following identifi-

cations of the tangent and cotangent bundles:

T(e,q)(E ×M) ∼= TeE ⊕ TqM ∼= E × TqM,

T ∗
(e,q)(E ×M) ∼= T ∗

e E ⊕ T ∗
q M ∼= E∗ × T ∗

q M.

Respectively, any tangent and cotangent vector are decomposed into the vertical and horizontal parts:

V = Vv + Vh, V ∈ T(e,q)(E ×M), Vv ∈ E, Vh ∈ TqM,

ω = ωv + ωh, ω ∈ T ∗
(e,q)(E ×M), ωv ∈ E∗, ωh ∈ T ∗

q M.

For a Lie group G, the cotangent bundle T ∗G has a natural trivialization as follows:

Φ : L∗ ×G → T ∗G, (a,X) 7→ āX , a ∈ L∗, X ∈ G.

Here L∗ is the dual space of the Lie algebra L = TIdG, and ā ∈ Λ1(G) is the left-invariant 1-form on G

obtained by left translations from the covector a = āId ∈ L∗:

〈āX , XA〉 = 〈a,A〉, a ∈ L∗, A ∈ L, X ∈ G.

Now we compute the pull-back of the tautological 1-form s, the symplectic 2-form σ, and a Hamiltonian

vector field ~h to the trivialized cotangent bundle L∗ ×G ∼= T ∗G.

We start from the tautological 1-form Φ̂s ∈ Λ1(L∗×G). Take any point (a,X) ∈ L∗×G and a tangent

vector (ξ,XA) ∈ L∗ ⊕ TXG. Then〈
(Φ̂s)(a,X), (ξ, XA)

〉
=

〈
sāX ,Φ∗(a,X)(ξ,XA)

〉
=

〈
āX , π∗Φ∗(a,X)(ξ, XA)

〉
= 〈āX , XA〉 = 〈a,A〉 . (7.8)

Further, compute the symplectic 2-form Φ̂σ ∈ Λ2(L∗×G). For any tangent vectors (ξ, XA), (η, XB) ∈

L∗ ⊕ TXG we have

(Φ̂σ)(a,X)((ξ,XA), (η, XB))

since Φ̂σ = Φ̂ds = dΦ̂s

= (dΦ̂s)(a,X)((ξ,XA), (η, XB))
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since dω(V,W ) = V 〈ω, W 〉 −W 〈ω, V 〉 − 〈ω, [V,W ]〉

= (ξ,XA)〈Φ̂s(a,X), (η, XB)〉 − (η, XB)〈Φ̂s(a,X), (ξ,XA)〉

− 〈Φ̂s(a,X), [(ξ, XA), (η, XB)]〉

taking into account formula (7.8) for Φ̂s

= (ξ,A)〈a,B〉 − (η, B)〈a,A〉 − 〈a, [A,B]〉

= 〈ξ,B〉 − 〈η, A〉 − 〈a, [A,B]〉.

Finally, take a Hamiltonian h = h(a) not depending on X ∈ G, this is the form of the Hamiltonian of

PMP for a left-invariant optimal control problem on the Lie group G. Decompose the required Hamiltonian

vector field ~h ∈ Vec(L∗ ×G) into the vertical and horizontal parts:

~h(a,X) = (ξ, XA) ∈ L∗ ⊕ TXG, a ∈ L∗, X ∈ G.

Apply the identity dh = −Φ̂σ(~h, · ) to an arbitrary tangent vector (η, XB) ∈ L∗ ⊕ TXG. Since the

Hamiltonian h does not depend on X, we denote

dh =
∂ h

∂ a
∈ (L∗)∗ = L.

Taking into account formula (7.8) for Φ̂σ, we obtain:〈
∂ h

∂ a
, (η, XB)

〉
= 〈dh, (η, XB)〉 = −Φ̂σ(a,X)((ξ,XA), (η, XB))

= −〈ξ,B〉+ 〈η, A〉+ 〈a, [A,B]〉. (7.9)

Setting B = 0 in (7.9), we compute the vertical part of ~h:〈
∂ h

∂ a
, (η, 0)

〉
=

〈
η,

∂ h

∂ a

〉
= 〈η, A〉 ∀η ∈ L∗,

thus A =
∂ h

∂ a
.

Now we set η = 0 in (7.9) and find the horizontal part of ~h:

0 = 〈dh, (0, XB)〉 = −〈ξ, B〉+ 〈a, [A,B]〉,

thus

〈ξ,B〉 = 〈a, [A,B]〉 = 〈(adA)∗a,B〉 ∀B ∈ L.

So ξ = (adA)∗a =
(

ad
∂ h

∂ a

)∗
a.
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Summing up, the Hamiltonian system on T ∗G ∼= L∗ × G for a left-invariant Hamiltonian h = h(a),

a ∈ L∗, has the form 
ȧ =

(
ad

∂ h

∂ a

)∗
a, a ∈ L∗,

Ẋ = X
∂ h

∂ a
, X ∈ G.

(7.10)

7.4. Hamiltonian systems in the case of compact Lie group. The Hamiltonian system (7.10)

simplifies in the case of a compact Lie group G.

Let G ⊂ GL(N) be a compact linear Lie group. Then it is easy to show that in fact G ⊂ O(N). That

is, there exists an inner product g( · , · ) on RN such that

g(Xu, Xv) = g(u, v) ∀X ∈ G, ∀u, v ∈ RN .

Indeed, start from an arbitrary inner product g̃( · , · ) on RN , and choose any left-invariant 1-forms

ω1, . . . , ωn ∈ Λ1(G) linearly independent at each point of G. Then the required inner product g can be

constructed as follows:

g(u, v) =
∫
G

g̃(Xu, Xv) ω1 ∧ · · · ∧ ωn.

So in the sequel we assume that G ⊂ O(N), thus L ⊂ so(N). But the Lie algebra so(N) has an

invariant inner product 〈·, ·〉:

〈A,B〉 = − tr(AB).

Writing skew-symmetric matrices as

A = (Aij), B = (Bij), Aij = −Aji, Bij = −Bji,

we have

〈A,B〉 =
N∑

i,j=1

AijBij .

The product 〈·, ·〉 is invariant in the sense of the following identity:〈
et ad CA, et ad CB

〉
= 〈A,B〉 ∀A, B, C ∈ so(N), ∀t ∈ R. (7.11)

In other words, the operator et ad C : so(N) → so(N) is orthogonal. This identity easily follows since

et ad CA = etCAe−tC and〈
et ad CA, et ad CB

〉
= − tr(etCAe−tCetCBe−tC) = − tr(etCABe−tC)

= − tr(AB) = 〈A,B〉

by invariance of trace.
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Differentiating identity (7.11) with respect to t at t = 0, we obtain the infinitesimal version of the

invariance identity:

〈adC(A), B〉+ 〈A, adC(B)〉 = 0 ∀A, B, C ∈ so(N),

i.e., the operator adC : so(N) → so(N) is skew-symmetric.

Consequently, the Lie algebra L ⊂ so(N) is endowed with an invariant scalar product. This allows us

to identify the Lie algebra L with its dual space L∗:

A ↔ Ã = 〈A, · 〉, A ∈ L, Ã ∈ L∗.

Via this identification, the operator
(

ad
∂ h

∂ a

)∗
: L∗ → L∗ becomes defined in L. Let A ∈ L, we compute

the action of the operator (adA)∗ : L → L. For any B,C ∈ L, we have

〈(adA)∗B̃, C〉 = 〈B̃, (adA)C〉 = 〈B, (adA)C〉 = −〈(adA)B,C〉

= −〈 ˜(adA)B,C〉.

Thus (adA)∗B̃ = − ˜adA(B), so the operator (adA)∗ : L → L coincides with − adA.

In particular, the operator
(

ad
∂ h

∂ a

)∗
: L∗ → L∗ is identified with the operator − ad

∂ h

∂ a
: L → L. So

for a compact Lie group G, the vertical part of the Hamiltonian system is defined on the Lie algebra L:
ȧ = −

(
ad

∂ h

∂ a

)
a =

[
a,

∂ h

∂ a

]
, a ∈ L,

Ẋ = X
∂ h

∂ a
, X ∈ G.

(7.12)

Now we apply expressions (7.10), (7.12) for Hamiltonian systems in order to study invariant optimal

control problems on Lie groups.

8. Examples of Invariant Optimal Control Problems on Lie Groups

8.1. Riemannian problem on compact Lie group. Let G be a compact connected Lie group. The

invariant scalar product 〈 · , · 〉 in the Lie algebra L defines a left-invariant Riemannian structure on G:

〈XA,XB〉X = 〈A,B〉, A, B ∈ L, X ∈ G, XA, XB ∈ TXG.

So in every tangent space TXG there is a scalar product 〈 · , · 〉X . For any Lipschitzian curve

X : [0, t1] → M

its Riemannian length is defined as integral of velocity:

l =

t1∫
0

|Ẋ(t)| dt, |Ẋ| =
√
〈Ẋ, Ẋ〉.
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The problem is stated as follows: given any pair of points X0, X1 ∈ G, find the shortest curve in G that

connects X0 and X1.

The corresponding optimal control problem is as follows:

Ẋ = Xu, X ∈ G, u ∈ L, (8.1)

X(0) = X0, X(t1) = X1, (8.2)

X0, X1 ∈ G fixed, (8.3)

l(u) =

t1∫
0

|u(t)| dt → min . (8.4)

First of all, notice that invariant system (8.1) is controllable since Γ = L is full-rank and symmetric,

while G is connected.

By Cauchy-Schwartz inequality,

(l(u))2 =

 t1∫
0

|u(t)| dt

2

≤
t1∫

0

|u(t)|2 dt · t1,

moreover, the equality occurs only if |u(t)| ≡ const. Consequently, the Riemannian problem l → min is

equivalent to the problem

J(u) =
1
2

t1∫
0

|u(t)|2 dt → min . (8.5)

The functional J is more convenient than l since J is smooth and its extremals are automatically curves

with constant velocity. In the sequel we consider the problem with the functional J : (8.1)–(8.3), (8.5).

Further, Filippov’s theorem [1] implies existence of optimal controls in problem (8.1)–(8.3), (8.5), thus

in the initial problem (8.1)–(8.4) as well.

The Hamiltonian of PMP for the problem J → min has the form:

hν
u(a,X) = 〈āX , Xu〉+

ν

2
|u|2 = 〈a, u〉+

ν

2
|u|2 = hν

u(a).

We apply the Pontryagim maximum principle. If a pair (u(t), X(t)) is optimal, t ∈ [0, t1], then there

exist a curve a(t) ∈ L and ν ≤ 0 such that:

(1) (a(t), ν) 6= 0,

(2)


ȧ =

[
a,

∂ h

∂ a

]
= [a, u],

Ẋ = X
∂ h

∂ a
= Xu.

(3) hν
u(t)(a(t)) = max

u∈L
hν

u(a(t)).

54



Since the group G is compact, we write Hamiltonian system (2) in the form (7.12).

Consider first the abnormal case: ν = 0. The maximality condition

h0
u(a) = 〈a, u〉 → max

u∈L

implies that a(t) ≡ 0. This contradicts the Pontryagim maximum principle since the pair (ν, a) should be

nonzero. So there are no abnormal extremal trajectories.

Now consider the normal case: ν < 0. Notice that conditions of PMP (1)–(3) are preserved under

multiplications of (a, ν) by positive constants, so we can assume that ν = −1. The maximality condition

h−1
u (a) = 〈a, u〉 − 1

2
|u|2 → max

u∈L

gives u(t) ≡ a(t). The Hamiltonian system (2) for such a control has the form:ȧ = [a, a] = 0,

Ẋ = Xa.

Thus optimal trajectories are left translations of one-parameter subgroups in M :

X(t) = X0e
ta, a ∈ L.

We showed that for any X0, X1 ∈ G and any t1 > 0 there exists a ∈ L such that

X1 = X0e
at1 .

In particular, for the case X0 = Id, t1 = 1, we obtain that any point X1 ∈ G can be represented in the

form

X1 = ea, a ∈ L.

That is, any element X1 in a connected compact Lie group G has a logarithm a in the Lie algebra L.

8.2. Sub-Riemannian problem on SO(3). Consider the case G = SO(3), and modify the previous

problem. As before, we should find the shortest path between fixed points X0, X1 in the Lie group G.

But now admissible velocities Ẋ are not free: they should be tangent to a left-invariant distribution (of

corank 1) on X. That is, we define a left-invariant field of tangent hyperplanes on X, and Ẋ(t) should

belong to the hyperplane attached at the point X(t). A problem of finding shortest curves tangent to a

given distribution ∆X ⊂ TXG is called a sub-Riemannian problem:

Ẋ(t) ∈ ∆X(t), t ∈ [0, t1],

X(0) = X0, X(t1) = X1,

l(X(·)) → min,
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Fig. 5. Sub-Riemannian problem

see Fig. 5.

To state the problem as an optimal control one, choose an element b ∈ L, |b| = 1, such that ∆Id =

b⊥ = {u ∈ L | 〈u, b〉 = 0}. Denote U = b⊥. Then ∆X = XU , and the restriction Ẋ ∈ ∆X can be written

as Ẋ = Xu, u ∈ U .

For a rigid body rotating in R3 with orientation matrix X ∈ SO(3), this restriction on velocities means

that we fix an axis b in the rigid body and allow only rotations of the body around any axis u orthogonal

to b.

The optimal control problem is stated as follows.

Ẋ = Xu, X ∈ G, u ∈ U,

X(0) = X0, X(t1) = X1,

X0, X1 ∈ G fixed,

l(u) =

t1∫
0

|u(t)| dt → min .

Controllability: we have Γ = b⊥ = span(a1, a2) for some linearly independent a1, a2 ∈ so(3). Since

[a1, a2] /∈ span(a1, a2), the system Γ has the full rank, thus it is controllable on SO(3).

Similarly to the Riemannian problem, the length minimization problem is equivalent to the problem

J(u) =
1
2

t1∫
0

|u(t)|2 dt → min,

and Filippov’s theorem guarantees existence of optimal controls.

The Hamiltonian of PMP is the same as in the previous problem:

hν
u(a) = 〈a, u〉+

ν

2
|u|2.

Consider first the abnormal case: ν = 0. The maximality condition of PMP has the form

h0
u(a) = 〈a, u〉 → max

u⊥b
. (8.6)

Consider the decomposition

a = a‖ + a⊥, a‖ ‖ b, a⊥ ⊥ b. (8.7)

Then maximality condition (8.6) is rewritten as

h0
u(a) = 〈a⊥, u〉 → max

u⊥b
,
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which yields a⊥ = 0, i.e.,

a(t) = α(t)b, α(t) 6= 0.

The vertical part of Hamiltonian system (7.12) for our problem yields

α̇b = ȧ =
[
a,

∂ h

∂ a

]
= [a, u] = α[b, u]. (8.8)

Further, by invariance of the scalar product in so(3),

〈b, [b, u]〉 = −〈[b, b], u〉 = 0.

Thus

[b, u] ⊥ b ⇒ α̇b ⊥ b ⇒ α̇ = 0.

Then equality (8.8) implies α[b, u] = 0, so [b, u] = 0. But such an equality in so(3) means that u ‖ b.

Since u ⊥ b, we obtain u ≡ 0 for an abnormal optimal control. Then the horizontal part of Hamiltonian

system (7.12) has the form Ẋ = X
∂ h

∂ a
= Xu = 0. That is, X ≡ const, abnormal optimal trajectories are

constant and give only trivial solutions to our problem.

Now consider the normal case: ν = −1. Via decomposition (8.7), the maximality condition of PMP

has the form

h−1
u (a) = 〈a⊥, u〉 − 1

2
|u|2 → max

u⊥b
,

thus normal optimal controls are

u = a⊥ = a− 〈b, a〉b.

The vertical part of the Hamiltonian system of PMP takes the form

ȧ = [a, u] = [a, a− 〈b, a〉b] = 〈b, a〉[b, a]. (8.9)

It is easy to see that this ODE has the integral 〈b, a〉 ≡ const:

〈b, a〉· = 〈b, ȧ〉 = 〈b, [b, a]〉︸ ︷︷ ︸
=0

〈b, a〉 = 0.

So equation (8.9) can be rewritten as

ȧ = 〈b, a0〉[b, a] = ad(〈b, a0〉b)a a0 = a(0),

which is immediately solved:

a(t) = et ad(〈b,a0〉b)a0.

Now consider the horizontal part of the Hamiltonian system of PMP:

Ẋ = Xu = X(a− 〈b, a0〉b) = X
(
et ad(〈b,a0〉b)a0 − 〈b, a0〉b

)
= Xet ad(〈b,a0〉b) (a0 − 〈b, a0〉b) .
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In the notation

c = 〈b, a0〉b, d = a0 − 〈b, a0〉b,

we obtain the ODE

Ẋ = Xet ad cd = Xetcd e−tc,

that is,

Ẋetc = Xetcd.

After the change of variable Y = Xetc, we come to the equation

Ẏ = Ẋetc + Xetcc = Xetc(d + c) = Y (d + c),

which is solved as

Y (t) = Y (0)et(d+c).

Finally,

X(t) = Y (t)e−tc = Y (0)et(d+c)e−tc = X(0)eta0e−t〈b,a0〉b.

Summing up, we showed that all optimal trajectories in the sub-Riemannian problem on SO(3) are

products of two one-parameter subgroups.

8.3. Sub-Riemannian problem on the Heisenberg group. The Heisenberg group is the defined

as

G =




1 x z

0 1 y

0 0 1

 | x, y, z ∈ R

 .

This group is diffeomorphic to R3
x,y,z, thus it is not compact.

Its Lie group is

L =




0 α γ

0 0 β

0 0 0

 | α, β, γ ∈ R

 = span(e1, e2, e3),

where we denote

e1 = E12, e2 = E23, e3 = E13. (8.10)

The multiplication table in this basis looks like

[e1, e2] = e3, [e1, e3] = [e2, e3] = 0,
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thus

ad e1 =


0 0 0

0 0 0

0 1 0

 , ad e2 =


0 0 0

0 0 0

−1 0 0

 , ad e3 = 0.

So any adjoint operator

adA =


0 0 0

0 0 0

−A2 A1 0

 , A =
3∑

i=1

Aiei ∈ L, (8.11)

has the zero spectrum. Consequently, the Heisenberg group G is nilpotent.

In the dual of the Heisenberg Lie algebra L one can choose the basis dual to basis (8.10):

L∗ = span(ω1, ω2, ω3), 〈ωi, ej〉 = δij , i, j = 1, 2, 3.

We write elements of the Lie algebra as column vectors

L 3 A =
3∑

i=1

Aiei =


A1

A2

A3

 ,

and elements of its dual space as row vectors:

L∗ 3 a =
3∑

i=1

aiωi =
(

a1 a2 a3

)
.

For a linear operator C : L → L, its dual C∗ : L∗ → L∗ acts as

〈C∗a,A〉 = 〈a,CA〉 =
(

a
)  C


 A

 ,

the product of a row vector, a square matrix, and a column vector. Thus

C∗a =
(

a
)  C

 .

Consider the left-invariant sub-Riemannian problem on the Heisenberg group determined by the ortho-

normal frame (e1, e2). The plane

∆Id = span(e1, e2) ⊂ L

generates the left-invariant distribution

∆X = span(Xe1, Xe2) ⊂ TXG.
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Further, the scalar product 〈·, ·〉Id in ∆Id defined by

〈ei, ej〉Id = δij , i, j = 1, 2,

generates the left-invariant scalar product 〈·, ·〉X in ∆X as follows:

〈Xei, Xej〉X = δij , i, j = 1, 2.

The distribution ∆X ⊂ TXG with the scalar product 〈·, ·〉X in ∆X determine a left-invariant sub-

Riemannian structure on the Lie group G.

Consider the corresponding sub-Riemannian problem:

Ẋ ∈ ∆X ,

X(0) = X0, X(t1) = X1,

l(X(·)) =

t1∫
0

|Ẋ| dt =

t1∫
0

√
〈Ẋ, Ẋ〉 dt → min .

The corresponding control system has the form

Ẋ = u1Xe1 + u2Xe2, (u1, u2) ∈ R2. (8.12)

Since

|Ẋ| = |u1Xe1 + u2Xe2| = |u1e1 + u2e2| =
√

u2
1 + u2

2,

the sub-Riemannian length functional takes the form

l =

t1∫
0

√
u2

1 + u2
2 dt → min . (8.13)

We solve optimal control problem (8.12), (8.13).

Controllability: we have Γ = span(e1, e2) ⊂ L. Since [e1, e2] = e3, the system Γ has full rank. Moreover,

Γ is symmetric and G is connected, thus Γ is controllable.

As before, we pass to the functional

J =
1
2

t1∫
0

(u2
1 + u2

2) dt → min .

Filippov’s theorem implies existence of optimal controls.
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The Hamiltonian of PMP has the form

hν
u(a,X) = 〈āX , u1Xe1 + u2Xe2〉+

ν

2
(u2

1 + u2
2)

= 〈a, u1e1 + u2e2〉+
ν

2
(u2

1 + u2
2) = u1a1 + u2a2 +

ν

2
(u2

1 + u2
2)

= hν
u(a).

The Heisenberg group is noncompact, thus a ∈ L∗, and we will write the Hamiltonian system of PMP in

the form (7.10). First we consider the vertical part

ȧ =
(

ad
∂ h

∂ a

)∗
a, a ∈ L∗. (8.14)

We have

∂ h

∂ a
= u1e1 + u2e2 =


u1

u2

0

 ∈ L.

Taking into account equality (8.11), we obtain

ad
∂ h

∂ a
=


0 0 0

0 0 0

−u2 u1 0

 .

Thus the vertical part (8.14) of the Hamiltonian system of PMP takes the form

(
ȧ1 ȧ2 ȧ3

)
=

(
a1 a2 a3

) 
0 0 0

0 0 0

−u2 u1 0

 =
(
−a3u2 a3u1 0

)
,

that is,

ȧ1 = −a3u2,

ȧ2 = a3u1,

ȧ3 = 0.

Consider first the abnormal case: ν = 0. Then the maximality condition of PMP

h0
u(a) = u1a1 + u2a2 → max

(u1,u2)∈R2

yields a1 = a2 = 0, thus a3 6= 0. Then the Hamiltonian system implies

ȧ1 = −a3u2 ≡ 0,

ȧ2 = a3u1 ≡ 0,
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whence the abnormal optimal controls are u1 = u2 ≡ 0. Then the horizontal part of the Hamiltonian

system

Ẋ = X
∂ h

∂ a
= X(u1e1 + u2e2)

gives X ≡ X0. Thus there are no nonconstant abnormal optimal trajectories.

In the normal case ν = −1 the maximality condition

h−1
u (a) = u1a1 + u2a2 −

1
2
(u2

1 + u2
2) → max

(u1,u2)∈R2

implies u1 = a1, u2 = a2. Consequently, the normal Hamiltonian system of PMP has the form

ȧ1 = −a3a2,

ȧ2 = a3a1,

ȧ3 = 0,

Ẋ = X(a1e1 + a2e2).

It is easy to see that this system has an integral a2
1 + a2

2 ≡ const since

(a2
1 + a2

2)
· = 2a1(−a3a2) + 2a2a3a1 = 0.

So it is convenient to pass to the polar coordinates

a1 = r cos θ, a2 = r sin θ,

in which the vertical part of the Hamiltonian system has the form

ṙ = 0,

θ̇ = a3,

ȧ3 = 0.

Now the vertical subsystem is immediately integrated:

θ = θ0 + a3t,

a1 = r cos(θ0 + a3t),

a2 = r sin(θ0 + a3t).

We rewrite the horizontal subsystem as
0 ẋ ż

0 0 ẏ

0 0 0

 =


1 x z

0 1 y

0 0 1




0 a1 0

0 0 a2

0 0 0

 =


0 a1 xa2

0 0 a2

0 0 0

 ,
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that is,

ẋ = a1,

ẏ = a2,

ż = xa2.

In view of the left invariance of the problem, we can restrict ourselves by trajectories starting from the

identity: X(0) = X0 = Id, i.e.,

x(0) = y(0) = z(0) = 0.

Consider first the case a3 = 0. Then

x =

t∫
0

r cos θ0 dt = tr cos θ0,

y =

t∫
0

r sin θ0 dt = tr sin θ0,

z =

t∫
0

tr2 cos θ0 sin θ0 dt =
t2

2
r2 cos θ0 sin θ0.

And if a3 6= 0, then

x =

t∫
0

r cos(θ0 + a3t) dt =
r

a3
(sin(θ0 + a3t)− sin θ0),

y =

t∫
0

r sin(θ0 + a3t) dt =
r

a3
(cos θ0 − cos(θ0 + a3t)),

z =

t∫
0

r

a3
(sin(θ0 + a3t)− sin θ0)r sin(θ0 + a3t) =

=
r2

a3

(
t

2
− sin(2(θ0 + a3t))− sin 2θ0

4a3
+

sin θ0

a3
(cos(θ0 + a3t)− cos θ0)

)
.

If a3 = 0, then projections of extremal trajectories X(t) to the plane (x, y) are straight lines, thus the

whole trajectories X(t), t ∈ [0,+∞) are optimal.

And if a3 6= 0, then such projections are arcs of circles. One can show that such arcs are optimal up to

the first complete circle: X(t), t ∈ [0, 2π/|a3|].

We found solutions of the minimization problem
t1∫

0

√
ẋ + ẏ dt → min
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Fig. 6. Euler’s elastic problem

along Lipshchitzian plane curves (x(t), y(t)) under the boundary conditions

(x, y, z)(0) = (x0, y0, z0), (x, y, z)(t1) = (x1, y1, z1),

where

z(t) =
∫

x dy

is the algebraic area of the domain in the plane (x, y) bounded by the curve (x(t), y(t)), the axis y, and

the straight line perpendicular to this axis.

Geometrically, this problem can be stated as follows. Given two points (x0, y0), (x1, y1), a plane curve

γ0 connecting (x1, y1) to (x0, y0), and a number S = z1 − z0, one should find a plane curve γ connecting

(x0, y0) to (x1, y1) such that the domain bounded by γ and γ0 has the algebraic area S, and γ is the

shortest possible curve. Solutions to this problem are straight lines and arcs of circles. This is one of the

ancient optimization problems known as Dido’s problem, it goes back to IX B.C [28].

8.4. Euler’s elastic problem. Now we consider a problem studied first by L. Euler in 1744 [20].

Suppose that we have two points a0 = (x0, y0), a1 = (x1, y1) in the plane and two unit vectors v0, v1,

|v0| = |v1| = 1, attached respectively at these points. We should find the profile of the elastic rod with

fixed endpoints a0, a1 and fixed tangents v0, v1 at these endpoints.

Let γ(t) = (x(t), y(t)), t ∈ [0, t1], be the arc-length parametrization of the elastic rod, t1 being its length

assumed fixed. Let θ(t) be the angle between the velocity vector (ẋ(t), ẏ(t)) and the positive direction of

the axis x, see Fig. 6.

Then the elastic problem can be stated as follows:

ẋ = cos θ,

ẏ = sin θ,

θ̇ = u,

(x, y, θ)(0) = (x0, y0, θ0), (x, y, θ)(t1) = (x1, y1, θ1),

where v0 = (cos θ0, sin θ0), v1 = (cos θ1, sin θ1). The elastic energy of the rod is measured by the integral

J =
1
2

t1∫
0

k2 dt → min,

where k is the curvature of the rod. For an arc-length parametrized curve, the curvature is, up to sign,

equal to the angular velocity, thus k2 = θ̇2 = u2, and we obtain the cost functional for the optimal control
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problem:

J =
1
2

t1∫
0

u2 dt → min .

This problem has obvious symmetries — translations and rotations in the plane (x, y). So it is natural

to expect that it can be stated as an invariant problem on the Euclidean group E(2). Indeed, the state

space of the control system is

G = E(2) =




cos θ − sin θ x

sin θ cos θ y

0 0 1

 | (x, y) ∈ R2, θ ∈ S1

 .

Further, the dynamics of the system has the form

Ẋ =
d

d t


cos θ − sin θ x

sin θ cos θ y

0 0 1

 =


− sin θ u − cos θ u cos θ

cos θ u − sin θ u sin θ

0 0 0



=


cos θ − sin θ x

sin θ cos θ y

0 0 1




0 −u 1

u 0 0

0 0 0

 .

The Lie algebra of the Euclidean group is

L = e(2) = span(E21 − E12︸ ︷︷ ︸
e1

, E13︸︷︷︸
e2

, E23︸︷︷︸
e3

).

So the elastic problem is left-invariant:

Ẋ = X(e2 + ue1), u ∈ R, X ∈ G,

X(0) = X0, X(t1) = X1,

J =
1
2

t1∫
0

u2 dt → min .

We already computed multiplication table in e(2), see (6.7):

[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = 0,
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whence

ad e1 =


0 0 0

0 0 −1

0 1 0

 , ad e2 =


0 0 0

0 0 0

−1 0 0

 , (8.15)

ad e3 =


0 0 0

1 0 0

0 0 0

 . (8.16)

We choose the dual basis in the dual space to the Lie algebra:

L∗ = span(ω1, ω2, ω3), 〈ωi, ej〉 = δij ,

and write elements of the Lie algebra as column vectors

L 3 A =
3∑

i=1

Aiei =


A1

A2

A3

 ,

and elements of the dual space as row vectors:

L∗ 3 a =
3∑

i=1

aiωi =
(

a1 a2 a3

)
.

Controllability. The system Γ = e2 + Re1 ⊂ L is controllable on G = E(2) by Theorem 6.8.

Now we find extremal trajectories. The Hamiltonian of PMP has the form

hν
u(a) = 〈a, e2 + ue1〉+

ν

2
u2, a ∈ L∗, u, ν ∈ R.

Thus
∂ h

∂ a
= e2 + ue1, and in view of (8.15), (8.16)

ad
∂ h

∂ a
=


0 0 0

0 0 −u

−1 u 0

 .

Consequently, the Hamiltonian system (7.10) has the form

ȧ1 = −a3, ẋ = cos θ,

ȧ2 = ua3, ẏ = sin θ,

ȧ3 = −ua2, θ̇ = u.
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In the abnormal case ν = 0, and the maximality condition

h0
u(a) = a2 + ua1 → max

u∈R

yields a1(t) ≡ 0. Then the vertical subsystem takes the form

ȧ1 = 0 = −a3,

ȧ2 = ua3 = 0,

ȧ3 = 0 = −ua2.

We have a1 = a3 ≡ 0, so a2 ≡ const 6= 0 and u ≡ 0. Notice that this is a singular control , i.e., it is not

determined immediately by the maximality condition of PMP. Now we integrate the horizontal subsystem:

θ = θ0,

x = t cos θ0,

y = t sin θ0.

Consider the normal case: ν = −1,

h−1
u (a) = a2 + ua1 −

1
2
u2 → max

u∈R
,

whence u = a1. Therefore, the vertical subsystem has the form

ȧ1 = −a3,

ȧ2 = a1a3,

ȧ3 = −a1a2.

In view of the integral a2
2 + a2

3 ≡ const, we pass to the polar coordinates:

a2 = r cos α, a3 = r sinα.

The vertical subsystem simplifies:

ṙ = 0,

α̇ = −a1,

ȧ1 = −r sinα.

The angle α satisfies the equation of mathematical pendulum α̈ = r sinα. Further, θ̇ = u = a1 = −α̇,

thus θ = β−α, β = const. Finally, the angle θ satisfies the equation θ̈ = −r sin(θ−γ), γ = β +π = const,
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and we obtain the following closed system for optimal trajectories:

ẋ = cos θ,

ẏ = sin θ,

θ̈ = −r sin(θ − γ), r, γ = const .

If r = 0, then θ = θ0 + tθ̇0, and Euler elasticae, i.e., optimal curves (x(t), y(t)), are the same as in the

sub-Riemannian problem on the Heisenberg group, i.e., lines and circles.

Let r > 0. Then we can apply homotheties in the plane (x, y) in order to obtain r = 1, and further

apply rotations in this plane in order to have γ = 0. Then the angle θ satisfies the standard equation of

the mathematical pendulum θ̈ = − sin θ, i.e.,

θ̇ = c,

ċ = − sin θ.

Here c is the curvature of Euler elastica. The different qualitative types of solutions to the equation of

pendulum depend on values of the energy of the pendulum

E =
c2

2
− cos θ ∈ [−1,+∞).

The following cases are possible:

(1) E = −1,

(2) E ∈ (−1, 1),

(3a) E = 1, θ 6= ±π,

(3b) E = 1, θ = ±π,

(4) E ∈ (1,+∞).

It is known that the equation of mathematical pendulum is integrable in elliptic functions [18]. One can

show that equations for elasticae are integrable in elliptic functions as well, and the following qualitative

types of elasticae are possible:

(1) straight line, Fig. 7,

(2) inflectional elasticae, Fig. 8–11,

(3a) critical elastica, Fig. 12,

(3b) straight line, Fig. 13,

(4) non-inflectional elasticae, Fig. 14–15,

(5) r = 0 ⇒ circles, Fig. 16, and straight lines.

A detailed study of optimality of Euler elasticae is performed in [41].
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Fig. 7. E = −1

Fig. 8. E ∈ (−1, 1) Fig. 9. E ∈ (−1, 1)

Fig. 10. E ∈ (−1, 1) Fig. 11. E ∈ (−1, 1)

Fig. 12. E = 1, θ 6= π Fig. 13. E = 1, θ = π

8.5. The plate-ball system. Consider a unit two-dimensional sphere rolling on a horizontal two-

dimensional plane without slipping and twisting, see Fig. 17. Given an initial and a terminal contact

configuration of the sphere and the plane, the problem is to roll the sphere from the first configuration

to the second one in such a way that the curve in the plane traced by the contact point be the shortest

possible.

Fix an orthonormal frame (e1, e2, e3) in R3 such that the plane is spanned by e1, e2, and the vector

e3 is directed upwards (to the half-space containing the sphere). In addition, choose an orthonormal

frame (f1, f2, f3) attached to the sphere. Then orientation of the sphere in the space is determined by the

orientation matrix

R : (e1, e2, e3) 7→ (f1, f2, f3), R ∈ SO(3),

and position of the contact point of the sphere with the plane is given by its coordinates (x, y) in the

plane corresponding to the frame (e1, e2). Then the state of the system is described by the tuple

X = (R, x, y) ∈ SO(3)× R2.

We have initial and terminal states fixed:

X(0) = X0, X(t1) = X1,

and the cost functional is

l =

t1∫
0

√
ẋ2 + ẏ2dt → min .

Moreover, it is easy to see that the dynamics of the system is described by the following ODEs:

ẋ = u1,

ẏ = u2,

Ṙ = R


0 0 −u1

0 0 −u2

u1 u2 0

 .
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Fig. 14. E ∈ (1,+∞) Fig. 15. E ∈ (1,+∞)

Fig. 16. r = 0 Fig. 17. Rolling ball

The first two equations mean that the contact point (x, y) moves in the plane with an arbitrary velocity

(u1, u2), while the third equation means that the angular velocity of the rolling sphere is horizontal and

perpendicular to (u1, u2), see [14] for details.

We can assemble the state X to a single 6× 6 matrix

X =



R 0

1 0 x

0 0 1 y

0 0 1


,

denote by G the Lie group of all such matrices for all R ∈ SO(3), (x, y) ∈ R2. Then the dynamics of the

system takes the left-invariant form as follows:

Ẋ =



Ṙ 0

0 0 ẋ

0 0 0 ẏ

0 0 0



=



R 0

1 0 x

0 0 1 y

0 0 1





0 0 −u1

0 0 −u2 0

u1 u2 0

0 0 u1

0 0 0 u2

0 0 0


,

that is,

Ẋ = X(u1(E31 − E13 + E46) + u2(E32 − E23 + E56)), X ∈ G, (u1, u2) ∈ R2.
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The Lie algebra of the Lie group G is

L = span(E32 − E23︸ ︷︷ ︸
e1

, E13 − E31︸ ︷︷ ︸
e2

, E21 − E12︸ ︷︷ ︸
e3

, E46︸︷︷︸
e4

, E56︸︷︷︸
e5

),

with the multiplication rules inherited from so(3):

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2, ad e4 = ad e5 = 0. (8.17)

The nonzero adjoint operators read as follows:

ad e1 =



0 0 0

0 0 −1 0

0 1 0

0 0


, ad e2 =



0 0 1

0 0 0 0

−1 0 0

0 0


, (8.18)

ad e3 =



0 −1 0

1 0 0 0

0 0 0

0 0


. (8.19)

As usual, we choose the dual basis in the space dual to the Lie algebra:

L∗ = span(ω1, . . . , ω5), 〈ωi, ej〉 = δij , i, j = 1, . . . , 5,

write elements of the Lie algebra as column vectors:

L 3 A =
5∑

i=1

Aiei =


A1

...

A5

 ,

and elements of the dual space as row vectors:

L∗ 3 a =
5∑

i=1

aiωi =
(

a1 . . . a5

)
.
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Now we study the plate-ball optimal control problem:

Ẋ = X(u1(e4 − e2) + u2(e5 + e1)), X ∈ G, (u1, u2) ∈ R2,

X(0) = X0, X(t1) = X1,

J =
1
2

t1∫
0

(u2
1 + u2

2) → min,

notice that we replace the functional l by J as always.

Controllability: multiplication rules (8.17) imply that the control system has full rank. Since it is

symmetric and G is connected, controllability follows.

Existence of optimal controls follows from Filippov’s theorem.

The Hamiltonian of PMP has the form

hν
u(a) = 〈a, u1(e4 − e2) + u2(e5 + e1)〉+

ν

2
(u2

1 + u2
2),

then
∂ h

∂ a
= u1(e4 − e2) + u2(e5 + e1),

and it follows from (8.17), (8.18), (8.19) that

ad
∂ h

∂ a
=



0 0 −u1

0 0 −u2 0

u1 u2 0

0 0


.

So the vertical subsystem of the Hamiltonian system of PMP has the form

(
ȧ1 ȧ2 ȧ3 ȧ4 ȧ5

)

=
(

a1 a2 a3 a4 a5

)


0 0 −u1

0 0 −u2 0

u1 u2 0

0 0


.
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Thus the whole Hamiltonian system of PMP takes the form:

ȧ1 = u1a3, ẋ = u1,

ȧ2 = u2a3, ẏ = u2,

ȧ3 = −u1a1 − u2a2,

ȧ4 = ȧ5 = 0, Ṙ = R


0 0 −u1

0 0 −u2

u1 u2 0

 .

Consider first the abnormal case, ν = 0. Then

h0
u(a) = u1(a4 − a2) + u2(a5 + a1) → max

(u1,u2)
∈ R2,

whence a4 − a2 ≡ 0, a5 + a1 ≡ 0. Thus

a1 = −a5 ≡ const,

a2 = a4 ≡ const,

ȧ1 = 0 = u1a3,

ȧ2 = 0 = u2a3.

But non-constant extremal curves of the functional J satisfy the identity u2
1 + u2

2 ≡ const 6= 0, so a3 = 0.

Finally,

ȧ3 = 0 = −u1a1 − u2a2.

Then optimal abnormal controls (u1, u2) are constant, the corresponding curve (x, y) is a straight line,

and the orientation matrix is

R(t) = R0 exp

t


0 0 −u1

0 0 −u2

u1 u2 0


 .

Now we pass to the normal case, ν = −1. Then

h−1
u (a) = u1(a4 − a2) + u2(a5 + a1)−

1
2
(u2

1 + u2
2) → max

(u1,u2)∈R2
,

whence

u1 = a4 − a2, u2 = a5 + a1.
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For these controls, the vertical subsystem of the Hamiltonian system of PMP takes the form

ȧ1 = (a4 − a2)a3,

ȧ2 = (a5 + a1)a3,

ȧ3 = −(a4 − a2)a1 − (a5 + a1)a2,

ȧ4 = ȧ5 = 0.

Introduce the variables

b1 = a4 − a2 = u1,

b2 = a5 + a1 = u2,

b3 = a3,

then the above system reduces to the following one:

ḃ1 = −b2b3,

ḃ2 = b1b3,

ḃ3 = a5b1 − a4b2.

This system has an integral b2
1 + b2

2 ≡ const, which can be set equal to 1 by homogeneity of the system.

We pass to the polar coordinates

b1 = cos θ, a4 = r cos ϕ,

b2 = sin θ, a5 = r sinϕ,

in which

θ̇ = b3,

ḃ3 = r sin(ϕ− θ),

that is, the angle θ satisfies the equation of pendulum

θ̈ = −r sin(θ − ϕ).

The coordinates of the contact point satisfy the ODEs

ẋ = u1 = b1 = cos θ,

ẏ = u2 = b2 = sin θ.

Thus we obtain a remarkable result: the contact point of the sphere rolling optimally traces Euler elastica!
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A description of the corresponding orientation matrix R(t) can be found in [14].

Acknowledgments. This paper is based on lectures given in SISSA, Trieste, Italy, 2003 and 2006, and

University of Rouen, France, 2006. This work was partially supported by Russian Foundation for Basic

Research (project No. 05-01-00703-a).

Remarks on bibliography. The bibliography contains references of several kinds:
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43–47], including a survey on the subject [35],

(3) papers on optimal control for invariant problems on Lie groups [10, 23–26, 29, 36–41],

(4) other works referred to in these notes.
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Beiträge Algebra Geometrie, 20, 185–190 (1985).

14. V. Jurdjevic, Geometric Control Theory, Cambridge Univ. Press (1997).

15. V. Jurdjevic and I. Kupka, “Control systems subordinated to a group action: Accessibility,” J. Differ.

Equat., 39, 186–211 (1981).

16. V. Jurdjevic and I. Kupka, “Control systems on semi-simple Lie groups and their homogeneous

spaces,” Ann. Inst. Fourier, 31, No. 4, 151–179 (1981).

17. V. Jurdjevic and H. Sussmann, “Control systems on Lie groups,” J. Differ. Equat., 12, 313–329

(1972).

18. D. F. Lawden, Elliptic Functions and Applications, Springer-Verlag (1980).

19. J. D. Lawson, “Maximal subsemigroups of Lie groups that are total,” Proc. Edinburgh Math. Soc.,

30, 479–501 (1985).

20. A. E. H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover, New York (1927).

21. D. Mittenhuber, “Controllability of solvable Lie algebras,” J. Dynam. Control Systems, 6, No. 3,

453–459 (2000).

22. D. Mittenhuber, “Controllability of systems on solvable Lie groups: the generic case,” J. Dynam.

Control Systems, 7, No. 1, 61–75 (2001).
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