= ЧИСЛЕННЫЕ МЕТОДЫ :

УДК 517.977.58

ПРИБЛИЖЕННОЕ РЕШЕНИЕ ЗАДАЧИ УПРАВЛЕНИЯ НА ОСНОВЕ НИЛЬПОТЕНТНОЙ АППРОКСИМАЦИИ

© 2009 г. Е. Ф. Сачкова

Рассматривается задача управления для детерминированных систем, описываемых обыкновенными дифференциальными уравнениями с линейными управлениями. На основе метода нильпотентной аппроксимации построен алгоритм отыскания приближенного решения задачи управления для трехмерных нелинейных систем с двумя линейными управлениями. Алгоритм реализован в системе Maple, апробирован на примерах управления мобильным роботом на плоскости и ориентацией катящейся по плоскости сферы.

1. ВВЕДЕНИЕ

В настоящей работе рассматривается задача перемещения трехмерной нелинейной системы с двумя линейными управлениями из начальной точки в ε -окрестность конечной. Эта задача полностью решена для неголономных систем общего положения. Решение получено в виде вычислительного алгоритма, построенного по теоретической схеме приближенного решения задачи управления для произвольных неголономных систем, предложенной Лаферьером и Суссманом [1]. Их идея основана на методе нильпотентной аппроксимации, который развит в [2–4]. Суть предложенного подхода заключается в том, что сначала строится некоторая простая (нильпотентная) система, которая аппроксимирует исходную систему в окрестности целевой точки. Для нильпотентной системы задачу управления часто можно решить точно. Управления, найденные для нильпотентной системы, используются для перемещения исходной системы. Если состояние, в которое приходит исходная система, далеко от цели, то это состояние объявляется начальной точкой и вновь применяется описанный метод.

Построенный здесь вычислительный алгоритм реализован в системе Maple (см. [5, с. 438–440]) и апробирован на задачах управления мобильным роботом на плоскости и ориентацией катящейся по плоскости сферы.

Настоящая работа является продолжением предыдущей работы [6]; здесь используются полученные в ней результаты для построения вычислительного алгоритма. Основными результатами работы [6] являются формулы программных управлений и управлений с обратной связью для симметричной модели нильпотентной системы в классе управлений, оптимальных в смысле минимума функционала субримановой длины, а также в классах кусочнотригонометрических и кусочно-постоянных управлений. В силу того что все нильпотентные аппроксимации глобально диффеоморфны симметричной, полученные ранее результаты для модельной системы применимы для всех нильпотентных аппроксимаций систем рассматриваемого вида.

2. ПОСТАНОВКА ЗАДАЧИ УПРАВЛЕНИЯ

Рассматривается управляемая система вида

$$\dot{x} = \sum_{i=1}^{m} u_i X_i(x), \quad x \in \mathbb{R}^n, \quad u = (u_1, \dots, u_m) \in \mathbb{R}^m, \tag{1}$$

где X_i , i = 1, ..., m, – гладкие векторные поля в \mathbb{R}^n , $u_i = u_i(t)$, i = 1, ..., m, – измеримые локально ограниченные управления. Будем предполагать, что векторные поля X_i линейно

независимы в рассматриваемой области пространства состояний \mathbb{R}^n . Представляет интерес случай m < n.

Задача управления для системы (1) заключается в том, чтобы по заданным $x^0, x^1 \in \mathbb{R}^n$, T > 0 найти управление $u(t) = u(x^0, x^1, T; t), t \in [0, T]$, для которого соответствующая траектория x(t) системы (1) удовлетворяет условиям $x(0) = x^0, x(T) = x^1$.

В данной работе ставится задача отыскания *приближенного* решения задачи управления для системы (1): по заданным $x^0, x^1 \in \mathbb{R}^n$, T > 0, $\varepsilon > 0$ найти управление $u(t) = u(x^0, x^1, T, \varepsilon; t)$, $t \in [0, T]$, переводящее систему (1) из точки x^0 в ε -окрестность точки x^1 за время T.

Система (1) называется вполне управляемой в \mathbb{R}^n , если для любых $x^0, x^1 \in \mathbb{R}^n$ задача управления имеет решение для некоторого T > 0. Условия полной управляемости системы (1) задаются в терминах алгебры Ли векторных полей, порожденной векторными полями

$$X_1, \ldots, X_m$$
: Lie (X_1, \ldots, X_m) = span $(X_1, \ldots, X_m, [X_i, X_j], [X_i, [X_j, X_k]], \ldots)$

где $[X_i, X_j]$ – скобка Ли полей X_i, X_j : $[X_i, X_j] = \frac{\partial X_j}{\partial x} X_i - \frac{\partial X_i}{\partial x} X_j$ (см. [7]). Согласно теореме Рашевского–Чжоу [7, с. 72; 8], система (1) вполне управляема в \mathbb{R}^n тогда и только тогда, когда она является системой полного ранга, т.е. dim Lie $(X_1, \ldots, X_m)(x) = n$ для всех $x \in \mathbb{R}^n$.

Далее будем искать приближенное решение задачи управления для трехмерной нелинейной системы с двумя линейными управлениями

$$\dot{x} = u_1 X_1(x) + u_2 X_2(x), \quad x \in \mathbb{R}^3, \quad (u_1, u_2) \in \mathbb{R}^2,$$
(2)

$$X_1, X_2, X_3 = [X_1, X_2]$$
 линейно независимы в \mathbb{R}^3 , (3)

для которой заданы граничные условия и точность

$$x(0) = x^0, \quad x(T) = x^1, \quad x^0, x^1 \in \mathbb{R}^3; \quad \varepsilon > 0.$$
 (4)

Из условия (3) следует, что система (2) имеет полный ранг и вполне управляема в \mathbb{R}^3 .

Цель данной работы – построение вычислительного алгоритма приближенного решения задачи управления (2)–(4).

3. НИЛЬПОТЕНТНАЯ АППРОКСИМАЦИЯ

Нильпотентная аппроксимация является естественным обобщением линейной аппроксимации. Линеаризация системы (2) в окрестности точки $q \in \mathbb{R}^3$ имеет вид $\dot{x} = u_1 X_1(q) + u_2 X_2(q)$ и в этом случае неуправляема. Локальное приближение системы (2), сохраняющее свойство управляемости, задается *нильпотентизацией* этой системы – управляемой системой, имеющей нильпотентную (а не абелеву, как в случае линеаризации) алгебру Ли.

В этом пункте изложены необходимые далее теоретические сведения, относящиеся к конструкции нильпотентной аппроксимации, и общий алгоритм нильпотентизации нелинейной системы с линейными управлениями согласно работе [4], адаптированный нами для систем (2), (3).

Зафиксируем произвольную точку $q \in \mathbb{R}^3$ и опишем процедуру построения нильпотентной аппроксимации системы (2), (3) в окрестности точки q. Пусть $L^1 = \operatorname{span}(X_1, X_2), L^2 = \operatorname{span}(X_1, X_2, X_3)$ и $L_p^s = \{X(p) \mid X \in L^s\}, s = 1, 2$

Пусть $L^1 = \text{span}(X_1, X_2), \quad L^2 = \text{span}(X_1, X_2, X_3)$ и $L_p^s = \{X(p) | X \in L^s\}, \quad s = 1, 2$ (здесь и далее через p обозначается произвольная точка в окрестности точки q). Условие (3) означает, что dim $L_p^1 = 2$, dim $L_p^2 = 3$. Выберем векторные поля $Z_1, Z_2 \in L^1, \quad Z_3 \in L^2$ так, чтобы выполнялись равенства $L_p^1 = \text{span}(Z_1(p), Z_2(p)), \quad L_p^2 = \text{span}(Z_1(p), Z_2(p), Z_3(p)),$ тогда базис $Z_1, \quad Z_2, \quad Z_3$ называется привилегированным. Числа $w_1 = w_2 = 1, \quad w_3 = 2$ называются весами.

Неголономными производными первого порядка функции f называются производные Ли $X_i f, i = 1, 2;$ неголономные производные второго порядка имеют вид $X_j(X_i f), i, j = 1, 2,$ и

т.д. Порядком функции f в точке p (ord_pf) называется наименьший порядок отличной от нуля неголономной производной функции f в точке p. Порядком векторного поля Y в точке p (ord_pY) называется наименьшее число $k \in \mathbb{Z}$ такое, что для любой функции f порядка s функция Yf имеет порядок k + s.

Локальные координаты (z_1, z_2, z_3) в окрестности точки q называются привилегированными, если а) $z_i(q) = 0$; b) $\frac{\partial}{\partial z_i}(q) = Z_i(q)$, i = 1, 2, 3; c) $\operatorname{ord}_q z_1 = \operatorname{ord}_q z_2 = w_1$, $\operatorname{ord}_q z_3 = w_2$. В таких координатах порядок функции и порядок поля вычисляются алгебраически. Пусть $\alpha = (\alpha_1, \alpha_2, \alpha_2)$ – последовательность целых неотрицательных чисел; вес монома $z^{\alpha} =$ $= z_1^{\alpha_1} z_2^{\alpha_2} z_3^{\alpha_3}$ равен $w(\alpha) = \alpha_1 w_1 + \alpha_2 w_2 + \alpha_3 w_3 = \alpha_1 + \alpha_2 + 2\alpha_3$, а вес мономиального векторного поля $z^{\alpha} \frac{\partial}{\partial z_j}$ равен $w(\alpha) - w_j$. Тогда порядок функции f равен наименьшему весу монома в тейлоровском разложении $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$, а порядок поля Y равен наименьшему весу мономиального поля в тейлоровском разложении

$$Y(z) = \sum_{\alpha,j} a_{\alpha,j} z^{\alpha} \frac{\partial}{\partial z_j}.$$

Несложно проверить, что $\operatorname{ord}_q(X_i) = -1$, i = 1, 2. Тейлоровское разложение в нуле полей X_i , i = 1, 2, имеет вид $X_i = X_i^{(-1)} + X_i^{(0)} + \ldots + X_i^{(s)} + \ldots$, где $X_i^{(s)}$ – однородное векторное поле веса s. Обозначим $X_i^{(-1)} = \hat{X}_i$, i = 1, 2. Система векторных полей (\hat{X}_1, \hat{X}_2) называется нильпотентной аппроксимацией системы полей (X_1, X_2) в точке q, ассоциированной с привилегированными координатами (z_1, z_2, z_3) . В работе [4] доказаны следующие свойства нильпотентной аппроксимации.

Теорема 1. 1) Векторные поля \hat{X}_1 , \hat{X}_2 , $\hat{X}_3 = [\hat{X}_1, \hat{X}_2]$ линейно независимы, причем $[\hat{X}_1, \hat{X}_3] = [\hat{X}_2, \hat{X}_3] = 0.$

2) В привилегированных координатах нильпотентная аппроксимация

$$\dot{z} = u_1 \hat{X}_1(z) + u_2 \hat{X}_2(z)$$

системы (2) имеет следующую форму:

$$\dot{z}_1 = u_1 a_1 + u_2 a_2, \quad \dot{z}_2 = u_1 b_1 + u_2 b_2, \quad \dot{z}_3 = u_1 (c_{11} z_1 + c_{12} z_2) + u_2 (c_{21} z_1 + c_{22} z_2),$$
 (5)

 $e \partial e \ a_i, b_i, c_{ij} \in \mathbb{R}, \ i, j = 1, 2.$

Предложенный в работах [4, 9] алгебраический алгоритм построения нильпотентной аппроксимации следующим образом адаптируется для системы (2), (3) в окрестности точки q:

1) выбирается привилегированный базис $Z_1, Z_2, Z_3;$

2) вычисляются привилегированные координаты z(x), например, по правилу

$$z = F^{-1}(x)(x-q),$$

где F(x) – матрица третьего порядка, столбцами которой являются векторы $Z_1(x)$, $Z_2(x)$, $Z_3(x)$;

3) исходная система (2) выражается в привилегированных координатах $(z_1, z_2, z_3);$

4) векторные поля представляются по формуле Тейлора

$$X_i(z) = \sum_{\alpha,j} a_{\alpha,j} z^{\alpha} \frac{\partial}{\partial z_j}, \quad i = 1, 2,$$

в окрестности точки z = 0;

5) группируются поля одного веса: $X_i(z) = X_i^{(-1)}(z) + X_i^{(0)}(z) + \ldots + X_i^{(s)}(z) + \ldots, i = 1, 2;$ 6) из каждого тейлоровского разложения выбираются поля $X_i^{(-1)} = \hat{X}_i, i = 1, 2,$ которые

и являются нильпотентной аппроксимацией полей X_1, X_2 в окрестности точки q.

САЧКОВА

4. АЛГОРИТМ РЕШЕНИЯ ЗАДАЧИ УПРАВЛЕНИЯ

4.1. Каноническая нильпотентная аппроксимация. Для построения нильпотентной аппроксимации системы (2), (3) в качестве привилегированного базиса выберем $Z_i = X_i$, i = 1, 2, 3. Будем называть этот базис *каноническим*, привилегированные координаты

$$z = F^{-1}(x)(x-q),$$
(6)

– каноническими в случае, когда F(x) – матрица, столбцами которой являются поля канонического базиса, а нильпотентную аппроксимацию в этих координатах – канонической.

Предложение 1. Каноническая нильпотентная аппроксимация системы (2) имеет следующую треугольную форму:

$$\dot{z}_1 = u_1, \quad \dot{z}_2 = u_2, \quad \dot{z}_3 = u_1(c_{11}z_1 + c_{12}z_2) + u_2(c_{21}z_1 + c_{22}z_2), \quad c_{12} \neq c_{21}.$$
 (7)

Доказательство. Следуя алгоритму нильпотентизации, изложенному в п. 3, преобразуем поле $X_1(x)$ системы (2) к привилегированным координатам (6) по правилу $\frac{\partial z}{\partial x}(x(z))X_1(x(z))$. Обозначим это поле через $X_1(z)$. Разложим каждую компоненту поля $X_1^j(z)\frac{\partial}{\partial z_j}$, j = 1, 2, 3, по формуле Тейлора в точке z = 0:

$$X_1^1(z)\frac{\partial}{\partial z_1} = (1+P_1^1(z))\frac{\partial}{\partial z_1}, \quad X_1^2(z)\frac{\partial}{\partial z_2} = (0+P_1^2(z))\frac{\partial}{\partial z_2},$$
$$X_1^3(z)\frac{\partial}{\partial z_3} = (0+c_{11}z_1+c_{12}z_2+P_1^3(z))\frac{\partial}{\partial z_3},$$

где $P_1^i(z)$ – многочлен первой степени, $c_{1i} = \frac{\partial X_1^3}{\partial z_i}(0)$, i = 1, 2. Заметим, что вес мономиального поля $P_1^i(z)\frac{\partial}{\partial z_i}$ неотрицателен, i = 1, 2, 3. Тогда $X_1^{(-1)}(z) = 1\frac{\partial}{\partial z_1} + (c_{11}z_1 + c_{12}z_2)\frac{\partial}{\partial z_3}$ или $\hat{X}_1(z) = (1, 0, c_{11}z_1 + c_{12}z_2)^{\mathrm{T}}$. Аналогично получим $\hat{X}_2(z) = (0, 1, c_{21}z_1 + c_{22}z_2)^{\mathrm{T}}$, где $c_{2i} = \frac{\partial X_2^3}{\partial z_i}(0)$, i = 1, 2.

Из теоремы 1 следует, что

$$0 \neq \det(X_1, X_2, [X_1, X_2]) = c_{21} - c_{12},$$

где $[\hat{X}_1, \hat{X}_2] = (0, 0, c_{21} - c_{12})^{\mathrm{T}}$. Поэтому $c_{21} \neq c_{12}$. Предложение доказано.

4.2. Вычисление коэффициентов канонической нильпотентной аппроксимации. В этом пункте получены формулы для вычисления коэффициентов c_{ij} , i, j = 1, 2, системы (7). Введем следующие обозначения:

$$\bar{f}_3(x)$$
 – третья строка матрицы $F^{-1}(x)$, (8)

$$\bar{l}_k = \frac{\partial \bar{f}_3}{\partial x_k}(q) = \left(\frac{\partial f_{31}}{\partial x_k}(q), \frac{\partial f_{32}}{\partial x_k}(q), \frac{\partial f_{33}}{\partial x_k}(q)\right), \quad k = 1, 2, 3,$$
(9)

$$\bar{P}_j = X_j(q), \quad \bar{g}_j = (\langle \bar{l}_1, \bar{P}_j \rangle, \langle \bar{l}_2, \bar{P}_j \rangle, \langle \bar{l}_3, \bar{P}_j \rangle), \quad j = 1, 2,$$
(10)

где угловые скобки $\langle \cdot, \cdot \rangle$ обозначают стандартное скалярное произведение двух векторов. Формулы (8)–(10) записаны в исходных координатах (x_1, x_2, x_3) .

Предложение 2. Коэффициенты c_{ij} нильпотентной системы (7) вычисляются по формуле

$$c_{ij} = \langle P_i, \bar{g}_j \rangle, \quad i, j = 1, 2.$$

$$(11)$$

Доказательство. Непосредственное вычисление показывает, что третья компонента полей $X_i, i = 1, 2,$ системы (2) в канонических привилегированных координатах (6) равна

$$X_{i}^{3}(z) = \sum_{k=1}^{3} \left\langle \frac{\partial \bar{f}_{3}}{\partial x_{k}}(x(z)), x(z) - q \right\rangle X_{i}^{k}(x(z)), \quad i = 1, 2.$$

Учитывая то, что в каноническом базисе $\frac{\partial x}{\partial z_j}(0) = X_j(q) = \bar{P}_j$, получаем равенства

$$c_{ij} = \frac{\partial X_i^3}{\partial z_j}(0) = \sum_{k=1}^3 \left\langle \frac{\partial \bar{f}_3}{\partial x_k}(x(0)), \frac{\partial x}{\partial z_j}(0) \right\rangle X_i^k(x(0)) =$$
$$= \sum_{k=1}^3 X_i^k(q) \left\langle X_j(q), \frac{\partial \bar{f}_3}{\partial x_k}(q) \right\rangle = \sum_{k=1}^3 P_i^k \langle \bar{P}_j, \bar{l}_k \rangle = \sum_{k=1}^3 P_i^k g_j^k = \langle \bar{P}_i, \bar{g}_j \rangle$$

Предложение доказано.

Итак, коэффициенты c_{ij} канонической нильпотентной аппроксимации (7) выражаются с помощью дифференцирования и алгебраических операций через компоненты полей X_i системы (2) на основе формул (8)–(10).

4.3. Эквивалентная форма канонической нильпотентной аппроксимации. Построив нильпотентную аппроксимацию (7), (11) системы (2), мы сделали первый шаг в решении задачи управления для этой системы. Второй шаг алгоритма заключается в том, чтобы отыскать точные решения задачи управления для построенной системы (7), (11). Для этого найдем замену переменных, переводящую систему (7) в симметричную нильпотентную систему, для которой в работе [6] получен необходимый нам набор управлений.

Предложение 3. Произвольную систему вида (7), где $c_{21} \neq c_{12}$, с помощью подходящей замены переменных можно преобразовать к виду

$$\dot{y}_1 = u_1, \quad \dot{y}_2 = u_2, \quad \dot{y}_3 = \frac{u_2 y_1 - u_1 y_2}{2}.$$
 (12)

Доказательство. Для нахождения искомой замены переменных воспользуемся методом, изложенным в предложении 1 [6]. Вычислив потоки полей \hat{Z}_i , i = 1, 2, системы (7) и взяв в качестве начальной точку $z^0 = (0, 0, 0) \in \mathbb{R}^3_z$, получим диффеоморфизм $\mathbb{R}^3_t \to \mathbb{R}^3_z$:

$$\Phi_z(t_1, t_2, t_3) = e^{t_3 \hat{Z}_3} \circ e^{t_2 \hat{Z}_2} \circ e^{t_1 \hat{Z}_1}(z^0) = \left(t_1, t_2, (c_{21} - c_{12})t_3 + c_{21}t_1t_2 + \frac{c_{11}}{2}t_1^2 + \frac{c_{22}}{2}t_2^2\right).$$
(13)

Для системы (12) выполнено $c_{12} = -c_{21} = -1/2$, поэтому отображение (13) для этой системы имеет вид $\hat{F}(t_1, t_2, t_3) = (t_1, t_2, t_3 + t_1 t_2/2).$ Обратное отображение $\mathbb{R}^3_z \to \mathbb{R}^3_t$ имеет вид

$$\Phi_z^{-1}(z_1, z_2, z_3) = \left(z_1, z_2, \frac{1}{c_{21} - c_{12}} \left(z_3 - c_{21}z_1z_2 - \frac{c_{11}}{2}z_1^2 - \frac{c_{22}}{2}z_2^2\right)\right).$$

Тогда композиция отображений $G(z) = F \circ \Phi_z^{-1}(z)$, или

$$G(z) = \left(z_1, z_2, \frac{1}{c_{21} - c_{12}} \left(z_3 - \frac{c_{21} + c_{12}}{2} z_1 z_2 - \frac{c_{11}}{2} z_1^2 - \frac{c_{22}}{2} z_2^2\right)\right),\tag{14}$$

есть искомая замена переменных, преобразующая систему (7) к виду (12). Предложение доказано.

Последнее утверждение устанавливает, что все системы вида (7) глобально диффеоморфны. Более того, предъявлена формула замены переменных (14), которая вместе с формулами

управлений в [6] позволяет вычислять управления, переводящие нильпотентную аппроксимацию (7) точно в целевую точку.

4.4. Вычислительный алгоритм. Рассматриваемый ниже итерационный алгоритм основан на методе нильпотентной аппроксимации. Из общей теории [9] следует, что для любой точки x^1 существует радиус сходимости $\delta > 0$ этого алгоритма, т.е. такое число $\delta = \delta(x^1) > 0$, что для всех точек x^0 , $|x^0 - x^1| < \delta$, построенная ниже в алгоритме последовательность приближений q^n сходится к x^1 . Будем далее решать задачу перемещения системы (2) из точки x^0 в точку x^1 при условии $|x^0 - x^1| < \delta$; такую задачу управления будем называть локальной.

Обозначим через \mathcal{U} класс управлений, используемых в алгоритме для перемещения системы (например, оптимальных в смысле некоторого функционала, тригонометрических, кусочно-постоянных).

Алгоритм приближенного решения локальной задачи управления (2)-(4).

1. Проверка условия достижения цели: если $|x^0 - x^1| < \varepsilon$, то цель достигнута и алгоритм останавливается. Далее предполагается, что $|x^0 - x^1| \ge \varepsilon$.

2. Вычисление нильпотентной аппроксимации исходной системы (2), (3) в окрестности целевой точки x^1 : вычисляются коммутатор $X_3 = [X_1, X_2]$, матрица

$$F(x) = (X_1, X_2, X_3)(x),$$

коэффициенты c_{ij} , i, j = 1, 2, по формулам (8)–(11). **3. Итерационный процесс.** В качестве начального приближения на первой итерации берется $q^0 = x^0$. Пусть q^{n-1} – приближение к целевой точке x^1 , полученное на (n-1)-й итерации.

а) Выбирается класс управлений \mathcal{U} .

в) Вычисляются координаты начальной точки q^{n-1} в канонических привилегированных координатах (6), центрированных в целевой точке $x^1: z^{n-1} = F^{-1}(q^{n-1})(q^{n-1} - x^1)$. с) Вычисляются координаты y^{n-1} начальной точки q^{n-1} в системе координат (y_1, y_2, y_3) системы (12): $y^{n-1} = G(c_{ij}, z^{n-1})$, где отображение G задано формулой (14). d) По формулам работы [6] вычисляются управления $\hat{u}^n \in \mathcal{U}$, переводящие систему (12)

из точки y^{n-1} в точку $0 \in \mathbb{R}^3$ за время T.

е) Решается задача Коши для исходной системы (2) с управлениями \hat{u}^n

$$\dot{x} = \hat{u}_1^n(t)X_1(x) + \hat{u}_2^n(t)X_2(x), \quad x(0) = q^{n-1}, \quad t \in [0,T];$$

обозначим ее решение через $x^n(t)$.

f) В качестве следующего приближения берется точка $q^n = x^n(T)$.

g) Проверяется условие достижения цели: если $|q^n - x^1| < \varepsilon$, то цель достигнута и алгоритм останавливается. Если $|q^n - x^1| \ge \varepsilon$, то совершается переход к следующей итерации, к п. 3a), и в качестве начального приближения берется q^n . Из сходимости алгоритма при условии $|x^0 - x^1| < \delta$ следует, что на некоторой итерации N выполнится условие $|q^N - x^1| < \varepsilon$ и алгоритм остановится.

4. Приближенное решение локальной задачи управления дается последовательным применением управлений $\hat{u}^1, \ldots, \hat{u}^N$, вычисленных на каждой итерации и перепараметризованных соответствующим образом:

Смысл этих формул в следующем: если, например, управление $\hat{u}^1(t)$ переводит точку q^0 в точку q^1 на отрезке времени длины T, то управление $N\hat{u}^1(Nt)$ переводит точку q^0 в точку q^1 на отрезке времени длины T/N и т.д.; в результате управление u(t) определено на отрезке [0, T]. Управление $u(t) = u(x^0, x^1, T, \varepsilon; t)$, полученное с помощью формул (15),

переводит систему (2) за время T > 0 из точки x^0 в точку x^1 с заданной точностью $\varepsilon > 0$, следовательно, является приближенным решением локальной задачи управления (2)–(4).

С помощью этого локального алгоритма можно построить и глобальный алгоритм, введя по некоторому правилу промежуточные узлы x_1^1, \ldots, x_k^1 так, что $x_1^1 = x^0, \ x_k^1 = x^1$ и $|x_{i+1}^1 - x_i^1| < \delta(x_i^1)$.

5. ПРИМЕРЫ

Описанный выше локальный алгоритм приближенного решения задачи управления реализован в системе Maple [5], апробирован на примерах управления мобильным роботом на плоскости и ориентацией катящейся по плоскости сферы.

Для реализации алгоритма использованы управления двух типов, подробно рассмотренные в работе [6]. Управления первого типа назовем тригонометрическими. Они имеют вид

$$u_1 = -z_1^0/T + \beta(\gamma)\sin(2\pi t/T), \quad u_2 = -z_2^0/T + \gamma\cos(2\pi t/T),$$

где $\beta(\gamma) = 4\pi z_3^0/(T(2z_2^0 + \gamma T)), \ \gamma \neq -2z_2^0/T,$ – свободный параметр.

Управления второго типа назовем оптимальными. Критерием оптимальности является минимум функционала субримановой длины

$$L = \int_{0}^{T} \sqrt{u_1^2 + u_2^2} \, dt \to \min.$$

Программные управления этого типа выражаются через неэлементарную функцию $\bar{t}(z)$, неявно задающуюся уравнением в тригонометрических функциях. Оптимальный синтез имеет вид

$$u_1(z) = -\cos\psi(z), \quad u_2(z) = -\sin\psi(z),$$

где $\psi(z)$ – функция, выражающаяся через элементарные функции и функцию $\bar{t}(z)$ (см. п. 4 работы [6]).

5.1. Управление мобильным роботом на плоскости. Пусть $x = (x_1, x_2)$ – положение робота на плоскости, x_3 – его угол поворота. Тогда (\dot{x}_1, \dot{x}_2) – линейная, а \dot{x}_3 – угловая его скорости. В качестве управляющих параметров будем рассматривать величину линейной скорости u_1 и угловую скорость u_2 . Управляемая система, моделирующая движение робота на плоскости, имеет вид

$$\dot{x}_1 = u_1 \cos x_3, \quad \dot{x}_2 = u_1 \sin x_3, \quad \dot{x}_3 = u_2,$$

$$x = (x_1, x_2, x_3) \in \mathbb{R}^2_{x_1, x_2} \times S^1_{x_3}, \quad u = (u_1, u_2) \in \mathbb{R}^2.$$
(16)

Система (16) известна как кинематическая модель мобильного робота (см., например, [7, с. 23; 10]).

Приближенное решение задачи управления для системы (16) вычисляется с помощью построенного алгоритма.

Входные данные для алгоритма – векторные поля системы (16) $X_1 = (\cos x_3, \sin x_3, 0)^{\mathrm{T}}, X_2 = (0, 0, 1)^{\mathrm{T}},$ граничные условия x^0, x^1 , время T = 1, точность ε , классы управлений \mathcal{U} – оптимальные и тригонометрические управления (см. [6, 13]).

Для любой точки $x^1 \in \mathbb{R}^3$ нильпотентная аппроксимация (7) системы (16) одна и та же, ее коэффициенты равны $c_{11} = 0$, $c_{12} = 0$, $c_{21} = 1$, $c_{22} = 0$.

Программная реализация алгоритма на этом примере дает приближенные решения с высокой точностью за небольшое число итераций как в классе тригонометрических, так и в классе оптимальных управлений: точность $\varepsilon = 10^{-15}$ достигается меньше, чем за 10 итераций.

10 ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ том 45 № 9 2009

(

САЧКОВА

5.2. Управление ориентацией катящейся сферы. Управляемая система, описывающая качение сферы по плоскости без прокручивания и проскальзывания, описана в монографиях [7, 11]. Рассмотрим подсистему этой системы, описывающую изменение ориентации сферы. Переходя в этой подсистеме от ортогональных 3×3 -матриц к кватернионам (см. [12]) и применяя проекцию на трехмерное пространство, получаем следующую систему:

$$\dot{x} = zu_1 - yu_2, \quad \dot{y} = \sqrt{1 - x^2 - y^2 - z^2}u_1 + xu_2,$$

$$\dot{z} = -xu_1 + \sqrt{1 - x^2 - y^2 - z^2}u_2,$$

$$q = (x, y, z) \in B^3 = \{x^2 + y^2 + z^2 < 1\}, \quad u = (u_1, u_2) \in \mathbb{R}^2.$$
(17)

Приближенное решение задачи управления для системы (17) вычисляется с помощью описанного выше алгоритма.

Входные данные для алгоритма – векторные поля системы (17)

$$X_1 = (z, \sqrt{1 - x^2 - y^2 - z^2}, -x)^{\mathrm{T}}, \quad X_2 = (-y, x, \sqrt{1 - x^2 - y^2 - z^2})^{\mathrm{T}};$$

граничные условия x^0 , x^1 ; время T = 1, точность ε , классы управлений \mathcal{U} – тригонометрические и оптимальные управления (см. [6]).

Коэффициенты нильпотентной аппроксимации (7) системы (17) равны

$$c_{11} = c_{22} = -\frac{x_1^1}{2\rho(x^1)}, \quad c_{12} = -c_{21} = -\frac{1}{2},$$

где $\rho(q) = \sqrt{1 - x^2 - y^2 - z^2}.$

Этот пример выясняет значение предложения 2. Если непосредственно следовать алгоритму нильпотентизации п. 4, то для того, чтобы выразить систему (17) в привилегированных координатах, необходимо найти обратную замену переменных из соотношений $y' = F^{-1}(y)(y - x^1)$, что само по себе представляет нетривиальную задачу. Предложение 2 позволяет найти аппроксимацию с помощью простых операций: дифференцирования и арифметических операций, причем для любой вполне управляемой трехмерной нелинейной системы с двумя линейными управлениями.

С помощью компьютерной реализации построенного для системы (17) алгоритма решена конкретная задача управления как в классе тригонометрических управлений, так и в классе оптимальных управлений.

Входные данные: $x^0 := (0.1169240727, -0.08495031150, -0.2628920040), x^1 := (0,0,0), T := 1, \varepsilon := 10^{-4}, 1) \mathcal{U}$ – тригонометрические управления, 2) \mathcal{U} – оптимальные управления. Выходные данные: 1) $u_{\text{триг}}(t), t \in [0,1]; 2) u_{\text{опт}}(t), t \in [0,1].$

Графики управлений $u_{\text{триг}}(t)$ изображены на рис. 1, 2, а графики управлений $u_{\text{опт}}(t)$ – на рис. 3, 4. Оба решения получены за $N(10^{-4}) = 3$ итерации.

Рис. 1. Тригонометрическое управление $u_1(t)$.

Рис. 2. Тригонометрическое управление $u_2(t)$.

Рис. 3. Оптимальное управление $u_1(t)$.

Рис. 4. Оптимальное управление $u_2(t)$.

Проанализируем работу алгоритма, исследовав зависимость числа итераций N от ε . Для этого в последнем примере будем полагать $\varepsilon = 10^{-n}$, где $n \in \{1, 2, ..., 12\}$, значения других параметров оставим неизменными. Для каждого из видов управлений построим график в виде ломаной, соединив отрезками точки $(n, N(\varepsilon))$. На рис. 5 представлена зависимость $N(\varepsilon)$ с использованием тригонометрических управлений, а на рис. 6 - c использованием оптимальных управлений.

Рис. 5. Алгоритм с тригонометрическими управлениями.

Рис. 6. Алгоритм с оптимальными управлениями.

Полученные графики демонстрируют эффективность алгоритма: число итераций растет примерно как линейная функция от n. Данный пример отражает общую картину при условии, что начальное расстояние от нуля меньше некоторого числа R (из компьютерных экспериментов получено R < 0.35).

6. ЗАКЛЮЧЕНИЕ

Метод нильпотентной аппроксимации является эффективным для решения задачи управления. В случае, когда имеется точное решение этой задачи для нильпотентной системы (как в рассмотренном случае трехмерной системы с двумерным управлением, в классах тригонометрических или оптимальных управлений), он легко преобразуется в вычислительные алгоритмы и компьютерные программы. Приведенные примеры (кинематическая модель мобильного робота и управление ориентацией катящейся сферы) демонстрируют устойчивую работу алгоритмов при высокой требуемой точности, а также умеренный (линейный) рост числа итераций в зависимости от порядка требуемой точности.

Работа поддержана Российским фондом фундаментальных исследований (проект 09-01-00246-а).

САЧКОВА

СПИСОК ЛИТЕРАТУРЫ

- 1. Laferriere G., Sussmann H.J. Nonholonomic Motion Planning / Eds.: Zexiang Li, Canny J.F. The Kluwer International Series in Engineering and Computer Science. V. 192, 1992.
- 2. Аграчев А.А., Сарычев А.В. Фильтрации алгебры Ли векторных полей и нильпотентная аппроксимация управляемых систем // Докл. АН СССР. 1987. № 295. С. 777–781.
- Hermes H. Nilpotent and high-order approximations of vector fields systems // SIAM Review. 1991. V. 33. P. 238–264.
- 4. Bellaiche A., Risler J.-J. Eds. Sub-Riemannian geometry. Basel; Swizerland, 1996. P. 1–78.
- 5. Дьяконов В. Maple 6: учебный курс. СПб., 2001.
- 6. Сачкова Е.Ф. Решение задачи управления для нильпотентной системы // Дифференц. уравнения. 2008. Т. 44. № 12. С. 1704–1707.
- 7. Аграчев А.А., Сачков Ю.Л. Геометрическая теория управления. М., 2005.
- Рашевский П.К. О соединимости любых двух точек вполне неголономного пространства допустимой линией // Уч. записки Моск. гос. пед. ин-та им. К. Либкнехта. Сер. физ.-мат. 1938. Т. З. № 2. С. 83–94.
- 9. Jean F. Lectures on Dynamical and Contol Systems. Trieste, 2003.
- 10. Laumond J.P. // Lecture notes in Control and Information Sciences, 229. Springer, 1998. P. 343.
- 11. Jurdjevic V. Geometric control theory. Cambridge, 1997.
- 12. Уиттекер Э.Е. Аналитическая динамика. М., 2004.
- Sachkov Yu.L., Sachkova E.F. Motion planning for linear in control systems // Generalized solutions in control problems (IFAC workshop). M., 2004. P. 227–235.

Институт программных систем РАН,

г. Переславль-Залесский

Поступила в редакцию 06.03.2008 г.