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SUMMARY

An extended four-dimensional version of the traditional Petitot–Citti–Sarti model on contour completion in the visual cortex is examined. The neural configuration space is considered as the
group of similarity transformations, denoted as M = SIM(2). The left-invariant subbundle of the tangent bundle models possible directions for establishing neural communication. The
sub-Riemannian distance is proportional to the energy expended in interneuron activation between two excited border neurons. According to the model, the damaged image contours are
restored via sub-Riemannian geodesics in the space M of positions, orientations and thicknesses (scales). We study the geodesic problem in M using geometric control theory techniques. We
prove the existence of a minimal geodesic between arbitrary specified boundary conditions. We apply the Pontryagin maximum principle and derive the geodesic equations. In the special
cases, we find explicit solutions. In the general case, we provide a qualitative analysis. Finally, we support our model with a simulation of the association field.

INTRODUCTION

A mathematical description of the functioning of the human
body is a pressing problem in the modern world. The speci-
fication of cerebration and neuron operation of the human vi-
sual system is of particular interest. The visual cortex con-
sists of billions of neural cells. Neurons are connected in a
complex network, which is extremely difficult to analyze due to
the huge number of elements and even more connections be-
tween them. The direct simulation approach to modeling such
systems faces inevitable obstacles. However, there are some
fundamental principles that are used in network configuration,
e.g., the principle of minimum energy spent on establishing
communication between two excited neurons of the network.
A promising direction for studying such complex systems is to
understand such principles and propose simple mathematical
models based on these principles.
The visual system has a multilayered organization. The com-
plete mechanism of the visual signal processing is not fully
understood, however, there is a profound understanding of its
early stages and the corresponding mathematical models [1].
The the visual signal (the image on the retinal plane)

F : R2 → R+ : (x, y) 7→ F(x, y)

processing is modeled as the action (convolution)

(F ∗ K)(x, y) =
∫
R2

F(x, y)K(x − ξ, y − η) dξ dη

of an appropriate filter K : R2 → R on the image F. An ap-
propriate filter is a function with a graph similar to the cells’
receptive field in a given layer.

Light

Adapted

The first layer is the eye retina, where the image processing is
carried out via the information accumulated in light-sensitive
receptors, bipolar, and ganglion cells. Such information in-
cludes the spatial coordinates of the image. The receptive
field of the retinal cells is well approximated by the Laplacian
of Gaussian (LoG) filter specified by a scale parameter κ > 0:

LoG(x, y) =
1

πκ4

(
1 − x2 + y2

2κ2

)
e−

x2+y2

2κ2 , κ = eσ, σ ∈ R.

After the retina, the visual signal passes through LGN
cells of the thalamus and arrives in the visual cor-
tex. Hubel and Wiesel [2] understood the principles
of the primary visual cortex V1 processing. They dis-
covered the ability of V1 cells to detect contour seg-
ments with different orientations throughout the image.
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Mathematically, the operation of V1 simple cells can be mod-
eled as lifting a two-dimensional input image into an expanded
space SE(2) of positions and orientations. The receptive fields
of the V1 neurons are well approximated by the Gabor filters

G(θ,σ)(x, y) = e−(x2
θ+y2

θ) cos yθ,

where xθ = e−σ (x cos θ + y sin θ) , yθ = e−σ (−x sin θ + y cos θ) .
The classic model of Petitot [3], Citti, and Sarti [4] states that
the visual system performs contour completion (restoration of
a corrupted or partially hidden from observation contour) by
finding a sub-Riemannian length minimizer in SE(2) between
two configurations on the boundary of the damaged area.

ACCOUNTING FOR THICKNESS

Neurophysiological studies show that spatial hypercolumns in
V1 also accumulate secondary information about the visible
image, such as contour thickness (scale) and other features.
In [5] the classic Petitot-Citti-Sarti model has been extended by
taking into account the variable parameter σ. According to the
model, the contour completion mechanism by V1 is invariant
under parallel translations, rotations, and scaling of the image
on the retina. Such transformations constitute the group of
orientation-preserving similarity transformations on the plane

SIM(2) =

q =

eσ cos θ − eσ sin θ x
eσ sin θ eσ cos θ y

0 0 1

 ∣∣∣∣∣∣ (x, y) ∈ R2,

θ ∈ S1, σ ∈ R

 .

This extension is intended for image processing tasks to re-
store damaged image contours. The below figure shows the
original and the corrupted image. Recovering contours via the
classic model sometimes leads to the wrong result. Such prob-
lem cases are avoided by accounting for the thickness of con-
tours and restoration via the geodesics in SIM(2).

The extended model is also motivated by application to the
problem of finding salient lines in images. The below figure
illustrates finding blood vessels (salient lines) in the photogra-
phy of the human retina. Specifications: x, y are spatial coordi-
nates, θ is the orientation, and κ = eσ is the thickness of lines.

STATEMENT OF THE PROBLEM

We formulate our contour completion model as the optimal
control problem. Consider the following control system:

ẋ = u1 e
σ cos θ,

ẏ = u1 e
σ sin θ,

θ̇ = u3,

σ̇ = u4,

(x, y, θ, σ) = q ∈ SIM(2),

(u1, u3, u4) ∈ U,

U =
{
(u1, u3, u4) ∈ R3

∣∣ u2
1 + u2

3 + u2
4 ≤ 1

}
.

For given boundary conditions q0, q1 ∈ SIM(2), we aim to find
the controls u1(t), u3(t), u4(t) ∈ L∞([0,T ],R), such that the cor-
responding trajectory q : [0,T ] → SIM(2) satisfies

q(0) = q0, q(T) = q1, T → min .

Due to invariance under SIM(2) action we set q0 = (0, 0, 0).

EXISTENCE OF THE SOLUTION

The system is symmetric with respect to the controls and it
satisfies Hormander condition. By Chow–Rashevsky theorem,
these two conditions plus connectedness of SIM(2) guarantee
complete controllability. Existence of an optimal admissible tra-
jectory is ensured by Filippov’s theorem.
Theorem. A solution to the optimal control problems exists for
any boundary condition.

PONTRYAGIN MAXIMUM PRINCIPLE

Denote by Xi the left-invariant vector fields

X1(q) = eσ
(
cos θ ∂

∂x + sin θ ∂
∂y

)
, X3(q) = ∂

∂θ,

X2(q) = eσ
(
− sin θ ∂

∂x + cos θ ∂
∂x

)
, X4(q) = ∂

∂σ.

Denote hi = ⟨λ,Xi⟩, λ ∈ T∗ SIM(2). The Pontryagin function is

Hu = u1h1 + u3h3 + u4h4.

The Hamiltonian system is given by
ẋ = u1 e

σ cos θ,
ẏ = u1 e

σ sin θ,

θ̇ = u3,
σ̇ = u4,


ḣ1 = u3h2 + u4h1,

ḣ2 = −u3h1 + u4h2,

ḣ3 = −u1h2,

ḣ4 = −u1h1.

PMP states that Hu is maximum H = max
u∈U

Hu on optimal control.

ABNORMAL EXTREMALS H = 0
The Hamiltonian H is a first integral the Hamiltonian system.
Without loss of generality there are to distinct cases H = 0
(abnormal case) and H = 1 (normal case).
Theorem. Abnormal optimal trajectories have the following
form: x(t) = y(t) = θ(t) = 0, σ(t) = ±t.

NORMAL EXTREMALS H = 1
In the normal case we have H = h2

1 + h2
3 + h2

4 = 1.
The Hamiltonian system takes the form

ẋ = h1 e
σ cos θ,

ẏ = h1 e
σ sin θ,

θ̇ = h3,
σ̇ = h4,


ḣ1 = h3h2 + h4h1,

ḣ2 = −h3h1 + h4h2,

ḣ3 = −h1h2,

ḣ4 = −h2
1.

This system has the following independent first integrals:

H, g1 = e−σ (h1 cos θ − h2 sin θ) , g2 = e−σ (h2 cos θ + h1 sin θ) .

The question of Liouville integrability remains open.
Consider the Poisson bivector P = (Pij) with the components
Pij = {hi, hj}. We have detP = (h2

1 + h2
2)

2; thus rankP = 0 if
h2

1 + h2
2 = 0, and rankP = 4 otherwise.

In the case h2
1 + h2

2 = 0, the coadjoint orbit is zero dimensional
and we have the explicit expression for the extremals.
Theorem. For the initial covector values h10 = h20 = 0 normal
extremal trajectories have the following form:

x(t) = y(t) = 0, θ(t) = h30 t, σ(t) = h40 t.

They are optimal on a time interval t ∈ [0, π
h30
], when h30 ̸= 0;

and up to infinity, when h30 = 0.

In the general case h2
1+h2

2 > 0, the coadjoint orbit is four dimen-
sional. We performed a qualitative analysis of the Hamitonian
system leading to the following theorem.
Theorem. Any solution to the vertical part corresponding to
the initial covector h2

10 + h2
20 > 0, h40 < 0 has the following

asymptotic behavior:

lim
t→∞

h1(t) = 0, lim
t→∞

h2(t) = 0, lim
t→∞

h3(t) = h31, lim
t→∞

h4(t) = h41.

Note that the condition h40 < 0 is technical, and we use it in the
proof. Based on the numerical experiments, we formulate the
conjecture that the limiting behavior holds for all h40 ∈ R.

MODELING OF ASSOCIATION FIELD

Psychophysicists investigated the problem of contour comple-
tion (integration) by the human visual system. Gestalt laws
have been proposed for several phenomena of visual percep-
tion. Among them, the law of good continuation plays a central
role in perceptual completion. The principle of good continu-
ation has resulted in the notion of association field, which de-
scribes the set of possible subjective contours starting from a
given initial configuration. The role of the scale in the contour
integration process was also noticed.
We provide a simulation of the association field by sub-
Riemannian geodesics in SIM(2). A remarkable property of
this model is that the further spatial propagation of the present
geodesics does not appear with growing time, which corre-
sponds to our conjecture. This gives a natural bound for
the spatial distance between given boundary configurations.

We provide another simulation showing that the
sub-Riemannian distance in SIM(2) can be used
as a criterion for perceptual grouping of the pat-
terns with different positions, orientations, and sizes.
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