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In 1929 R.Peierls published his work [1], where the theory of
thermal conductivity in solids was described on a heuristic level of
rigour. In this paper Peierls models the solid with a lattice of
anharmonic oscillators where each of them interacts only with his
nearest neighbors. Our goal is to continue his work, namely, we
aim to provide a rigorous explanation of the thermal conductivity in
a similar setting. Hence, we consider a periodic d-dimensional
lattice
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equipped with a Hamiltonian H(z) = Hy + €¢H4, where
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Following Peierls, we perform a sequence of canonical

transformations and proceed with adding small viscosity and noise.
This gives the following equation of motion:

aF = —ipL” " (a, v ) — yita +bF(k )ﬁf{c ; k €TY,

where \I'f{E (a, t) is the nonlinearity. We are interested in the energy
spectrum of the solution since this is a physically measurable
guantity. We also consider its expansion in the parameter p
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In other words, we are studying the solutions of the following @
system of equations:
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It appears that apart from certain arithmetic insights it is impossible
to solve the system analytically, so we turned our attention to the
numerical approach. We found out that:

1) The critical points almost always have a regular structure, i.e.
the coordinates satisfy some simple relations (yet we were
unable to prove this),

2) There is a submanifold B', dim B! = d — 1, such thatif k € B!
then we have at least one degenerate critical point of the same
regular structure,

3) There is a submanifold B2, dim B2 =d — 2, such that if k € 32
then we have degenerate critical points of different structure
that becomes more complex with growth of d.

Thus, we can only obtain the asymptotics of the integral above for
k ¢ B'UB?, i.e., for such k we have
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For now we limit our consideration only to the first three terms of the
series. Our goal is to show that in the limit L —+ co and v — 0 they
obey a certain kinetic equation. It is easy to show that
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due to Wick theorem and certain relations on indexes. The next
term
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IS less trivial, and the first step of its analysis it to approximate it with
the following integral expression as L — oc:
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The next step is to obtain the asymptotics of the expression above
in the limit ¥ — 0 and this is where the problem becomes difficult
since we need to precisely examine the critical points of the function

01,02,03,0 _
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where

d
wi = E sin k;
i=1

IS a dispersion relation. In order to ensure the convergence of the
Integral above, we need to show that there are no degenerate
@ critical points in the domain {(k1, ks) : 2,"77%° = 0}.

@ We aim to achieve the following result:
ni> (1) —m(r; k)| < Ce?,

where m(T;.) is a solution of the wave kinetic equation
m(7; k) = =29m(7; k) + eK(m(7;.)) (k) + 207 (k),

and K(m(7;.)) is awave kinetic integral operator defined as
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The key step in proof of the main result is to show that

12 = —299n=? + b7 (k) + K (n=?)(k) + O(eh),
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which is done via estimating the increments of n§2. Currently the
work in this direction is ongoing.
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