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1 Introduction

There are several main directions in the theory of Diophantine approximations. Here are examples
of some problems and open questions.
Problem 1 Given m vectors y1,. . . ,ym ∈ Rn and the non-increasing function ψ : R → R , how

many solutions (p, q) exist for inequality :

max1≤i≤m∥qyi − p∥ < ψ(q)

where q ∈ Z \ 0,p ∈ Zn,v∥ = maxj=1,...,n|vj|?
Problem 2 Given non-increasing function ψ : R → R ,what is the measure of such sets
y1,. . . ,ym∈ Rn(in the sense of the Lebesgue measure on Rmn) that the inequality :

max1≤i≤m∥qyi − p∥ < ψ(q)

has infinitely many solutions (q,p) ∈ Zn+1?
Problem 3 Given non-increasing function ψ : R → R, open and connected subset U of Rd and
f1, . . . , fn ∈ Cn(U),d < n,what is the measure of such points y ∈ M = {(f1(x), . . . , fn(x))|x ∈
U} (in the sense of the Lebesgue measure on U) that the inequality :

∥qy− p∥ < ψ(q)

has infinitely many solutions (q,p) ∈ Zn+1?
After the work [D1],[KM1],[KM2] it became clear that these issues are closely related to the

behavior of some flows on homogeneous spaces.

2 Preliminaries

Definition 1Fix n ∈ N and consider Ω
def
= { the set of unimodular lattices in Rn} =

SLn(R)/SLn(Z) - is the space of lattices.
In the future, we will need the ability to determine whether a certain trajectory in the lattice

space is bounded or not. We will understand boundedness as belonging to some compact set.
Theorem(Mahler’s compactness theorem) Let F be some subset of Ω. F is relatively compact if

and only if there is a number ρ > 0 such that for every lattice f ∈ F infv∈f∥v∥ ≥ ρ
Definition 2Let y ∈ Rn,y is Very Well Approximable(VWA) if for some ϵ > 0 there are infinitely

many q ∈ Z,p ∈ Zn such that :

∥qy− p∥n < 1

|q|1+ϵ

Definition 3Let y ∈ Rn,y is Very Well Multiplicatively Approximable(VWMA) if for some ϵ > 0
there are infinitely many q ∈ Z,p ∈ Zn such that :

n∏
i=1

|qyi − pi| <
1

|q|1+ϵ

It is not difficult to see that VWMA-numbers are also VWA-numbers.
Definition 4 Let U be open and connected subset of Rd,f1, ..., fn ∈ Cn(U),manifold M =

{(f1(x), . . . , fn(x))|x ∈ U} is called extremal if almost all points M relative to the Lebesgue
measure on U are not VWA

3 Main Results

Definition 4 Let y ∈ Rn,then Ly =

(
1 yT

0 Idn

)
,where Idn is identity n× n matrix

Definition 5 gt = diag(et0, e−t1, . . . , e−tn), t = (t0, t1, . . . , tn),
∑n
i=1 ti = t0 is geodesic flow

Theorem(Dani’s correspondence[D1]) If y ∈ Rn is VWMA, then gt(Ly) is unbounded(in sence
of Mahler’s compactness theorem)
Theorem(Khinchin-Groshev theorem [KM1]) Let ψ : R → Rbe a non-increasing continuous func-

tion.If there are infinitely many solutions (q, p) ∈ Zn+1 to the inequality

∥(q,y)− p∥ < ψ(∥q∥n)

for almost all((resp. almost no) textbfy then the integral
∫∞
1 ψ(x)dx diverges (resp.converges)

Theorem([KM2]) Let f1, . . . , fn be analytic inU ,where U is an open subset of Rd,which together
with 1 are linearly independent over R.Then the manifold M = {(f1(x), . . . , fn)|xU} is strongly
extremal
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