A. V. Podobryaev, Antipodal Points and Diameter of a Sphere

Название: Antipodal Points and Diameter of a Sphere
Авторы: A. V. Podobryaev
Журнал: Russian Journal of Nonlinear Dynamics
Год: 2018
Номер: 4
Том: 14
Страницы: 579–581
Образец цитирования:

A. V. Podobryaev, “Antipodal Points and Diameter of a Sphere”, Russian Journal of Nonlinear Dynamics, 14:4 (2018), 579–581


We give an example of a Riemannian manifold homeomorphic to a sphere such that its diameter cannot be realized as a distance between antipodal points. We consider a Berger sphere, i.e., a three-dimensional sphere with Riemannian metric that is compressed along the fibers of the Hopf fibration. We give a condition for a Berger sphere to have the desired property. We use our previous results on a cut locus of Berger spheres obtained by the method from geometric control theory.