A.V. Podobryaev. Homogeneous geodesics in sub-Riemannian geometry

Название: Homogeneous geodesics in sub-Riemannian geometry
Авторы: A.V. Podobryaev
Журнал: ESAIM: Control, Optimisation and Calculus of Variations
Год: 2023
Номер: 11
Том: 29
Страницы: 17 p.
Образец цитирования:

A.V. Podobryaev. Homogeneous geodesics in sub-Riemannian geometry // ESAIM: Control, Optimisation and Calculus of Variations. 29, 11 (2023)

Аннотация:

We study homogeneous geodesics of sub-Riemannian manifolds, i.e., normal geodesics that are orbits of one-parametric subgroups of isometries. We obtain a criterion for a geodesic to be homogeneous in terms of its initial momentum. We prove that any weakly commutative sub-Riemannian homogeneous space is geodesic orbit, that means all geodesics are homogeneous.
We discuss some examples of geodesic orbit sub-Riemannian manifolds. In particular, we show that geodesic orbit Carnot groups are only groups of step 1 and 2. Finally, we get a broad condition for existence of at least one homogeneous geodesic.

ArXiv ID: 2202.09085