A. Yu. Popov, Bounds for convergence and uniqueness in Abel–Goncharov interpolation problems

Title: Bounds for convergence and uniqueness in Abel–Goncharov interpolation problems
Authors: A. Yu. Popov
Journal title: Sbornik: Mathematics
Year: 2002
Issue: 2
Volume: 193
Pages: 247–277
Citation:

A. Yu. Popov, “Bounds for convergence and uniqueness in Abel–Goncharov interpolation problems”, Sbornik: Mathematics, 2002, 193:2, 247–277

Abstract:

In the scale of the growth types of entire functions defined in terms of certain comparison functions the maximal convergence and uniqueness spaces are found for Abel–Goncharov interpolation problems with nodes of interpolation (either arbitrary complex or real) in classes defined by a sequence of majorants of the nodes.